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Distinct alterations in probabilistic 
reversal learning across at‑risk 
mental state, first episode 
psychosis and persistent 
schizophrenia
J. D. Griffin 1*, K. M. J. Diederen 16, J. Haarsma 17, I. C. Jarratt Barnham 1,4, B. R. H. Cook 1, 
E. Fernandez‑Egea 1,4, S. Williamson 5, E. D. van Sprang 7, R. Gaillard 8, F. Vinckier 2,3,9, 
I. M. Goodyer 1,4, NSPN Consortium *, G. K. Murray 1,4 & P. C. Fletcher 1,4,6*

We used a probabilistic reversal learning task to examine prediction error‑driven belief updating 
in three clinical groups with psychosis or psychosis‑like symptoms. Study 1 compared people with 
at‑risk mental state and first episode psychosis (FEP) to matched controls. Study 2 compared people 
diagnosed with treatment‑resistant schizophrenia (TRS) to matched controls. The design replicated 
our previous work showing ketamine‑related perturbations in how meta‑level confidence maintained 
behavioural policy. We applied the same computational modelling analysis here, in order to compare 
the pharmacological model to three groups at different stages of psychosis. Accuracy was reduced 
in FEP, reflecting increased tendencies to shift strategy following probabilistic errors. The TRS group 
also showed a greater tendency to shift choice strategies though accuracy levels were not significantly 
reduced. Applying the previously‑used computational modelling approach, we observed that only the 
TRS group showed altered confidence‑based modulation of responding, previously observed under 
ketamine administration. Overall, our behavioural findings demonstrated resemblance between 
clinical groups (FEP and TRS) and ketamine in terms of a reduction in stabilisation of responding in a 
noisy environment. The computational analysis suggested that TRS, but not FEP, replicates ketamine 
effects but we consider the computational findings preliminary given limitations in performance of the 
model.

Psychosis is defined as a loss of contact with reality and is characterised by hallucinations and delusions. These 
alterations in experience and beliefs have been explored in the context of associative learning  models1,2 and 
related to the predictive processing  framework3–5, in which the core idea is that there is a fundamental need 
to model the associations or statistical regularities in the world in order to optimise predictions and iteratively 
minimise prediction  errors7. Broadly speaking, predictive processing accounts have framed hallucinations in 
terms of an over-weighting of top-down or recurrent connections, such that predictions generate perceptions 
despite a lack of sensory  evidence8–10. Conversely, delusions have been suggested to arise initially from an over-
weighting of bottom-up prediction error signals, which stimulate formation of new beliefs to account for the 
perceived inadequacy of existing  ones11–14. More recently, a consideration of the precision or gain of both the 
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prediction and the prediction  error15–17 has extended these models. Overall, the hierarchical predictive process-
ing approach appears to provide more comprehensive views on how perturbations in perception and learning 
may underlie psychotic  illness18–20, and has illuminated potential neural mechanisms of psychotic  symptoms16.

Signal precision is an important consideration in how an agent successfully models its world by striking a bal-
ance between flexibility and stability. While prediction errors provide the fundamental drive to updating, many 
environmental regularities are probabilistic, meaning that some prediction errors are inevitable and should not 
directly drive belief  updating21. But, at the same time, favouring a learned model when there has been a genuine 
change in these regularities would be  detrimental6. Achieving a balance is important to interacting optimally 
with our environment. This balance depends on estimated precision (or reliability) of the signal and may be 
disrupted in  psychosis22–24. One useful approach to exploring this balance is through the use of reversal learn-
ing tasks in which associations are learned and then experimentally changed. Such tasks require participants 
to use an adaptive policy, maintaining particular responses in the face of probabilistic errors, while retaining a 
readiness to relearn this when the change occurs. A recent systematic review of a wide range of reversal tasks in 
people with psychosis suggests fundamental difficulties in adapting to volatile environments associated with a 
reduced sensitivity to experimentally-manipulated environmental  volatility25.

In previous  work26, we used a probabilistic learning task in order to explore how ketamine, a drug model 
of  psychosis27–31 affected learning and updating of stimulus–response-outcome associations in healthy partici-
pants. Our task requires participants to maximise reward and minimise loss by learning appropriate responses 
to stimuli that were probabilistically related to monetary outcomes. In addition, there were occasional reversals 
of these cue-outcome contingencies. To perform the task successfully, participants needed to be able to ignore 
the probabilistic errors, maintaining their response strategy despite the fact that this would occasionally produce 
an undesirable outcome. However, because of the occasional contingency reversals, they also had to be able to 
change their strategy if it was no longer the optimal one. Ketamine was associated with difficulty in capitalizing 
on prevailing contingencies, i.e. with maintaining optimal policy in the face of probabilistic errors. Computa-
tional modelling of task performance suggested that this failure was underpinned by a shift in how a “confidence” 
parameter modulated responding. In essence, this means that ketamine attenuated the ability to persist with a 
response that had been successful in recent trials.

The key question is whether this alteration, which can be conveniently estimated in the context of a phar-
macological model, would also be found in clinical groups with, or at risk of, psychosis. We therefore explored 
precisely the same task, using the same computational modelling  procedure26, in relevant clinical populations 
representing several stages of psychotic experience. It has been  suggested30 that ketamine provides a model for 
the early, emergent features of psychosis and we predicted that behavioural and computational changes in the 
at-risk mental state and first episode psychosis groups would most closely mimic those found under ketamine. 
Conversely, ketamine has also been noted to be unusual among drug models of schizophrenia in producing 
negative  symptoms27–29,31 which might predict a resemblance to findings in our TRS group. We carried out 
two complementary patient studies. Study 1 explored performance in patients whose subclinical psychotic-like 
experiences corresponded to an At-Risk Mental State (ARMS), patients with first episode psychosis (FEP), 
and matched healthy controls (HC1). Study 2 analysed performance in participants with treatment-resistant, 
chronic schizophrenia (TRS) and matched healthy controls (HC2). In short, we wished to determine whether 
the previously-reported alterations in confidence-modulation of learning-rate and choice temperature produced 
by ketamine replicated across different stages and severities of psychosis.

Results
Behavioural results (study 1): ARMS, FEP and matched controls
Accuracy and risk tendencies
For every trial (see "Methods" section below), participants responded to a cue by deciding between a “risky” 
option (betting a larger sum (£1)) and a “safer” option (betting a smaller amount (10p)). Visual feedback 
reminded them of their choice, and then informed them of the outcome (‘win’ or ‘lose’ whatever they had 
chosen to wager). The expected value of choosing either of these options on a particular trial depended on the 
cue shown. At any given time during the experimental session, one cue was statistically associated with a high 
probability of a ‘win’ outcome (P(Win) = 0.8) and thus indicated that the riskier choice was optimal. The other 
cue was, meanwhile, statistically associated with high-probability loss outcomes (P(Win) = 0.2) and therefore 
signalled that it would be optimal to choose the “less risky” (10p) bet. Choices were considered ‘accurate’ if they 
conformed to what would, conditional upon the prevailing cue-outcome contingencies, yield greater expected 
return on the present trial. That is, the optimal choice conditional upon the current statistical relationship 
between the presented cue and the probable outcome—regardless of whether the trial happened to be one of 
the minority (20%) of trials that violated these contingencies—was considered ‘accurate’, since it conformed to 
the general strategy that would maximise gains and minimise losses throughout the current block of the task.

Groupwise averages of the overall response accuracy within HC1 (μ = 0.766; s.d. = 0.117); ARMS (μ = 0.693; 
sd. = 0.130); and FEP (μ = 0.648; s.d. = 0.118) differed significantly from one another [one-way ANOVA: df = 2,79; 
F = 6.66; p = 0.002]. Post hoc t-tests (Tukey–Kramer (TK) corrected) found patients with FEP were significantly 
less accurate than controls (p = 0.001), but were not significantly less accurate than those with ARMS (p = 0.341). 
The tendency for accuracy in the HC1 group to exceed that of the ARMS group was non-significant (p = 0.062).

The proportion of all responses that were ‘risky’ choices (i.e. trials on which participants wagered £1 rather 
than the alternative ‘less risky’ option of 10p), averaged within each group, was for HC1 43% (s.d. = 0.066), for 
ARMS 48% (s.d. = 0.086) and for FEP 42% (s.d. = 0.111). Proportion of risky choices was not significantly differ-
ent between groups [Kruskal–Wallis (KW) ANOVA: df = 2,80; W = 5.808; p = 0.055].
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Choice switch tendencies
We operationally define outcomes according to whether they were more or less desirable than the counterfactual 
possibility that would have occurred, given the cue presented, had the alternative wagering option been chosen. 
More desirable outcomes entailed receiving the maximal gain or minimum loss on a given trial (i.e. receiving £1 
rather than 10p, or losing 10p rather than £1). As discussed above, trials could also be categorised according to the 
optimality or correctness of the choice made. Crucially, all possible permutations of choice accuracy and outcome 
desirability were possible. Thus, a correct selection of the risky option could be followed by winning the (more 
desirable) £1 outcome or, on 20% of trials, by the less desirable outcome of losing a whole pound. If the partici-
pant erroneously responded to the relevant cue by choosing the non-risky response, they would usually receive a 
less desired outcome than the correct response would have garnered (i.e. would win only 10p rather than the £1 
that would have been the outcome had they plumped for the alternative option in making their wager). On 20% 
of such trials, however, they would receive a more desirable outcome for their erroneous choice than the correct 
one would have yielded (i.e. if the low-probability ‘loss’ event happened to occur, then the counterfactual case in 
which they had made the correct choice relative to the prevailing cue-outcome contingencies, in this particular 
instance would have yielded an even larger monetary loss of £1). The same possibilities were afforded by the cue 
signifying optimality of a non-risky choice (in this case the more desired outcome was losing 10p while the less 
desired outcome was losing £1). A subject’s propensity to interpret (less) desirable monetary outcomes (losses 
of £1 or wins of 10p) as indicative of a genuine need to alter their current response strategy could be assayed, 
behaviourally, by their propensity to ‘switch’ to an alternative strategy on the trial immediately following such 
events. Similarly, the tendency for recent indications of performance success to promote policy stability (i.e. the 
tendency to ‘stick’ with a seemingly successful strategy) was assayed behaviourally by examining the tendency 
to stay with the same response strategy (rather than switching) on the next trial after receiving a relatively desir-
able outcome (losses of only 10p or wins of £1). We analysed switch behaviour (i.e. tendency to change one’s 
choice on the subsequent presentation of the same cue or to repeat the choice when the alternative cue was next 
presented) for each of the four permutations: (i) correct choice, more desirable outcome; (ii) correct choice, less 
desirable outcome; (iii) incorrect choice, more desirable outcome; (iii) incorrect choice, less desirable outcome. 
We describe group comparisons for each of these four permutations below:

 (i) Correct choice, more desirable outcome: the optimal behaviour here is to stick with the same choice strat-
egy on ensuing trials. As seen in Fig. 1 (top-right) This differed significantly across groups (one-way 
ANOVA; df = 2,80; F = 8.793; p < 0.0001): pairwise comparisons (TK-corrected) found it was lower in 
FEP than both HC1 (p = 0.0002) and ARMS (p = 0.0369), but did not differ between ARMS and controls 
(p = 0.1968). In short, FEP participants tended to shift from an optimal choice strategy even though it 
had received the more desirable outcome.

 (ii) Correct choice, less desirable outcome: here, the optimal behaviour is to stick with the same choice despite 
the experience of a less desirable outcome. There was a significant group difference in probability of 
inappropriately shifting strategy. [One-Way ANOVA: df = 2,80; F = 4.96; p = 0.0093]. Post-hoc pairwise 
comparisons (TK-corrected) found FEP participants were more susceptible to such “surprise-shift errors” 
than HC1 participants (p = 0.0066), while the ARMS group did not differ from FEP (p = 0.137) nor HC1 
(p = 0.423) in this regard (see Fig. 1, bottom-right). That is, FEP participants appeared less likely than 
controls to maintain an optimal strategy in the face of less desirable feedback.

 (iii) Incorrect choice, more desirable outcome: there was no difference in tendency to shift strategy following 
choices that were incorrect, but (having being made on one of the minority (20%) of trials on which the 
prevailing probabilistic relationship between a cue and its typical outcome happened to be violated) had 
nevertheless received the more desirable outcome (one-way ANOVA, df = 2, 79; F = 2.44; p = 0.0939).

 (iv) Incorrect choice, less desirable outcome: The groups did not differ in their probability of appropriately 
shifting away from (as opposed to persevering with) an incorrect strategy on trials immediately following 
an informative undesirable outcome (One-way ANOVA: F(2,80) = 0.4866, p = 0.617).

In brief, these analyses demonstrate a reduced tendency in FEP participants, compared to controls, to main-
tain the optimal choice strategy. While ARMS participants were numerically intermediate between HC1 and FEP, 
they did not significantly differ from either group. The findings are noteworthy in relation to the overall conclu-
sions from the behavioural analysis of healthy participants under ketamine administration, which were that that 
ketamine reduced the ability to stabilize behaviour in the face of probabilistic (misleading) unexpected outcomes.

Computational results (study 1): ARMS, FEP and matched controls
Variational Bayes  analysis32 strongly supported the hypothesis that groups did not differ in model frequencies 
(P(y|H =) ~  = 1). We therefore pooled HC1, ARMS and FEP data for submission to random-effects Bayesian 
Model Comparison. The best-fitting model was a hierarchical model that implemented optimality-based confi-
dence updating and used confidence to modulate learning-rate and choice temperature with separate weights. 
This model’s ‘exceedance probability’ (the probability it was more frequent than any other in the modelspace) 
was ep = 0.9998. Its “protected exceedance probability’’ (an extension of this notion, controlling for the possibility 
that one model may occur more frequently than all others simply by  chance32) was pxp = 0.9995. Family-wise 
analysis found strong support (ep ~  = 1) for those models whose lower-level reinforcement learning algorithm 
was that of this winning model (i.e., symmetrical updating of cue-values according to outcome valence, reflecting 
an appreciation of the task structure) over less sophisticated alternatives (i.e. over families of models that updated 
only the seen cue’s value on each trial, and/or updated cue-values more from |£1| outcomes than equivalently 
informative |10p| outcomes). When families were defined instead by how confidence was updated, family-wise 
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analysis found strong evidence in favour of optimality-based “surface-monitoring” (ep ~  = 1). Finally, compar-
ing families defined by how confidence was used to modulate learning rate and/or choice temperature found 
strong support for the family of models in which confidence modulated both these lower-level parameters 
with separate weighting-factors (ep ~  = 1). These family-wise analyses support the validity of model 26, which 
uniquely occupies the intersection between the winning reinforcement learning, confidence-monitoring, and 
confidence-modulation families.

Contrary to what we hypothesized based on previous ketamine  findings26, neither of the two free param-
eters controlling confidence-modulation of lower-level parameters differed between groups. Of the winning 
model’s five free parameters, groups differed significantly only in baseline choice temperature β0 (Kruskal–Wallis 
ANOVA; df = 81,2; χ2 = 12.7; p = 0.0017). See Fig. 2. This remained significant following correction for multiple 
comparisons. Pairwise comparisons (TK-corrected) found median β0 was significantly higher in FEP than HC1 
(p = 0.001), tended to be higher in ARMS than HC1 at trend-level (p = 0.067), and did not differ between ARMS 
and FEP (p = 0.339).

Median β0 did not differ between patients who were taking antipsychotics, and patients who were not 
(P = 0.951; H = 0; z = 0.06, rank sum = 377). Further, among the former subgroup of patients, antipsychotic dose 

Figure 1.  Boxplots showing median ( ), interquartile range ( ), and range ( ) of key behavioural 
outcomes from Study 1, plotted separately for Healthy Control (HC1), At-Risk Mental State (ARMS) and First 
Episode Psychosis (FEP) groups. Any outlying data points within a group are plotted individually ( ). Top 
left Accuracy was significantly lower in FEP than HC1, and was lower at trend-level in ARMS than HC1. Top 
right Behavioural sensitivity to informative (high-probability) desirable feedback. The tendency to adaptively 
stay with an optimal strategy following desirable feedback was significantly lower in FEP than in both HC1 
and ARMS groups (who did not significantly differ from one another in this regard). Bottom left Behavioural 
sensitivity to misleading (low-probability) desirable feedback did not differ between groups. Bottom right 
Behavioural sensitivity to misleading (low-probability) undesirable feedback. FEP participants were significantly 
more likely than HC1 participants to inappropriately ‘switch’ following low-probability undesirable feedback.
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(in chlorpromazine equivalent  units33) did not correlate with β0 (n = 16; ρ = 0.127; p = 0.640). Thus, the significant 
group difference does not seem to reflect a medication effect.

Summary
The computational analyses suggested that, despite the behavioural resemblance between FEP and ketamine—in 
terms of a reduced tendency to stick to an optimal strategy when faced with probabilistic undesirable outcomes, 
there are computational differences: notably, in the current study, groups differed significantly only in one specific 
free parameter: baseline choice temperature β0 was lower in the FEP group (who also showed worse performance) 
than the HC1 group. In contrast to the previous study, no differences were observed across group in terms of the 
confidence weighting parameters.

The winning model here was largely identical to the one previously  observed26, in that all three groups 
approached the task using a cognitive strategy involving: (1) maintaining a meta-level estimate of confidence 
in lower-level beliefs about values of cues; (2) updating this confidence estimate dynamically using outcome 
optimality as a teaching signal; and (3) deploying confidence to flexibly influence learning rate and choice 
temperature, using distinct weighting factors to separably control these (this latter finding represents the single 
point of departure between the winning model here and that of the previous study, which did not differentiate 
separate parameters for confidence-modulation of learning versus decision-making). An important caveat is that 
parameter recovery for four of the parameters was poor and only choice temperature, β0, was well-recovered 
from simulation data.

Behavioural results (study 2): TRS and matched controls
Accuracy and risk tendencies
Accuracy (see Fig. 3 top-left) in the TRS group (μ = 0.603; s.d. = 0.123) was not significantly lower than accuracy in 
the HC2 group (μ = 0.628;s.d. = 0.133) [One-way ANOVA df = 1;58; F = 0.53; p = 0.469]. However, the proportion 
of risky choices (see Fig. 3 top-right) was significantly higher in the TRS (μ = 0.569; s.d. = 0.138) than in the HC2 
group (μ = 0.479; s.d. = 0.07) [unpaired t-test, unequal variances, two-tailed: df = 52.617; t = 4.562; p < 0.0001].

Choice switch tendencies
As with Study 1, we examined tendencies to switch choices according to the four possible permutations of trial.

 (i) Correct choice, more desirable outcome: as described above, the optimal behaviour here is to stick with 
the same strategy on the ensuing trial. However, TRS participants were more likely to inappropriately 
shift from a choice that had, on the previous trial, received informative desirable feedback—a tendency 
which differentiated them significantly from HC2 participants (one-way ANOVA: df = 1, 58; F = 14.907; 
p < 0.0003). See Fig. 3 middle left.

 (ii) Correct choice, less desirable outcome: here, the optimal behaviour is to stick with the same choice despite 
the experience of a less desirable outcome. TRS was associated with significantly greater tendency to 
incorrectly switch away from the optimal strategy, i.e. to switch response when the preceding trial was 
associated with a correct response but an undesirable outcome (one-way ANOVA df = 1; 58; F = 5.6128; 
p = 0.0212). See Fig. 3 bottom right.

Figure 2.  Boxplots showing the median ( ), interquartile range ( ), and range ( ) of Study 1 subjects’ 
baseline choice temperature free parameter (β0) under the winning computational model, plotted separately 
for Healthy Control (HC1), At-Risk Mental State (ARMS), and First Episode Psychosis (FEP) participants. Any 
outlying values of β0 within a group are plotted individually ( ). Compared to the control group (HC1), there 
was a significant elevation of β0 in patients with FEP, and a trend-level tendency towards elevated β0 in patients 
with ARMS.
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 (iii) Incorrect choice, more desirable outcome. The TRS group were more likely than the HC2 group to shift 
from a choice that, on the preceding trial, had received a ‘misleadingly’ desirable outcome (one-way 
ANOVA: df = 1,58; F = 7.99; p = 0.0064). See Fig. 3 middle right. Note that, in this respect, they showed a 
more optimal tendency than the controls (although, in the context of their overall elevated tendency to 
shift choices, this may not signify a true improvement in performance, which was indeed comparable 
in terms of overall accuracy between TRS and HC2 groups).

Figure 3.  Boxplots showing median ( ), interquartile range ( ), and range ( ) of key behavioural outcomes 
from Study 2, plotted separately for Healthy Control (HC2), and Treatment-Resistant Chronic Schizophrenia 
(TRS) groups. Any outlying data points within a group are plotted individually ( ). Top left Average accuracy 
did not differ significantly between HC2 and TRS. Top right Average proportion of all responses that were 
‘Risky’ was significantly higher in TRS than HC2. Middle Left Compared to controls, TRS is associated 
with significantly reduced tendency to adaptively stay with an optimal strategy following high-probability 
(Informative, ‘Inf ’) desirable feedback to a correct response. Middle Right Compared to controls, TRS is 
associated with significantly reduced propensity to inappropriately stay with a suboptimal strategy following 
low-probability (Misleading, ‘ML’) desirable feedback to an incorrect response. Bottom Left Compared to 
controls, TRS is associated with significantly elevated tendency to adaptively switch away from a suboptimal 
strategy following informative (‘Inf ’) undesirable feedback (left) to an incorrect response. Bottom Right 
Compared to controls, TRS is associated with significantly elevated propensity to inappropriately switch away 
from an optimal strategy following Misleading (‘ML’) undesirable feedback to a correct response.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17614  | https://doi.org/10.1038/s41598-024-68004-7

www.nature.com/scientificreports/

 (iv) Incorrect choice, less desirable outcome: The TRS group were more likely than controls to correctly switch 
after undesirable feedback following a suboptimal response (one-way ANOVA: df = 1,58; F = 7.76; 
p = 0.0072). |See Fig. 3 bottom left. Again, though optimal, this tendency should be considered in the 
context of their overall increased tendency to switch.

In brief, for all permutations of choice and outcome, TRS participants showed an increased tendency to 
change their strategy across successive trials. While in some cases, this was optimal, and may indeed have con-
tributed to their preserved accuracy relative to matched controls, the tendency proved disadvantageous in that 
it was to the detriment of maintaining optimal responding across the study session and, as with the previous 
ketamine study and the ARMS participants in study 1, suggest that the clinical group showed a reduced ability 
to stabilise responding in a probabilistic setting (Fig. 4).

Computational results (study 2): TRS and matched controls
Variational Bayes  analysis32 strongly supported the hypothesis that model frequencies did not differ between TRS 
and HC2 groups (P(y|H =) = 0.9998). Pooling both groups’ data and submitting it to random-effects Bayesian 
Model Comparison to estimate the most likely distribution of models in this sample, we replicated the findings 
of Study 1. Once again, the data were best fit by the hierarchical model using outcome desirability as a teaching 
signal for confidence, which modulated both learning rate and choice temperature with different weights. The 
‘exceedance probability’ of this winning model within the present sample was ep = 0.9103. Protected exceed-
ance probability (pxp) for the winning model was pxp = 0.6797. Thus, the probability that in this sample, this 
best-fitting model was more frequent than any other “not by chance”32 perhaps seems dubiously low. However, 
the previous pharmacological  work26 and Study 1 both found strong evidence for a significant difference in 
these models’ frequencies. Further, the most frequent model in Study 1 was the same model as best fit Study 
2’s independent dataset here, and furthermore was identical, in all respects save for not differentiating between 
parameters κA and κB, to the winning model in the ketamine  study26 (possibly due to power limitations stemming 
from that previous study’s smaller sample size). Thus, the more a priori probable assumption that (consistent with 
previous findings) “these models differ from one another in frequency” renders ep a more appropriate metric 
(and pxp overly conservative) in this case.

Family-wise analyses replicated the findings from the identical family-wise analyses reported for Study 1’s 
separate dataset: concurring with the random-effects model comparison in supporting the model’s validity 
within the HC2/TRS sample. There was strong support for the family whose reinforcement learning algorithm 
used outcome valence to update both cues symmetrically on each trial (ep = 0.9735); for the family updating 
confidence according to outcome desirability as per Eq. (4) (ep ~  = 1); and for the family using confidence to 
modulate learning-rate and choice-temperature with separate weights (ep = 0.9852).

Of the winning model’s five free parameters, four showed no significant group difference. The exception was 
κB, the weight with which confidence modulates choice temperature: average κB was higher in HC2 than TRS 
(one-way ANOVA, df = 1,58; F = 4.235; p 0.0437).

Patients’ clozapine dose did not correlate with κB (ρ = 0.0160; p = 0.929), nor did their current clozapine level 
(ρ = 0.123; p = 0.496). Whether effects of other antipsychotic medication, in those patients who were additionally 

Figure 4.  Boxplots showing the median ( ), interquartile range ( ), and range ( ) of Study 2 subjects’ values 
of κB (the free parameter corresponding to the weighting factor for trialwise confidence-modulation of choice 
temperature, under the winning computational model) plotted separately for Treatment-Resistant Chronic 
Schizophrenia (TRS) and Healthy Control (HC2) groups. Any outlying values of κB within a group are plotted 
individually ( ). Average κB was significantly lower in TRS than HC2.
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taking them, might confound our finding’s interpretation was investigated using an unpaired t-test (unequal 
variances). The subgroup of patients taking other (typical) antipsychotics as well as clozapine did not differ, 
in average κB, from those patients taking only clozapine (t = − 0.302; df = 31.8; p = 0.765). Thus, the difference 
between HC2 and TRS in κB does not seem attributable to antipsychotic medication.

Summary
In contrast to ARMS and FEP, people with TRS showed a reduction in average κB: the free parameter governing 
the weight with which meta-level confidence influences choice temperature. Thus, TRS resembled the pattern of 
reduced confidence-modulation observed under  ketamine26. These interesting observations must be tempered 
by two caveats: first, simulation-based parameter recovery for κB was poor and, second, the groupwise differ-
ence did not survive a correction for the five parameter comparisons. For these reasons, though we find this 
apparent overlap between computational alterations across TRS and ketamine interesting, we treat it cautiously.

Exploratory analyses of relationship between task performance and delusional symptoms
These exploratory analyses focused on the question of whether the computational parameters showing significant 
group differences (i.e. β0 in FEP and κB in TRS) showed any relationship to clinical features.

FEP and ARMS: no relationship between delusions and β0
There was no significant correlation between delusional symptom severity (PANSS  P134) and baseline choice 
temperature β0 in the FEP group ( σ = − 0.227, p = 0.398), nor in the ARMS group ( σ = 0.092; p = 0.669). There 
was no correlation between PANSS P1 delusion severity and κB in participants with FEP ( σ = 0.209; p = 0.391), 
nor ARMS ( σ = 0.055; p = 0.799). Delusional ideation measured by the CAARMS (non-bizarre ideas + unusual 
thought content)35 showed no significant relationship with β0 in ARMS ( σ =− 0.178; p = 0.452), nor in FEP 
( σ = 0.176, p = 0.486), nor in both these patient groups together ( σ = 0.138, p = 0.410)).

Higher κB in TRS associated with presence of delusions
Due to the bimodal distribution of delusional symptoms within the TRS sample, patients were divided into 
two sub-groups based on delusional symptom severity. Average κB was significantly lower in patients with 
non-delusional (PANSS P1 = 1) TRS than with delusional TRS (PANSS P1 = 3–4) (one-way ANOVA; df = 1,18; 
F = 5.8; p = 0.027).

Discussion
Across two studies we examined probabilistic reversal learning in three clinical groups. Study 1 characterised 
learning in at-risk mental state (ARMS) and first-episode psychosis (FEP). Study 2 examined people with what 
has been termed treatment-resistant schizophrenia (TRS), i.e. participants diagnosed with schizophrenia and 
treated with clozapine due to a lack of efficacy of standard antipsychotic treatments. We used behavioural and 
computational analyses to characterise alterations in learning and choice. We are cautious about the compu-
tational analyses for reasons discussed below, and will begin by discussing the behavioural findings across the 
two studies.

The behavioural results suggest a distinction between ARMS, FEP and TRS phases of psychotic experience, 
in terms of how patients within these groups approach learning and decision-making under uncertainty. While 
FEP was associated with a significantly reduced overall accuracy level, there was no significant group difference 
in overall propensity to make risky choices, despite a numerical tendency towards riskier behaviour in the ARMS 
group—whose accuracy level was intermediate between FEP and controls, and was different at a trend-level from 
the control group. Conversely, TRS participants did not differ on overall accuracy from their matched control 
group, but did show a significantly greater tendency to make riskier choices.

A more detailed analysis of trial-to-trial behaviour considered tendencies to shift from one behavioural 
strategy for cue-guided choice to another, in response to probabilistic feedback. Here, we observed that FEP 
participants were more prone than controls to switch away from optimal responding, after experiencing both 
more desirable and less desirable outcomes. They did not show an increased tendency to switch away from a 
sub-optimal pattern of choice, irrespective of the desirability of the outcome on the previous trial. This may be 
at the root of their reduced accuracy, and accords with the behavioural impact observed in healthy participants 
undergoing acute ketamine challenge. Conversely, patients with TRS showed increased behavioural “switch” 
tendencies irrespective of the optimality of their previous choice or the desirability of its outcome, suggesting 
reduced stability of responding which is also a characteristic of chronic schizophrenia. Interestingly, TRS par-
ticipants showed no concomitant reduction in overall accuracy compared to controls.

Overall, the behavioural findings in the clinical groups echo the previous observation that ketamine was 
associated with a reduced ability to stabilise responding within a probabilistic environment in which even opti-
mal responses will occasionally be followed by less desirable outcomes. The apparently paradoxical observation 
that the TRS participants, whose choice behaviour was markedly more changeable (or less stable) than matched 
controls’, nevertheless showed preserved accuracy may be accounted for by these patients’ general tendency to 
switch towards as well as away from optimal responses, which contrasts with the FEP group’s more specifically 
elevated sensitivity to probabilistic undesirable feedback following optimal choices. It is possible too that the 
generally increased flexibility (or reduced stability) of the TRS group’s responses had a mitigating effect on the 
disruptive effect of probabilistic reversals which occurred on three occasions over the study session. That is, 
relatively unstable responding can confer a brief advantage when the environment is volatile.

The ensuing computational analyses sought to determine the deeper processes underpinning more superficial 
behavioural observations, and focused on whether the TRS and FEP groups’ behavioural resemblance to healthy 
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participants under acute ketamine administration on this task was accompanied by comparable alterations in the 
computational parameters associated with ketamine. In brief, the prior  work26 suggested that ketamine infusion 
reduced the capacity to stay with an optimal behavioural policy when confronted with probabilistic undesirable 
outcomes, and computational modelling indicated a reduction in the degree to which meta-level confidence 
modulated lower-level reinforcement learning parameters so as to promote stricter adherence to policies that 
were, based on recent performance, more likely to be optimal.

As in the ketamine study, the computational model most successfully capturing choice data for studies 1 and 
2 suggested that all groups approached the task by maintaining an estimate of meta-level confidence in their 
lower-level beliefs, and updated confidence dynamically using outcome (un)desirability as a teaching signal, 
with confidence growing in proportion to the number of recent desirable response-feedbacks. However, it should 
be noted that this winning model included multiple free parameters (in order to fully recapitulate the previ-
ous study’s analysis) which meant that parameter recovery was overall poor. Our discussion below is therefore 
tempered with caution.

Our prediction was that the ARMS and FEP groups would show computational alterations resembling healthy 
participants treated with acute ketamine. However, this was not the case: while ketamine was primarily associated 
with reduced influence of current confidence over learning and behavioural policy, Study 1 showed that confi-
dence-weighting parameters were not altered in ARMS or FEP compared to controls. Instead, the free parameter 
which in this hierarchical winning model corresponds to ‘baseline’ choice temperature, β0, was significantly 
elevated in FEP (and numerically, but not significantly, in ARMS) compared to controls. Choice temperature may 
signify relative randomness of  responding36, and the increase in this parameter among FEP participants accords 
with our behavioural analysis demonstrating a relative failure to consistently maintain an optimal response 
pattern, an effect that was even more pronounced in TRS, the latter according with the conclusions of a recent 
systematic  analysis25. Second, despite their more advanced illness stage, the TRS group (unlike ARMS and FEP) 
showed a computational perturbation resembling that produced by ketamine: namely, a reduction in the degree 
to which current confidence level (as estimated by recent performance success)modulated choice temperature. 
(It should be noted that the ketamine model comparison findings differed in one respect from the present two 
studies’, in that they did not differentiate two separate weighting factors for confidence modulation of learning-
rate and choice  temperature26).

However, we emphasise here that, as mentioned above, while simulation-based analysis showed that recovery 
of the β0 parameter (altered in FEP) was good, it was poor for the parameter capturing the altered confidence-
modulation in TRS (κB), a failure that appears common to many papers in the field as parameter recovery is 
often not reported  on25. This is an important area for improvement in future studies as successful parameter 
recovery is essential for the development of valid and interpretable  models37. Furthermore, the difference in 
this confidence-modulation parameter between TRS and matched controls did not survive correction for mul-
tiple comparisons. Thus, while it is striking that the pattern in FEP and ARMS groups differed from that under 
ketamine, the apparent computational resemblance between ketamine and TRS should be treated cautiously.

Our experimental approach across these studies follows a growing interest in seeking to understand delusional 
beliefs in relation to observations from associative learning research. It is challenging to relate complex symp-
toms like delusions to underlying cognitive processes and, in this regard, insights from associative learning have 
proven attractive and useful by offering simple models of how an agent samples evidence from its environment 
and uses this to derive inferences about the associative regularities structuring that environment. This provides a 
powerful framework for developing theories of delusion formation. Early work by Miller, inspired by associative 
learning, considered psychosis in terms of a lowering of the threshold of evidence for updating beliefs based on 
new observations, leading to a “hyperactivity of associations”38. Learning theory was also central to powerful 
cognitive models of schizophrenia developed by Hemsley, Gray and  others39 and subsequent neuroimaging 
work built on this to establish the presence of underlying perturbations in prediction error as a possible expla-
nation for aberrations in belief updating in the context of associative learning  tasks11,12,40. The link to prediction 
and prediction error, and to their underlying neurobiology, has been demonstrated across a range of tasks and 
 techniques40–44. This body of work shares the perspective that it is instructive to conceptualise delusions in terms 
of the integration between predictions and sensory  evidence4,5,14,45,46, and this has latterly included a considera-
tion of how precision-based weighting of signals may provide a more complete framework for thinking about 
when and how new evidence (or prediction error) is used to update existing beliefs.

While a more comprehensive discussion of learning tasks in psychosis is beyond the scope of this paper, a 
recent systematic review of this literature suggested that, in reversal tasks such as ours, psychosis is associated 
with difficulties in reacting to changing contingencies: a phenomenon perhaps underpinned by relative insen-
sitivity to environmental volatility, and by enhanced responses to irrelevant  information25. Our findings are 
consistent with this—though they indicate that this characteristic pattern of disruption, in the context of different 
stages or forms of psychosis, may emerge from quite different underlying perturbations. Behaviourally, FEP and 
TRS are both associated with difficulties in sticking to an optimal strategy when it is challenged by unexpected 
and undesirable outcomes. Importantly, in TRS this general lability was reflected in elevated adaptive, as well 
as maladaptive, policy-shifting behaviour compared to controls. The disparities between the patterns of com-
putational parameters, in the pharmacological model of early  psychosis26,47 compared to Study 1’s ARMS and 
FEP patients, may reflect experimental differences: the task was administered twice in the previous study (once 
under ketamine and once under placebo), and although order was counter-balanced, findings might have been 
affected by between-session differences in participants’ overall familiarity with the task. Another explanation 
for the discrepancy between the clinical and pharmacological model computational findings is that ketamine 
was administered as a planned, acute, transient experience whereas the experiences of participants with ARMS 
and FEP have developed gradually, with corresponding adaptations in how these individuals update their beliefs 
over the course of weeks and months. While this differing temporal profile of experiences might account for the 
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differences between ketamine and FEP, such an explanation raises the question of why people with TRS (whose 
experience of psychotic illness has been even more persistent and prolonged) show computational alterations 
that do resemble those observed under acute ketamine: that is, TRS was likewise associated with reduced confi-
dence modulation of choice temperature. One speculative explanation is that progression from an acute (FEP) 
to a more chronic (TRS) state involves gradual adaptation to “persistent doubt”26. An initial period (in FEP) of 
more random choice and  behaviour48,49 could lead to increased doubt about one’s ability to accurately predict the 
world. This would render confidence a poorer assay of how reliably true one’s current beliefs are likely to be. That 
is, as psychosis becomes more established, perhaps a shift could occur from doubting (and therefore updating) 
one’s current model of the  world26,50, to doubting whether one can actually model the world  successfully51–53. 
That is, confidence in one’s beliefs may no longer predict that choices based on these beliefs will reliably yield 
expected  outcomes54. This, in turn, could manifest as partial uncoupling of confidence from choice temperature, 
as we observed in TRS. To put things simply, if FEP is characterised by a search for new priors to better predict 
the world, perhaps TRS is characterised by a sense that updating priors adds little to the world’s predictability.

From another perspective, our findings are also consistent with the idea that TRS represents a distinct subtype 
of  schizophrenia55. Schizophrenia is defined as ‘treatment-resistant’ in cases where symptoms are not responsive 
to treatment with two or more antipsychotic (dopamine D2-receptor antagonist) medications. Thus, in contrast 
to treatment-responsive forms of psychosis, it may be secondary to a non-dopaminergic pathology, mediated 
more by glutamatergic dysfunction. In TRS, NMDA-R hypofunction is believed to play a greater ongoing role 
in symptom maintenance, via its consequent hyperglutamatergic cortical  state56,57.

Overall, we replicated a previous study design and analysis to explore whether distinct stages of clinical 
psychosis might resemble the effects of an acute ketamine challenge on learning and decision-making under 
uncertainty. From a phenomenological perspective, ketamine’s effects appear more redolent of prodromal and 
early psychosis, and we did indeed observe that FEP was associated with a relative failure to stabilise choice 
behaviour in the face of probabilistic challenges. This instability of choice was more widespread in TRS and it was 
this more chronically unwell group who showed a greater resemblance to ketamine effects in the computational 
analysis. While, as discussed, we are cautious in interpreting the computational findings, our study shows the 
importance and value of thinking about psychosis in terms of its evolution over time since there are clearly both 
behavioural and computational distinctions between early and later stages of the condition.

Methods
Ethics declaration
The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant 
national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as 
revised in 2008. Full informed consent from all participants was obtained in writing.

All experiments were designed and conducted in full accordance with local guidelines and regulations gov-
erning psychiatric research studies including human participants. Study 1 was part of the Neuroscience in 
Psychiatry Network (NSPN) Neuroscience Clinical Adolescent and Adult Psychiatry Study (NCAAPS), under 
the approval of West of Scotland Research Ethics Committee 3 (NSPN) and Cambridgeshire 3 National Health 
Service Research Ethics Committee. Joint institutional sponsorship was provided by Cambridgeshire and Peter-
borough NHS Foundation Trust (CPFT) and University of Cambridge. Study 2 was conducted under the approval 
of Cambridgeshire 3 National Health Service Research Ethics Committee, and jointly sponsored by CPFT and 
University of Cambridge.

Study 1 sample (ARMS, FEP, HC1)
Data was obtained from n = 83 participants in the NCAAPS-Psychosis sample, which has been described in 
detail  elsewhere44. Of these, n = 24 (20 M, 4F) had a diagnosis of first-episode psychosis (FEP); n = 29 (21 M, 8F) 
had an at-risk mental state (ARMS); and n = 30 were matched healthy controls (HC1) with no history of mental 
illness (16 M, 14F).

Study 2 sample (TRS, HC2)
Data was obtained from n = 60 participants, of whom n = 31 were patients with chronic treatment-resistant 
schizophrenia (TRS) recruited from the NHS Clozapine Clinic in Cambridge. Inclusion criteria for the TRS 
group were (1) age 18–65 years, (2) no major physical or substance use comorbidities, (3) no changes to clozapine 
treatment within at least three months. Matched healthy control (HC2 group) participants were recruited from 
online bulletins, and through fliers posted in public spaces (e.g. community noticeboards and local businesses). 
HC2 group inclusion criteria were: (1) age and demographic match to existing TRS patient sample, (2) no history 
of psychiatric illness, (3) no major physical conditions and/or psychotropic medication use.

Of the 40 patients recruited for Study 2, useable datasets were obtained from 31 (six patient datasets were 
lost due to technical issues, and three were excluded during quality control due to evident failure to understand 
or implement the task instructions). One healthy participant was unable to complete the task due to a techni-
cal issue during testing, and a replacement HC2 participant was subsequently recruited as a suitably matched 
control for the relevant patient dataset.

All participants (across both studies) were able to speak and understand written English, gave full written 
informed consent, and were reimbursed for their time and effort (Tables 1, 2, 3).
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Study 2: treatment‑resistance schizophrenia (TRS) and matched healthy controls (HC2)

Task description
Each trial began with a fixation cross (~ 500 ms), after which one of two cues (‘A’ or ‘B’) was presented 
for ~ 1750 ms. A question mark then appeared, prompting the participant to respond (within a window of 
opportunity ~ 1500 ms), after which a printed reminder of their choice (“Risky” or “Less Risky”) was displayed 
for ~ 750 ms. Finally, the outcome (monetary amount won or lost) was displayed for ~ 1750 ms. Cues A and B, for 
each participant, were two randomly selected elements from a set of 24 different Agamothodeian font characters. 
On each of 240 trials, one of these cues was randomly selected for presentation, and participants reported their 
choice between “risky” and “less risky” options by making one of two alternative motor responses corresponding 
to “risky” (£1) and “less risky” (10p) gambles on the trial’s outcome.

In Study 1, the relationship between “button press” (left/right) and ”choice” (risky/less risky) was randomised 
across participants within each group. In Study 2, the task was delivered on a Dell 15.6″ laptop (rather than in 
the scanner) and participants reported choices using key-presses (‘b’/ ‘z’) whose corresponding choice options 
were likewise randomized within HC2 and TRS groups.

Participants’ choices controlled only the variance of the outcome (i.e. whether it would involve a magnitude 
of 10p or £1), and had no influence over its valence (i.e. whether it likely to be a ‘win’ or a ‘loss’). Cues signified 
the probability of outcomes: one cue predicted an 80% chance of winning, while the other cue predicted an 80% 
chance of losing. Thus, one cue indicated that the optimal choice was the “Risky” option (betting £1) while the 
other cue indicated the “Less Risky” option (betting only 10p) was optimal.

A given cue-outcome contingency (e.g. P(loss|A) = P(win|B) = 0.8) was consistent for 60 trials before reversing.
In short, this design examined participants’ ability to learn what each cue indicated was the optimal response, 

to persist with this strategy despite occasional “misleading” undesirable outcomes, and to flexibly alter that policy 
whenever contingencies reversed.

Table 1.  Mean (and standard deviation, s.d.) ages for participants in TRS and HC2 groups, and for all Study 2 
participants (male and female) within each of those two group, are indicated.

Female Male Male and Female

TRS N = 4 57.00 (s.d. 6.683) N = 27 45.926 (s.d. 9.742) N = 31 47.35 (s.d. 10.05)

HC2 N = 4 59.750 (s.d. = 5.188) N = 25 51.700 (sd = 11.098) N = 29 53.88 (s.d. 10.70)

Table 2.  Mean and standard deviation (s.d.) clozapine dose in TRS group. Indicated are numbers of patients 
with TRS taking additional typical antipsychotics (AP), the typical AP types taken, and typical AP daily dose-
equivalent to oral ariprazole (mg) (the most frequent typical AP in this TRS sample).

Clozapine Dose Mean (s.d.) Additional Typical Antipsychotics (AP)
Mean (sd) Typical AP (aripiprazole 
dose-equivalent)*

Female TRS (n = 4) 293.75 (82.60)
None (n = 2)

12.50 (10.61)
Aripiprazole (n = 2)

Male TRS (n = 27) 325.00 (127.48)

None (n = 13)

16.00 (7.12)Aripiprazole (n = 12)
Amisulpride (n = 1)
Sulpiride (n = 1)

All TRS Patients (n = 31) 316.67 (110.81)
Clozapine Only: N = 15

15.17 (6.37)
Any Typical AP: N = 16

Table 3.  Mean and standard deviation (s.d.) for illness duration (years from onset of first psychotic episode), 
cognitive function assayed by the Brief Assessment of Cognition in Schizophrenia (BACS)58, and overall 
severity of symptom dimensions assayed by the PANSS structured clinical  interview34,59. *Lower BACS z-score 
corresponds to more severe cognitive impairment in TRS.

Female Male All TRS Patients

Illness duration (years) 28.00 (8.60) 24.28 (8.56) 24.65 (8.53)

BACS z-score59 − 1.26 (2.14) − 1.37 (1.42) −  1.36 (1.46)

PANSS Negative Symptoms Total 9.50 (3.54) 17.91 (7.80) 12.15 (10.31)

PANSS Positive Symptoms Total 12.00 (7.07) 12.05 (4.38) 12.04 (4.44)

PANSS General Symptoms Total 12.00 (13.86) 19.13 (13.68) 26.39 (6.52)

PANSS Disorganization Factor** 9.50 (2.12) 15.64 (4.55) 15.13 (4.70)
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Behavioural analyses
Overall performance was assayed, for each participant, as the proportion of all responses that were “accu-
rate”, relative to the currently-prevailing reinforcement schedule (i.e. “less risky”|cue(P(win) = 0.2), and “risky” 
| cue(P(win =  = 0.8). See Fig. 5.

In behavioural analyses, the undesirability of an outcome (relative to the counterfactual outcome that would 
have occurred had the participant chosen the alternative wagering option) was used as a behavioural proxy of 
“surprise” associated with it. Assuming that choosing the risky (less risky) gamble corresponds to the subject’s 

Figure 5.  Upper Panel: Schematic illustration of a single trial (“good” cue). At cue onset, one of two abstract 
symbols is presented (P(cue A) = 0.5; P(cue B) = 0.5). Supposing the cue illustrated is currently the ‘good’ cue, 
then the ‘risky’ choice (to bet £1) is optimal, and the illustrated outcome is the most likely result of that choice 
(P(‘win’|’good’ cue) = 0.8). Lower Panel: Schematic illustration of a single trial (“bad” cue). At cue onset, one of 
two abstract symbols is presented (P(cue A) = 0.5; P(cue B) = 0.5). Supposing the cue illustrated is currently the 
‘bad’ cue, then the ‘less risky’ choice (to bet only ten in-game pence) is optimal, and the illustrated outcome is 
the most likely result of that choice (P(‘loss’|’bad’ cue) = 0.8).
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expectation of reward (loss), “lose £1” and “win 10p” outcomes are both construable as surprising events that 
potentially can stimulate a ‘shift’ in behavioural policy detectable in the immediately following response.

Such a behavioural ‘shift’ was considered to have occurred if the same cue was seen, but a different choice 
made, on two consecutively played trials—or choice(t) ~  = choice(t + 1) while cue(t) =  = cue(t + 1)—or (alterna-
tively) if having seen a different cue, the same choice was made, across two consecutive trials.

Before any parametric statistical testing, data was visually inspected, and submitted to a KS-test to confirm the 
normality assumption was not violated. Equality-of-variance between groups was assayed visually, and submitted 
to an F-test, to determine whether there was any violation of the equality-of-variance assumption. Wherever 
normality and equality-of-variance could be confidently assumed, one-way ANOVA was used.

In the instance where data in Study 1’s three groups was significantly different from normally distributed, a 
non-parametric variant (Kruskall-Wallis (KW) ANOVA) was used, as indicated in the text. In the instance where 
variances of HC2 and TRS groups’ data in Study 2 was significantly different from equal, unpaired t-test under 
the unequal-variance assumption was used to compare them, as indicated in the text.

All statistical tests (across both studies) were two-tailed, with significance threshold p < 0.05*.

Computational modelling
The computational analysis recapitulated that used to analyse data from this task in the previous within-subject 
study of healthy participants under placebo vs  ketamine26. We fit 27 qualitatively different computational models 
to participants’ trialwise choice data. In three models, reinforcement learning occurred at a single level (at which 
beliefs about cue-values were stored, updated, and used to inform behavioural output) without any confidence-
monitoring. The other 24 models were “hierarchical”, i.e. they additionally incorporated an estimate of meta-
level confidence about these lower-level beliefs, using this confidence to modulate the lower-level parameters 
αm (trialwise learning-rate for updating cue-value estimates) and/or βm (trialwise choice temperature). This 
confidence-modulation rendered information more influential over belief-updating and/or response selection 
when it was likely to be reliable, compared to when it was more dubious.

Confidence was itself updated trialwise, with confidence-update rate γ (a free parameter 0 ≤ γ ≤ 1). In one 
family of hierarchical models, confidence was updated according to outcome “surprisal”: the lower-level pre-
diction error’s absolute value (|δ(t)|). In another family of hierarchical models, confidence was instead updated 
according to outcome desirability (D(Outcome (t))). “Surprisal-based” confidence-updating decouples infer-
ences about the validity of lower-level beliefs from the predictable consequences of one’s own action. Outcome-
Desirability-based “surface-monitoring” may be favoured as a computationally-expedient heuristic alternative 
that makes use of salient information manifest in the outcome itself (its desirability/undesirability relative to 
the counterfactual amount that would have been won or lost, had the participant chosen the alternative wager) 
as a readily-available teaching signal: one that constitutes a proxy of beliefs’ validity by virtue of their causal 
relationship with behaviour (i.e. assuming one acts optimally conditional upon one’s current expectations, one’s 
actions are a reliable indicator of one’s beliefs: undesirable outcomes can thus usefully inform on the uncertainty 
of beliefs, to the extent beliefs determine actions predictably).

Lower‑level reinforcment learning algorithm model families (Eqs. 1–3)
Equation (1): ‘Basic’ Reinforcement Learning of Cue-Values

V(SeenCue(t)) = Value of the cue presented on trial t
αm = learning rate on trial t
δ(t) = Prediction Error on trial t
The ‘Basic’ Reinforcment Learning (RL) algorithm for lower-level belief updating implemented a standard 

Rescorla-Wagner rule for trialwise prediction-error driven updating of only the seen cue’s estimated value (i.e., 
despite the symmetrical relationship between the two cues with respect to outcome probabilities, here belief 
updating occurred only for the cue that had been presented on the trial in question (SeenCue(t)) and predic-
tion error, δ(t), was calculated as the difference between the actual monetary outcome received on that trial (i.e. 
MonetaryOutcome(t) could take values − 0.1, 0.1, − 1, or 1) meaning that larger-magnitude outcomes drove more 
learning than smaller ones (despite there being no dependency between the cue presented and the magnitude 
of its associated outcome, such that equivalent information was available from outcomes involving 10p as for 
outcomes involving £1).

Equation (2): ‘Outcome-Normalized’ Reinforcement Learning of Cue-Values

V(SeenCue(t)) = Value of the cue presented on trial t
αm = learning rate on trial t
δ(t) = Prediction Error on trial t
In Eq. (2), the update-rule is identical to that of Eq. (1), but the calculation of δ(t) (the prediction error term 

in that update-rule) relies on subtraction of the seen cue’s current valuation at the beginning of trial t from the 
valence (rather than the monetary value) of that trial’s outcome, reflecting the irrelevance of outcome magnitude 
for inferring cue-outcome contingencies in the context of this task.

Equation (3): ‘All-Normalized’ Reinforcement Learning of Cue-Values

(1)
V(SeenCue(t))t+1 = V(SeenCue(t))t + αm(δ(t))

δ(t) =
(

MonetaryOutcome(t)−V(SeenCue(t))t
)

(2)
V(SeenCue(t))t+1 = V(SeenCue(t))t + αm(δ(t))

δ(t) = (OutcomeValence(t)−V(SeenCue(t))t)
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V(SeenCue(t)) = Value of the cue presented on trial t
V(UnseenCue(t)) = Value of the cue not presented on trial t
αm = learning rate on trial t
δ(t) = Prediction Error on trial t
In Eq. (3), calculation of δ(t) (prediction error) relies on outcome valence as per Eq. (2) above. However, 

Eq. (3) implements more sophisticated RL, in that it capitalizes on the equal-and-opposite predictive significance 
of the two cues with respects to the probability of wins/losses, by updating not only the seen cue’s value on every 
trial but also the counterfactual, ‘unseen’ cue’s value (reciprocally to reflect their oppositional relationship with 
particular outcomes) to make full use of the symmetrical information available about each cue from the outcome 
of any particular trial.

Confidence‑modulation model families (Eqs. 4 – 5)
In addition to a family of models implementing no confidence-modulation of any parameters whatsoever (see 
Table 4), there were two families of models that did incorporate some form(s) of confidence-modulation and 
differed from each other in how confidence was monitored, i.e. in the trialwise confidence-update rule used:

Equation (4): Outcome-Desirability-based confidence update on trial t :

C = Confidence estimate (hidden state, 0 ≤ C ≤ 1).
γ = confidence-update rate (free parameter, 0 ≤ γ ≤ 1).
D(O) = Outcome Desirability (observed state, D(O) [0,1]).
Undesirable outcomes (D(O) = 0) were ‘winning only 10p’ and ‘losing £1’. Desirable outcomes (D(O) = 1) 

were ‘winning £1’ and ‘losing only 10p’.
Equation (5): Surprisal-based confidence update on trial t:

C = Confidence estimate (hidden state, 0 ≤ C ≤ 1).
γ = confidence-update rate at higher level (free parameter, 0 ≤ γ ≤ 1).
|δt| = magnitude of lower− level prediction error on trial t.

Confidence‑use model families (Eqs. 6–8)
Finally, models incorporating confidence-monitoring (whether surprisal- or outcome-desirability-based) also 
varied in how confidence was used to modulate learning-rate and/or choice temperature. If confidence modulated 
both these lower-level parameters, the confidence-weighting factor for learning rate (κA) could be either the 
same as, or different from, the confidence-weighting factor for choice temperature (κB).

In models incorporating confidence-modulation of prediction-error driven belief-updating (i.e. κA = / = 0), 
the effect of confidence on learning-rate differed depending on whether the outcome was contradictory or 
confirmatory of extant beliefs.

For contradictory outcomes (wherein the outcome’s valence was different from that of the current valua-
tion of the seen cue) learning increased rapidly as a function of uncertainty, as per Eq. (6). In this way, poorly 
performing strategies could quickly be replaced with more adaptive ones (whereas prediction errors more likely 
to be noise, in that they contradicted confident beliefs, drove relatively little revision of existing value estimates).

(3)
V(SeenCue(t))t+1 = V(SeenCue(t))t + αm(δ(t))

V(UnseenCue(t))t+1 = V(UnseenCue(t))t − αm(δ(t))

δ(t) = (OutcomeValence(t)−V(SeenCue(t))t)

(4)Ct+1 = Ct + γ
(

D(OOpt)−Ct

)

(5)Ct+1 = Ct + γ

{

(2− |δt |)

2
− Ct

}

Table 4.  Among those 24 models which performed either kind of confidence-monitoring (i.e. either “surface” 
or “surprisal” based confidence updating), the effect(s) of the confidence representation on learning and/or 
decision-making systematically varied to define a third axis of model classification.

How is Confidence Used to Modulate Lower-Level Parameters?

∝m βm

Bothαmand βmwith different 
weights (κA = / = κB)

Bothαmand βmwith same 
weight, κ (κA = κB = κ)

What is the teaching signal for 
updating confidence?

Surprisal Eq. (3)

Basic Basic Basic Basic

Outcome-normalized Outcome-normalized Outcome-normalized Outcome-normalized

All-normalized All-normalized All-normalized All-normalized

Outcome Desirability Eq. (4)

Basic Basic Basic Basic

Outcome-normalized Outcome-normalized Outcome-normalized Outcome-normalized

All-normalized All-normalized All-normalized All-normalized
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For confirmatory outcomes, learning was instead somewhat accelerated when confidence was high (compared 
to when the belief being “confirmed” was more uncertain) as per Eq. (7). Thus the model instantiated a form of 
confirmation bias that helped to rapidly instantiate and solidify adaptive behavioural strategies:

Equation (6): Confidence-modulation of learning from contradictory outcomes 

Equation (7): Confidence-modulation of learning from confirmatory outcomes

∝m = cue-update learning rate at lower level on trial t.
C = Confidence estimate (hidden state, 0 ≤ C ≤ 1).
κA = weighting factor for confidence-modulation of learning rate (free parameter, 0 ≤ ∝0 ≤ 1).
∝0 = cue-update learning rate when C = 0 (free parameter, 0 ≤ ∝0 ≤ 1).
The effect of confidence on trialwise choice temperature βm was specified by Eq. (8):
Equation (8): Confidence-modulation of choice temperature

βm = choice temperature on trial t.
C = Confidence estimate (hidden state, 0 ≤ C ≤ 1).
κB = weight of confidence-modulation of choice temperature (free parameter, 0 ≤ ∝0 ≤ 1).
β0 = choice temperature when C = 0 (free parameter).
Thus, more confidently held beliefs were more powerful determinants of behaviour. For all models regard-

less of their lower-level reinforcement learning algorithm, and of whether and how confidence was monitored 
and used to influence lower-level parameters (including choice temperature βm, which in models that did not 
modulate decision-making by confidence remains fixed at βm = β0 for all trials) the estimated value of the seen 
cue was mapped onto the probability of choosing the ‘risky’ (vs the ‘less risky’) option by:

Equation (9): Softmax Decision-Making Rule

All models were inverted using a variational Bayes  approach32,60 under the Laplace  approximation61. The 
logarithm of model evidences, estimated for each participant and model, were submitted to group-level analysis.

Family‑wise Bayesian model comparison
Family-wise analyses grouped models into computationally similar subsets, taking into account the fact that evi-
dence for a particular cognitive strategy (as embodied by a single computational model) also lends evidential sup-
port to meaningfully similar models of cognition that are represented by other models within the model-space.

Families of models were defined in three different ways, by grouping models into subsets according to their 
computational similarity with one another on the various axes along which models could independently differ 
(lower-level reinforcement learning; confidence-monitoring, and confidence-modulation).

We first partitioned the model-space into families according to the reinforcement learning rule implemented 
at the lower level: ‘basic’ (monetary value-dependent updating of the seen cue only on each trial), ‘outcome 
normalized’ (updating of the seen cue only on each trial, but according to the valence rather than monetary 
value of the outcome), and ‘all normalized’ (outcome valence-dependent updating of both cues, equally and 
oppositely, on each trial).

We next partitioned the model-space according to the type of confidence-monitoring implemented at the 
second level: ‘none’ (no confidence monitoring), ‘surprise’ (prediction error-dependent updating of confidence), 
and ‘surface’ (outcome desirability-dependent updating of confidence).

Finally, we divided the model-space into five families that differed in how confidence was used to modulate 
lower-level parameters: no modulation at all (i.e. no confidence monitoring), modulation of trialwise learning 
rate αm only, modulation of trialwise choice temperature βm only, modulation of both (i.e. of αm and βm )with 
the same weight, k , or modulation of both αm and βm with different weights: κA and  κB respectively.

Post‑hoc exploratory analyses
Those computational parameters that significantly differed between groups (i.e. between HC1, ARMS and FEP 
in Study 1; or between HC2 and TRS in Study 2) were examined in relation to delusional symptoms (CAARMS 
NBI + UTC and/or PANSS P1). The idea here was that the free parameters defining the hierarchical reinforcement 
learning model of trialwise choice data may be sensitive to within-group differences in the severity of delusional 
beliefs, which like the beliefs that drive performance on this probabilistic reversal learning task are formed, main-
tained and acted upon under environmental uncertainty (noise and volatility) and subject to inter-individual 
variability between members of a group (e.g. delusional symptoms may be a prominent feature of some, but not 
other, chronic schizophrenic presentations).

(6)∝m=
∝0

1+ κACt

(7)∝m=
∝0 +κAC(t)

1+ κAC(t)

(8)βm =
β0

1+ κBC(t)

(9)P
(

Risky(t)
)

= 1/ (1+ exp(− V(SeenCue(t) / βm )
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