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Abstract 

Background: Integration of large proteomics and genetic data in population-based studies can 
provide insights into discovery of novel biomarkers and potential therapeutic targets for 
cardiometabolic diseases (CMD). We aimed to synthesize existing evidence on the observational and 
genetic associations between circulating proteins and CMD. 

Methods: PubMed, Embase, and Web of Science were searched until July 2023 for potentially 
relevant prospective observational and Mendelian randomization (MR) studies investigating 
associations between circulating proteins and CMD, including coronary heart disease, stroke, type 2 
diabetes, heart failure, atrial fibrillation, and atherosclerosis. Two investigators independently 
extracted study characteristics using a standard form and pooled data using random effects models.  

Results: 50 observational, 25 MR, and ten studies performing both analyses were included, 
involving 26,414,160 non-overlapping participants. Meta-analysis of observational studies revealed 
560 proteins associated with CMD, of which 133 proteins were associated with ≥two CMDs (i.e. 
pleiotropic). There were 245 potentially causal protein biomarkers identified in MR pooled results, 
involving 23 pleiotropic proteins. IL6RA and MMP12 were each causally associated with seven 
diseases. 22 protein-disease pairs showed directionally concordant associations in observational and 
MR pooled estimates. Addition of protein biomarkers to traditional clinical models modestly 
improved the accuracy of predicting incident CMD, with the highest improvement for heart failure 
(∆C-index ~0.2). Of the 245 potentially causal proteins (291 protein-disease pairs), three pairs were 
validated by evidence of drug development from existing drug databases, 288 pairs lacked evidence 
of drug development, and 66 proteins were drug targets approved for other indications.  

Conclusions: Combined analyses of observational and genetic studies revealed the potential causal 
role of several proteins in the aetiology of CMD. Novel protein biomarkers are promising targets for 
drug development and risk stratification. 

Keywords: cardiometabolic disease; proteomics; Mendelian randomization; meta-analysis 
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WHAT IS ALREADY KNOWN ON THIS TOPIC 

• We searched PubMed, Web of Science, and Embase from database inception to July 2023, 

using search terms pertaining to cardiometabolic diseases (CMD) and proteomics without 

language restrictions. In the past decade, hundreds of large population-based observational 

and genetic studies have investigated the associations between circulating proteins and 

CMD. Because of the variation in study designs, sample sizes, and proteomic methodologies, 

the associations between circulating proteins and CMD have been inconclusive. 

WHAT THIS STUDY ADDS 

• The present study systematically assessed the direction and magnitude of the associations 

between circulating proteins and CMD. Meta-analyses of observational and MR studies 

identified 560 and 245 CMD-associated proteins, respectively. Out of 291 Tier 1 or 2 

protein-disease pairs, 288 showed no evidence in drug development databases, and 66 

proteins were recognized as drug targets approved for other indications. Furthermore, 

integration of protein biomarkers into traditional clinical models modestly enhanced the 

prediction of incident CMD. 

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY 

• This systematic review and meta-analysis provides a thorough evaluation of the current 

evidence on the role of circulating proteins in CMD. By integrating proteomics and 

genomics, the approach we adopted can inform the selection of protein biomarkers to 

improve risk stratification of CMD. Additionally, this method can be utilized in the early 

stages of drug discovery to identify promising targets, and it can be integrated with 

traditional approaches to improve the assessment of drug repurposing opportunities.  
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Introduction 1 

Cardiometabolic diseases (CMDs) are the leading cause of death and disability globally.1 Proteins 2 

play critical roles in the biological processes involved in CMD and constitute effective drug 3 

targets.2 Proteomics informs the holistic and comprehensive understanding of molecular and 4 

cellular mechanisms underlying the pathogenesis of diseases.3 In recent years, high-throughput 5 

proteomics assays have flourished and proteomics has been widely used in large-scale 6 

population-based studies.  7 

Mendelian randomization (MR) utilizes the random allocation of genetic alleles during meiosis and 8 

uses genetic variants specifically related to a particular exposure to examine the causal effect of the 9 

exposure on the disease.4 Compared with observational studies, MR studies seek to establish 10 

whether specific proteins are causally related to CMD risk or represent downstream markers of 11 

CMD-related processes. By providing evidence of causation, MR has the potential to accelerate 12 

genetics-guided drug discovery.5 13 

In the past decade, hundreds of observational and MR studies have examined the associations 14 

between circulating proteins and CMD. However, the study design, sample size, and proteomic 15 

assays varied across studies. Therefore, we undertook a systematic review and meta-analysis to 16 

assess the direction and magnitude of the associations between circulating proteins and CMD, so as 17 

to provide clues and references for research on potential biological mechanisms and drug targets of 18 

CMD. 19 

Materials and Methods 20 

Literature search, study selection and data extraction 21 
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We systematically searched PubMed, Embase, and Web of Science from inception to 11 July 2023. 22 

We included prospective observational and MR studies that investigated the associations between 23 

circulating proteins and CMD, including coronary heart disease (CHD, I20-I25), stroke (I60-I69), 24 

type 2 diabetes (T2D, E11), heart failure (HF, I50), atrial fibrillation (AF, I48), and atherosclerosis. 25 

When two or more studies reported data from the same cohort or consortium, only the study with 26 

the largest number of participants was included. We excluded (1) studies that used post-mortem 27 

blood, tissue or urine samples; (2) studies that recruited patients with non-CMD (e.g. dementia, 28 

arthritis) at baseline; and (3) in vivo and in vitro studies. We also manually searched the reference 29 

list of the retrieved review articles to identify other studies. No language restriction was imposed, 30 

and all included studies were in English. Studies were evaluated against the inclusion and exclusion 31 

criteria by two independent researchers and any difference were resolved via discussion with a third 32 

researcher. Data from included studies were extracted into predefined tables by two researchers 33 

independently. The study protocol was registered with PROSPERO (Registration number: 34 

CRD42022350327). Detailed search strategies and data extraction procedures were shown in 35 

eMethods.  36 

Quality assessment 37 

Quality assessment was conducted for observational and MR studies, separately. For observational 38 

studies, the quality of each study was assessed according to the Newcastle-Ottawa Scale (NOS) by 39 

two reviewers independently (T.W. and Y.K.). NOS covered three domains: subject 40 

representativeness, comparability of subjects, and ascertainment of risk. The length of follow-up 41 

was set at a minimum of five years to be considered as adequate. NOS scores were categorized as 42 
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high quality (seven to nine stars), moderate quality (four to six stars), and low quality (zero to three 43 

stars). 44 

Statistical analysis 45 

Before meta-analyses, we standardized names of proteins according to Unified Protein Database 46 

(Uniprot) (Table S1)6. Meta-analyses were performed separately for observational and MR studies, 47 

and for each specific disease outcome. Protein-disease pairs with ≥two non-overlapping reports 48 

were included. Relative risk (RR) estimates for observational studies and odds ratio (OR) estimates 49 

for MR studies per one standard deviation (SD) increase in proteins levels were pooled using 50 

random effects models via R package ‘metafor’. Between-study heterogeneity was assessed using 51 

the I2 statistic.  52 

For MR studies, analyses were restricted to European population because 91.4% studies were 53 

conducted in Europeans, and excluded proteins using trans-protein quantitative trait loci (pQTL) to 54 

avoid horizontal pleiotropy. We graded the evidence of proteins in MR studies (Figure 1). 55 

Meanwhile, significant protein-disease pairs reported by only one MR study were also graded and 56 

presented for their valuable insights into causality. For proteins with Tier 1 or 2 MR evidence (i.e. 57 

top levels of certainty), we conducted pathway enrichment analysis7 and evaluated the druggability8 58 

(eMethods). 59 

To enhance the credibility and interpretability of our results, we compared findings from 60 

observational and MR studies. A protein-disease pair was considered consistent if: 1) the association 61 

was significant in observational meta-analysis and graded as Tier 1-2 on MR evidence, and 2) the 62 

directions of effect estimates were concordant in both analyses. 63 
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A 2-sided p-value <0.05 was considered statistically significant. A Benjamini-Hochberg false 64 

discovery rate (FDR) <5% was used to account for multiple comparisons. All statistical analyses 65 

were conducted using R V.4.2.2.  66 

Patient and public involvement in research 67 

We report no patient or public involvement in the design or implementation of the study. 68 

Results 69 

The overview of analytic approaches and key findings were presented in Figure 1. The literature 70 

search generated 14,932 records, and 85 studies were included in the final analysis, involving 50 71 

prospective observational studies, 25 MR studies, and ten studies performing both observational 72 

and MR analyses (Figure S1). The characteristics of included studies were summarized in Table S2. 73 

For a full reference list, see Supplement 1. 74 

Observational associations between proteins and CMD 75 

A total of 60 studies examined the associations between proteins and incident CMDs, reporting 76 

results for 3788 protein-disease pairs. 2318 pairs with two or more reports were included in 77 

meta-analysis. Of these, the associations of 748 pairs remained significant in meta-analysis (Figure 78 

2-3). The number of proteins included in each stage is summarized by diseases in Figure 2. Among 79 

all stroke subtypes, only incident ischemic stroke (IS) was investigated and included in 80 

meta-analysis. Moderate heterogeneity was observed for observational pooled results, and 45.8% 81 

pairs had I2 ≥80%. Detailed effect estimates of meta-analysis specific for each disease were 82 

summarized in Table S3-S8. 83 
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In our pooled results, 133 proteins were associated with risk of two or more CMDs, referred to as 84 

“pleiotropic protein” (Figure 4). These included 94 proteins associated with two diseases, 27 85 

proteins with three diseases, nine proteins (FABP4, IBP2, IL6, MMP12, ANFB, TNR1B, TR10B, 86 

UPAR, HGF) with four diseases, and three proteins (GDF15, HAVR1, MMP7) with five diseases. 87 

The directions and strengths of associations between single protein and different diseases differed. 88 

111 showed directionally concordant associations with all disease types, including positive 89 

associations for 83 proteins and inverse associations for 28 proteins. In contrast, 22 proteins showed 90 

opposite associations with different diseases (i.e. positive associations with some and inverse 91 

associations with the others).  92 

Genetic associations between proteins and CMD 93 

The evaluation of MR evidence included 35 studies assessing circulating proteins as possible causal 94 

biomarkers for CMDs, with 10,531 protein-disease pairs reported and 1614 pairs eligible for 95 

meta-analysis. Different from the observational studies, the genetic associations between proteins 96 

and six stroke subtypes were investigated, including total stroke, IS, large artery stroke (LAS), 97 

cardioembolic stroke (CES), small vessel stroke (SVS), haemorrhagic stroke (HS), and 98 

subarachnoid haemorrhage (SAH). The certainty of evidence derived from MR studies were divided 99 

into four tiers, and 245 proteins were graded as Tier 1 and Tier 2 (Figure 1-2 and Figure S2). 100 

Moderate heterogeneity was observed for MR pooled results, and 14.2% pairs had I2 ≥80%. 101 

Detailed effect estimates for each disease were summarized in Table S9-S21.  102 

When comparing the observational and genetic associations in the same study, 39 of 246 103 

protein-disease pairs (15.8%) showed consistent results (Table S22). Of 1731 protein-disease pairs 104 
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investigated in both of observational and MR pooled analyses, only 22 pairs showed directionally 105 

consistent associations (i.e. satisfying significant observational associations and Tier 1-2 proteins on 106 

MR evidence, Figure 2).  107 

Of the 35 proteins significant in the meta-analysis of observational studies for CHD, only MMP12 108 

was Tier 1 or 2 targets in MR studies (Figure 2), but the directions of associations were inconsistent 109 

with observational studies (OR, 1.29; 95% CI, 1.09-1.52; p-value=0.003) and MR studies (OR, 0.97; 110 

95% CI, 0.94-1.00; p-value=0.022). 111 

Within the set of 31 proteins exhibiting significance in observational results for IS, ADML and 112 

MMP12 were also identified as Tier 1 or 2 targets (Figure 2). ADML and MMP12 were associated 113 

with higher risk of IS in observational meta-analysis, while both of them were associated with lower 114 

risk of IS in MR studies (Figure 3).  115 

Among the 323 proteins found significant in observational studies for T2D, 15 proteins belonged to 116 

Tier 1 or 2 targets (Figure 2). Nine proteins showed directionally consistent associations with risk of 117 

T2D between observational and MR studies, and the remaining six proteins showed opposite 118 

associations (Figure 3). 119 

In the set of 286 HF-associated proteins identified in the meta-analysis of observational studies, the 120 

MR evidence of 27 proteins were graded as Tier 1 or 2 (Figure 2). The results of 12 proteins were 121 

directionally consistent in observational and MR analyses, and the results of 15 proteins were 122 

directionally opposite (Figure 3). 123 

There were 57 proteins significant in the observational results for AF, among which only three 124 

proteins were classified with Tier 1 or 2 MR evidence (Figure 2). SPON1 was directionally 125 
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consistent (RR, 1.37; 95% CI, 1.11-1.69 in observational studies vs. OR, 1.08; 95% CI, 1.02-1.15 in 126 

MR studies); the remaining two were directionally inconsistent, namely FBLN3 (RR, 1.80; 95% CI, 127 

1.50-2.17 in observational studies vs. OR, 0.94; 95% CI, 0.90-0.97 in MR studies) and LEP (RR, 128 

0.90; 95% CI, 0.81-1.00 in observational studies vs. OR, 1.14; 95% CI, 1.00-1.29 in MR studies). 129 

Of the 16 proteins significantly associated with atherosclerosis in observational studies, only ANFB 130 

was considered as Tier 1 or 2 in MR pooled results (Figure 2), which was inversely associated with 131 

risk of atherosclerosis in MR studies (β, -0.006; 95% CI, -0.009--0.003; p-value=4.40×10-5), but 132 

showed positive association in observational pooled results (β, 0.006; 95% CI, 0.001-0.010; 133 

p-value=0.014). 134 

Combining the associations between a single protein and various CMDs, we identified 23 Tier 1-2 135 

proteins associated with risk of two or more CMDs, referred to as “pleiotropic protein” (Figure S2). 136 

These included 14 proteins associated with two diseases, three proteins with three diseases, three 137 

proteins (TMPS5, TNF12, TNR5) with four diseases, one protein (LPA) with six diseases, and two 138 

proteins (IL6RA and MMP12) associated with seven diseases. The directions and strengths of 139 

associations between single protein with different diseases differed. Of these 23 proteins, 18 showed 140 

directionally concordant associations with all disease types, including positive associations for eight 141 

proteins (LPA, BGAT, FGF5, HSPB1, I15RA, MMP3, NELL1, TMPS5) and inverse associations 142 

for ten proteins (CATD, DHPR, ERAP1, FCG2A, IL6RA, MMP12, QSOX2, SCAR5, TFPI1, 143 

TNR5). In contrast, five proteins showed directionally opposite associations with different diseases 144 

(CFAI, IL1R2, MANBA, SPON1, TNF12). 145 

Quality assessment 146 
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For observational studies, 54 studies (90.0%) were graded as high quality, and the remaining six 147 

studies with an NOS score ≤six were considered as moderate quality (Table S23). Table S24 148 

summarizes the validation of three assumptions by each MR study. Assumption one was validated 149 

in eight studies (22.3%), and assumptions two and three were verified in 12 studies (34.3%). All 150 

three assumptions were validated in six studies (17.7%). To reduce bias due to pleiotropy, 29 studies 151 

(82.9%) restricted instrumental variables to cis-pQTLs, and 19 studies (54.3%) employed 152 

MR-Egger regression as sensitivity analysis, of which 14 studies (73.7%) reported no significant 153 

signs of horizontal pleiotropy (Table S24).  154 

Risk prediction models including proteins 155 

29 studies constructed risk prediction models for incident CMD including proteins and compared 156 

that with clinical risk models (Table S25). The number of proteins included in the model ranged 157 

from 1 to 291 (median 6, interquartile range 1-20). Although protein models showed better 158 

discrimination over the clinical risk model, the majority had limited improvement (Figure 5). 13 out 159 

of 79 models (16.5%) improved the C-index by ≥0.10 and 32 models (40.5%) reported significant 160 

improvement. There were 28 models (35.4%) with proteins reaching a C-index ≥0.8, half of which 161 

had a base model without proteins with a C-index <0.8. The most commonly included proteins were 162 

ANFB (19 models) and IBP2 (9 models). Disease outcomes with C-index improvement ≥0.10 were 163 

arteriosclerotic cardiovascular disease (ASCVD) (n=2), T2D (n=1), and HF (n=10). In the top two 164 

models that improved the C-index for predicting HF (difference of C-index≈0.19), both included 165 

PRELP, LEG9, NEMO, and UPAR. 166 

Evaluation of druggability and clinical development activity 167 
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Of the proteins identified as Tier 1 or 2, 102 (41.6%) were established drug targets in the database 168 

(Table S26). These included three target-indication pairs (CP3A4-HF, LYAM2-HF, and PLMN-HF) 169 

that had already been approved as treatments. There were no reports of drug targets or drug 170 

development for the remaining 288 protein-disease pairs. Additionally, a total of 66 Tier 1 or 2 171 

proteins were targets of licensed drugs for indications different from the diseases implicated by our 172 

MR pooled results (Figure S3). 173 

Functional annotation and enrichment analysis 174 

Of the proteins identified as Tier 1 or 2, four, eight, 19, 85, and 12 GO biological processes 175 

identified for CHD, IS, T2D, HF, and AF (p-value<0.05), and nine processes were related to ≥two 176 

diseases (Table S27). The top 20 GO biological processes (i.e. terms with lowest p-value) were 177 

shown in Figure 6A. There were five, two, six, 11, and two KEGG pathways identified for CHD, IS, 178 

T2D, HF, and AF (p-value <0.05), respectively, and four pathways were related to ≥two diseases 179 

(Table S28, Figure 6B). 180 

Discussion 181 

In the current study, 560 proteins were observationally associated with CMD (including 133 182 

proteins associated with ≥two CMD subtypes), while 245 proteins showed genetic associations 183 

with CMD (including 23 proteins showing pleiotropic effects). 22 protein-disease pairs showed 184 

directionally consistent associations in observational and MR pooled estimates. 288 Tier 1 or Tier 2 185 

protein-disease pairs were not reported for drug development and 66 proteins were drug targets 186 

approved for other indications, providing new possible targets for drug development and 187 

repurposing opportunities for existing drug targets. Addition of proteins to a clinical factor model 188 
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modestly improved risk prediction for incident CMD.  189 

Several proteins showed consistent associations with diseases in both observational and MR 190 

analyses (e.g. TNF12), whereas some yielded inconsistent results (e.g. MMP12). TNF12 (also 191 

known as TNFSF12) was inversely associated with CES and AF in MR studies, and with HF in 192 

observational studies. TNF12 has been investigated in phase I-II trials for lupus nephritis, 193 

rheumatoid arthritis and neoplasms, but not for CMD.8 MMP12 plays an important role in 194 

maintaining vein wall structure and function.9 The pooled MR results revealed that MMP12 was 195 

associated with lower risk of CHD, IS, LAS, CES, T2D, and HF, but a higher risk of HS. In contrast, 196 

observational meta-analysis found MMP12 positively associated with risk of CHD, HF, and 197 

IMT-CCA. As a therapeutic target, lithostat, a MMP12 inhibitor, is used to treat urea splitting 198 

bacterial infections of the urinary tract8, and two other MMP12 inhibitors (i.e. neovastat, marimastat) 199 

did not improve cancer survival in phase III trials.10,11 No CMD-related drug development for 200 

MMP12 was found. The heterogeneity between observational and MR studies might be partly 201 

explained by confounding and reverse causality in observational studies12and the validity of MR 202 

assumptions13.  203 

Our findings suggested that a targeted proteomics panel might improve CMD risk prediction. 32 of 204 

79 models included in this study showed better performance of the protein model over the 205 

conventional clinical model. However, only 13 of these models improved the C-index by ≥0.10. 206 

Previous studies also indicated that protein risk scores14 and polygenic risk scores15 (also applying 207 

omics data to CMD risk prediction models) both provided statistically significant but modest 208 

improvement in discrimination. The protein risk score increased the C-index by 0.014 for ASCVD 209 
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prediction14, while the polygenic risk score improved the C-index by 0.024 for CHD prediction15. 210 

Due to the relatively high economic cost of high-throughput proteomics tests and the heterogeneity 211 

of proteins proposed by different studies, it remained to be cautiously determined whether protein 212 

biomarkers are clinically useful to screen for future CMD.16  213 

The current study identified 288 protein-disease pairs to be putative causal biomarkers but without 214 

evidence of drug development, representing potential new therapeutic targets for CMD. This study 215 

also observed putative drug-repurposing opportunities of some existing drugs. For example, PAR1 216 

protein is targeted by vorapaxar17, which is used to reduce thrombotic cardiovascular events in 217 

patients with history of myocardial infarction or peripheral arterial disease.18 Our study showed 218 

both observational and genetic evidence supporting the role of inhibition of circulating level of 219 

PAR1 on reducing HF risk, implying a repurposing opportunity of vorapaxar on HF prevention. 220 

This study also had several limitations. First, most included studies used high-throughput, targeted 221 

proteomics platforms covering 85-5000 proteins, with varying protein content. These platforms 222 

selected proteins related to cardiometabolic health and other factors based on hypotheses drawn 223 

from previous research. However, it’s possible that some unmeasured proteins may still be 224 

associated with CMDs. Second, we did not perform subgroup analyses by regions or race/ethnicity 225 

as the number of studies in non-European populations was limited. Third, participants included in 226 

the meta-analysis were mostly Europeans, and the results might not be directly generalizable to 227 

populations with different ethnic/racial backgrounds. Fourth, although our results indicated 228 

potential causal roles of certain proteins in CMD, the restriction of biological samples to blood 229 

specimens indicated that the results did not specifically address in which tissue the effects may be 230 
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mediated. Fifth, horizontal pleiotropy (i.e. instrumental variables additionally influence the outcome 231 

through pathways that bypass the exposure19) is a major consideration and limitation to MR studies. 232 

We conducted a quality assessment of MR studies, focusing on addressing horizontal pleiotropy, 233 

and only included cis-loci in the meta-analysis to minimize potential bias. Lastly, although 234 

adherence to Hardy-Weinberg equilibrium was used to control potential genotyping errors in each 235 

MR study included, establishing causality is challenging due to the heterogeneity in study designs 236 

and proteomics coverage. Therefore, we employed several approaches to identify significant 237 

proteins and enhance results credibility, including meta-analysis, MR evidence grading, and 238 

druggability evaluation. 239 

In conclusion, this study comprehensively integrated evidence on the observational and genetic 240 

associations of proteins with CMD, revealing the important roles of circulating proteins in CMD. 241 

The identification of novel protein biomarkers offered promising targets for drug development and 242 

risk stratification. These findings enhanced our understanding of CMD aetiology and highlighted 243 

the potential of circulating proteins as biomarkers and therapeutic targets, paving the way for future 244 

research and clinical applications. 245 
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Figure legends 

Figure 1. Overview of analytic approaches and key findings. *In four observational studies, incident 

ischemic stroke was examined as the outcome and no other stroke subtypes were investigated. AF, 

atrial fibrillation; CHD, coronary heart disease; CMD, cardiometabolic disease; HF, heart failure; 

MR, Mendelian randomization study; pQTL, protein quantitative trait loci; T2D, type 2 diabetes. 

Figure 2. Summary of proteins in observational and MR studies. The number of proteins in 

observational and MR pooled results following three steps (i.e. reported by original studies, 

included in meta-analysis, and significantly associated with CMD in observational meta-analysis or 

with Tier 1 or 2 evidence in MR pooled results), and comparison of proteins significant in 

observational meta-analysis and Tier 1 or 2 proteins in MR pooled results. Consistent proteins 

denote protein biomarkers showing observational and genetic associations in the same direction, 

while inconsistent proteins denote protein biomarkers showing opposite associations in 

observational and genetic analyses. AF, atrial fibrillation; CHD, coronary heart disease; HF, heart 

failure; IS, ischemic stroke; MR, Mendelian randomization study; OB, observational study; T2D, 

type 2 diabetes. 

Figure 3. Associations between proteins and CMDs in observational meta-analysis and MR pooled 

results. Names were given for top 20 proteins with the lowest p-value. AF, atrial fibrillation; CHD, 

coronary heart disease; HF, heart failure; IS, ischemic stroke; T2D, type 2 diabetes. 

Figure 4. Pleiotropy of proteins in observational pooled results. Grey colour denotes that the 

protein-disease pair was not available for meta-analysis. AF, atrial fibrillation; CHD, coronary heart 

disease; HF, heart failure; IS, ischemic stroke; T2D, type 2 diabetes. 
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Figure 5. Improvement of C-index of clinical risk prediction model through the addition of proteins. 

The size of the dots represents the number of proteins included in the model. The colour of the dots 

indicates the C-index of the clinical model and the model with addition of proteins: blue denotes 

that both the base model and the protein model have a C-index <0.8; yellow denotes that the base 

model has a C-index <0.8, and the protein model has a C-index ≥0.8; red denotes that both the base 

model and the protein model have a C-index ≥0.8. An improvement in C-index ≥0.1 is considered 

clinically meaningful. AF, atrial fibrillation; ASCVD, atherosclerotic cardiovascular disease; HF, 

heart failure; T2D, type 2 diabetes. 

Figure 6. Chord diagrams of enriched in GO biological processes and KEGG pathways for CMD. A 

shows the top 20 GO biological processes and B shows significant KEGG pathways. AF, atrial 

fibrillation; CHD, coronary heart disease; HF, heart failure; IS, ischemic stroke; T2D, type 2 

diabetes. 

 


