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ABSTRACT
◥

Standard-of-care treatment regimens have long been designed
for maximal cell killing, yet these strategies often fail when applied
to metastatic cancers due to the emergence of drug resistance.
Adaptive treatment strategies have been developed as an alternative
approach, dynamically adjusting treatment to suppress the growth
of treatment-resistant populations and thereby delay, or even
prevent, tumor progression. Promising clinical results in prostate
cancer indicate the potential to optimize adaptive treatment pro-
tocols. Here, we applied deep reinforcement learning (DRL) to
guide adaptive drug scheduling and demonstrated that these treat-
ment schedules can outperform the current adaptive protocols in a
mathematical model calibrated to prostate cancer dynamics, more
than doubling the time to progression. The DRL strategies were
robust to patient variability, including both tumor dynamics and
clinical monitoring schedules. The DRL framework could produce
interpretable, adaptive strategies based on a single tumor burden
threshold, replicating and informing optimal treatment strategies.
The DRL framework had no knowledge of the underlying math-
ematical tumor model, demonstrating the capability of DRL to help
develop treatment strategies in novel or complex settings. Finally, a
proposed five-step pathway, which combined mechanistic model-
ing with the DRL framework and integrated conventional tools to
improve interpretability compared with traditional “black-box”
DRL models, could allow translation of this approach to the clinic.
Overall, the proposed framework generated personalized treatment

schedules that consistently outperformed clinical standard-of-care
protocols.

Significance: Generation of interpretable and personalized
adaptive treatment schedules using a deep reinforcement frame-
work that interacts with a virtual patient model overcomes the
limitations of standardized strategies caused by heterogeneous
treatment responses.

Introduction
Drug resistance is responsible for up to 90% of cancer-related

deaths (1). It can be present before treatment (intrinsic) or emerge
during therapy (acquired) and is driven by a combination of genetic,
epigenetic, and environmental processes (2). Much modern cancer

research has focused on developing novel therapies to overcome
resistance but, especially in the metastatic setting, cure rates remain
low and benefits are all too often short-lived (3, 4).

Conventional, standard-of-care treatment schedules for systemic
cancer therapies are based on the maximum tolerated dose (MTD)
principle. This argues for the administration of treatment at as high a
dose and frequency as tolerable, in order to maximize cell kill and
thereby the likelihood of cure (5). However, in recent years, it has
become increasingly clear that cancers, in particular metastatic can-
cers, are complex and spatiotemporally heterogeneous and actively
evolve under treatment (6). This has prompted a rethinking of the
MTD paradigm and has stimulated a growing body of research
demonstrating that changes in drug scheduling could delay drug
resistance (7, 8, 9, 10). One promising approach is “adaptive therapy”
(AT) based on the principle of “competitive control.” It suggests that
resistant cells, or their precursors,may be present before treatment, but
their growth is limited by competition with the drug-sensitive sub-
population (9, 11). However, MTD treatment removes sensitive cells,
leading to the competitive release of resistant cells and causing disease
progression (12, 13). To address this issue, Gatenby and collea-
gues (9, 11) proposed AT, which dynamically adjusts treatment to
maintain a pool of drug-sensitive cells that compete with emerging
resistance, aiming to control, rather than eliminate, the tumor. AT has
been shown to extend the time to progression (TTP) in vivo for breast
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cancer (14), ovarian cancer (9), lung cancer (15), and melanoma (16)
and has, most recently, delivered promising results in a pilot clinical
trial in metastatic, castrate-resistant prostate cancer (17, 18).

Castrate-resistant prostate cancer is treated with androgen depri-
vation therapy, such as abiraterone, which inhibits CYP17A, an
enzyme for testosterone auto-production (19). Standard of care is
given at MTD via continuous administration until radiographic
progression, which occurs after a median of 16.5 months (20). Zhang
and colleagues (17, 18) instead applied an adaptive strategy (AT50)
where an identical dose to standard of care was given until the tumor
burden had reduced by 50% relative to baseline and was subsequently
withheld until the tumor burden returned to baseline (NCT02415621).
To monitor burden, they combined radiographic imaging with mea-
surements of prostate-specific antigen (PSA) levels, an established
serum biomarker (21, 22), which enabled more frequent (monthly)
tracking of the disease. In comparison with a matched historical
control receiving continuous dosing, the study found that patients
undergoing AT had a 19.2-month increase inmedian progression-free
survival, while receiving 46% less drug on average (18).

Although this study is promising, it highlights the need for further
research into exactly how we adapt therapy: long-term disease control

was achieved for only 4 of 17 patients on the trial (18), and there was
significant variation in the adaptive cycling dynamics between patients
(illustrated in Fig. 1A). Previously we, and others (23, 24, 25, 26), have
investigated how the threshold of tumor burden at which treatment is
withdrawn in the AT50 protocol affects the outcome. These findings
showed that increasing the threshold, so that treatment is withdrawn
earlier and at a higher average tumor burden, increases competitive
suppression and thereby TTP. Consequently, it has been pro-
posed (24, 25) that the tumor could even be allowed to increase in
size beyond its baseline level in what Brady and colleagues (27) have
called “range-adaptive”AT.At the same time, these benefits are subject
to a trade-off: a higher tumor burden also brings increased risks of
phenotype switching, de novo mutations, and metastasis (10, 25, 26),
indicating that the question of when and how to adapt therapy should
ideally be answered on an individual basis. Furthermore, although the
AT50 protocol represents an important first step, it is limited in its
generalizability. How would we, for example, integrate multiple drugs,
unforeseen treatment interruptions (e.g., for delays in data acquisition
or toxicity), or patient-specific treatment goals?

From chatbots to self-driving cars, deep learning techniques are
revolutionizing the world around us. These “deep” methods use

Figure 1.

A, Example treatment records of patients from Zhang and colleagues (17) demonstrating the heterogeneity in tumor dynamics under the AT50-adaptive protocol.
PSA levels in the blood were used as a proxy for tumor size. B, This diversity in patient response to treatment can be represented by a mathematical tumor
model (Eq. A), which replicates variation in tumor growth and drug response rates. C, DRL-guided AT. Tumor metrics, such as total size, are fed into a
deep reinforcement learning model, which returns a treatment recommendation. In this paper, we test this concept using mathematical tumor models to serve
as “virtual patients,” and we discuss how to translate these frameworks into clinical practice (model diagram adapted from ref. 23).
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artificial neural networks with many intricately connected layers
that enable them to learn highly complex relationships between
input variables (28). Although initially focused on classification
problems, such as cancer diagnosis (29), more recently, so-called
deep reinforcement learning (DRL) has extended these methods to
decision-making in dynamic and complex environments such as the
board game Go (30), autonomous vehicles (31), or problems in
healthcare (32).

DRL frameworks have achieved success in a range of drug
scheduling problems, from immune response after transplant sur-
gery (33) to controlling drug resistance in bacteria (refs. 34, 35). At
each timestep, a deep learning agent is given information on the state
of the system (e.g., tumor size), and its output is used to choose from
a set of possible actions (e.g., treat vs. not treat; ref. 36). To learn its
strategy, the agent is trained through a process of trial and error to
maximize a reward function that remunerates success (e.g., tumor
shrinkage or cure) and penalizes unfavorable events (e.g., excess drug
toxicity; ref. 37). DRL schemes are particularly well suited to this
task, as they may account for the long-term effects of actions when
maximizing outcomes, even when the relationship between actions
and outcomes is not fully known (38). For example, Engelhardt (34)
developed a DRL framework within the context of antibiotic resis-
tance to predict precision dosing that adaptively targets harmful
bacteria populations with variable drug susceptibility and resistance
levels. They introduce a simple DRL framework capable of suppres-
sing proliferation and demonstrate robustness to changes in model
parameters, based on discrete-time feedback on the targeted popu-
lation structure. However, the success of their model relies on the
assumption that all strains have some degree of drug response and
can ultimately be eliminated, which differs significantly from the
context of treatment-nonresponsive tumors in oncology.

In the context of cancer, Maier and colleagues (39) used DRL for
adjusting subsequent drug doses, to reduce toxicity in patients with
cancer using neutrophil counts as a biomarker for chemotherapy-
associated toxicity. They demonstrated that reinforcement learning
frameworks have the potential to substantially reduce the incidence of
neutropenia, and provide insight into the patient factors that deter-
mine treatment recommendations, although they do not interpret the
factors underpinning the DRL framework’s decision-making process
itself.

However, while DRL methods are very promising, their translation
into clinical practice faces two key challenges. Unlike a DRL algorithm
playing chess, a patient’s treatment plan cannot be replayed until the
DRL agent has learned its strategy and, secondly, DRL decisions must
be interpretable to gain acceptance in the clinic. To address the first
issue, studies to date have used mathematical models to serve as
“virtual patients,” generating the vast quantities of data needed to
train amachine-learning algorithm and predicting how the tumormay
respond to any hypothetical treatment scenario that could not easily be
tested in the clinic. This inherently links the learned strategies to the
parameters and assumptions of the specific, underlying model, but
how robust are DRL methods when a patient’s disease behaves
differently than the training model? Can we interpret, and learn from,
the treatment strategies suggested by theDRL framework?Andhowdo
these strategies perform compared with standard-of-care treatment
techniques?

This paper aims to investigate whether deep learning techniques
may allow us to integrate evolutionary principles and mathematical
models more directly into AT decision-making and uncover novel AT
approaches that can be translated into clinical practice. Using a
previously characterized and calibrated Lotka–Volterra mathematical

model to simulate the intratumor ecological dynamics (seeFig. 1B), we
test the ability of a DRL algorithm to guide therapy (Fig. 1C). We
demonstrate that this framework can outperform both standard-of-
care and conventional adaptive strategies, and discuss how it can help
to uncover interpretable and rational principles for optimal scheduling
design. In the second part of this paper, we turn to the key question of
how tomakeDRL-based scheduling clinically feasible, whenwe cannot
be certain about the specific characteristics of a patient’s disease, and
there is noway to replay or reverse a treatment decision once it ismade.
We apply our framework to a virtual patient cohort with a range of
characteristics, demonstrating its robustness to certain changes in
tumor parameters and dynamics. To conclude, we propose a frame-
work in which we integrate mechanistic mathematical models with
DRL to deliver dynamic, patient-specific treatment scheduling.

Materials and Methods
Virtual patient model

To benchmark DRL-informed AT rapidly and safely, we use a
mathematical model to simulate the treatment response of a “virtual
patient.” We adopt the two-population Lotka–Volterra model intro-
duced by Strobl and colleagues (see schematic in the leftmost panel
of Fig. 1C; ref. 23), where S(t) is the number of sensitive cells, and R(t)
is the number of resistant cells as a function of time t:

dS
dt

¼ rS S 1� Sþ R
K

� �
� ð1� dDDÞ � dSS

dR
dt

¼ rRR 1� Sþ R
K

� �
� dRR:

ðAÞ

Briefly, the model assumes that sensitive and resistant cells prolif-
erate and die at rates rS and rR, and dS and dR, respectively, and compete
for a shared carrying capacity,K. Treatment is assumed to kill sensitive
cells at a rate that is proportional to the population’s growth rate and
the drug concentration, D(t) (with proportionality factor dD).
Although any dosing level could be considered here if the dose-
response function is known, we only consider binary dosing (“on/off”)
in this paper, with the drug concentration on treatment given by unity.
Resistant cells are assumed to be fully resistant and can be subject to a
cost, so that rS ≥ rR.

To simplify the notation, we define the “cost of resistance” as the
proportional difference between resistant and sensitive cell growth
rates (1� rR/rS). Similarly, we define cell turnover as the relative death
and proliferation rates of sensitive cells dS /rS. These values, alongside
the initial cell populations (S0, R0), define a virtual patient profile. This
is used to generate synthetic patient data, by simulating the model
equations (Eq. A) when training and testing the deep learning frame-
work. By fitting to clinical data, we can personalize the virtual patient
model to individual patient characteristics. All other parameter values,
as well as base values and ranges for these four parameters, were
adopted from Strobl and colleagues (23) and are given in Supplemen-
tary Table S1.

In sections “DRL-guidedAT is predicted to improve on intermittent
treatment” onward, we use parameter values previously obtained (23)
by fitting the Lotka–Volterra model (Eq. A) to publicly available
longitudinal response data from patients with prostate cancer under-
going intermittent androgen-deprivation therapy (40). Themodel was
fitted to each patient by minimizing the root mean squared difference
between the normalized PSA measurements and simulated tumor
volumes. Full details of this process are provided by Strobl and
colleagues (23).
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Adaptive therapy
We benchmark DRL-informed AT against the following two

protocols:

1. CT – Continuous therapy (standard of care):

D tð Þ ¼ 18t ðBÞ

2. AT50 – AT schedule used in the pilot clinical trial by Zhang and
colleagues (17, 18). Treatment is given until a 50%decrease from the
initial size (N0) is achieved, then withdrawn until the tumor returns
to its initial size:

D tð Þ ¼ 1; until N tð Þ < 0:5N0

0; until N tð Þ � N0

�
ðCÞ

We compare the schedules based on their TTP, where we define
progression as a 20% growth from initial size, as in prior studies in this
area (23, 25, 41).

Deep learning model
To test the feasibility and potential benefits of DRL-driven AT, we

develop a prototype in which we use the asynchronous, advantage
Actor–Critic (A3C) network pioneered byMnih and colleagues (42) to
drive treatment decision-making. The A3C framework consists of a
global network, where many duplicates (workers) update asynchro-
nously during training (Fig. 2), which avoids the high computational
costs and specialist architecture requirements associated with GPU-
based deep learning algorithms (43). The network receives as input the
current tumor size and outputs a policy score for each of the two
possible actions (treat vs. drug-holiday), reflecting which is predicted
to be the more successful. Choosing an input feature set solely
comprised of the current tumor size was intended to replicate clinical
conditionswhere further information, such as the proportions of drug-
sensitive and -resistant cells, is not practically accessible. To decide
whether or not to treat in the next time step, the scores are converted
into probabilities, and an action is chosen probabilistically. The
network architecture is depicted in Fig. 1C, and further details, as
well as a pseudocode representation, are given in Supplementary

Figure 2.

A, The training process, where treatment strategies are optimized by comparing perturbed copies of the DRL network evaluated on the virtual patient
system and by subsequently adjusting the global DRL network based on the relative performance of each copy. B, Proof-of-principle application of
DRL-guided AT, showing how the deep learning model has learned to carefully adjust treatment to the patient’s tumor dynamics. In this way, it can
maintain a large, sensitive population and extend TTP significantly, compared with current clinical protocols with monthly treatment decisions, by forcing
greater competitive suppression of the resistant cells.
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Section S2. A learning rate of 10�4 was used throughout, including for
transfer learning.

Because the decision-making in theDRL framework is probabilistic,
the outcome can vary between iterations (Supplementary Fig. S1). To
account for this, we report results as averages over 100 evaluations
(unless otherwise stated). This number was determined to be sufficient
for the treatment scenarios explored in this paper based on a consis-
tency analysis (not shown).

Reward function
The DRL framework learns treatment strategies through opti-

mizing an objective function, which returns a reward calculated
from the most recent state and treatment choice at each timestep.
This reward is based on the number of timesteps survived, encour-
aging the model to maximize TTP. A bonus is given for treatment
holidays, to incentivize intermittent treatment strategies. To bound
maximal runtime, we add a 30-year survival limit; however, we
focus on patient profiles that reach progression well within this
period. A list of all terms, alongside their default values and the
circumstances under which they are rewarded, is given in Table 1.
Applicable terms (based on the circumstances under which each
term is included) are then summed to give the total reward; a more
detailed pseudocode representation of this reward function is
provided in Supplementary Section S2.

Discounting is applied to the reward function to determine how
important future rewards are to the current state, where a reward
that occurs N steps in the future is multiplied by gN, for the
discounting factor g 2 (0, 1). As well as ensuring convergence of
the reward sum, this factor is used to tune the prioritization of short
and long timescales in the reward function. A value very close to
unity (g ¼ 0.999) is used throughout to prioritize overall outcomes
over shorter-term benefits.

Data availability
All methods, along with the DRL framework, are available at

https://github.com/MathOnco/DRL_Personalized_AT and https://co
deocean.com/capsule/4619998/tree/v1. Clinical data fromBruchovsky
and colleagues (39) were obtained from https://www.nicholasbru
chovsky.com/clinicalResearch.html.

Results
This paper aims to investigate whether deep learning can inform

cancer therapy scheduling, and whether this can be achieved in a
clinically translatable fashion. To this end, we tested DRL-guided AT
on cohorts of virtual patients inwhich the tumor dynamics were driven
by a previously established mathematical model (23). This model
assumes that the tumor is composed of treatment-sensitive and
-resistant cells and that these compete with each other for resources
in a Lotka–Volterra fashion (Fig. 2).

DRL-guided adaptive therapy can outperform current clinical
strategies

As a first step, we carried out a proof-of-principle case study on a
patient assumed to have an initially responsive, but rapidly progres-
sing, disease. This was represented by the virtual patient model, with
parameter values taken from Strobl and colleagues (23) and given in
Supplementary Section S1. Akin to the AT50 algorithm used by Zhang
and colleagues (17), the patient’s tumor burden in our DRL-guided
protocol is monitored and the decision to continue to treat or not is
updated at a fixed “decision frequency.” Importantly, however, this
decision is not based on a fixed rule of thumb, but on a deep learning
model that is carefully trained prior to deployment. During this
training process, the DRL framework is applied to a cohort of
“training patients”; its performance is scored according to the reward
function, and the parameters of the underlying neural network are
refined until it converges on a final decision-making policy (Fig. 2A).

To test whether the DRL could learn an effective treatment strategy,
we initially made the idealized assumptions that we could train on a
patient identical to the one on which the framework will be deployed
and that we could revise treatment every day. Following 2,600 training
epochs, wefind that DRL-guided treatment is able to control the tumor
for longer than conventional treatment schedules (Fig. 2B). Through
dynamic adjustment of treatment, it achieves an average TTP of
745 days over 100 independent simulations (95% confidence interval
[688d, 802d]). The variability in performance is due to the stochastic
nature of the DRL decision-making (see Supplementary Section S3 for
examples). In comparison, CTand theAT50 therapy progress after 450
and 662 days, respectively (Fig. 2B). We conclude that DRL-guided
therapy is, in principle, feasible and can improve upon the current
AT50 rule-of-thumb approach.

Reducing decision-making frequency can increase
performance

To investigate whether, and how, this framework could be used in
practice, we next analyzed sensitivity to key parameters in the training
and deployment process. In the previous section, we made the
somewhat unrealistic assumption that the DRL framework receives
tumor size input and reevaluates the treatment strategy on a daily basis.
Clearly, this would be both difficult and costly to implement clinically.

Interestingly, and somewhat counterintuitively, we found that
reducing the decision frequency of the model increases the expected
TTP, despite the reduced information and intervention frequency
(Fig. 3A). In all cases, this reduction was statistically significant (P <
0.05), determined by the probability that a pairwise comparison
between model evaluations using different treatment frequencies did
not satisfy the aforementioned trend, using 100 evaluations per
frequency. In addition, this reduces the computational cost per patient
during training. We hypothesize that this improvement in perfor-
mance is because less frequent decisions are more impactful, enabling
the DRL framework to better separate the meaningful trends in the
underlying tumor dynamics from random noise in the decision

Table 1. Terms, and their default values, in the default reward function for the DRL framework.

Name Value Circumstance Motivation

Base 0.1 Per timestep survived Maximizes TTP
Holiday 0.05 Per timestep without treatment Encourages intermittent therapy
Progression �0.1 Upon progression (20% growth from N0) Punishes progression
Survival 5 Upon survival for 30 years Rewards long-term control

Personalizing Adaptive Therapy Using Deep Learning
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process. This is reflected in the reduced variation in TTP for longer
decision frequencies (Fig. 3B).

We also considered the role of decision frequency during evaluation.
Although there is no increase in mean TTP from reducing the
treatment interval, because themodel has been optimized for a specific
interval during training (shown above the diagonal in Fig. 3C), we do
observe reduced variance in TTP when treatment decisions are made
more frequently in evaluation (not shown). In contrast, if the treatment
interval is increased compared with training, TTP is typically reduced
(shown in the region below the diagonal in Fig. 3C, with P ¼ 0.2 for
daily training, and P ¼ 0.035 for weekly training, again computed via
pairwise comparisons between the two data sets). This is because the
DRL framework underestimates how quickly the tumor will grow and
fails to apply sufficient treatment to keep it from progressing. The
tumor thus progresses even though it could have been kept in check
with further treatment, a phenomenon we will refer to as “premature
progression.” To sum up, choosing the frequency at which to consult
the DRL framework will require a careful balance between leaving
sufficient time to learn from past decisions, while also providing

sufficiently frequent decisions to react to the tumor’s response or lack
thereof.

The DRL framework learns an interpretable treatment policy
Although the performance of the DRL framework is promising, a

key challenge to potential clinical translation is its “black-box” nature.
To investigate the policy underlying DRL decision-making, we next
plot the relationship between the input of the network (current tumor
size) and its output (the treatment recommendation) while treating a
single patient (Fig. 4A). Interestingly, this reveals a clear sigmoidal
relationship with a well-defined interpretation: when the current
tumor size is above the critical size N�, the network decides to treat;
otherwise, the patient is predicted to benefit more from a treatment
holiday (Fig. 4B).

In fact, we can dissect the strategy further, showing that theDRL has
learned to choose N� to carefully match the particular patient’s
treatment dynamics. To do so, we emulate the DRL’s decision-
making by replacing the neural network in our framework with a
simple, binary switch that treats if the tumor size is above some

Figure 3.

A,DRL framework performance for different treatment intervals after training on a single-patient profile (Supplementary Section S1). Less frequent decision-making
during training allows the DRL to learn more effective treatment schedules. B, Kaplan–Meier curves for the same DRL frameworks evaluated across a cohort of 100
virtual patients, where less frequent decisions in training also result in more consistent outcomes, outperforming other strategies in over 90% of cases. C, Evaluating
the DRL strategy at lower frequencies than used in training results in a stark decrease in TTP (below the diagonal, averaged over 100 patients) as these allow
insufficient time to respond to changes in tumor dynamics, whereas there is no significant change at higher frequencies than those used in training. For comparison,
the TTP is 672 days under the AT50 scheme and 451 days under conventional CT.
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threshold, ~N , and otherwise holds. Varying ~N around the value N�

found by the neural network, we observe that both increasing or
decreasing it reduces TTP: if we switch at larger sizes (~N >N�), we risk
early progression, whereas if we switch at smaller sizes (~N < N�) we
maintain fewer sensitive cells and can thus exert less competitive
suppression on the resistant subpopulation (not shown).We conclude
that the DRL has identified a switch point that seeks to optimize the
tradeoff between controlling sensitive and resistant cells, which varies
with parameters such as the decision interval (Fig. 4C). Through this
tradeoff, the DRL framework qualitatively replicates strategies previ-
ously shown to be analytically optimal in this setting (10, 25).

In this way, DRL methods can help us to derive effective treatment
strategies without explicit knowledge of the underlying mathematical
system, giving confidence that theDRLmay be applied tomore complex
treatment paradigms (with multiple drugs or dosing levels) where
mathematical methods cannot readily derive an optimal treatment
schedule. Secondly, we have shown how, by using mechanistic tumor
models, we can identify clinically actionable strategies from a “black-
box” DRL network and thereby build confidence in the recommended
decisions, addressing an important hurdle toward clinical translation.

DRL-guided AT is predicted to improve on intermittent
treatment

Although our results so far are promising, they were obtained on a
single virtual patient who was assumed, for simplicity, to have neither a
cost of resistance nor significant turnover. Although this makes it
harder to control resistance, it also results in faster tumor dynamics,
which makes it easier for the DRL framework to learn the impact of
particular treatment decisions. In the next step, we wanted to test how
the DRL framework would perform on more clinically realistic param-
eter sets. To replicate the tumor dynamics observed in the clinic, we
leverage prior work (23) in which we have fitted the Lotka–Volterra
model (Eq. A) to patient data from a prospective phase II trial of
intermittent androgen suppression for locally advanced prostate cancer
conducted by Bruchovsky and colleagues (40). Specifically, we focus on
the fits of 7 patients who had progressed on the trial to test whether the
DRL-guidedATwould have achieved a longer TTP and how this would

have compared with AT50 (see Supplementary Section S4 for further
details on patient selection). Plotting this cohort in Fig. 5A, we observe
that these patients differ widely in their dynamics, as reflected in their
associated model parameters. Nevertheless, the DRL framework can
learn to delay the emergence of drug resistance and increase TTP
relative to the clinically trialed intermittent protocol, as exemplified for
patient 25 in Fig. 5B.

DRL frameworks can be robust to variation in patient
parameters

The aim of this paper was to leverage DRL to better tailor AT to the
dynamics of an individual patient. Our results so far show great
promise but assume that we have perfect knowledge of the governing
rules and parameters—which is clearly unrealistic. In the next step, we
thus tested how robust a DRL-guided approach is to uncertainty in the
underlying dynamics and what strategies we can adopt to better
address the individual variations and imperfect knowledge of each
patient’s parameters in the clinic.

To explore this question, we first carry out a sensitivity analysis in
which we systematically perturb the model parameters away from the
values the DRL framework encountered in training (for further details
see Supplementary Section S5). The DRL framework demonstrates
robustness to varying initial resistance fractions and resistance costs
associated with the tumor, providing effective treatment relative to
AT50 even if these differ significantly from the values of the training
patient (Supplementary Fig. S2). In contrast, it is very sensitive to
reductions in the initial tumor density and in the rate of turnover (i.e.,
the ratio between death and growth rates in the tumor), for example,
performing worse than AT50 for patients with identical initial tumor
composition but a slightly reduced turnover (Supplementary Fig. S2).
From the insights in section “The DRL framework learns an inter-
pretable treatment policy” into how the DRL makes its decisions, we
can explain this behavior: Changes in turnover and the initial tumor
density alter the tumor growth rate relative to that of the training
patient and this faster-than-anticipated tumor growth rate leads to
premature progression between treatment decisions. This demon-
strates how the use of a mechanistic tumor model can dissect the
limitations of theDRL framework, differentiating between scenarios in

Figure 4.

A, After each decision interval, the DRL framework outputs a treatment probability based on the current tumor size. By recording these over a patient’s history, we
can infer the underlying treatment strategy learned by the framework. B, This strategy is a well-defined sigmoidal relationship between current tumor size and
treatment probability, with treatment almost certain above a threshold size, N� ¼ 0.83n0 (for an initial tumor size n0). C, The value of the threshold size, N�, varies
significantly with the frequency of decision-making in treatment, with more frequent decisions allowing a higher threshold.
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which it is robust (such as to perturbations in the resistant character-
istics) and scenarios where it is highly sensitive (such as increases in the
tumor growth rate).

In addition to parameter uncertainty, tumor behavior may not
align with the virtual patient model (1), as patient tumors may
exhibit heterogeneity in the rules governing their dynamics. Hence,
we assess the DRL framework’s robustness to variations in the
underlying tumor dynamics by evaluating our framework on a
modified Lotka–Volterra model introduced by Lu and colleagues
(44) and reproduced in Supplementary Section S6, with model
parameters given in Supplementary Table S2. This model uses a
diminishing competition term, such that intratumoral competition
decreases over time, with a modified progression criterion based on
the growth of the resistant subpopulation alone. Despite these
significant differences in dynamics and progression criterion, the
(pretrained) DRL framework achieves a TTP of 1,506� 3 days under
weekly treatment evaluation, outperforming the AT50 TTP of
1,119 days while reducing the cumulative drug dose by 93% (Sup-
plementary Fig. S3). Additionally in Supplementary Section S6, we
benchmark the DRL framework against a stem-cell model published
by Brady-Nicholls and colleagues (45) with parameters given in

Supplementary Table S3.We demonstrate a benefit of 718� 102 days
over AT50, exemplifying the ability of this framework to adapt to
models with differing underlying assumptions and mathematical
formulations that it was never trained upon.

Generalized treatment strategies through cohort training
As we have just shown, a DRL framework that only “sees” one

particular patient profile in training has a limited ability to adapt to
different patients or to parameter uncertainty in evaluation. To address
this, we tested how well we could enhance the framework’s robustness
by exposing it not just to one, but to multiple, patient profiles during
training. This meant that for each iteration during training, we
randomly chose one of the seven patients in the Bruchovsky group
as the training profile. Importantly, we did not provide any further
information about the patient’s tumor dynamics, so the algorithm had
to infer that the tumor dynamics might have changed from the
previous iteration while providing treatment. In addition, instead of
training a new DRL framework from scratch, we used a technique
known as “transfer learning,”where a preexisting network is retrained
for a new task, in order to retain and improve upon the strategy the
framework had learned in the single-patient training so far.

A

C D

BBruchovsky trial patients Case study: Patient 25

Clinical record

,,,

,

,

,

,

,

Deep learning model

Total tumor Resistant fraction Sensitive fraction

Relative tumor size

Figure 5.

A, Patient parameter values in cost-turnover parameter space from fits conducted by Strobl and colleagues (23) on patients from the Bruchovsky (41) trial. Selected
clinical records are included to illustrate the variation between patients. B, Training a DRL framework on a single patient from this cohort generates a specialized
model able to significantly outperform outcomes seen in the clinic. C, However, individual models struggle when applied to other patient profiles. This can be
remedied by training theDRL frameworkonavirtual patient cohort, at the cost of reduced specializationoneach individual.D,Thegeneralismmanifests in the formof
a more conservative strategy that avoids premature progression for all patients in the group but is suboptimal for the least aggressive tumors.
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Compared with the DRL framework trained on patient 25 alone,
this multipatient network is significantly more robust to variation in
patient parameters, able to match or outperform the clinical outcomes
for all patients (P < 0.01 for 100 evaluations of the DRL framework;
Fig. 5C). However, this comes at the cost of specialization; this cohort-
trained DRL framework is significantly less effective on patient 25 (on
whom the original framework was trained), although it still outper-
forms the intermittent strategy by Bruchovsky and colleagues. This is
due to a reduced threshold in the treatment strategy so that a lower
tumor burden will bemaintained throughout treatment (Fig. 5D); this
prevents fast-growing tumors from reaching progression prematurely
but reduces the competitive suppression of the resistant cell population
in slower-growing tumors.

The robustness of multipatient networks extends beyond the para-
meters explicitly varied in the training cohort; in Supplementary
Section S7, we vary the time interval at which treatment decisions
are made. This was fixed at 30 days in training, but the variation here
reflects the realities of treatment delivery in the clinic, where missed
and rescheduled appointments often result in delays to planned
treatment schedules. Modeling this delay as an exponentially distrib-
uted random variable, we found that the patient 25 model experienced
a significant decrease in TTP (≥ 20%) for delays averaging less than a
week, whereas the group-trained model could tolerate average delays
approaching a month (Supplementary Fig. S5). This reinforces the
increased robustness of group-trainedmodels to changes in evaluation
parameters, although this comes at a cost of reduced performance in
the training case.

A further limitation of the multipatient approach is that it is
typically only robust to the extent of variation it is exposed to during
training. To illustrate this, we generated a cohort of ten “synthetic
training patients” by sampling from a defined area of parameter space
and used these to train a multipatient network (for details see
Supplementary Section S7). We make two key observations: first,
DRL-guided AT does not require training on the exact profiles used
in evaluation and can match, if not outperform, AT50 if the profile of
the patient it is applied to is within, or at least sufficiently close to, the
training space (Supplementary Fig. S4). This validation provides
confidence in our DRL approach, demonstrating that the DRL frame-
work generates successful treatment schedules for patients it has not
“seen” during training, drawing on strategies it has learnt for similar
patients in training. However, if a patient falls outside the training
space, then even the cohort-trained network can quickly become
unreliable (Supplementary Fig. S4). We conclude that training on
multiple patient profiles can enhance the robustness of the network,
but comes at the price of reduced performance and is still vulnerable if
a patient were to fall outside the range of dynamics encountered during
training.

Personalized DRL framework
To address these issues, we investigated how we could generate a

separate DRL network for each individual patient, fine-tuned to their
specific tumor dynamics. However, when a patient first presents, we do
not have enough data, for example, on how fast the tumor will respond
to treatment, to construct such a “virtual twin.” To overcome this
problem, we propose to combine old and new methods in a five-step
clinical pathway (Fig. 6A). By conducting a single, initial AT50
“probing cycle,” we collect longitudinal burden data to parameterize
the virtual patient model. Next, this model is used to fine-tune a
generalist DRL network, trained on the synthetic cohort detailed in
Supplementary Section S7 such that no prior knowledge of the patient
is assumed; this personalized version is then used to guide subsequent

treatment decisions. In this way, we can dynamically tailor the
decision-making policy to the dynamics of the individual patient and
make an important step toward a clinically feasible implementation of
our DRL treatment scheduling framework.

To illustrate this, in Fig. 6B we show an example application of this
five-step approach for patient 25.When they present in the clinic, they
are given an initial cycle of AT50, during which their tumor burden
dynamics are recorded and an estimate of their tumor parameters is
inferred (see Supplementary Section S8 for numerical details and
Supplementary Fig. S6 for the model fits). Using the synthetic, multi-
patient network from the previous section as the initial network state,
we apply transfer learning to retrain the DRL framework to tailor it to
this patient. For subsequent treatment cycles, we then switch from
AT50 to our DRL-based personalized AT scheme. This successfully
maintains a higher stable tumor burden to maximally suppress the
drug-resistant subpopulation, increasing TTP by 2.3 years for patient
25 relative to if we had continued on AT50 (see Fig. 6D for perfor-
mance on other patients). In addition, the retraining of our generalized
DRL network is feasible in a clinical setting, achieving sufficient
personalization to each patient after as little as 2,000 epochs, taking
approximately 20 minutes to train on a standard laptop (Intel i5,
4 cores, 1.70 GHz).

A further important challenge in the practical translation of our
five-step framework is a reticence to expose a patient to a treatment
schedule derived from a “black-box” algorithm. As a workaround, we
propose that rather than basing decisions on the raw, numerical output
of the network, we could leverage the insights we gained in the section
“The DRL framework learns an interpretable treatment policy” to
extract and deploy its strategy in an interpretable fashion. To do so, we
fit a sigmoid curve to the strategy observed for each personalized
network (recall Fig. 4) and extract the critical treatment threshold
optimized by DRL treatment threshold optimized by DRL for that
patient (Fig 6A; steps 3 and 4). For example, for patient 12, this would
be 0.73n0, implying that a clinician should aim to maintain the tumor
at 73% of its original size, treating when the tumor is larger and giving
treatment holidays when it is smaller. We observe significant variation
in these personalized thresholds between patients (Fig. 6C), demon-
strating the need for tailored approaches to treatment scheduling, with
different patients responding best to markedly different strategies
ranging from 73% to 100%. Benchmarking these personalized thresh-
olds derived from theDRL frameworks across the cohort, we show that
we can match the performance of the “black-box” networks them-
selves, as well as matching or outperforming the nonpersonalized,
intermittent protocol for all patients (Fig. 6D). Even for those patients
with no significant increase in TTP under the DRL framework, they
still benefit from lower drug toxicity, as the cumulative drug dose is
significantly reduced compared with an equivalent duration of CT
across all patients, with an average reduction of 50% in the cumulative
dose over a patient’s entire treatment.

This five-step approach heralds a new avenue in personalized
medicine, through tailored treatment schedules on a per-patient
basis, driven by their initial response to one cycle of treatment. In
the clinic, it would also be possible to refit the patient’s estimated
tumor parameters after data from each subsequent treatment cycle
are collected, generating a more accurate prediction of the patient’s
dynamics that can readjust to changes in the tumor behavior over
the timeline of treatment, exemplifying the Adaptive Dosing
Adjusted for Personalized Tumorscapes principles we have recently
proposed (46). Overall, this approach illustrates a new role for DRL
in the development of new scheduling protocols, in which its
purpose is not to compute these schedules, but to uncover guiding
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principles that can subsequently be rationally translated into sim-
pler and more clinically practical protocols.

Discussion
Following the recent clinical implementation of adaptive therapy on

castrate-resistant prostate cancer by Zhang and colleagues (18), and

multiple ongoing adaptive therapy trials in skin (NCT05651828),
prostate (NCT05393791), and ovarian (NCT05080556) cancers, it is
of significant interest to better understand whether we can optimize
adaptive treatment strategies. Although such optimization may be
conducted analytically where binary treatment decisions are applied to
simple models, it quickly becomes infeasible in more complex cases.
We therefore consider the application of deep learning models,

Figure 6.

A,We propose a five-step clinical framework for personalized treatment schedules. Patients undergo an initial “probing” cycle of AT50, to which the virtual patient
model is fitted, generating a set of tumor parameters specific to each patient. A copy of the generalized DRL model is then retrained on these personalized
parameters, fine-tuning the network to that patient’s treatment response. Finally, we extract a sigmoidal treatment strategy fitted to decisions made by the DRL
network, providing personalized schedule recommendations throughout the remainder of the treatment schedule. B, Example application of the framework
to patient 25. Switching to the treatment schedule predicted by the DRL framework after the probing cycle significantly increases the TTP over AT50 (faded line in
top panel). C, Personalized sigmoidal treatment strategy demonstrated significant interpatient variation in the critical tumor size (labeled for each line) at
which treatment is initiated and discontinued. D, The personalized DRL framework consistently outperforms the TTP recorded for the patients in the clinic.
Moreover, by extracting a personalized, interpretable sigmoidal treatment strategy, we eliminate the “black-box” nature of the framework, while retaining
comparable performance.
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introducing a reinforcement learning framework wherein the DRL
framework interacts with a virtual patient model to develop successful
treatment strategies based only on a single clinically accessible tumor
metric: total burden.

We demonstrate that this DRL framework can outperform the “rule
of thumb” adaptive therapy (AT50) used clinically by Zhang and
colleagues (18). This strategy is robust to varying model parameter-
izations and across multiple underlying tumor models. We uncovered
a novel relationship regarding the frequency of treatment decisions
(i.e., how often patient data are collected and the current treatment
reevaluated), showing that application of treatment should occur at
lower frequencies in initial training, to allow the DRL framework to
learnmeaningful and interpretable treatment strategies. However, this
must be balanced by sufficient time to react to tumor growth, with
faster-growing tumors requiring more frequent treatment decisions.

Exploring the decision-making process behind the DRL network,
we discovered that it had learned to mimic optimal strategies
previously derived through optimal control theory (7, 10, 25), main-
taining a large sensitive cell population for maximal suppression of
the resistant cells while avoiding the progression limit on tumor size.
This is enacted through an interpretable “threshold tumor size,”
below which treatment holidays should be applied to retain com-
petitive suppression of drug-resistant cells through the sensitive
population. This threshold is optimized for both the patient profile
used in training and the decision-making frequency and provides
interpretable and clinically actionable strategies from traditional
“black-box” DRL techniques. The fact that the DRL framework
uncovered these strategies without knowledge of the underlying
mathematical model also illustrates its potential to study more
complex models or treatment paradigms (such as multiple treatment
drugs or nonbinary dosing levels). The choice of a binary dosing level
in this work was made to reflect the single currently approved dosing
level of abiraterone; however, the consideration of variable dosing has
been shown to impact optimal treatment strategies in other dosing
contexts (bioRxiv 2023.03.22.533721; 2023.09.18.558136).

The significant interpatient heterogeneity in the adaptive cycling
dynamics observed in the clinic (recall Fig. 1A) highlights the impor-
tance of decision-making frameworks that are robust to variation
between patients and uncertainty in individual patient dynamics. By
training the DRL framework on a cohort of patients with differing
characteristics, we generate a network that is robust to variation in the
values of the underlying tumor parameters. Furthermore, by evalu-
ating a pretrained DRL framework on alternative ordinary differential
equation models (Supplementary Section S6), we demonstrated that
the framework is sufficiently flexible/model-agnostic to outperform
the clinical standard of care across a range of tumor behaviors. It is
worth noting, however, that these models were all non-spatial; pre-
vious work has demonstrated the important role that space can play in
the competitive inhibition of resistant cells (41, 47, 48), which can both
help and hinder adaptive therapy as well as change the optimal
strategy. An important next step would therefore be to validate our
framework in a more realistic, spatial model. Furthermore, we have
made the simplifying assumption that PSA exactly reflects the tumor
burden dynamics. In reality, the relationship between PSA and tumor
burden is more complex as it is influenced by other factors, such as age
or body mass index (21, 22), and lesions may differ in how much PSA
each releases. Integrating multiple measurement modalities, as well as
tackling the management of heterogeneous metastases (49), are
important directions for future research.

The increased robustness to parameter and model variation comes
at the cost of performance for an individual patient. In short, for the

best results, the tumor size threshold at which treatment is withdrawn
should be tailored to the tumor characteristics of the individual patient
and the frequency of monitoring/decision-making. The “one size fits
all” approach adopted, for example, by the current AT50 protocol is
suboptimal for themajority of patients: If treatment is given below this
threshold, then we suppress the sensitive subpopulation within the
tumor unnecessarily, while if it is withheld above this threshold then
we risk the patient undergoing premature progression before the next
treatment decision.

Historically, AT protocols have focused on a single tumor size
threshold (such as in AT50), and others have suggested this threshold
should be maximized (24, 25, 27). Given the vastly different tumor
dynamics observed between patients in the clinic, we show that a
personalized switch criterion for each individual patient is required,
based on their dynamics as well as practical constraints imposed by the
frequency of treatment decisions in the clinic. To calculate this
threshold, we propose a five-step pathway integrating mechanistic
modeling with DRL. By using an AT50 probing cycle to characterize
the treatment response dynamics of an individual patient, we are able
to retrain the DRL network on each patient’s dynamics requiring only
limited additional computational expenses. Finally, from this person-
alized DRL framework, we extract a treatment threshold tailored to
that patient, which is translated into a simple clinical protocol, to
ensure that DRL-informed treatment strategies remain fully inter-
pretable. By prescribing treatment holidays when the PSA is below this
threshold value, the clinician can generate a truly personalized treat-
ment schedule tailored to the patient’s tumor dynamics and drug
response. This schedule is expected to consistently outperform clinical
standard-of-care protocols as well as generic AT50, which does not
fully account for such interpatient variation. By tailoring our robust,
cohort-trained DRL strategies to individual patients, we have dem-
onstrated a clear route for how the results from our in silico study could
be translated to support clinical decision-making.

In future work, we plan to further leverage uncertainty about patient
measurements and dynamics by generating a virtual cohort of patients
for each individual patient. We will then use this cohort to retrain our
more generalized DRL framework for that individual patient. These
virtual cohorts would match the real patient’s dynamics within a
given error similar to the phase I approach we have previously used
(medRxiv 2023.01.18.23284628; ref. 50). Such approaches would
retain the robustness benefits from training on a range of patients,
while allowing treatment schedules to be tailored to individual patients
based on their profiles. In practical terms, this would require minimal
retraining of a nonspecializedmodel using a best estimate of the tumor
parameters from fitting to the patient’s current clinical history. As
more data are collected from a patient, this profile may be contin-
ually refined to represent our best understanding of that patient’s
dynamics at a given point in time. The objective function also
provides scope for additional personalization: By modifying how
strongly we punish cumulative drug use, treatment schedules could
be further deescalated for patients struggling to complete their
planned course due to side effects/cytotoxicity.

The approach we have presented here is not the first DRL
framework to tackle AT. The work of Lu and colleagues (44) used
a different underlying prostate cancer model, but trained the
network on both the PSA and the sensitive and resistant popula-
tions; although PSA is easily measured in a blood draw, there is no
direct way to measure the numbers of sensitive and resistant cells in
a real patient. Although they were also able to produce significantly
improved outcomes for a single patient, the generalizability of
our approach, and the clear path to clinical practice, make our
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implementation somewhat more robust. Moreover, our novel discov-
ery of the analytical relationship between tumor dynamics and treat-
ment timing for the treatment threshold sets ourwork apart in terms of
interpretability and also frequency of treatment. With the ongoing
revolution in wearables, a future where tumor burden could be
measured in real time is not unrealistic. Our results imply that caution
is needed in making too frequent treatment decisions in DRL training,
because this effectively reduces the impact of each decision and may
increase the interference from noise.

The approaches presented here are generalizable to other forms of
cancer and illustrate how integrating mathematical modeling and
machine learning can provide rational decision-support to tackle the
complex and evolving nature of cancer (46). This applies both in
situations where total tumor burden or drug load must be managed,
either to prevent treatment resistance or to reduce adverse side effects.
Theymay also be extended tomultidrug paradigms or to allow variable
dosing levels for individual drugs, provided a dose-response function is
known. We hypothesize that the application of DRL frameworks may
allow optimization in a wide range of clinical settings where clinical
standards are currently determined by a “rule of thumb” that may, in
many cases, be far from the optimal strategies that a DRL framework
could identify.
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