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Abstract. Recently, a number of classes of 3D structures have been
identified which permit structure recovery and 3D invariants to be mea-
sured from a single image of the structure. A large class with this prop-
erty is the case of repeated structures where a structure (such as a pointset,
curve or surface), and a transformed copy of the structure are both ob-
served in a single perspective image. In general the 3D reconstruction is
only possible up to a 3D projectivity of space, but smaller ambiguities
are possible, depending on the nature of the 3D transformation between
the repeated structures. An additional theme of the paper is the develop-
ment of feature correspondence relations based on the epipolar geometry
induced in the image by the repeated structure. In some cases, corre-
spondence is based on projective homologies rather than a true epipolar
geometry.

1 Introduction

The motivation for this paper arises from the case of repeated structures imaged
by a single camera. An image of a repeated structure is equivalent to multiple
views of the single structure. For example, an image of an object and a copy of
the object translated to a new position is identical in projection properties to
two images of the single object obtained by translating the camera.

Recent work [1, 3] has demonstrated that 3D structure can be recovered from
a pair of uncalibrated cameras, up to a 3D projective ambiguity in general. Thus,
stereo analysis can be applied to a single, uncalibrated camera view of repeated
structure to recover 3D structure with the same projective ambiguity.

Repeated geometric configurations often occur in man-made structures and
even some natural forms. Some examples are:

— An object repeated in a single scene by an Euclidean transformation, e.g. a
row of development houses along a street.
— An object repeated with a more general transformation such as affine or
projective, e.g., two ends of a wrench are related by an affine transformation.
— Various 3D spatial symmetries such as,
e bi-lateral symmetry (e.g. a spoon)



e discrete axial symmetry (e.g. a hex bolt)
e rotational symmetry (e.g. a vase)

These structures impose an epipolar geometry on a single image which deter-
mines image correspondences between related points. That is, a point in a struc-
ture determines a line through the epipole, on which the corresponding point
must lie. An example is given in Figure 1. This epipolar relationship reduces the
complexity of determining feature correspondences. An epipolar structure is not
always possible. For example, in the case of repetition by reflection, when the
plane of symmetry passes through the camera center. However, a correspondence
structure still exists, based on a specialized projective transformation, a planar
homology which maps corresponding image features of the repeated structures.
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Fig. 1. Two identical structures separated by a horizontal 3D translation. For repetition
by translation, corresponding points on the repeated structure generate lines which all
converge to a single epipole. The case where corresponding points lie on the same
epipolar line is called auto-epipolar.

The full 3D projective transformation is the most general ambiguity which
arises from repeated structures viewed by an uncalibrated camera. Projective
invariants can be constructed from a single image of repeated structures as for
invariants of multiple views[9]. For example, six 3D points determine three in-
dependent projective invariants: five points determine an invariant projective
coordinate frame so that the remaining point has three invariant coordinates in
this five point basis. The ambiguity can be smaller if the camera calibration is
partially known or if some restriction applies to the transformation which relates
the repeated structures. When the coordinate frames of a stereo pair of identical
uncalibrated cameras are related by translation alone, the resulting stereo re-



construction of space is ambiguous only up to a 3D affine transformation. This
result was reported by Moons et al [7] and is elaborated elsewhere in this vol-
ume. The advantage of an affine reconstruction is that more invariants can be
constructed from a given set of features3.

In this paper we make the following contributions: First, a general process
for determining 3D reconstruction ambiguity of various repeated structures is
developed (Section 3). Second, a given repeated structure induces an epipolar
or other correspondence relationship in the image which can be used to estab-
lish corresponding points from each copy of the repeated structure. The basic
concepts of epipolar correspondence are introduced in Section 4. The overall ap-
proach is illustrated by a number of examples of repeated structure in Section 6.
Finally, in some cases the repeated structure does not support a true epipolar
structure, however a correspondence structure based on planar homology is still
available. These results are discussed in Section 7.

2 Camera Models and Epipolar Geometry

The following analysis is based on techniques developed by Hartley for the study
of the essential and fundamental matrix [3, 4].

2.1 Projective Cameras and Standard Forms

The perspective projection from 3D to the image plane, is modeled by a 3 x 4
projection matrix, P, so that
x =PX (1)
where homogeneous coordinates are used, X = (X,Y, Z, )T, x = (z,y, 1)7 and
equality is up to a non-zero scale factor in the case of homogeneous vectors.
The general perspective camera, P, can be partitioned as

P=[H |— Mt

where M is an arbitrary 3 x 3 matrix and tg is a 3-vector from the world coordinate
origin to the center of projection.

We can put the camera in a standard reference frame, i.e., the principal ray
along Z and (u,v) aligned along (X,Y), by a suitable 3D transformation of
coordinates. That is,

P. = [I|0] =PB (2)

M1 to
B= T
0+ 1
? A projective transformation of 3D space has 15 degrees of freedom while an affine

transformation has only 12. Therefore, an invariant coordinate frame can be con-
structed from four 3D points in the affine case, while five points are required for the

where the 4 x 4 matrix B 1s

projective case.



To be more specific about B, the camera matrix, M, differs from the standard
frame by a rotation of the center of projection as well as an arbitrary change in
internal calibration. That is,

where the matrix, K is a 3 x 3 upper triangular matrix and R is a rotation
matrix. If K = I, which is the case for a calibrated camera, then B is simply a 3D
Euclidean transformation. For an uncalibrated camera an affine transformation
of space is required to bring P to standard form?*

For example, when the camera has square pixels, the matrix, K, is given by,

10
00

N|HN|§N|§

where (ug,vg) is the principal point and f is the focal length. In this case P can
be brought to the standard form with a 3D affine transformation,

5o | L to
— o7 1
where L = M~1, or
10 —Ug
L=rT |01 —ug
00 f
2.2 Epipolar Geometry
For two cameras, P, and Py,
x, =P, X x; =P X

where x, and x; are corresponding points in the images formed by each camera.
Corresponding points in the two images satisfy the epipolar constraint:

bean =0 (3)

where F is a 3 X 3 matrix of maximum rank 2, called the fundamental matrix.
The epipolar line in image b corresponding to x, is 1; = Fx,, and in image
a corresponding to x; is 1, = F'xp, where 1 is the vector of homogeneous line
coefficients.

* In Section 3.5 we discuss the possibility of self-calibration where the internal param-
eters of a camera can be determined from a set of initially uncalibrated views. If
such calibration is possible, then the ambiguity can be less than affine.



For two cameras, [I]/0] and [M| — Mt], the fundamental matrix is given by[3],
F=u T [t], = i), m (1)

where the notation [v]y, with v = (z,y, 2)7, is the matrix

0 —z y
[Vlx =] 2 0 —=z
—y xz 0

Given some other three-element vector, w, the cross-product, v x w, is
[vlxw

In the case of calibrated cameras, where K = I, the fundamental matrix is known
as the essential matrix, and equation (4) becomes

E=R[t], = [Rt], R

The epipole is defined as the point common to all epipolar lines, i.e., €5 18

defined by,
ly=€e'Fx, =0
for all x,. Thus, ebTF =07 or FT¢; = 0 and ¢; is the null space of FT. Similarly,
Fe, = 0.
2.3 3D Reconstruction

For two cameras, [I|0] and [M| — Mt], the the rays in 3D space defined by corre-
sponding points, x,, and x; are,

Ug X
Xg=A v | = 1Y
1 Z
I Up X tx
Xp=X | | =M|Y | —M|{,
|1 Z P
Thus,
Ug | i up,
Ao | Vo | + ty | = /\bl"l_1 Vp (5)
1| t, 1

Solving for A, and A, determines (X,Y, Z)T.



3 Ambiguity of 3D Reconstruction

We will first proceed as if there are two cameras observing a single copy of the
repeated structure and then show how standard stereo reconstruction is related
to repeated structures in a single view. The ambiguity is determined in four
stages:

1. The constraints that apply to the two cameras (arising from the transforma-
tion on the repeated structure) are found.

2. The cameras are transformed such that P, takes the standard form. This is
not strictly necessary but considerably simplifies the subsequent analysis.

3. The most general transformation of 3D is determined which preserves the
constraints on the cameras.

4. The resulting ambiguity in the reconstructed 3D structure is then computed.

The approach to ambiguity analysis is illustrated by considering a specific
example.

3.1 Two Cameras Related by Translation

Suppose we have two cameras, P, and P, whose external 3D coordinate frames
differ only by a translation, t. The 3 x 3 matrices, M,, M; are related by,

M, = K,R
M; = KR

where K., K; are upper triangular® and represent the internal calibration of each
camera.
Applying the standard transformation to Py,

P, = P;B = [MM, | — Myt]
But,
MM, = KRRTK T =Ko

where Kg represents the difference in the internal calibration of P4, P;. The final
form of the cameras is then:

P, = [1/0] (6)
P} = [Ko| - Myt]

For identical cameras, Ko = I (since K, = K;). For the case of repeated
structures, the cameras are always identical.

5 Note that upper triangular matrices form a group under multiplication, e.g. K1Kz = Ka
and K1_1 = K4, where K; are upper triangular.



3.2 Ambiguity of the Camera Relation

The next step in analyzing the ambiguity of reconstruction is to determine what
transformations can be applied to the cameras without affecting their relation-
ship. Consider a general projective transformation, D, where

E s
=[]

In order to keep the standard form for the first camera,
[z]o]p = [1]0]

so s =0, E= 1. Applying the resulting matrix D to the second camera, we have
the following constraint on the vector, a.

Ko — t'aT = Klo

where t' = Myt and K’y is of the same form as Kg, i.e. the same constraints on
the matrix elements. For example, a zero element of Kq is also zero in K’'g. Such
constraints hold since the cameras in the standard frame differ only in internal
calibration which must be the same form as Ky. Considering identical cameras
where Ko = I and expanding the matrices,

100 t'lal tllaz tll(lg 100
010] — t'2a1 t’2a2 t/2(13 =k|(010
001 téal téaz té(lg 001

So it follows that £ = 1 and
a)] = g = ag = 0

since t’ is a general vector. Thus the transformation, D, is forced to be the
identity.

In general, not all components of the vector a will be forced to zero. Examples
where a # 0 will arise in analyzing other repeated structure classes in Section 6.

3.3 Reconstructing 3D Geometry

From equation (5) we obtain in this case:

Ug Up
Ao |va |+t = NK5t | v (7)
1 1

This vector equation is homogeneous in Ay, g, t’, so we can scale all the 3D
coordinates of space by a constant k& without affecting the solution. In general,
uniform scaling is the only new source of ambiguity arising from the reconstruc-
tion of 3D space. Uniform scaling can be represented as,

10
= o]



3.4 The Overall Ambiguity

The total ambiguity of reconstruction is found by multiplying the 3D trans-
formation matrices encountered in producing the final reconstruction. For our
example, the total transformation is T = BDS

T MLt I0 I0
of 1] |oT1]]0Ts
Thus, for pure translation the overall reconstruction is 3D affine. To summarise,

the overall reconstruction ambiguity is obtained by analyzing the following three
stages of transformation.

1. Transform one of the cameras to the standard frame (using B). For uncali-
brated cameras, this transformation introduces an affine transformation of
space. A general affine transformation exhibits 12 degrees of freedom, but
the transformation to the standard camera frame is often restricted to 10
parameters since the internal calibration involves only unknown focal length,
aspect ratio, and principal point. This ten parameter transformation is the
least ambiguity that can occur for cameras with unknown internal calibra-
tion.

2. Determine what projectivities of 3D space leave the standard form for the
cameras unchanged. At this stage, a full projective transformation might be
allowable. For example, when the two cameras are related by a general 3D
rotation and translation, all elements of a are non-zero.

3. Determine the ambiguity of stereo reconstruction itself. The only ambiguity
which can occur is an isotropic scaling of space (which is covered by an affine
transformation).

Even though our main interest is in repeated structures which corresponds to
identical cameras, other cases have been considered according to these steps to
compare with the results of Moons et al (in this volume).

The overall ambiguity for two cameras under translation is summarized in
Table 1.

Case|Relation Between Cameras Resulting Ambiguity

1 Identical Calibrated Cameras Isotropic Scaled Euclidean
2 Identical Uncalibrated Cameras Affine

3 Different Focal Lengths Affine

4 Same Principal Points, # 0, Same f’s Affine

5 Same Principal Points, # 0, Different f’s|Projective

6 Different Principal Points, Same f’s Affine

7 Different Principal Points, Diff. f’s Projective

Table 1. Results for the ambiguity of 3D reconstruction for cameras related by trans-
lation only. Only cases 1, 2 and 4 apply to repeated structures under translation.



3.5 Camera Self-Calibration

Recent work on camera calibration from images taken of arbitrary scenes and
arbitrary viewpoints bears some relation to the investigation of ambiguity of
reconstruction for repeated structures®. Suppose a 3D structure, X, is known up
to an affine ambiguity. We define an image pair x, = P, X and x; = P;X and the
plane at infinity X4 = 0. For points on the plane at infinity, X* = (X, Y, Z,0)T,
X = Mg X, x5 = M X, and

xp = MM, 'x, = HooX, (8)

where Hy, is the infinite homography [6] which maps image points from the first
image to the second image for 3D points on 7, i.e. vanishing points are mapped
to vanishing points. It can be shown [6] that under Hy,

Cp = HooCoH (9)

where C; = KZKZT C; is the image in view i of the dual (i.e. the inverse) of the
absolute conic. The image of the absolute conic, (K;K;)~! is independent of the
camera’s position and orientation, and only depends on the camera’s intrinsic
parameters [2]. Equation (9) is the transformation of a conic under the linear
transformation Hy,.

If camera intrinsic parameters are fixed between views, C, = C; = C then

C=H,CHL. (10)

This is a linear equation for C. In general there is a one parameter family of solu-
tions (as well as an overal scale), but this is reduced to a two fold ambiguity by
assuming there is no skew between the image axes (a quadratic constraint on the
elements of C). Once C is determined (up to scale), K can be obtained simply by a
Choleski decomposition of C = KK . Subsequently, the affine structure ambiguity
can be reduced to only a scaled Euclidean ambiguity by the transformation

x1° x4
Y| =x'|Y (11)
A A
It can be shown [6] that
H,, = KRK™! (12)

where R is the rotation between images. If there is no rotation, equation (10)
reduces to C = C and there is no constraint on C. It appears that in all self-
calibration methods (e.g. [2, 5] and Hartley (in this volume)) if there is no ro-
tation between views then there is no self-calibration constraint on the intrinsic
parameters. Thus the ambiguity of reconstruction remains at least affine.

® This material was recently added in response to the paper by Luong and Vieville [6]
since it is appropriate to characterize their results in the ambiguity framework just
presented. The notation used here differs from that in [6], where K is the image of
the dual of the absolute conic.



4 Epipolar Correspondence Structure

An important aspect of 3D reconstruction from repeated structures is the deter-
mination of epipolar geometry. Epipolar geometry defines the image relationships
between corresponding features on the repeated structure. These relationships
are encapsulated in the fundamental matrix, F.

This is illustrated using again two identical cameras related by a transla-
tion. When the two camera frames are related by the translation vector, t, the
fundamental matrix is,

0 —t, t,
F; = [t]x =1t 0 —i;
—t, t, 0
and FtT = —Fy, €4 = €5 = €. where
2
€= |ty
t;
so in image plane coordinates,
ty ty
€y = — € —
u i, v i,

Consequently, from the epipoles alone, t can only be recovered up to scale - this
leads to an unknown scale in the stereo 3D reconstruction.

This case also illustrates a useful constraint which applies more generally:
corresponding image points lie on the same epipolar line. That is,

l1=F;x, = [t]x Xgq

But, [t], x, = txx, and
Xq - (tXXq) = X4 -1=0

80 X, also lies on 1. This convenient epipolar correspondence geometry is called
auto-epipolar. In subsequent discussion, we will focus on repeated structure
classes which result in auto-epipolar feature correspondence.

5 Repeated Structures

Now we relate the procedures developed for two cameras observing a single struc-
ture, the usual stereo configuration, to the case of a single image of a repeated
structure.

Suppose we have a structure, §, and a transformation which generates
a copy of 8, i.e. 8’ = T,(S), where g € G, for some group G. § and &’
are viewed in a single perspective image. This is equivalent to a stereo
pair (with the camera’s related by g=1). As in the stereo case, there are
three goals:



1. Determine the ambiguity of the reconstruction (and consequently
the appropriate invariants).

2. Determine the correspondence geometry within the single image.

3. Develop an algorithm for carrying out the reconstruction and com-
puting invariants based on the correspondence geometry.

In this general setting, it becomes clear that it is not necessary that we
restrict ourselves to simple translations or rotations (Euclidean transformations)
of §. Many 3D objects can be represented as repeated structures where G is an
equiform or affine transformation. For example, a rod with two different diameter
spheres at each end, can be defined as a translation followed by an equiform
scaling. The case of extruded surfaces can be viewed as translation and scaling
of the cross-sectional boundary curve.

Repeated structures can also be defined by other transformational symme-
tries between S and &’. A case we consider in detail below is bilateral symmetry
where 7, is a mirror reflection about the symmetry plane. A similar transforma-
tion arises in the case of rotationally symmetric objects where the outline curve
on the object surface can be considered as a bilateral symmetry structure where
the plane of symmetry passes through the camera center of projection.

5.1 Ambiguity of Reconstruction

If the transformation which generates the copy is T,, then an equivalent camera
configuration is given by P, and PaTg_l. Without loss of generality, we take

P, = K[I|0]

Suppose Tg_1 is an affine transformation. This can be represented as:

At
e[

Then Py is given by

Py =Kol |

= K[A|t]

To determine the ambiguity we follow the procedure in Section 3, and first put
P, into standard form giving:

P, = [I|0] (13)
Py = K[AK!|t’]
= KAK™[I]| — (—KA™'t')]

where Py has the canonical form M[I| — t]. We describe a number of special cases
of affine transformations in Section 6.



5.2 Epipolar Geometry

Using the second form from equation (4) the fundamental matrix for the equiv-
alent camera pair given in equation (13) is

F = [Kt'], KAK™!
Using the identity,
mt], =M~ T [t], u? (14)
gives
F=K T[t'], sk’

We now return to the question of when is the epipolar geometry auto-
epipolar? From Section 4 this is when the quadratic form x”Fx = 0. In this
case,

x"Fx = (K 'x)" [t'], A(K'x)

=x'.[t'], Ax

where x’ = K~'x, which is again a quadratic form. The quadratic form is zero if
the matrix

[t'], & (15)

is skew, which provides a simple test for auto-epipolar geometries.

6 Examples of Repeated Structure

6.1 Translation

The transformation between a point X in § and the corresponding point, X’ in
&' is given by,

X =X+t

so that A = I and t' = t. An example is shown in Figure 1.
The equivalent cameras in standard form are from equation (13)

P, = [I]0]
Py = [I|Kt]

This is the case examined in Sections 3 and now considered as a single image of
a repeated structure. The overall ambiguity is affine.

The correspondence geometry is clearly auto-epipolar, since [t],  is skew.



6.2 Translation and Rotation

Consider a structure and a copy of the structure which has been translated and
then rotated and observed in a single view. In this example, the transformation
between a point X in § and the corresponding point, X’ in &’ is given by,

X' =RX + ¢

where R is a rotation matrix. The equivalent cameras for this repeated structure
are given by A=R and t’' = ¢:

P, = [I|0] (16)
P, = [KRK™'[Kt]

The reconstructed 3D geometry is ambiguous up to a projectivity of space which
is shown as follows. The form of camera Pj should be preserved by D so,

KRK~! 4 a’ (Kt) = kK'R'K'~!

In this case, all components of a are, in general non-zero, since the projective
transformation is indistinguishable from a difference in camera calibration. That
is a can be accounted for by the difference between K and K'.

The epipolar correspondence structure with both translation and rotation
is not as convenient as the case of pure translation as it is not auto-epipolar in
general. This is clear from the skew test: equation (15) in this case is [t]xR which
is not skew in general.

6.3 Affine Repeated Structures

In this example, the transformation between a point P in § and the correspond-
ing point, P’ in &' is given by,

X' =AX + ¢

where A is an affine matrix. The equivalent cameras for this repeated structure

are,

P, = [I|0] (17)
P, = [KAK™'[Kt] (18)

Examples of the general affine copy transformation are shown in Figure 2. The
ambiguity of reconstruction is in general projective, since the affine transforma-
tion of the copy is indistinguishable from the effects of a. For example, consider
the special case of scaling only in Z. In this case,

100
A, =1{010
00s



Fig. 2. Examples of repeated structures where the copy, 8’, is an affine transformation

of S.

Expanding the matrices,

10 ]{213(8 — 1)/]{733
KASK_l = 01 ]{223(8 — 1)/]{733
00 s

where

10 kq3
K= |01 ko3
00 kss

In this case the requirement that P; remain the same form under the transfor-
mation, D yields,

10 k‘13(5 — 1)/]633 t1a1 t1a2 t1a3 10 k"lS(SI — 1)/]6{3)3
01 kas(s —1)/kas | + |tea1 taastaas | =k [0 1 khs(s’ — 1)/khg
00 S t3(11 t3a2 t3(13 00 SI



It follows that a3 is not constrained to be zero by this relation, and thus, for
anisotropic scaling between & and &', the reconstruction ambiguity is projective.

The epipolar geometry is not auto-epipolar in general because [t] A is not
skew in general. However, if the affine transformation is restricted to an isotropic
scaling (4; = sI) then the epipolar structure has the auto-epipolar form, since
[t], A; is skew. The case of simple scaling is shown by examples a and b in
Figure 2.

6.4 Bilateral Symmetry

Rothwell et al[10] have studied the case of objects with a plane of symmetry,
i.e., bilateral symmetry. In this case the relationship between a 3D point, P and
its symmetric corresponding point, P’ is given by,

2o

r_
P _T[0T1

] T-lp

where

—100
Y=1010
001

and T is an Euclidean transformation. T is given by,

T Rt
— 1071

where R is a 3D rotation matrix and t is a 3D translation. The coordinate system
for bi-lateral symmetry is shown in Figure 3.
The composite reflection transformation is

A=RERT
t' = —RYRTt+t =R(I— Z)R"t = RI'RTt

where

200
r=(1-x)=|000
000

It can be shown that the ambiguity of reconstruction is projective. Note that
when the plane of symmetry passes through the center of projection, t = 0, and
3D structure cannot be established. This case is analogous to images related
by rotation about the center of projection. We will return to this condition in
Section 7.
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Fig. 3. The coordinate system for bi-lateral symmetry.

Epipolar Geometry The matrix for the skew test in this case is, from equa-
tion (15),

[RI'RTt]RIRT

Applying the identity (14) simplifies this to
T T
R[I'RTt]y SR
This is a skew matrix since, [['R7t]x is a matrix of the form

000

00—z

0z O

and post multiplying by X maintains this skew form (the rotations simply ro-
tate the quadratic form vectors). Consequently, the correspondences are auto-
epipolar.

7 Non-Epipolar Correspondence Structures

We reserve the terminology “epipolar geometry” to those cases of repeated struc-
ture where the equivalent cameras, P, and Pg, actually have distinct centers of
projection. There are, however, important cases of repeated structures where
there is no translation between the centers.



7.1 Example - Bilateral Symmetry

Consider the case of bilateral symmetry when the plane of symmetry passes
through the center of projection of P,. The cameras in standard form become,

P, = [I|0]
P, = [KRERTK (0]

There is no epipolar geometry defined, however there is still a correspondence
structure. The correspondence is defined by the relationship between the image
projections of & and &'. That is, if we define the image projection of a point in
S as x and the corresponding point as x’ then,

x = [I|0]X

x' = [KRZRTK!|0] X
Thus,

p'=Tp
where T = [KRERTK_l]. So x and x’ are related by a planar projective transfor-
mation. However, this transformation is not an arbitrary 3 x 3 matrix and there
results a convenient correspondence structure [8].
First, note that T? = I, so T has eigen-values +1, this is a two-cyclic ho-

mography. Further, it is clear from the special case when RK = I, that T has
eigen-values {—1,1, 1} (i.e. there is a degenerate eigenvalue) because in this case

T = X. Since eigen-values are preserved by a similarity transformation this is
true of T in general, and T is known as a planar harmonic homology [11].

7.2 Planar Homology

Eigen-vectors of a projective transformation determine the fixed points and fixed
lines of the transformation. If two eigen-vectors have the same eigen-value then
they define a line of fixed points. The fixed lines and points for a planar-homology
are shown in Figure 4.

As shown by Springer, these eigenvalues define a pencil of fixed lines all inter-
secting at a fixed point called the center of the homology. The center is the fixed
point corresponding to the eigen-value A = —1. There is one line of the pencil
which passes through any given point. This pencil defines the correspondences
between image points which are corresponding projections of § and &’. That is,
each line of the pencil is fixed under the transformation which carries x to x’.
Therefore, given that x is on a line 1 of the pencil, then x’ is on the same line.

A final interesting example of planar homology is provided by the case of
a rotationally symmetric object. In this case we can consider that the outline
curve on the object surface is a bilaterally symmetric pair with the plane of
symmetry passing always through the center of projection. Even if the plane of
symmetry is arbitrarily rotated about the center, the relationship between the
two halves of the occluding boundary in the image is just a planar homology and
the resulting image structure can be used to find corresponding image points on
each side of the symmetry plane.
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Fig.4. Under a projective transformations parallel object correspondences converge

to a vanishing point. Corresponding points are related in this case by a particular

projective transformation, T, called a planar-homology. Two of the eigenvalues of T,

corresponding to ez and es, are equal. The third, corresponding to e, is distinct and

non-zero. The line e; x e is a line of fixed points. Corresponding points, x’ and x, are

collinear with e;. e; defines a pencil of fixed lines.
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