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Abstract

Emerging multiplexed imaging platforms provide an unprecedented view of an increasing number 

of molecular markers at subcellular resolution and the dynamic evolution of tumor cellular 

composition. As such, they are capable of elucidating cell-to-cell interactions within the tumor 

microenvironment that impact clinical outcome and therapeutic response. However, the rapid 

development of these platforms has far outpaced the computational methods for processing 

and analyzing the data they generate. While being technologically disparate, all imaging assays 

share many computational requirements for post-collection data processing. As such, our Image 

Analysis Working Group (IAWG), composed of researchers in the Cancer Systems Biology 

Consortium (CSBC) and Physical Sciences - Oncology Network (PS-ON), convened a workshop 

on “Computational Challenges Shared by Diverse Imaging Platforms” to characterize these 
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common issues and a follow-up hackathon to implement solutions for a selected subset of them. 

Here, we delineate these areas that reflect major axes of research within the field, including image 

registration, segmentation of cells and subcellular structures, and identification of cell types from 

their morphology. We further describe the logistical organization of these events, believing our 

lessons learned can aid others in uniting the imaging community around self-identified topics of 

mutual interest, in designing and implementing operational procedures to address those topics and 

in mitigating issues inherent in image analysis (e.g., sharing exemplar images of large datasets and 

disseminating baseline solutions to hackathon challenges through open-source code repositories).

1 Introduction

The spatial organization and dynamic interactions of cells in a tumor microenvironment 

profoundly impact cancer clinical outcomes and therapeutic responses. Researchers within 

the Cancer Systems Biology Consortium (CSBC) and the Physical Sciences - Oncology 

Network (PS-ON) are actively interrogating these interactions by highly-multiplexed and/or 

time-resolved, subcellular resolution imaging platforms. However, the rapid development 

of the imaging platforms has far outpaced the computational methods for processing and 

analyzing the data they generate, in part because method development is often borne 

independently and repeated by individual research groups. To accelerate the development 

of computational methods and close the gap between data collection and analysis, the 

CSBC and PS-ON established a joint Image Analysis Working Group (IAWG) to focus on 

consolidation of development efforts across research groups and effective dissemination 

of image analysis tools and ideas across the CSBC/PS-ON centers and with external 

consortia, including the Human Tumor Atlas Network (HTAN) and Human BioMolecular 

Atlas Program (HuBMAP). The ~40 members of the IAWG bring a broad perspective to 

these efforts, as they span 16 CSBC- or PS-ON-affiliated institutes and first met in late 

2018 during a time of fervent development of single-cell imaging platforms. The group’s 

objective has been to identify and begin addressing impediments to image analysis shared by 

the biomedical research community, and the initial efforts took place in the form of monthly 

conference calls and annual in-person meetings.

In high-dimensional digital pathology, dozens of spatially resolved molecular markers are 

collected from millions of cells per specimen, providing an unprecedented view of single 

cells in the setting of an intact tissue. Technologies such as cyclic immunofluorescence 

(CyCIF) (Lin et al., 2018), co-detection by indexing (CODEX) (Goltsev et al., 2018), 

imaging mass cytometry (IMC) (Giesen et al., 2014), and multiplexed ion beam imaging 

(MIBI) (Angelo et al., 2014) measure co-localized abundance of 50–100 proteins and 

protein modifications. Likewise, live cell tracking experiments characterizing scores of 

unique conditions can include hundreds of cells imaged in multiple channels every 6–20 

minutes over several days (Neumann et al., 2010; Quaranta et al., 2009; Tyson et al., 

2012). These modern approaches yield orders of magnitude more data than traditional 

haematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining. For example, a 

single canonical whole-slide image produced by CyCIF is on the order of tens of gigabytes, 

which raises new challenges for data storage, processing and analysis that were not critical 

for the more traditional imaging methods.
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The IAWG identified that to unlock potential biological or clinical insight, the analysis 

software for highly multiplexed and/or time-resolved images must address a range of 

image processing tasks. A canonical workflow includes image stitching and registration, 

illumination correction, cell and nuclear segmentation and/or tracking, assignment of cell 

type identity, and recognition of high-level spatial or temporal features that may be 

characteristic of disease phenotypes. Each step comes with its own set of challenges, 

and lessons learned by one research group are not always effectively communicated to 

other groups, even within the same consortium. Software engineering challenges also 

abound, with open-source software designed around specific image processing steps (e.g., 

segmentation) but with little consideration for interoperability or integration within a 

larger end-to-end pipeline framework. This is in stark contrast to sequence data—both 

single-cell and bulk modalities—for which well-established frameworks, such as GATK 

(Auwera and O’Connor, 2020), Seurat (Satija et al., 2015) and Galaxy (Afgan et al., 2018), 

effectively combine software modules for processing a raw sequence file through alignment, 

quantification, differential gene expression and pathway enrichment to identify potential 

associations with a phenotype of interest.

To formalize open questions associated with image analysis, the IAWG hosted a two-day 

workshop on “Computational Challenges Shared by Diverse Imaging Platforms” in January, 

2020 in Seattle, WA, where we invited members of CSBC/PS-ON centers and external 

speakers to highlight challenges that hold particular relevance to their work. A subset 

of the presented challenges was selected to be addressed in a hackathon held in March, 

2020 in Nashville, TN. To our knowledge, this is the first effort to address multiple 

aspects of the canonical image analysis workflow within a hackathon format. While all 

hackathons involve some amount of preliminary planning and organization (Ahmed et al., 

2018; Connor et al., 2019; Fecho et al., 2019; Ferreira et al., 2019; hackseq Organizing 

Committee 2016, 2017), the hosting of a formal face-to-face workshop has allowed us to 

not only define hackathon challenges, but also formalize the larger workflow connecting 

them. Unlike previous image analysis hackathons that focused on further development and 

application of specific tools, e.g., 3D Slicer (Kapur et al., 2016) and Fiji (Schindelin et 

al., 2012), we allowed the participants to utilize any existing methods and encouraged the 

development of new ones. Our approach also differed from online competitions such as the 

Kaggle 2018 Data Science Bowl on nuclear segmentation (Caicedo et al., 2019) and the 

Cell Tracking Challenge (Ulman et al., 2017), in which teams work remotely and benefit 

from relatively long time periods to solve one specific task. Instead, we brought together 

researchers at one physical location, which furthered our additional consortia-wide goals of 

providing an educational experience to trainees, spurring collaboration within the consortia, 

and disseminating research perspectives across diverse backgrounds. Here, we summarize 

our logistical efforts and the resulting output of the 2020 workshop and hackathon, as well 

as provide our perspective for the future of collaborative large-scale image analysis.
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2 Methods

2.1 Image analysis working group

The IAWG is a joint forum comprised of ~40 scientists from 16 CSBC- and PS-ON-

affiliated institutions. The IAWG holds virtual, monthly meetings (over Zoom), as well as 

in-person sessions during the annual joint CSBC/PS-ON Investigators meetings. Following 

initial introduction of members and their research during the first meeting in late 2018, 

subsequent and ongoing meetings have members and external invited speakers share 

their image analysis and visualization results and discuss open research questions. These 

questions reflect the diversity of biological domains and imaging modalities of CSBC 

and PS-ON. Researchers in CSBC employ imaging techniques (e.g., CyCIF, CODEX, 

MIBI, multiplexed IHC, and time-lapse fluorescence microscopy) to study biological 

phenomena such as tumor-immune interactions and the tumor microenvironment, drug 

resistance/sensitivity, metastasis, and tumor heterogeneity across many cancer types. Often, 

the imaging data are integrated with other widely-used systems biology methods, including 

sequencing, mechanistic modeling, machine learning, evolution / ecology, and network 

inference. In contrast, researchers in PS-ON combine imaging with approaches from 

the physical and mathematical sciences to study mechanical cues, transport phenomena, 

bioelectric signals, thermal fluctuations, and spatio-temporal organization of cancer at 

scales ranging from subcellular to organ and whole organism. CSBC and PS-ON share a 

coordinating center that facilitates collaboration (including support for the IAWG workshop 

and hackathon), resource sharing, and education and outreach across the two consortia and 

with the external scientific community. IAWG presentations are recorded and available to 

members on the Synapse platform (https://www.synapse.org/IAWG). External presentations 

represent the IAWG’s broad outreach to related consortia and outside research groups, 

including the Chan Zuckerberg Initiative (CZI), the Howard Hughes Medical Institute 

(HHMI) Janelia Research Campus, Allen Institute for Cell Science, The Broad Institute, 

HTAN, HuBMAP, Jeffrey Chuang’s PDXNet-affiliated research group at The Jackson 

Laboratory for Genomic Medicine, and David Van Valen’s laboratory at the California 

Institute of Technology.

2.2 Workshop

2.2.1 Pre-workshop planning and funding—Initial monthly, virtual presentations of 

the IAWG revealed a substantial overlap in image analysis interests and challenges shared 

by CSBC and PS-ON researchers. This motivated us to host two in-person events — a 

workshop oriented around computational image analysis challenges that could realistically 

be addressed in a subsequent two-day hackathon. To support travel and accommodations 

for ~40 attendees at both events, we applied for and received an NCI collaborative 

administrative supplement to the CSBC parent awards of the two hosting institutions (Sage 

Bionetworks and Vanderbilt University). Because we anticipated that the imaging challenges 

central to these events would transcend biological domains and specific imaging modalities, 

we advertised the workshop along with a link to the workshop application within the 

CSBC/PS-ON community and broadly in other consortia leveraging imaging: our CSBC 

program director alerted the NIH leadership of the HuBMAP, the BRAIN Initiative - Cell 

Census Network (BICCN), and the Kidney Precision Medicine Project (KPMP) consortia 
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of our efforts via e-mail (Aug, 2018); we made online presentations at the HTAN (Aug 23, 

2019) and CSBC (Dec 11, 2019) steering committee meetings; we presented a poster at the 

CSBC annual meeting (Sept 16–17, 2019); and we distributed fliers at both the CSBC and 

PS-ON (Sept 18–20, 2019) annual meetings.

Workshop planning was facilitated by forming a planning committee, which communicated 

over e-mail and met virtually (over Zoom) at approximately two week intervals starting 

in late October, 2019. Additional logistical discussions also occurred during the regularly-

scheduled, monthly IAWG meetings and in person at the CSBC Annual Meeting. The 

planning committee accomplished five major milestones: reserving the venue (Aug 6, 2019), 

closing application submissions (Oct 11, 2019), finalizing the sessions based on applicant 

interests and presentation titles (Oct 23, 2019), sending acceptance letters to applicants with 

an agenda (Nov 11, 2019), sending lodging information to attendees (Nov 21, 2019), and 

confirming invited speakers (Dec 23, 2019).

The workshop application asked individuals to briefly describe: (1) an imaging-based 

computational challenge relevant to the cancer community, shared across multiple imaging 

modalities, with specific questions to address in a hackathon; (2) prior relevant work (their 

own or from the literature); and (3) data required to address the challenge, their availability, 

and whether they include any necessary annotated ground truth. The applications highlighted 

active areas of interest within the field. We grouped challenges described in the applications 

into four broad categories corresponding to stages in a canonical image processing 

workflow: (1) image registration and quality control; (2) segmentation of cells and 

subcellular structures; (3) downstream analyses, including cell type calling, cell tracking, 

and the discovery of spatial patterns; and (4) visualization and the integration of individual 

image processing steps into a larger automated pipeline. We organized the talks into 

sessions reflecting these canonical stages (Figure. 1a). Additionally, we invited three 

keynote speakers whose work intersected these stages and whose organizations were 

actively engaged in biomedical image acquisition and analysis: Drs. Susanne Rafelski (Allen 

Institute for Cell Science), Juan Caicedo (Broad Institute), and Matthew Cai (The Chan 

Zuckerberg Initiative).

The explicit goal of the workshop was the generation of 2–3 page summaries describing 

each potential challenge. Prior to the workshop, attendees were provided with a template 

for these summaries, which included the same information solicited in the application 

(challenge idea, prior relevant work, and required data), as well as whether the challenge 

was best addressed collaboratively or competitively and, in either case, how to evaluate 

success. Example summaries representative of each of the four canonical stages were drafted 

based on several of the applications.

2.2.2 Workshop implementation and management—The workshop took place Jan 

19–20, 2020 at the Institute for Systems Biology (ISB) in Seattle, WA. The 46 attendees 

represented 12 institutions active in CSBC/PS-ON, as well as related consortia including 

HTAN, HuBMAP, the Imaging Data Commons (IDC), and KPMP (Table 1). Attendees 

were geographically distributed and came from laboratories employing a range of imaging 

modalities (Figure. 1b). They were predominantly early stage investigators (6 assistant 
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professors and 1 associate professor), trainees (12 graduate students and 3 postdocs), and 

staff scientists (18). The size of the workshop fostered engagement and more than half of the 

attendees (25 of the 46) gave presentations. With the exception of the keynote speakers, we 

requested that all presenters structure their talks around one or more specific image analysis 

questions that could be expanded into a hackathon challenge. Each speaker was given a 

20-minute time slot and encouraged to include the information previously described in the 

example summaries. To facilitate further discussion of these challenges after the talks, we 

scheduled ample additional time and allocated space for informal conversations.

The workshop culminated in seven challenge ideas spanning image registration, automated 

marker gating, quantification of epithelial polarity in organoids, cell segmentation, 

quantification of PD1 asymmetry in immune cells, rare cell type identification in noisy 

data, and cell type inference from morphology and spatial distribution (Table 2). These ideas 

captured open research questions in the imaging field, though the questions continued to 

evolve through selection for and execution at the hackathon.

2.3 Hackathon

2.3.1 Pre-hackathon planning—Following the workshop planning model, we formed 

a planning committee for the hackathon. The committee met virtually (via Zoom) at least 

twice between the workshop and hackathon and once with the larger IAWG during the 

regularly-scheduled monthly meeting. The following milestones were accomplished during 

the planning phase: drafting the hackathon application (Dec 19, 2019); distributing the 

hackathon registration (Jan 28, 2020); sending logistics (location, accommodations, food, 

and travel reimbursements) to registrants (Jan 30, 2020); establishing a github organization 

and a slack workspace, securing compute resources through Mark III, defining the name 

(Cell Imaging Hackathon), and designing a logo and T-shirt (Feb 6, 2020); drafting an 

agenda (Feb 25, 2020), uploading hackathon data to Vanderbilt servers (Feb 28, 2020); and 

requesting attendees complete a Data Terms of Use agreement (Mar 4, 2020).

Selection of challenges: Given the large number of challenge ideas (Table 2) relative 

to the number of attendees we could support (~40), we decided to limit the number of 

hackathon challenges. To ensure the attendees would be invested in the final set of selected 

challenges, we asked hackathon registrants to vote on their top three choices through the 

web-based registration form, which also captured additional information, such as their 

affiliated institutions, position held, and any special compute resource requests. This allowed 

for the assessment of both the interest in each of the proposed challenges and the willingness 

to contribute to different challenges in case a challenge had insufficient overall interest (less 

than three first-choice votes). Five of the seven challenges had sufficient interest and were 

selected for the hackathon (Table 2), with the Segmentation challenge garnering the largest 

proportion of interest (10 of 33 first-choice votes). Each challenge was assigned a champion, 

who ensured requisite data were transferred to Vanderbilt prior to the hackathon and who 

acted as a scientific advisor and hackathon liaison to the teams. Champions included the 

hackathon organizers, as well as Eliot McKinley (Vanderbilt University) and Seth Winfree 

(Indiana University) for the Segmentation Challenge.
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Computational support: Through a partnership with Mark III Systems, Core Scientific 

provided access to an NVIDIA DGX2 containing 16 NVIDIA 32GB V100 GPUs and 4 × 

24 core CPUs and 1 TB storage web-accessible from their datacenter in Dalton, GA; these 

resources were distributed among the participating groups. Mark III Systems also provided 

administrative support by preparing JupyterLab environments with software requested by 

attendees during registration, as well as on-site assistance to manage the environments. All 

data to be used for each of the challenges (~500 GB total) was preloaded onto storage 

accessible by each of the compute instances. Notably, the collection and assembly of these 

large datasets from different sources and their deposition onto the different devices was a 

relatively time-consuming process, taking many hours of effort due to network latency and 

throughput limitations. As a backup, ten external 1 TB SSD hard drives were also preloaded 

with the full datasets, proving invaluable for the hackathon, due to the inability of several 

groups to use their preferred software tools within the prepared compute environments and 

allowing those groups to work locally without incurring the time-consuming overhead of 

downloading the data themselves.

Registrants were from over twenty different institutions (Table 1), with multiple from 

Vanderbilt and Vanderbilt University Medical Center (19), Oregon Health & Science 

University (6), Indiana University (including IUPUI and the School of Medicine, 5), Harvard 

University and Harvard Medical School (5), Stanford (2), and the Allen Institute for Cell 

Science (2). Trainees comprised a larger percentage of hackathon attendees (60%; 30 of 50) 

than of workshop attendees (24%; 11 of 46).

2.3.2 Hackathon execution—The hackathon was hosted March 4–6, 2020 by 

Vanderbilt University to address the five selected challenges (Table 2). The Segmentation 

Challenge was set up in a competitive format and the (13) participating individuals were 

divided into three teams of three to five participants each. The remaining four challenges 

each had a team consisting of at least five participants. Work toward addressing the 

challenges was performed over two and a half days, coordinated by champions for each 

challenge and culminated with each team presenting their selected challenge and the 

solution they developed; this provided immediate feedback and guidance on future steps 

from the image analysis community.

3 Results

In this section, we provide an overview of analyses performed by the participants of every 

challenge. The code of all prototype solutions is publicly available on GitHub (Table 3), 

but additional work is required to generate well-documented easy-to-use software modules 

from the initial codebase. We conclude by summarizing the findings of each challenge in the 

context of the overall image analysis workflow and highlight notable gaps that we intend to 

address in future hackathons.

3.1 Image registration challenge

Iterative staining-based assays (e.g., CyCIF) involve successive rounds of staining with 

a small number of antibodies (~4) conjugated to different fluorophores. These individual 

images need to be registered into a single composite, a task that often leverages a nuclear 
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stain common across rounds (e.g., DAPI). For lower dimensional assays that can not rely on 

a shared stain across rounds, we explored registering images via auto-fluorescence.

During the hackathon, we observed that we could register a “moving” image in one round 

to a “target” image in a second round using the green channel (Alexa Fluor 488)—despite 

the fact that the fluorophore was conjugated to a different protein in each of the rounds 

(e.g., PCNA in round 1, CK5 in round 2, aSMA in round 3, etc.). We hypothesized 

that registration was exploiting the strong background fluorescence of the green dye. We 

provided further evidence for this hypothesis in additional analyses following the hackathon. 

In this follow-up work, we eliminated the possibility that registration was leveraging 

spatially overlapping signal between the different proteins in the two rounds by aligning the 

moving image to a target image consisting of only the background in the green channel. This 

often approached the resolution of the alignment obtainable using the DAPI channel shared 

across rounds in a healthy tonsil tissue, a healthy breast tissue, and a breast cancer cell line 

sample (Figure 2). Further, with one exception in the breast tissue, the background-derived 

registration aligned images with a resolution likely sufficient to associate cellular markers 

across rounds (i.e., that of a typical eukaryotic cell, ~10μm).

3.2 Segmentation challenge

Developing a pipeline to segment nuclei and other cellular components (cell boundaries, 

subcellular structures, etc.) has traditionally been slow and incremental. Several tools are 

available that can apply the multiple steps required for optimum segmentation, including 

Cell Profiler, ImageJ, Matlab, and the Cell and Structure Segmenter developed at the Allen 

Institute for Cell Science. The time required to develop these pipelines is a hindrance to 

extracting biologically useful information, yet there are very few guidelines to facilitate 

the process. Thus, a main goal of this challenge was to identify general guidelines 

for successfully optimizing segmentation algorithms. The challenge was structured as a 

competition, where teams competed to perform various segmentation tasks on several large 

datasets with a focus on balancing segmentation accuracy with the ability to process all the 

data. Only laptops brought to the hackathon or the compute environments made available 

to all attendees were allowed, as the use of an external high-performance computing 

environment would have provided an unfair advantage. The Allen Cell and Structure 

Segmenter (Chen et al., 2020) was pre-installed within the compute environments provided 

to all teams.

Five different cancer-relevant segmentation tasks were identified, representing a range of 

different features, with all requiring initial nuclear segmentation (Table 4). Each task had 

an associated dataset consisting of fluorescence microscopy images (color images of typical 

histopathological evaluation using H&E counterstaining were not considered). Datasets were 

provided by members of the IAWG or were selected from publicly available resources. Each 

dataset contained many visual fields of information, some stitched into image montages and 

some containing multiple channels obtained from the same field of view. The total size of 

all image data combined was over 250 GB, making the volume of data for processing a 

significant hurdle.
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At the onset of the hackathon, three teams were formed by self-association among the 

attendees, resulting in two teams of five members and one team of three members. To assess 

the quality of each team’s segmentation results a small Java program was written to calculate 

F1-scores on segmentation results as compared to previously generated ground-truth labeled 

images (SegmentationAnalyzer, code available at https://github.com/IAWG-CSBC-PSON).

3.2.1 Segmentation Team 1—Team 1 used a KNIME-based workflow and ImageJ 

processing (Dietz et al., 2020) for segmentation of the MxIF and CycIF data; however, this 

pipeline could not be deployed on the provided compute server and was instead run on the 

team’s own computers. The live-cell data was segmented using the Scientific Python (SciPy) 

Multidimensional image processing (ndimage) package for segmentation. Overall Team 1 

processed examples from nearly all datasets (4 out of 5) of the total dataset and on the 

directly comparable dataset (Vanderbilt live-cell images), obtaining a pixel-wise F1-score of 

0.33.

3.2.2. Segmentation Team 2—Team 2 leveraged several pre-existing tools, including 

CellDissect (Kesler et al., 2019) and DeepCell (Valen et al., 2016) for nuclear segmentation 

and made use of algorithms for intensity gradient detection and K-means clustering to detect 

the colonic epithelial cell boundaries. Team 2 processed examples from all the datasets 

and for the directly comparable dataset achieved a pixel-wise F1-score of 0.32, which, 

in combination with completing examples from all datasets (5 out of 5), gave them an 

advantage over Team 1.

3.2.3 Segmentation Team 3—Team 3 used Python-based processing, including the 

Allen Cell and Structure Segmenter code (Chen et al., 2020) and focused on the Vanderbilt 

live-cell image dataset. They chose not to submit their results for the competition, preferring 

to use the time simply as a learning experience.

3.2.4 Segmentation Challenge Outcome Summary—The volume of data and the 

multiple data types to be segmented posed significant barriers to rapidly developing high-

performing algorithms. Based on the relatively low F1 scores (<0.35), it is clear that, even 

with contributions from experienced individuals who have published image segmentation 

pipelines, finding optimum solutions to specific image segmentation objectives remains a 

significant challenge, requiring much more time than was available during the hackathon to 

develop efficient solutions.

3.3 Quantitation of immune checkpoint markers (PD1) asymmetry in activated immune 
cells

PD-1 and PD-L1 represent perhaps the most well-known receptor-ligand pair that is 

targeted by immune checkpoint therapies, with a number of FDA approved drugs (mostly 

monoclonal antibodies) designed against both proteins. Transmembrane PD-L1 is most 

commonly expressed on tissue and stromal cells, while PD-1 can be seen in the T and B 

cells exposed to the antigen. If a PD-1 positive T cell is triggered by a cell expressing 

PD-L1, the PD-1 expression tends to spatially co-cluster with the activated T-cell receptor 

(TCR) and bring the phosphatase to the intracellular part of the TCR complex. This 
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inhibits signal transduction from the activated TCR complex and corresponding downstream 

events associated with normal T cell response. Microscopically, these molecular processes 

are manifested in co-polarization (co-clustering) of PD-1 and TCR distribution in the 

immune cells engaged in interaction with their microenvironment. Being able to quantify 

the incidence of asymmetric distribution of PD-1 and TCR and of related molecules will 

therefore enable deeper understanding of factors involved in the normal immune response to 

cancer and provide insight into why this response may fail in specific scenarios.

Participants were asked to quantitate PD-1 clustering in highly–multiplexed CODEX images 

(Goltsev et al., 2018) acquired from lymph nodes of mice challenged with metastatic 

melanoma cell lines. The multiplexed images (~72 channels, 7 z-planes, ~25 frames, ~3Gb 

per image) were segmented, with the center and the outline of the best focal plane for each 

cell saved in the text format, alongside measurements for roughly 50 different markers. 

Using the segmentation output, participants constructed image patches centered around 

individual cells and trained a Variational Autoencoder (VAE) (Kingma and Welling, 2014) 

to study the underlying latent space representation of the data. The spatial distribution of 

PD-1 in a population of cells is expected to follow a smooth and continuous distribution. 

Consistent with that, we found that the UMAP embedding of the latent VAE space is also 

continuous without any obvious cluster structure (Figure 3a). Mapping the mean PD-1 signal 

per cell onto the embedding, we observed two groups of cells with significantly elevated 

PD-1 intensities, indicating that the autoencoder is picking up on and encoding not just the 

spatial distribution, but also signal intensity in its latent space. We further subdivided the 

latent space into evenly spaced regions and plotted the average PD-1 distribution per region, 

revealing that the regions indeed display distinct spatial arrangements of PD-1 (Figure 3b). 

For example, regions 12 and 14 contain cells with a roughly even distribution of PD-1 

across the entire cell membrane. In contrast, regions 4 and 5 correspond to highly polarized 

PD-1 distributions at the top-left or bottom-right of the cells, respectively. In the future, this 

method could be simplified by taking advantage of the rotational symmetry in the data, e.g., 

by rotating all cells such that the brightest pixel is always placed at the center-top part of the 

image. Alternatively, one can take advantage of the recently proposed Multi-Encoder VAE 

(Ternes et al., 2021) to extract transform-invariant features.

3.4 Rare cell type identification in “noisy” multiplexed in situ cytometry data

Differentiation cascades in mouse immune organs are sufficiently well dissected by flow 

cytometric methods, yet the spatial architecture of immune cell development is not well 

understood. At the same time, the “curse of dimensionality” as well as noise in single-cell 

segmentation and quantitation preclude efficient cell type identification by clustering of 

in situ cytometric data. We often know that a particular rare cell type exists in an organ, 

and may be visible in the image, yet it is hard to unambiguously identify these cells by 

empirically-chosen machine learning techniques. It is therefore important to be able to 

select the best normalization, pre-processing, and clustering methods that result in proper 

identification of rare cell types when applied to the given data.

Participants attempted to identify specific rare cell types in multiplexed (~50 markers) 

mouse thymus imaging data. These data were presented to participants in the derived 
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form of a cell-by-feature dataframe, where each cell was represented by a row vector of 

mean marker intensities. To normalize the raw data, vertical (feature-based) and horizontal 

(cell-based) strategies were considered, both independently and in combination. In addition 

to boilerplate standardization, the participants also attempted to leverage known mutually-

exclusive expression patterns of some marker pairs to derive normalization factors for 

markers where the mutually-exclusive expression assumption was met (Chang et al., 

2020). Using data normalized by each approach, the participants then used a battery of 

automated single-cell phenotyping approaches in an attempt to identify the rare immune 

cells populations. The results of cell type identification were scored against manually-gated 

ground truth labels to characterize the performance trade-offs of taking each combination of 

pre-processing and analysis approach. In the mouse thymus dataset, composed primarily of 

hierarchically-structured immune cell phenotypes, the participants found that the approach 

combining first vertical then horizontal standardization was necessary to identify the rare 

cell types by any subsequent phenotyping method, e.g. k-means clustering and X-shift 

(Samusik et al., 2016).

3.5 Inferring Cell Type from Morphological Features and Spatial Distribution Data

By visual inspection, one can readily appreciate the difference in shape and size between 

various cell types, as well as mesoscale structures defined by the arrangement of cells 

within tissues (Figure 4a). Using publicly available CyCIF data from three lung cancer 

specimens (Rashid et al., 2019), we formulated a challenge focused on inferring the type of 

a cell directly from its morphological features and the spatial distribution of its neighbors. 

The participants were asked to design and train a cell type predictor that accepts as input 

1) a vector of morphological features such as area, perimeter, eccentricity, etc., and 2) 

cell-cell proximity information encoded as an undirected graph. The prediction task was 

formulated as a three-class classification problem with ground truth labels derived from 

marker expression, based on the following known marker to cell type associations: CD45 - 

immune cells; Keratin - tumor cells; and alpha-SMA - stroma. The morphological features 

were computed using the Python-based package scikit-image (van der Walt et al., 2014), and 

each cell was annotated with its five closest neighbors, based on Euclidean distance in the 

image coordinate space.

Challenge participants decomposed the problem into a collection of three “one cell 

type vs. the other two” classification tasks and trained gradient-boosted random forest 

models (Friedman, 2001) for each binary task. Metaparameter tuning was performed 

using grid search and five-fold cross-validation over the training set, and the final 

models were evaluated via leave-one-image-out cross-validation. The participants found 

that morphological features carried modest signal predictive of cell type, with area under 

the ROC curve (AUC) being in the 0.7–0.8 range for all models (Figure 4b). Very minor 

improvements in performance were achieved by incorporating morphological features of 

direct neighbors and intensity of the DAPI channel (a proxy for the size of the nuclei). 

Further inspection of the feature importance scores revealed that solidity (the ratio of an 

area to its convex hull), eccentricity (the ratio of the focal distance to the major axis length) 

and extent (ratio of pixels in the region to pixels in the total bounding box) were most 

informative for distinguishing between tumor, immune and stromal cells (Figure 4c). Direct 
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inspection of correlation between solidity and the three cell type markers (CD45, Keratin 

and alpha-SMA) revealed that high values of solidity were observed in stromal cells and, to 

a lesser extent, immune cells (Figure 4d). Based on the challenge outcome, the participants 

concluded that a cell type caller based solely on morphological features is unlikely to be 

sufficiently accurate, and future improvements are expected from combining morphological 

information with marker expression patterns.

3.6 Image processing workflow

Our hackathon challenges have a direct correspondence to individual steps in a canonical 

image processing pipeline. Because these steps are executed sequentially, an important 

property of the workflow is that upstream processing, such as image registration, has a direct 

impact on the quality of inputs for segmentation, which in turn affects the quality of inputs 

for downstream analyses like cell type calling. It is therefore imperative to establish best 

practices to ensure that upstream errors do not get amplified in downstream processing. Our 

final result is an outline of what we envision these best practices to be, based on lessons 

learned during the hackathon challenges.

The original goal of the registration challenge was to mitigate physical tissue deformations 

(e.g., tearing or folding) through use of non-rigid registration approaches that “correct” 

them. However, in applying them to align images based on background fluorescence, 

we observed that these non-rigid approaches can greatly distort the moving image (e.g., 

shrinking it dramatically) when it differs greatly from the target image. As such, these 

methods should be applied with considerable care, possibly constrained or assisted by deep 

learning (Fu et al., 2020; Haskins et al., 2020).

The segmentation challenge highlighted that the difficulty of a segmentation task is driven 

primarily by the imaging modality and the tissue being imaged: cells in culture were 

substantially easier to segment than tissue images, particularly those with densely-packed 

cells (e.g., Vanderbilt_colon; Table 4). We hypothesize that training tissue-specific models 

will play a bigger role in accurate segmentation than the underlying machine learning 

methodology. Emerging studies also show that data augmentation and the inclusion of a 

nuclear envelope stain, such as Lamin, can substantially improve segmentation accuracy in a 

method-agnostic way (Yapp et al., 2021).

Downstream cell type calling still heavily relies on prior knowledge about the association of 

cell types with certain markers. The prior knowledge can help mitigate errors from upstream 

processing by ensuring that marker expression aligns with known biology, but extra care 

must be taken to ensure that segmentation artifacts are not misinterpreted as novel or rare 

cell subpopulations. Our future hackathon efforts will focus on evaluating the interplay 

between segmentation and cell type calling, as well as systematically assessing how 

degradation in upstream performance impacts the quality of downstream analyses. We also 

expect that future cell type calling will work directly at the pixel level, allowing methods to 

take full advantage of the spatial distribution in signal intensities (as demonstrated by our 

PD-1 polarity challenge) and the power of existing deep learning architectures (He et al., 

2021). We will formalize this expectation into a pixel-level cell type prediction challenge in 

a subsequent hackathon.
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4 Discussion

While most hackathons involve pre-hackathon planning activities, our hosting of a two-day 

workshop to formalize the challenges was a novel aspect that, to the best of our knowledge, 

has not been attempted before. The workshop allowed democratization of the challenge 

questions by soliciting input from the image community as a whole and narrowing those 

down based on the participant interest. As a result, the participants were able to address 

a diverse range of specific questions that required substantially different approaches, while 

exchanging ideas on issues common to all challenges, such as the need to wrangle large, 

complex image datasets, train machine learning models, and visualize the results. This was a 

particularly timely experience, as increasingly-sophisticated imaging methods become more 

widespread in cancer research, and many groups grapple with the best way to analyze data 

that is rapidly growing in both size and complexity.

Our original intent was to have more established investigators frame challenges in the field 

during the workshop. However, attendees at both the workshop and hackathon were mostly 

early-stage investigators and trainees and most attended both events. This had important 

advantages: hackathon attendees were invested in the challenges that they themselves had 

previously defined during the workshop and they had already developed a rapport with their 

team members. Having two face-to-face meetings with a small and highly overlapping group 

of participants also improved the likelihood of forming post-event collaborations. Indeed, 

the PD1 asymmetry team continued their efforts after the hackathon. Hence, we feel the 

preliminary workshop was critical in realizing the hackathon outcomes (including scientific 

results and collaborations) and that replicating either experience virtually would have been 

difficult. Consistently, all eight post-hackathon survey respondents who also attended the 

workshop reported that their participation in the first event was useful in preparing for the 

second.

To assess the impact of the workshop and the hackathon, we conducted a survey with 

questions about what the participants found most valuable and what could be improved. 

Feedback from the participants confirmed many positive aspects of hands-on working 

meetings described in the literature (Groen and Calderhead, 2015; Huppenkothen et al., 

2018). Specifically, the meetings provided a good networking opportunity for scientists 

from different labs and with different areas of expertise, allowing researchers to establish 

new collaborations and brainstorm ideas for future projects. As described previously, such 

opportunities are particularly important for early-career scientists, including postdocs and 

junior investigators (Groen and Calderhead, 2015).

The hackathon also provided a hands-on educational experience by bridging the gap 

between traditional courses, which take months to develop, and the rapidly shifting 

landscape of image analysis tools. By exposing the participants to real datasets with all 

their complexities, the hackathon was an immersive experience that fostered collaborative 

software development and an exchange of ideas that can be taken back to each lab’s 

day-to-day activities. All of the survey respondents expressed interest in participating in 

future image analysis hackathons.
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Our community-based approach had several limitations. Previous hackathons highlighted the 

importance of having teams composed of participants with diverse backgrounds (Ferreira et 

al., 2019; Groen and Calderhead, 2015). Unfortunately, the vast majority of our participants 

were computational scientists; having more representation of experimental scientists among 

the teams would have likely increased the biological and clinical insight produced by 

individual challenges. Several groups had a range of experience levels that provided 

learning opportunities for more junior members, as well as the requisite background to 

ensure productivity in the short time window of the hackathon. The registration team 

reported benefitting from several expert practitioners, suggesting that future imaging-based 

hackathons should strive to ensure experts are embedded in each team. Counterintuitively, 

background diversity among the computational scientists was also a limitation; Python is 

widely considered to be the primary language for image analysis tasks, and participants 

with background in other programming languages (e.g., Java or R) felt at a disadvantage. 

We conjecture that the use of container technologies, such as Docker (Merkel, 2014) and 

Singularity (Kurtzer et al., 2017) in future hackathons can help with code execution across 

various compute environments and programming language preferences.

The hackathon exposed three primary technical hurdles likely to be pervasive in large-

scale image analysis projects: (1) access to GPUs for more efficient computation; (2) 

scalable access to large datasets for generalizing trained models; and (3) access to ground 

truth for objective evaluation of those models. The likely performance advantage of 

GPUs would have been especially beneficial to the segmentation challenge, in which 

one team had inadequate time to analyze all datasets. Across all of the challenges, lack 

of “ground truth” labels made it difficult to effectively evaluate the solutions produced 

by the hackathon participants—an oft-occurring difficulty in biomedical image analysis, 

as producing a reference standard traditionally requires laborious, manual curation by 

pathologists (Willemink et al., 2020). To mitigate this, data contributors sometimes had 

to rely on orthogonal measurements to generate label approximations (e.g., using expression 

of protein markers to define cell types for the cell morphology challenge). Nevertheless, for 

the prototyping purposes of our hackathon, most teams found that CPUs were sufficient to 

assess their approaches against a few exemplar images and that those few images could be 

directly accessed from the portable hard drives we provided. This may serve as a model for 

future image analysis hackathons: limit the scope of proposed challenges to be practically 

addressable using local hardware with a scale of data that can be transferred across a 

network or distributed via external hard drives. Given the limited scale of such data, it would 

also be feasible to provide attendees early access to them prior to the hackathon to facilitate 

data exploration without time constraints of the event—an opportunity our participants 

regretted not having.

However, rather than limiting the scale of a future hackathon, we propose a more ambitious 

goal: address the above issues by conducting the hackathon in a cloud environment. 

A community-wide, shared, repository co-localized with compute infrastructure in the 

cloud would also facilitate the collaborative efforts that our hackathon showed to be 

both educationally and scientifically productive. Efficiently integrating image analysis 

with cloud resources remains a challenge, owing to the latency of data transfer and of 

remote interactive viewing. Integrated solutions for image storage, viewing, and analysis 
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have been implemented on high-performance computing (HPC) clusters for pathological 

(H&E) images (Schüffler et al., 2021). Such approaches would need to be further extended 

to account for the order of magnitude greater storage requirements of multiplexed data 

and migration from an HPC environment to the cloud to further ease cross-institutional 

collaborations. Members of our community have already taken strides towards addressing 

these issues by developing Minerva Story (Hoffer et al., 2020) and the Cancer Digital Slide 

Archive (CDSA) (Gutman et al., 2013) for scalable visualization of highly multiplexed and 

H&E image data, respectively, and through MCMICRO, a workflow-based, configurable 

image analysis pipeline (Schapiro et al., 2021) that facilitates cloud-based computation by 

adopting containerization technologies, such as Docker and Singularity, and seamless access 

to heterogeneous resources, such as GPUs. Finally, recent advances in cell segmentation 

have demonstrated how ground truth datasets can be efficiently generated through cloud-

based, crowd-sourced annotations that are verified, rather than generated in toto, by expert 

annotators (Greenwald et al., 2021). The difficult work remains in bridging scalable 

visualization platforms with analytical frameworks and assessing them on ground truth 

datasets scalably in the cloud. Nevertheless, even partially demonstrating this feasibility in a 

subsequent hackathon would advance future cross-institutional projects.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A workshop listed challenges shared by single-cell, highly-multiplexed 

imaging assays

• A hackathon brought together the imaging community around common 

challenges

• Many challenges remain for registration, segmentation, cell typing, and 

visualization

• The growing size and complexity of imaging data necessitate cloud-scale 

analyses

et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Image analysis workshop structure and participation.
a. The workshop agenda followed the steps of a canonical image processing workflow. 

Each box highlights the most prominent topics covered during each session. b. Institutes 

and data acquisition technologies represented by the workshop participants. Technologies 

marked “other” encompass electron microscopy and radiology, while “NA/Agnostic” refers 

to computational labs that don’t generate data.
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Figure 2: Image registration using background signal is similar to that obtained using DAPI.
Mean distance from round 1 image (R1; y axis) to images in all other rounds (n=10) before 

registration (“Unregistered”), following rigid registration using the DAPI channel [“DAPI 

(Rigid)”], or following a non-rigid registration using the background channel [“Background 

(Non-rigid)”] in tissue microarray images from healthy tonsil tissue (left), healthy breast 

tissue (center), or HC1143 breast cancer cell line (right). Distance is calculated by defining 

AKAZE (Alcantarilla et al., 2013) keypoints in both images, matching the keypoints across 

images, summarizing the distance between matched keypoints using target registration error 
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(TRE) (Maurer et al., 1997), and scaling TRE (whose denominator is the diagonal of the 

image in pixels) by the length of the image diagonal in microns. Non-rigid registration was 

performed using SimpleElastix (Marstal et al., 2016); rigid registration was performed using 

AKAZE-based keypoint matching in OpenCV (Bradski, 2000).
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Figure 3: Spatial distribution of PD-1 classified using a variational autoencoder
a) UMAP embedding of the latent space produced by the autoencoder. Cropped images of 

cells stained for PD-1 were used to train a convolutional autoencoder with a bottleneck size 

of eight. The latent representation of all cells was further reduced using UMAP. Each point 

in the plot represents a single cell colored by the mean intensity of the PD-1 signal. The 

UMAP space was evenly divided into 16 regions. b) Mean spatial signal of PD-1 across all 

cells contained within each region.
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Figure 4: A summary of the morphotype challenge.
a) A representative image of a lung cancer specimen, stained for Keratin (white), CD45 

(green), IBA1 (cyan) and alpha-SMA (red). b) ROC curves associated with predictors 

trained to recognize stromal cells from morphological features only (yellow), morphological 

features and the intensity of the DAPI stain (cyan), and all of the above computed for the 

index cell and its closest five neighbors (brown). c) Top features identified through feature 

importance scores computed by gradient boosted random forests. d) Density scatter plots 

showing how solidity varies with markers of stromal (alpha-SMA), immune (CD45) and 

tumor (Keratin) cells.
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Table 1:

Workshop and hackathon attendee summary. IUPUI - Indiana University–Purdue University Indianapolis; 

UC - University of California; CSBC - Cancer Systems Biology Consortium; PS-ON - Physical Sciences & 

Oncology Network; HTAN - Human Tumor Atlas Network; HuBMAP - Human BioMolecular Atlas Program; 

IDC - Imaging Data Commons; KPMP - Kidney Precision Medicine Project;

Institute Consortium
Workshop 
Attendees

Hackathon 
Attendees Student Postdoc

Staff 
Scientist Faculty Other

Allen Institute Unaffiliated 3 2 0 0 2 0 2

Arizona State 
University Unaffiliated 0 1 1 0 0 0 0

Broad Institute Unaffiliated 1 0 0 0 1 0 0

City of Hope CSBC 1 1 0 0 2 0 0

Chan-Zuckerberg 
Initiative Unaffiliated 1 0 0 0 1 0 0

Emory HTAN 1 1 0 0 0 1 0

Harvard CSBC, HTAN 2 5 1 1 3 0 0

Institute for Systems 
Biology HTAN, IDC 4 0 0 0 4 0 0

IU/IUPUI
CSBC, KPMP, 
PS-ON 2 5 4 1 0 1 0

Mark III Unaffiliated 1 0 0 0 0 0 1

Michigan Unaffiliated 1 0 0 0 0 0 1

Moffitt CSBC 1 1 0 0 1 0 0

National Cancer 
Institute CSBC, PS-ON 2 0 0 0 0 0 2

Oregon Health & 
Sciences University CSBC, HTAN 7 6 5 0 2 1 0

Queen Mary 
University of London CSBC 0 1 1 0 0 0 0

Sage Bionetworks CSBC, PS-ON 1 1 0 0 1 0 0

Simons Foundation Unaffiliated 1 1 0 1 0 0 0

Stanford CSBC, PSON 5 2 0 2 1 0 0

Susan G. Komen Unaffiliated 0 1 0 0 1 0 0

University of British 
Columbia Unaffiliated 1 1 1 0 0 0 0

UC San Diego CSBC 1 1 1 0 0 0 0

UC San Francisco CSBC 1 0 0 1 0 0 0

Vanderbilt University
CSBC, HTAN, 
HuBMAP 8 19 9 2 6 3 1

Wake Forest CSBC 1 0 0 0 0 1 0

Weill Cornell PSON 0 1 1 0 0 0 0

Total 46 50 24 8 25 7 7
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Table 2:

Image analysis challenges nominated by workshop participants.

Challenge Problem Statement Goal

Image registration Deformations in tissue that arise in iterative staining 
approaches (e.g., CyCIF, 4i, IHC, MiFish) complicate 
alignment.

Align images in a “z” stack (e.g., across rounds 
of staining or serial sections) to maximize the 
correlation of nuclei stains between consecutive 
images in the stack.

Automated marker 
gating

Sample-sample variation in marker intensity owing to 
batch- and tissue-specific effects complicates efforts to 
compare markers in multiplex images across tissues and 
time points.

Automatically and consistently “gate” markers across 
tissues (i.e., to differentiate between expressed and 
unexpressed levels of marker expression). Predictions 
will be compared to manually-curated gating.

Quantification of 
epithelial polarity in 
organoids

Cells in organoids self organize and become polarized: 
specific proteins and organelles are oriented towards 
the center of the gland, whereas other cell components 
are expressed at the periphery. De-polarization may be 
associated with cancer.

Define a metric of organoid polarity and obtain values 
of this metric for each organoid in the provided data.

Cell segmentation Developing a pipeline to segment nuclei and other 
cellular components (cell boundaries, subcellular 
structures, etc.) has traditionally been slow and 
incremental.

Develop general guidelines for successfully 
optimizing segmentation algorithms via a 
competition. Teams will attempt to develop 
optimized segmentation algorithms for four 
different segmentation tasks within the hackathon.

Quantification of PD1 
asymmetry in immune 
cells

PD1 localization is asymmetric on a subset of 
cells during T-cell-tumor cell interactions and this 
asymmetry is thought to be related to T-cell 
activation.

Develop a suitable metric and analytical pipeline 
for measuring the amount of polarization of 
membrane-bound markers (e.g. PD1).

Rare cell type 
identification in noisy 
data

Known biology dictates the existence of certain rare 
cell subpopulations, but standard clustering methods 
fail to detect these robustly.

Given a cell type definition (specified as marker 
expression), accurately find all cells of that type.

Cell type inference 
from morphology and 
spatial distribution

Morphological characteristics may be relevant to 
discerning cell types but have not yet been used in 
cell type calling.

Predict cell types (defined by characteristic marker 
expression) using morphological features (area, 
perimeter, eccentricity, etc.) and cell-cell proximity 
information (encoded as an undirected graph).

Bolded challenges were selected for the hackathon.
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Table 3:

Location of the code repositories for every challenge

Challenge Code

Image Registration https://github.com/IAWG-CSBC-PSON/registration-challenge, https://github.com/jvizcar/
MultiplexImagingRegistration

Segmentation https://github.com/IAWG-CSBC-PSON/Segmentation-challenge

PD1 Asymmetry https://github.com/IAWG-CSBC-PSON/pd1-asymmetry

Rare Cell Types https://github.com/IAWG-CSBC-PSON/rare-cell

Cell Morpho-Typing https://github.com/IAWG-CSBC-PSON/morpho-type, https://github.com/jvizcar/SageMultiplexInteractors

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 January 01.

https://github.com/IAWG-CSBC-PSON/registration-challenge
https://github.com/jvizcar/MultiplexImagingRegistration
https://github.com/jvizcar/MultiplexImagingRegistration
https://github.com/IAWG-CSBC-PSON/Segmentation-challenge
https://github.com/IAWG-CSBC-PSON/pd1-asymmetry
https://github.com/IAWG-CSBC-PSON/rare-cell
https://github.com/IAWG-CSBC-PSON/morpho-type
https://github.com/jvizcar/SageMultiplexInteractors


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

et al. Page 29

Table 4:

An overview of datasets contributed to the segmentation challenge.

Dataset name References Data type Segmentation Task Deliverables

Vanderbilt_live_cell Tyson DR, unpublished Time-lapse imaging of 
fluorescent nuclei in 
drug-treated cells

Nuclear boundaries 
of viable cells 
(exclude nuclear 
fragmentation)

Nuclear segmentation 
map

Vanderbilt_colon https://doi.org/10.1172/
jci.insight.93487

MxIF of colon cancer 
(nuclei + 9 channels)

Plasma membrane 
boundaries

Nuclear segmentation 
map & whole-cell 
segmentation map

Harvard_lung https://doi.org/10.1038/
s41597-019-0332-y

CycIF of lung cancer 
(only nuclear channel)

Nuclear boundaries Nuclear segmentation 
map

OHSU_BrCa https://doi.org/
10.1007/978-1-4939-9773-2_24

CycIF of breast cancer 
(nuclei + 3 channels)

Nuclear and 
plasma membrane 
boundaries

Nuclear segmentation 
map & whole-cell 
segmentation map

UNC_PCNA https://doi.org/10.15252/
msb.20188604

Time-lapse imaging of 
nuclear-localized protein

Nuclear foci Nuclear segmentation 
map & whole-image 
intranuclear spot map
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