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A B S T R A C T 

We present a convolutional neural network (CNN) for use in the real–bogus classification of transient detections made by the 
Asteroid Terrestrial-impact Last Alert System (ATLAS) and subsequent efforts to impro v e performance since initial development. 
In transient detection surv e ys, the number of alerts made outstrips the capacity for human scanning, necessitating the use of 
machine learning aids to reduce the number of false positives presented to annotators. We take a sample of recently annotated 

data from each of the three operating ATLAS telescope with ∼340 000 real (known transients) and ∼1030 000 bogus detections 
per model. We retrained the CNN architecture with these data specific to each ATLAS unit, achieving a median false positive 
rate (FPR) of 0.72 per cent for a 1.00 per cent missed detection rate. Further investigations indicate that if we reduce the input 
image size it results in increased FPR. Finally architecture adjustments and comparisons to contemporary CNNs indicate that our 
retrained classifier is providing an optimal FPR. We conclude that the periodic retraining and readjustment of classification models 
on surv e y data can yield significant impro v ements as data drift arising from changes in the optical and detector performance can 

lead to new features in the model and subsequent deteriorations in performance. 

Key words: Machine Learning – Data Methods – Algorithms – Convolutional Neural Networks – Classification – Supernovae. 
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 I N T RO D U C T I O N  

mpro v ements to transient surv e y methods in the past two decades
ave led to the emergence of wide-field, all-sk y surv e ys of the local
ni verse allo wing for large re gions of the night sk y to be studied at

hort cadences at any given time for supernovae or other transients.
he resulting growing and diverse population of disco v eries has 

e vealed pre viously unstudied transient behaviour from unusual 
upernovae to gravitational wave merger sources (Abbott et al. 2017 ; 
aubenberger 2017 ; Inserra 2019 ). As we continue to establish a
iew of transient behaviour, our focus shifts towards understanding 
he entire evolution of these objects from the initial outburst to their
ading below our surv e y detection limits. Such a goal requires rapid
ata processing and analysis to select the best candidates for follow- 
p observations, for which resources are limited. While techniques 
ave been applied in previous generations of time-domain surveys 
o success, the recent advancements in machine learning o v er the
ast several years have accelerated our ability to sweep large sets of
ata for rele v ant information in a short timespan (Bloom et al. 2012 ;
ahabal et al. 2019 ; Acero-Cuellar et al. 2023 ). 
The increased depth and scope of wide-field imaging allow surv e ys 

o generate tens of thousands of difference images for human 
canners to inspect. In difference imaging, a reference image of 
he sky is matched and scaled to align with the processed sky target
mage and it is subtracted. In principle, the difference image should 
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e a pixel array representing the combined noise of the two frames
nd any variable, moving or otherwise astrophysical real transient 
ource. In practice the difference image is dominated by positive 
nd ne gativ e artefacts which by far outnumber the real astrophysical
ources. This is a common problem in surv e ys that use difference
maging, and an automated method of removing the majority of 
alse positives (FPs) is required. Following this, human scanners 
istinguish true ‘real’ transient detections from the remaining false 
bogus’ artefacts (Mahabal et al. 2019 ; Carrasco-Davis et al. 2021 ;
uev et al. 1999 ). Bogus detections make up the majority of the
etection population and are produced by multiple factors such 
s detector defects, saturated sources, and data processing issues 
Wright 2015 ; Gieseke et al. 2017 ). To reach detection numbers that
an be processed by human scanners, we require filtering via machine 
earning models that are capable of identifying and discarding the 

ajority of bogus detections while maintaining completeness in the 
eal transient population. A machine learning approach, as opposed 
o one in which feature identification is hardcoded by astronomers, 
llows for a greater complexity and efficiency of feature analysis. 
odels must be capable of identifying these transients with early, 

ften incomplete data to ensure that the most interesting candidates 
an be selected for follow-up observations as soon as possible (Villar
t al. 2019 ; Miranda et al. 2022 ; Russeil et al. 2024 ). 

Machine learning techniques utilized in transient detection are 
roadly divided into two categories – supervised (primarily used) 
nd unsupervised (minimally used) methods (Hastie, Friedman & 

isbshirani 2017 ). In transient astronomy, supervised learning is 
ommonly used for classification and regression, where the model 
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hich permits unrestricted reuse, distribution, and reproduction in any 

http://orcid.org/0009-0002-9460-9900
http://orcid.org/0000-0002-8229-1731
http://orcid.org/0000-0002-0504-4323
mailto:jweston04@qub.ac.uk
https://


386 J. G. Weston et al. 

R

i  

o  

e  

a  

s  

b
 

e  

(  

o  

2  

t  

e  

v  

o  

c  

t  

a  

p  

c  

e  

s  

t  

s  

e  

e
 

s  

t  

t  

t  

L  

t  

a  

t  

m  

W  

h  

c  

p  

b  

w  

u
 

o  

i  

p  

t  

s  

h  

r  

o  

6  

m

2

2

T  

U  

d  

s  

r  

p  

t  

u  

c  

i  

(  

t  

O  

S  

i  

fi  

c  

(  

c
w  

2  

n

2

E  

d  

T  

T  

(  

d  

A  

f  

a  

(  

a  

i  

&
 

T  

c  

s  

a  

fi  

i  

t  

f  

o  

i  

c  

e  

f  

o  

e  

i
 

c  

d  

r  

p  

s
 

d  

t  

w  

o  

f

s required to learn or approximate a function mapping the input to
ne of multiple classes by looking at a data set consisting of labelled
xamples. In the context of transients, this can include classifying
 given detection as real, classifying the object as one of a list of
ource types (Leoni et al. 2022 ; Sheng et al. 2024 ), or predicting its
ehaviour o v er time (Mahabal et al. 2019 ). 
The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry

t al. 2018b ), consists of four telescopes reaching c � 19.5 magnitude
given a 30-s exposure time) in dark skies with the primary aim
f detecting potentially hazardous near-Earth objects (Heinze et al.
021 ; Reddy et al. 2022 ). With four operational telescopes, it has
he capability of surv e ying the whole visible sky, multiple times,
very 24 h, and hence the data are scientifically useful for a range of
ariable and transient sources. ATLAS has produced large catalogues
f variable stars (Heinze et al. 2018 ), an all-sky stellar reference
atalogue (Tonry et al. 2018a ) and tens of thousands of extragalactic
ransients and supernovae (Smith et al. 2020 ). Among the highlights
re the disco v ery of luminous fast blue optical transients (the
rototype being AT2018cow, Prentice et al. 2018 ), luminous fast
oolers (Nicholl et al. 2023 ), detections of GRB afterglows (Stalder
t al. 2017 ), and constraints on the counterparts of gravitational wave
ources (Smartt et al. 2017 , 2023 ; Ackley et al. 2020 ). The rapid 1-
o 2-d cadence has allowed many precursor emission features of
upernovae to be discovered (e.g. Anderson et al. 2018 ; Sri v astav
t al. 2023a , b ) and early detections of the most luminous (Schulze
t al. 2024 ) and faintest supernovae (Srivastav et al. 2022 ). 

In order to enable these scientific disco v eries and light-curv e mea-
urements, ATLAS utilizes convolutional neural networks (CNNs)
rained on the difference image data through supervised learning
o filter out a majority percentage of bogus detections. Initially,
here were two ATLAS units operating on Haleakala and Mauna
oa. We trained two bespoke CNN classifiers on data from each

elescope, with the Mauna Loa Observatory (MLO) classifier being
pplied to data from the later operating Sutherland and El Sauce
elescopes. Meanwhile many detector and optical refinements were
ade which affected the delivered point-spread function (PSF).
hile the telescopes are designed to be identical, such changes to

ardware o v er time hav e resulted in the image quality (and detector
haracteristics) to diverge. While we have had good operational
erformance using a single classifier trained on an all-encompassing
ut outdated data set, one might expect that CNNs could do better
hen trained on up-to-date image data from each of the four ATLAS
nits with their current detector and optical systems. 
This paper describes our computational experiments to improve

ur transient detection methods for the ATLAS surv e y through
mpro v ements to the CNN real–bogus (RB) classifier, particularly
aying closer attention to matching the training data to the current
elescope performance. Following an introduction to the ATLAS
urv e y and classifier architecture in Sections 2 and 3 , we describe
ow we retrained our classifiers for each individual telescope with
ecent data in Section 4 . Following this, we investigate the effect
f varying image size on our performance metrics (Sections 5 and
 ). Lastly, we compare the performance of our classifiers with other
odel architectures (Section 7 ). 

 ATLAS  

.1 ATLAS and chronology 

he ATLAS (Tonry et al. 2018b ) was initially developed by the
niversity of Hawai’i and funded by NASA with the intent of
etecting hazardous near-Earth objects (e.g. asteroids) which are
ubmitted to the Minor Planet Center (Heinze et al. 2021 ). This
ASTAI 3, 385–399 (2024) 
equires multiple telescopes of wide-field design and rapid data
rocessing. As of 2023, the surv e y consists of four identical 0.5 m
elescopes which are a variation of a ‘Wright Schmidt’ design
tilizing a 0.65 m spherical primary mirror and three-lens field
orrector. ATLAS initially became operational on the Hawaiian
sland of Maui with one telescope at the Haleakala Observatory
HKO) in 2015. This was later joined in 2017 by a second telescope on
he neighbouring Big Island’s MLO, a third in 2021 at the Sutherland
bservatory in South Africa (STH), and a fourth in 2022 at the El
auce Observatory in Chile (CHL). Each telescope uses two filters

n normal surv e y operations (Tonry et al. 2018b ). The first is a cyan
lter ( c) used during dark time which is roughly analogous to a
omposite PS1 g + r (420–650 nm). In bright time, an orange filter
 o) roughly equi v alent to r + i (560–820 nm) is used. The surv e y is
apable of surv e ying the entire sk y between a declination of ±50 ◦

ith a 1-d cadence and the polar regions with a 2-d cadence (Tonry
010 ; Tonry et al. 2018b ) with a repeat co v erage of 4 times each
ight, with 30-s exposures. 

.2 Difference imaging and transient detection 

ach telescope camera contains an STA 10 560 2 pixel single CCD
etector with a 30 pixel border and scale of 1.86 arcsec per pixel.
he detector and telescope optics deliver a 5 . 4 ◦ × 5 . 4 ◦ field of view.
he current surv e y strate gy employs 30-s exposures on all units

Tonry et al. 2018b ). Transients are detected via a process known as
ifference imaging (Tomaney & Crotts 1996 ; Alard & Lupton 1998 ).
s outlined in Tonry et al., a matching reference image is constructed

rom the ATLAS wallpaper, which we rebuild periodically. We use
 modified version of the HOTPANTS image subtraction algorithm
Becker 2015 ), itself an implementation of the Alard & Lupton
lgorithm for difference imaging, which photometrically aligns the
nput image with a reference following astrometric alignment (Alard
 Lupton 1998 ; Alard 2000 ). 
The complete ATLAS reduction pipeline can be found outlined in

onry et al. ( 2018b ). The pipeline has a custom PSF fitting routine
alled TPHOT that produces flux measurements of all difference image
ources that are detected at > 5 σ abo v e the background noise, which
re outputted in a text file marked with the .ddc file. The .ddc
les are transferred to a machine at Queen’s University Belfast and

ngested into a transient object data base (Smith et al. 2020 ) alongside
he reduced and calibrated images with their associated subtracted
rames. Detections are first cone searched against previously ingested
bjects, with those within 3.6 arcsec of an existing object being
ngested and associated with that object to contribute to its light
urve. New objects are created from detections that have no pre-
xisting objects within the given proximity. An object is defined
rom a set of three or more good quality, co-spatial detections that all
ccur on the same night more than 100 pixels away from the detector
dge. The detection closest to the mean coordinates of the object is
dentified as the representative detection for the object. 

Following the extraction of detections in Hawai’i, basic quality
ontrol checks are carried out as outlined in Tonry et al. ( 2018b ). For
etections that pass this process ‘stamps’ are created of the target,
eference, and difference images measuring 6.2 arcmin (200 × 200
ixels). The 20 × 20 gre y-scale pix el cores of these difference image
tamps are passed to the machine learning model for classification. 

Figs 1 and 2 display examples of real and bogus transient
etections. The left frame is the target image of the detection, while
he middle is the rele v ant space cut from the ATLAS reference
allpaper. The right frame is the resulting subtraction which should
nly contain the net flux of the detected object. This is not the case
or the bogus detections contained in Fig. 2 . 
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Figure 1. Real astrophysical transients detected via ATLAS difference 
imaging. From left to right: detection image, reference image, and difference 
image. 20 x 20 pixel stamps are displayed in the top left. In classification, we 
only utilize the 20 x 20 core of the difference image. 

Figure 2. Bogus astrophysical transients detected via ATLAS difference 
imaging. From left to right: detection image, reference image, and difference 
image. 20 x 20 pixel stamps are displayed in the top left. In classification, we 
only utilize the 20 x 20 core of the difference image. 
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 T H E  ATLAS  CLASSIFIER  

.1 Convolutional neural networks 

n the early stages of transient searches with ATLAS, we utilized
 random forest and sparse-filtered neural network algorithm as 
utlined in Wright ( 2015 ) and Wright et al. ( 2017 ), before moving in
018 September to a Keras CNN (Chollet 2017 ) which other transient 
etection surv e ys had utilized successfully (Cabrera-Viv es et al.
017 ; Reyes et al. 2018 ). The CNN in use by ATLAS is a modification
f an existing example model used to classify images of handwriting
igits in the MNIST data base, which we have repurposed for use on
ur difference images (Smith et al. 2020 ). The model architecture,
ummarized in Fig. 3 and A1 in the appendices, is as follows: 

(i) A two-dimensional (2D) convolutional layer with a 2 × 2 
ernel size and 16 filters utilizing rectified linear units (ReLUs). The
urpose of the convolutional layer is to perform a dot product between
he kernel, which is a matrix of the model’s learnable parameters, and
he input image. The kernel ‘passes’ across the full height and width
f the image to produce a 2D acti v ation map providing a response
f the kernel at each position of the input matrix. The ReLU sets
he ne gativ e activation map values to zero while leaving positive
alues unchanged. This transformed activation map is passed on as 
he input to subsequent layers. ReLUs allow us to achieve non-linear
ata transforms with the aim of making the transformed data linearly
eparable. The simplicity of the function allows fast computation in a
any-layered CNN with the added benefit of maintaining a constant 

radient of 1 for its positive inputs, preventing the degradation or
anishing of gradients or features through the multiple layers. In 
emo ving less informativ e or ne gativ ely influencing input from the
cti v ation map ReLUs introduce sparsity that allows for a more
omputationally efficient CNN. We use ‘Same’ padding throughout 
ach convolutional layer in our model (Dumoulin & Visin 2016 ).
ithout padding, the kernel is only applied to the centre pixels of

he input, producing an acti v ation map with a smaller size than the
nput. In Same padding additional pixels or padding is generated 
round the input data before convolution, to ensure that the kernel
an be centred o v er each input pixel. The purpose of the padding is
o preserve the complete spatial information of the image through 

ultiple convolutional layers. With 16 filters we obtain 16 distinct 
cti v ation maps corresponding to individual recognized features 
ithin the input. 
(ii) A max pooling layer for the 2 × 2 pix el re gions (Yamaguchi

t al. 1990 ). The pooling layer reduces the spatial size of the
epresentation and thus the required amount of computational power. 
n the case of max pooling the maximum output from the (2 × 2)
ernel size is reported. 

(iii) A repeated 2D convolutional layer with the same kernel 
ize but 32 filters, followed by an identical max pooling layer. In
ntroducing multiple convolutional layers, we permit a hierarchical 
eature extraction wherein the CNN learns progressively complex 
eatures with the addition of each layer, beginning with features 
uch as edges and gradients before moving to individual objects 
r object parts within the image and their corresponding individual 
eatures. An increased number of filters allows us to capture more of
hese features while maintaining a high level of dimensionality and 
omplexity. It should be noted that introducing a greater number of
lters and convolutional layers, and therefore a greater number of 
bstract features, diminishes our ability to interpret the model. As the
evel of abstraction increases and the CNN generates a larger number
f acti v ation maps it becomes difficult to analyse output layer-by-
ayer, leaving us instead to focus on the machine’s final decision. 
RASTAI 3, 385–399 (2024) 
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Figure 3. Utilized CNN architecture for the ATLAS RB classifiers. 
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(iv) A third con volutional layer , now with 64 filters, and a third
dentical pooling layer. 

(v) A ‘flattening’ layer which transforms the 2D tensor output of
he third layer to a 1D tensor. Subsequent fully connected layers
equire a 1D input where each element corresponds to a separate
euron. 
(vi) A dropout layer with a dropout rate of 0.3. A random

0 per cent of inputs are set to 0 at each step during training to prevent
 v erfitting. Inputs not set to 0 are scaled up by 1 / 0 . 7 = 1 . 43 such that
he sum of the input layer remains identical. With the goal of a CNN
o be to optimize the weights of the neural network to accurately
epresent features provided in the training data, it is possible for all
eurons in a given layer to synchronize their weights and converge
o the same goals. To prevent overfitting, dropout prevents this
ynchronous optimization and encourages learning based on a more
iverse pool of features. The reduction in training required at each
teration can assist in the development of more efficient and less
omputationally intense machines. 

(vii) A dense or fully connected layer with 500 ReLUs. In this
ontext, fully connected refers to each neuron of the layer being
onnected to every neuron of the preceding layer. In this, we combine
he features extracted by our previous layers and allow the CNN an
pportunity to examine further complex patterns within the data. 
(viii) A second dropout layer with rate 0.4. 
(ix) A final dense output with a softmax classifier (Bridle 1990 ).

his second dense layer can refine the features identified by the first to
ocus on the most rele v ant neurons for classification and, as with the
onvolutional layers, identify more abstract features within the initial
nput image. The softmax acti v ation function scales the output logits,
r unnormalized predictions, to a vector with the probability of the
nput image belonging to each outcome. The first vector component
s the probability of a given input being a real detection; the second
s the probability of that same input being bogus. 

We train the model with categorical cross-entropy loss (Hastie
t al. 2017 ) and utilize the ‘Adam’ optimization routine which is
ASTAI 3, 385–399 (2024) 
ecognized to outperform other optimization techniques for large data
ets and achieves fast optimization (Kingma & Ba 2014 ; Ruder 2016 ).
he purpose of the cross-entropy loss is to measure the distance
etween the output prediction values S and the true values T : 

 CE = 

∑ 

i= 1 

T i log ( S i ) . 

ith the aim of minimizing the loss, the softmax function is
ontinuously dif ferentiable, allo wing us calculating the loss function
eri v ati ve with respect to every weight in our CNN. 

.2 The RB factor 

B populations are separated through the use of the machine learning
lassifier score or a RB factor. Models are trained such that a low
B factor denotes a high probability of a detection being spurious,
hile a high factor denotes a high probability of a detection being
enuine, with the o v erlap between the two populations in the centre
f the score range being smaller for better-trained classifiers. In our
onte xt, an y objects with a score abo v e a set threshold are passed
n to humans for validation. This threshold is set to balance the
ompleteness of the real population with the purity of the subdata;
n our current working system, we are set to select objects with RB

0 . 2 to provide 96 per cent completeness (Wright et al. 2017 ; Smith
t al. 2020 ). 

In this report, we refer to the false positive rate (FPR) and the
issed detection rate (MDR, or false ne gativ e rate) in reference to

core threshold (Wright et al. 2015 ): 

F P R = 

F P 

F P + T N 

× 100 per cent 

DR = 

F N 

F N + T P 

× 100 per cent . 

The former refers to the percentage of bogus detections [FPs and
rue ne gativ es (TNs)] selected as real by the classifier for scanning,

art/rzae027_f3.eps
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Figure 4. Heat maps showing the spatial distribution of the bogus detections 
used for our training on each of the detectors (top four) compared with the 
astrophysical real detections used as good detections (bottom four). 

Table 1. Object composition of classifier training sets. Transients refer to 
astrophysically real, stationary transient sources vetted by human scanners. 

Data set Transients Asteroid Bogus 

23HKO 27 567 302 433 990 000 
23STH 4239 315 761 960 000 
23CHL 1428 378 572 1140 000 
hile the latter refers to the percentage of real detections [false
e gativ es (FNs) and true positives (TPs)] erroneously selected by the
achine as bogus. In comparing the performances of our classifiers, 

t is important to refer to a figure of merit, whether by fixing our
PR or MDR and observing changes to the other rate (Brink et al.
013 ). A lower FPR at a fixed MDR brings the benefit of reducing
he number of bogus images passed to human scanners, reducing the 
orkload provided. 

.3 Data 

e use the PSAT-ML Python repository 1 which creates a pipeline that 
onnects to the ATLAS data base to build a set of difference images
nd train a corresponding classifier. We seek to build data sets for
he HKO, STH, and CHL telescopes. The eruption of Mauna Loa in
022 No v ember resulted in a pause in MLO telescope operations for
2 months, and as a result we do not retrain the rele v ant classifier at
his time. 

We built a data set for each telescope with an initial 1:3 ratio of real
o bogus objects. Ten nights typically provide a substantial number of
eal detections ( ∼300 000 ). We selected 10 nights from the ATLAS 

ata store to equally co v er orange and cyan filter observing five nights
ach and obtain known real objects for each. Known real objects 
efer to a population of known asteroids identified via ephemeris 
hecks. We augment this population with objects identified as real, 
tationary, transient sources by human scanners (although these are 
elatively small in number compared with the known asteroids, with 
he total number of confirmed detections totalling 33 000). To meet 
ur requirement for bogus objects, we pull data from 200 nights
etween 2022 May and October. These ‘bogus’ objects consist of 
etections rejected by human annotators and those rejected by the 
revious classifier, having fallen below the RB threshold. 
All ‘bogus’ detections have undergone the same selection criteria 

s ‘real’ ones. They must be 100 pixels or more from the chip edge,
e positive flux, part of a triplet of co-spatial detections, be regarded
s variable or transient, not crosstalk, not a known mo v er and not a
urn or a scar. 

After the selection of our real and bogus detections, the distribution 
f these on each camera is shown Fig. 4 . It demonstrates that there
re detector-dependent spurious detections and that the real objects 
ave no spatial dependence. The plots (which we internally refer to 
s heat maps) show that the good sources are distributed uniformly 
cross the detectors and the bogus objects, we used, have strong
etector-dependent characteristics. 
We are left with a data set that for each telescope contains ∼

5 per cent asteroids, < 1 per cent real stationary transient objects, 
nd 75 per cent bogus detections. We use a split of 75 per cent when
uilding our training and testing sets, ensuring that detections from 

he same object are not divided between the sets, and are left with
 data set containing approximately 1300 000 detections for training 
see Table 1 ). We highlight the use of known, catalogued asteroids
hich serve as a large sample of astrophysically real transient sources 
hich have single PSFs. They do not move substantially within the 
0-s exposures to affect the PSF shape. 

 R E T R A I N I N G  

e train the classifiers with the same CNN architecture as outlined 
n Section 3 . We train o v er 20 epochs, selecting this as an optimal
RASTAI 3, 385–399 (2024) 
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Figure 5. FPRs for 2020 classifiers (left panel) and 2023 classifiers (right 
panel) for a 1 per cent MDR. 

Table 2. Performance metrics of classifiers on complete data sets. FPR refers 
to FPR value when we fix the MDR at 1.0 per cent. 

Telescope Classifier Data 
FPR 

(per cent) ROC-AUC RB threshold 

HKO 2020 2020 4.16 N/A 0.055 
2020 2023 2.97 0.997 487 0.074 
2023 2020 12.8 N/A 0.040 
2023 2023 0.72 0.998 640 0.182 

STH 2020 2023 2.67 0.997 511 0.157 
2023 2023 0.60 0.999 172 0.316 

CHL 2020 2023 5.79 0.996 669 0.060 
2023 2023 0.79 0.998 919 0.202 
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o  
umber beyond which the categorical cross-entropy loss plateaus for
he validation data set (itself a 25 per cent subset of the training
ata, maintained for each epoch of training). We save the optimal
odel of these 20 epochs based on the minimum loss. When utilizing

he resulting classifier, we output two figures of merit for each set
training, testing, and validation) of each classifier data set: first, we
alculate the FPR corresponding to the operating point where the
DR is equal to 1 per cent on the receiver operating characteristic

ROC) curve (Brink et al. 2013 ; Hastie et al. 2017 ). Inversely, we
lso calculate the MDR corresponding to the point on the ROC curve
here the FPR is equal to 1 per cent. 
Retraining took place in the first half of 2023. We therefore refer to

he new classifiers and their corresponding training data as 23HKO in
he case of the Haleakala telescope, 23CHL in the case of the Chilean
elescope, etc. We seek to compare the latest classifier performance
ith that of the classifiers from the last retraining epoch in 2020. We

efer to the two classifiers and their corresponding training data as
0HKO and 20MLO. 
A complete set of training, validation, and testing metrics for

ach telescope’s optimal classifier can be found in Tables A1 , A2 ,
nd A3 (see Appendices). We find impro v ements in both the FPR
nd MDR across all data subsets for each classifier compared with
ur old models. Promisingly we already see a marked impro v ement
n our STH and CHL classifiers which previously lacked bespoke

odels. In particular, we examine our FPRs for a 1 per cent fixed
DR. In our testing data, we obtain (relative) decreases to the FPR

f 75.8 per cent, 77.5 per cent, and 86.3 per cent for the 23HKO,
3STH, and 23CHL classifiers, respectively, in comparison with the
0HKO classifier, the 20MLO classifier on 23STH data, and the
0MLO classifier on 23CHL data. 
We have used hold-out validation in our retraining with a single

raining and testing set for each classifier (Arlot & Celisse 2010 ).
lthough cross-validation is a valuable technique for enhancing
erformance stability and accuracy, the data set’s size, in this
nstance, offers a reliable estimate of classifier performance or does
t?. 

We compare the performances of the old and retrained classifiers
n recent data in Fig. 5 and Table 2 , using our figure of merit, the
PR for a fixed MDR of 1 per cent. In addition to this, we measure

he area under the receiving operating curve (ROC-AUC); a plot of
he TP rate against the FPR. As the AUC tends to be 1, we see the TP
ate approaching 1 and the FPR tends to 0; thus, the higher the AUC,
he better the performance. We should expect to see our greatest
mpro v ements in the CHL and STH classifiers given the previous
ack of a specialized classifier for these telescopes: 

(i) For HKO, we see an improvement in the FPR from 2.97 per cent
for 20HKO) to 0.72 per cent (for 23HKO). Being the only operating
elescope that has had a previously specialized classifier trained
n its data, we should not expect too significant impro v ement in
erformance; ho we v er, HKO pro vides us with a means to inspect
ur new 23HKO model performance on the older 20HKO data. On
he 20HKO data, our new model has an FPR of 12.8 per cent, in
omparison to the 20HKO model’s FPR of 4.16 per cent (see Table
 ). As the telescope hardware (detector, Schmidt corrector, and focus
odel) has evolved over time, we might expect the old classifier

o outperform the new one when applied to the older data. It is
ncouraging to see that the 23HKO model applied to contemporary
ata shows a much lower FPR than the old model on old data. This
ay be in part attributable to the previously mentioned impro v ements

o the training data through the addition of corrected classifications
ASTAI 3, 385–399 (2024) 
ade by human scanners. The ROC-AUC has seen an increase from
9.7 per cent to 99.9 per cent. 
(ii) For STH, we see an improvement in the FPR from 2.67 per cent

for 20MLO) to 0.60 per cent (for 23STH). The Sutherland telescope
ad previously seen good performance using the 20MLO classifier
having the lowest FPR of the three telescopes currently in operation)
nd has maintained its lead following retraining. The AUC sees an
ncrease from 99.8 per cent to 99.9 per cent. 

(iii) For CHL, we see an impro v ement in the FPR from
.79 per cent (for 20MLO) to 0.79 per cent (for 23CHL). As
xpected, this is a significant improvement in comparison to the
KO classifiers. The AUC sees an increase from 99.7 per cent to
9.9 per cent. 

Our ultimate aim is reducing the number of bogus images passed
n to human scanners while maintaining a fixed MDR (Fig. 6 ). For

art/rzae027_f5.eps


CNN Real-Bogus Classification in ATLAS 391 

Figure 6. Class distributions for each classifier. The new classifiers separate 
the distributions to a greater extent than their older versions. Corresponding 
changes to the RB factor threshold are minimal. 
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Table 3. Retraining times for each classifier. 

Classifier User time System time CPU (per cent) Total 

23HKO 16 745 22 189 250 4:19:03 
23STH 16 778 23 127 458 2:25:01 
23CHL 20 899 28 312 456 2:59:39 
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ur CHL classification, we have reduced the FPR by almost a factor
f 4. For the 1140 000 bogus detections in our training data, we would
ave previously seen 66 006 passed on for human scanning by our
ld classifier given a score threshold of 0.2. For our new classifier
hat number is reduced to 9006; a significant real-term impro v ement.

It is worth investigating the performance of the new classifiers 
n corresponding objects in the good list ( = 27 174). Of these
bjects, 112 fall below the old RB threshold of < 0.2. Ignoring
bjects classified by the 20MLO model, we note 14 significantly 
isclassified detections. Of these, five were misclassified by the old 
odels and subsequently reco v ered by human scanners following 

etections by other surv e ys. Sev eral of the object scores may also be
mpacted by nearby bad pixels in the stamps. Inspecting 20 000 recent
ogus objects, we find 215 with RB factors abo v e the threshold, eight
f which are scored > 0.9 by the new classifiers. Of these, two are
eal and six are due to residuals from bright star subtraction. We
an expect low ‘swap rates’ between the real and bogus populations 
wing to the nature of the training set building process. Our training
ogus objects are bootstrapped by the existing machine learning 
cores; objects that are real in nature but scored below the threshold
y our classifiers and are not subsequently reco v ered will encourage
ur new classifiers to disregard similar detections in the future. 
ikewise the classifier weighing of features when selecting good 
bjects is biased to those the previous classifiers placed importance 
n. In our Appendix, Tables A1 , A2 , and A3 display training, testing,
nd validation set metrics. We do not see evidence of o v erfitting
hen comparing our FPRs between the training and testing sets, with 
igher rates in the latter. We can see this is an acceptable degree of
 v erfitting; the test set errors remain lower for the new models, but it
s important to note the impact our data selection has had on training.
The computational expense of retraining each classifier is low. 
n an 8-core Apple M1 Pro CPU, each neural network can be

rained in as few as 4 h as shown in Table 3 . Incorporating into
his process the steps of selecting nights for data, building a data set,
nd implementing the new model the timeframe of retraining and 
mplementation for each classifier can be under a day. This as well
oes not consider the possibility of retraining multiple classifiers at 
nce on a larger machine. 
With the benefits of regular model retraining established it is 

mportant to consider the frequency used. In the case of the ATLAS-
NN suite, previous models show a reasonable performance prior 

o retraining. At current FPRs, it is unlikely that the use case of the
lassifiers will require further impro v ements to performance unless 
ignificant divergence from the expected FPR is observed in live. 

hile it is feasible to retrain the classifiers as frequently as every 6
onths, the trade-off between labour and performance impro v ement 

hould be taken into account. As a result, we elect to examine the
eed for retraining on an ad hoc basis following changes to optical
ardware for each telescope. 

 IMPROV EMENT  TESTS:  VA R I AT I O N  O F  

NPUT  

.1 Variation of image size 

hile the use of recent, camera-specific data in the retraining of the
lassifiers already yields decrements in FPRs, it is worth also consid-
ring changes to the input data as a means of improving performance.
e identify two significant opportunities for impro v ement. The first

s the reduction of the image dimensionality, which may carry several
enefits: first, the associated reduction in the amount of data yields
 greater computational efficiency in training and classification. In 
ddition to this, the reduction in data may reduce the complexity of
he model image, thus decreasing the risk of o v erfitting and allowing
he classifier to more easily generalize to new data. Perhaps most
ignificant in the transient detection use case is the reduction in
oise: in difference images, we find artefacts and blurring where the
mage subtraction was poor. While poor difference images may be 
ndicative of a bogus detection, the associated artefacts may be found
n images containing real objects, which could lead the classifier to
ncorrectly associate such features with transients. Supernova-like 
ransients may be near bright galaxies leaving subtraction residuals 
n their core upon creation of the difference image. In reducing
mage dimensionality, we also reduce the number of such artefacts 
n each input. While the ATLAS data pipeline also allows us to
ncrease the dimensionality of the input, the size of the associated
etection is small in comparison to the size of the entire image ( ∼5
ixels). In increasing the number of pixels, we increase the likelihood
hat the classifier will learn fewer features from the detection itself.
here is also the associated decrease to computational efficiency. Our 
lassifier must be capable of processing thousands of detections each 
ight. Our current classifier input consists of 20 × 20 pixel images
in increasing the size to 30 x 30 pixels, we more than double

he size of our input for sky data that will not contain information
RASTAI 3, 385–399 (2024) 
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R

Figure 7. Varying image size for a real astrophysical transient. From left to 
right: detection image, reference image, and difference image. 
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Figure 8. FPRs for the 10 × 10 2023 image classifiers for a 1 per cent MDR. 

Table 4. FPRs of classifiers on larger images versus smaller images. FPR 

refers to the FPR value when we fix the MDR at 1.0 per cent. 

Data set 
20 x 20 

(per cent) 
10 x 10 

(per cent) 

23HKO 0.72 2.95 
23STH 0.60 2.73 
23CHL 0.79 4.30 
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bout the detection itself. As such it is sensible to decrease the image
ize to 10 × 10, which focuses the model to learn more from the
egion immediately surrounding the potential transient and quarter
he number of pixels inputted to improve computational efficiency
Fig. 7 ). 

We attempt to retrain, in parallel, our 2023 classifiers with 10 × 10
nd 6 × 6 pixel images and inspect for impro v ements in the FPR
nd ROC-AUC (Table 4 , Fig. 8 ). We find that for 10 × 10 images,
n the case of all three classifiers, the FPR is significantly worse
ith a median increase by a factor of 3.55. We can consider the

ypical use case of CNNs as to why this may be. Typically CNNs
re not designed for inputs smaller than 28 x 28 pixel images found
n common data sets such as MNIST , CIF AR-10, and CIF AR-100
LeCun & Cortes 2005 ; Krizhevsky 2009 ; Sharma, Jain & Mishra
018 ). Indeed such data sets contain RGB images, greatly increasing
imensionality against our 20 × 20 grey-scale images. The smallest
ommonly used grey-scale image data set, and indeed the one used
o build the example classifier we base our own model architecture
rom, is the MNIST data set of handwritten digits in 28 x 28 pixel
mages. A 28 x 28 grey-scale pixel image provides approximately
wice as much information for a CNN compared with a 20 × 20 input.
 10 × 10 image provides four times less. We can consider the lost

nformation from any noise or artefacts by revisiting our RB ratio
s described in the initial retraining. We select a ratio of 1:3 real to
ogus detections for two primary reasons: first, we reflect the in-live
iscrepancy between the proportions of each detection class while
lso maintaining a high enough percentage of real detections for
he CNN to learn their associated features. Secondly, in maintaining
 higher proportion of bogus detections we train the classifier to
end towards more conservative classification. The purpose of each
lassifier is to reduce the number of FPs passed to human annotators.
y providing the classifiers with more bogus data, we aim to create
 model that is better trained to identify features of bogus detections.
ASTAI 3, 385–399 (2024) 
n reducing our image size, we limit the ability of a classifier to learn
r identify these features. 
For training the CNN on 6 × 6 pixel images, we find the use of

uccessive convolutional layers by the classifier reduces the input for
ach layer to such a degree that the model is unable to fully process
he detection. The output shape of each maxpooling layer is halved –
n the case of the 20 × 20 input, we have a 10 × 10 output from the
rst instance, 5 × 5 from the second, and 2 × 2 from the third. For an

nitial 6 × 6 pixel input, we then have a 3 × 3 output following the
rst instance of maxpooling and 1 × 1 following the second, leaving
s unable to continue any feature extraction. When using CNNs on
mall images, it is vital to take into consideration the reduction in
imensionality that takes place within the model layers. In the case of
ur 10 × 10 pixel images, the output following the convolution and
axpooling layers (and preceding the dropout and fully connected

ayers) consists of 64 single pixel pooled feature ‘maps’. 

 IMPROV EMENT  TESTS:  VA R I AT I O N  O F  T H E  

O D E L  

e have so far examined avenues for performance improvement via
he updating of our training data and adjusting our input images.
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Table 5. Performance metrics of classifiers on 23HKO data sets. FPR refers 
to the FPR value when we fix the MDR at 1.0 per cent. 

Classifier Image size FPR (per cent) ROC-AUC RB threshold 

D0 20 x 20 0.72 0.998 640 0.182 
10 x 10 2.95 0.997 859 0.069 

6 x 6 N/A N/A N/A 

D1 20 x 20 0.75 0.998 754 0.196 
10 x 10 3.47 0.997 680 0.073 

6 x 6 19.4 0.986 944 0.066 

D2 20 x 20 1.05 0.998 592 0.259 
10 x 10 2.81 0.997 666 0.160 

6 x 6 18.8 0.986 830 0.057 

D3 20 x 20 4.42 0.995 773 0.045 
10 x 10 6.31 0.995 254 0.038 

6 x 6 21.5 0.984 561 0.024 

MobileNet 20 x 20 1.47 0.998 268 0.142 
10 x 10 3.23 0.997 731 0.097 

6 x 6 N/A N/A N/A 
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 third possibility is to modify the model architecture itself. The 
eduction in the FPR following our initial training indicates a 
hange to the data or optical performance o v er time, including
ew features that may not have been easily learned by the previous
lassifier. Impro v ements made to the data reduction pipeline prior to
lassification may have introduced more complex (or more simple) 
eatures. It is worth investigating if a different model architecture 
ould extract such features more easily. 

We compare the FPRs regarding the 20 × 20, 10 × 10, and 6 × 6
ixel image 23HKO data sets for five different classifiers, using the 
PR of our default retrained classifier architecture (D0, as used in 
3HKO) as a benchmark (1.11 per cent). Following the discussions 
egarding dimensionality reduction within the model in Section 5 , 
e attempt three variations of our default model. The first drops

he final 64-filtered convolutional layer and subsequent pooling 
ayer (D1). The second drops the preceding 32-filtered convolutional 
ayer and subsequent pooling layer (D2). Having seen the effect 
f dimensionality reduction through successive convolutional and 
ooling layers for small image inputs it is worth examining shallower 
odels with fewer reductions. While any loss of dimensionality will 

e reduced for the former, and even more so for the latter, a reduction
n convolutional layering inhibits a CNN’s ability to extract complex 
eatures. While the use of additional convolutional and pooling layers 
as explored, we decided that the loss of information was too great

or the resulting classifier to be of any benefit. We also compare
erformance with a non-CNN; we utilize the fully connected dense 
ayer followed by our second dropout layer (D3). In such a classifier,
e should expect to see little loss in information but a significant
ecrease in the model’s ability to extract complex features. Finally, 
e compare our model performance to two well-known lightweight 
NNs. MobileNets are a series of CNNs developed by Google, Inc. 

hat utilize depthwise convolutional layers (Sifre & Mallat 2014 ; 
oward et al. 2017 ). A depthwise convolutional layer carries output 
ot products between kernels and each individual channel of the 
nput image. For example, in the case of an RGB image, different
cti v ation maps are provided for each kernel for the red, green, and
lue channels. For a grey-scale image, a convolutional filter is applied 
o the single channel as with our Conv2D layer. A depthwise layer
lso utilizes a pointwise convolution which applies a 1 x 1 filter to
ombine the outputs from each channel. In our case, this pointwise 
onvolution simply applies a 1 x 1 filter to the output. We utilize a
ariation of the MobileNet architecture as follows: 

(i) A Conv2D layer with a 3 × 3 kernel size and 32 filters. 
(ii) A DepthwiseConv2D layer with a 3 × 3 kernel size. This layer 

eglects the pointwise convolution, so we use a Conv2D layer with 
 1 x 1 kernel size and 64 filters. 

(iii) A dropout layer with a dropout rate of 0.25. 
(iv) Another DepthwiseConv2D and Conv2D pairing with 128 

lters, and another dropout layer with a dropout rate of 0.25. 
(v) A GlobalAveragePooling2D layer (Lin, Chen & Yan 2014 ). 

lobal average pooling differs from maxpooling in that it takes the 
ean value for a given pixel in each feature map; i.e. the average

cross the channel. This pooling technique is useful in cases where 
he spatial position of features in the image is less important, and
erves to increase the efficiency of the classifier. 

(vi) A final dense output with a softmax classifier. 

We also utilize the LeNet-5 architecture developed by LeCun et al. 
n 1998 (Lecun et al. 1998 , 1995 ). This LeNet-5 model is one of the
ldest lightweight CNNs developed and was trained on the MNIST 

andwritten digits image data set (LeCun & Cortes 2005 ). The model
onsists of two Conv2D layers with 3 × 3 kernel sizes, the first with
ix filters and the second with 16. After each Con v2D layer , we
se an AveragePooling layer. Rather than outputting the average of 
he entire acti v ation map, AveragePooling pools across 2 × 2 pixel
egions. The model then flattens the output in advance of two dense
ayers, the first with 120 ReLUs and the second with 84. The output
s provided by a third dense layer with a softmax classifier. 

Finally, we examine a MiniVGGNet architecture (Simonyan & 

isserman 2015 ; Rehemtulla et al. 2024 ). With this architecture,
e duplicate each convolutional layer prior to pooling for three 

uccessive blocks of two convolutional layers and one max pooling 
ayer. We remo v e the dropout layer prior to the flattening and dense
ayers, keeping one 50 per cent dropout layer prior to the softmax
lassifier. 

We train the five models with each of our three data sets, providing
fteen classifiers in total. 

.1 Model comparison 

or our variation on D0 with two convolutional layers, respectively, 
e see an increase in the FPR to 0.75 per cent, 3.47 per cent, and
9.4 per cent for the 20 × 20, 10 × 10, and 6 × 6 23HKO data sets
Table 5 , Fig. 9 ). While only a slight difference is observable between
he 20 x 20 images, a reduction in the classifier ability to extract useful
lassification features can be inferred; as well as this, the increase in
PR as the image size decreases indicates that the loss in features

s more greatly felt as they are cropped from the data. Likewise for
he variation with one convolutional layer, we see an increase in the
PR to 1.05 per cent, 2.81 per cent, and 18.8 per cent. In the case
f our lone fully connected layer model the performance is again
mpacted by an inability to extract complex features, with a median
PR of 6.31 per cent. Notable is the comparison of our 23HKO
lassifier performance with that of MobileNet. For the data set, we
nd an FPR of 1.47 per cent – a rate approximately twice as great
s our own. There are several possible explanations for our classifier
o outperform MobileNet. While both are structured to contain three 
onsecutive convolutional layers, MobileNet neglects to pool until 
fter all convolution has completed. The resulting loss of spatial 
nformation may then be responsible for inefficient feature extraction. 
lternatively, the loss of dimensionality in the application of a 3 x 3
ernel size rather than 2 x 2 as in the default model may be to blame.
he output feature maps the following: the final convolutional layers 
RASTAI 3, 385–399 (2024) 
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Figure 9. FPRs for various classifiers on the 20 × 20 23HKO data, for a 
1 per cent MDR. 
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re 5 x 5; while these are the same dimensions as our classifier, same
adding is used in both. A larger kernel size for a small input will
educe the ability to capture smaller features and detail in the output.
he ability of the current ATLAS classifiers to outperform a known
ell-performing CNN is promising; ho we ver, MobileNet is designed
ith larger multi-channel images in mind, and it is important to make

omparisons with a more similar classifier. 
The performance of LeNet-5 on the 20 × 20 23HKO data set

s similar to our default classifier with an FPR of 0.87 per cent
Table 6 , Fig. 10 ). Having been developed with 32 × 32 grey-scale
nput images, it is natural to expect good performance on our own
0 × 20 grey-scale input. The ability of LeNet-5 to approach D0
n 23HKO data warrants exploration with the 23STH and 23CHL
ata, providing us again with higher FPRs for each (0.76 per cent
or the former and 1.02 per cent for the latter). LeNet-5 uses fewer
lters than D0 in its feature maps, which may result in the selection
f more prominent features. Further to this, the use of an additional
ully connected layer allows the model to further refine the combined
eatures interpreted by the first dense layer. Finally the use of average
ooling as opposed to our MaxPooling layer provides 3 x 3 feature
aps prior to flattening rather than 2 x 2, maintaining a greater level

f spatial information. 
The comparable performance but differing approaches in D0

nd LeNet-5 provide us with an opportunity for impro v ement. The
ASTAI 3, 385–399 (2024) 
pplication of a second dense layer of 250 units to D0 achieves for
3HKO an FPR of 0.77 per cent, for 23STH an FPR of 0.59 per cent,
nd for 23CHL an FPR of 0.79 per cent, respectively. These are an
mpro v ement on the LeNet-5 FPRs and almost achieve parity with
he default model performance. 

Use of the MiniVGGNet architecture yields the strongest per-
ormance on the HKO data outside the default model (FPR =
.73 per cent) and also warrants further investigation (Fig. 11 , Tables
4 , A5 and A6 in the appendices). We see on 23STH (0.59 per cent)

nd 23CHL (0.75 per cent) that the MiniVGGNet model outperforms
he default model. This comes with some caveats: first, the greater
umber of layers without pooling increases the training time to
pproximately 18 h. The greater number of features and data pro-
essed by the model may impact operation of the transient detection
ipeline and warrants further investigation prior to implementation.
econdly, the use of successive convolutional layers and subsequent

ncrease in the number of features decreases the interpretability of
he model. We elect to keep the D0 architecture rather than utilize
he MiniVGGNet in our classification pipeline. While continued
djustments to architecture may yield impro v ements, the benefits
bserved are telescope-specific and minimal when compared with the
mpro v ements already achieved in the retraining. Further refinement
uns the risk of diminishing returns where effort could be expended
n other approaches such as contextual classification and non-pixel
earning. The increased number of layers for little gain also runs the
isk of o v erfitting on current data behaviours. We have seen that our
ata changes o v er time owing to changes made in the optics, detector,
r data reduction processing. Use of a lightweight CNN provides
gility and adaptability to new trends, which may allow for a greater
eriod of time before retraining is necessary. From comparison with
hese other models, we may state that the D0 architecture provides a
ompetitive performance to other common CNNs while maintaining
 robustness against o v erfitting. 

 O P E R AT I O NA L  P E R F O R M A N C E  

he 2023 classifiers were implemented within the ATLAS pipeline
n 2023 September 6, replacing the previous 20HKO and 20MLO
odels. Fig. 12 displays the volume of detections processed by the

mplemented classifiers o v er time, with 2020 classifiers processing
ata prior to the implementation of the 2023 classifiers. We also
xamine the volumes and rates of FPs, missed detections, and TPs
 v er time. 
Prior to reimplementation, we maintained a score threshold of

.2 for objects, for a corresponding expected MDR of 2.0 per cent.
hile some classifiers in the suite outperform others, an o v erarching

hreshold is currently applied across all models as detections are
ombined from multiple telescopes to create an object. In selecting
 new threshold, we examined individual classifier performance on
he training and testing data for expected MDRs of 1.0 per cent
nd 0.5 per cent (Table 7 ). The threshold for the latter = 0.038
emonstrates the impro v ed performance of the retrained classifiers;
ignificantly decreasing both the FPR and MDR at this end of the
core range. For 1.0 per cent MDR, it is sensible to maintain the
urrent threshold of 0.2. We see impro v ements in both the FPRs
nd MDRs at this threshold. While the 0.038 threshold sees strong
mpro v ements between 2020 and 2023, the FPR remains higher
han our current implemented pipeline. To a v oid the increase in the
orkload of the human annotators, we maintain a threshold of 0.2 in

he implementation of the new classifiers. 
Summary statistics for Fig. 12 can be found in Table 8 owing

o the noise of the plotted data. The date utilized is the date the
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Table 6. Performance metrics of LeNet-5 and MiniVGGNet Classifiers. FPR refers to the 
FPR value when we fix the MDR at 1.0 per cent. 

Model Data set Image size 
FPR 

(per cent) ROC-AUC RB threshold 

23HKO 20 x 20 0.87 0.998 717 0.209 
LeNet-5 23STH 20 x 20 0.76 0.999 172 0.304 

23CHL 20 x 20 1.02 0.998 895 0.229 
23HKO 20 x 20 0.73 0.998 764 0.288 

MiniVGGNet 23STH 20 x 20 0.59 0.999 284 0.456 
23CHL 20 x 20 0.75 0.998 798 0.242 

Figure 10. FPRs for the LeNet-5 classifier on 20 × 20 2023 data, for a 
1 per cent MDR. 
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Figure 11. FPRs for the MiniVGGNet classifier on 20 × 20 2023 data, for 
a 1 per cent MDR. 
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bject was processed rather than the date of first detection, which 
rovides a more erratic short-term behaviour. Seasonal trends and 
eather patterns can also impact both the quality and amount of data

ecorded on a given night. For ease of examination, we take a 3-d
olling average of the metrics in our plots. 

Prior to the implementation date, we find an average FPR of
.52 per cent, with a high standard deviation indicating a non- 
obustness to varying observing conditions. Subsequently the perfor- 
ance impro v es in both quality and consistency in the following the

mplementation, with a mean FPR of 1.41 per cent and a standard
eviation of 1.07 per cent. A larger training data size may have
rovided this improved generability to different nights. 
Data reception from the MLO telescope began again on the 2024 

o v ember 22, after which we see increases in the FPR and number
f counts. This is to be expected owing to the performance of
he 20MLO model, which makes lower quality decisions compared 
ith the 2023 classifiers. The performance remains abo v e the levels
een prior to the implementation, and should decrease following the 
raining of a 23MLO classifier. 

The operational ‘MDR’ is difficult to measure. A missed detection 
ould only be labelled as such if the object were to be first scored
elow the threshold by the classifier and subsequently rescued 
y human annotators. Missed detections therefore are only found 
ollowing either investigation as a result of a detection made by other
urv e ys or by eyeballing of the garbage data. The latter is not done
s a routine process and subsequently the missed detection volume 
s lower than expected, with only three being reco v ered in the past
2 months. The true MDR is expected to be higher than this. 
We note that we do not examine the classifier output against

ata quality. To understand the full performance of the classifiers 
hrough seasonal trends and weather patterns would require e xtensiv e
ong-term monitoring. From the past several months of data there is
n impro v ement to classifier performance that indicates significant 
mpro v ement o v er the previous models. 
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R

Figure 12. Performance of the ATLAS CNNs in operation, 3-d rolling 
averages, at a score threshold of 0.2. 

Table 7. Performance metrics of the 2020 and 2023 classifiers at different 
thresholds. 

Model Threshold Metric 
HKO 

(per cent) 
STH 

(per cent) 
CHL 

(per cent) 

2020 0.200 FPR 0.96 2.17 1.93 
MDR 1.70 1.11 1.64 

0.038 FPR 5.23 8.12 8.49 
MDR 0.72 0.55 0.83 

2023 0.200 FPR 0.77 0.67 0.67 
MDR 1.03 0.86 1.14 

0.038 FPR 2.61 2.37 2.78 
MDR 0.53 0.33 0.50 
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Table 8. Operational performance metrics of the 2020 and 2023 classifiers 
at different thresholds. 

Threshold Start date End date 
Mean FPR 

(per cent) 
STD FPR 

(per cent) 

0.2 01/05/2023 06/09/2023 2.52 4.63 
06/09/2023 22/11/2023 1.41 1.07 
22/11/2023 01/02/2023 1.89 2.07 

0.038 01/05/2023 06/09/2023 8.24 7.16 
06/09/2023 22/11/2023 4.36 1.69 
22/11/2023 01/02/2023 5.38 3.22 
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It takes on average approximately 145 ms to produce images for
ach object. Each object consists of an average of 12 stamps (at
east nine stamps to a maximum of 18), giving us a production time
f 12 ms per cutout on a machine with 56 hyperthreaded cores.
he e v aluation time per object, which is carried out purely on the
ifference images, requires an additional 2.5 ms. 
ASTAI 3, 385–399 (2024) 
 C O N C L U S I O N S  

n this paper, we hav e inv estigated machine learning algorithms
pplied to an image recognition problem on the currently operating
TLAS telescopes (HKO, CHL, and STH). For each detection from

he difference images, we use a 20 × 20 pixel image stamp, centred
n the detection, for RB classification. Using our previous CNN
rchitecture, we train three independent classifiers for use in transient
etection for our telescopes. Using a figure of merit outlined in Brink
t al. (Brink et al. 2013 ; Wright et al. 2017 ) we selected the classifier
ecision boundaries with an MDR of 1 per cent, which resulted in
PRs of 0.72 per cent, 0.79 per cent, and 0.60 per cent for our 23HKO,
3CHL, and 23STH models, respectively. In tandem with our high
OC-AUC values for each classifier, we can state that these models
utperform our previously used 20HKO and 20MLO classifiers. We
an consider the use case of transient detection classifiers. At its
ase level, we aim to select a low number of real objects from a
arge population. While both our old and new classifiers have good
erformance as evidenced by their ROC-AUC values, the lower FPR
nd MDR for the latter indicate a better ability to ignore bogus objects
ithout sacrifices to the MDR. 
We tested our 2023 classifiers further on our list of 27 174 real

strophysical transients verified by human scanners and found that
12 were reclassed as bogus, of which 14 were notably misclassed.
ive of these objects had also been misclassed by the previous
lassifiers. We also found that among 20 000 recent bogus objects,
15 are reclassed as real, with eight being given an RB factor > 0.9,
nd two of these being genuine real objects. 

We have attempted the use of smaller image stamps in our training
ata and found the resulting information loss ne gativ ely impacts the
PR. From comparisons with alternate CNNs, we can state that the
023 ATLAS classifiers maintain a competitive performance while
aintaining adaptability to new data trends. 
We have noted bias in our data collection. Our data sets consist of

our sub-populations. The real astrophysical transients are composed
f known asteroids (slow moving and not trailed) and stationary
ransients promoted and selected by human scanning. Of bad objects,
e have objects rejected by the RB threshold and objects rejected
y human scanners. Of these, only the known real object population
s independent of our 2020 model classifications. Objects promoted
o good via scanning are pre-selected based on the RB threshold,
eaning that real objects the model discards are less likely to be

romoted, and as such any rele v ant features will not be weighed
eavily by our new classifiers. The impact of this is doubled
hen we consider those ignored real objects will instead be in
ur bad population, where retrained classifiers may learn to treat
hese features ne gativ ely rather than ignore them. While we could
ncorporate checks for disco v eries made by other surv e ys, differences
o telescope hardware and image subtraction techniques mean that
here is no guarantee an e xternal disco v ery could have been made
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ndependently from the corresponding ATLAS difference stamp. 
uch cases could be passed on for human scanning but labelling 

hem could introduce some level of bias – the scanner already knows 
hat the object is real regardless of data quality. An alternate solution
ould be to have human scanners parse each individual detection, 
oth real and bogus, in our training and testing data. These are
o we ver large data sets ( ∼1000 000 objects) and it may not be
xpedient for a team of scanners to inspect each stamp and any
ssociated data. For future retraining it may be worth considering 
uman scanning on a sample of the training and testing data and
nspect the impact on model fitting. 
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A Table A1. Performance metrics of classifiers on training data sets. FPR refers 
to the FPR value when we fix the MDR at 1.0 per cent. Likewise MDR refers 
to the MDR value when FPR = 1.0 per cent. 

Telescope Classifier Data FPR MDR 

HKO 2020 2020 0.266 570 0.022 122 
2020 2023 0.088 106 0.035 112 
2023 2020 0.135 781 0.059 280 
2023 2023 0.004 400 0.006 118 

STH 2020 2023 0.042 186 0.033 847 
2023 2023 0.004 271 0.005 097 

CHL 2020 2023 0.093 318 0.048 290 
2023 2023 0.006 087 0.007 234 

Table A2. Performance metrics of classifiers on validation data sets. FPR 

refers to the FPR value when we fix the MDR at 1.0 per cent. Likewise MDR 

refers to the MDR value when FPR = 1.0 per cent. 

Telescope Classifier Data FPR MDR 

HKO 2020 2020 0.036 578 0.032 807 
2020 2023 0.090 623 0.036 630 
2023 2020 0.131 285 0.060 703 
2023 2023 0.007 324 0.008 656 

STH 2020 2023 0.039 039 0.032 556 
2023 2023 0.005 597 0.006 094 

CHL 2020 2023 0.090 077 0.048 056 
2023 2023 0.008 709 0.008 961 

Table A3. Performance metrics of classifiers on testing data sets. FPR refers 
to the FPR value when we fix the MDR at 1.0 per cent. Likewise MDR refers 
to the MDR value when FPR = 1.0 per cent. 

Telescope Classifier Data FPR MDR 

HKO 2020 2020 0.041 387 0.033 573 
2020 2023 0.091 014 0.035 842 
2023 2020 0.128 480 0.062 107 
2023 2023 0.007 164 0.008 364 

STH 2020 2023 0.038 700 0.034 425 
2023 2023 0.005 967 0.007 916 

CHL 2020 2023 0.094 411 0.047 768 
2023 2023 0.007 916 0.008 800 

Table A4. Performance metrics of MiniVGGNet classifiers on training data 
sets. FPR refers to the FPR value when we fix the MDR at 1.0 per cent. 
Likewise MDR refers to the MDR value when FPR = 1.0 per cent. 

Data set FPR MDR 

23HKO 0.004 601 235 0.006 198 403 
23STH 0.003 517 338 0.004 558 503 
23CHL 0.004 601 235 0.006 198 403 
PPENDIX  A :  A D D I T I O NA L  F I G U R E S  

Figure A1. Utilized CNN architecture for the ATLAS RB classifiers. 
ASTAI 3, 385–399 (2024) 
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Table A5. Performance metrics of MiniVGGNet classifiers on validation 
data sets. FPR refers to the FPR value when we fix the MDR at 1.0 per cent. 
Likewise MDR refers to the MDR value when FPR = 1.0 per cent. 

Data set FPR MDR 

23HKO 0.007 151 589 0.008 364 748 
23STH 0.005 147 055 0.005 876 755 
23CHL 0.007 151 589 0.008 364 748 

Table A6. Performance metrics of MiniVGGNet classifiers on testing data 
sets. FPR refers to the FPR value when we fix the MDR at 1.0 per cent. 
Likewise MDR refers to the MDR value when FPR = 1.0 per cent. 

Data set FPR MDR 

23HKO 0.007 284 848 0.008 169 697 
23STH 0.005 887 500 0.006 350 000 
23CHL 0.007 284 848 0.008 169 697 
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