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Abstract
Macrophages in atherosclerotic lesions exhibit a spectrum of behaviours or pheno-
types. The phenotypic distribution of monocyte-derived macrophages (MDMs), its
correlation withMDM lipid content, and relation to blood lipoprotein densities are not
well understood. Of particular interest is the balance between low density lipoproteins
(LDL) and high density lipoproteins (HDL), which carry bad and good cholesterol
respectively. To address these issues, we have developed a mathematical model for
early atherosclerosis in which the MDM population is structured by phenotype and
lipid content. The model admits a simpler, closed subsystem whose analysis shows
how lesion composition becomes more pathological as the blood density of LDL
increases relative to the HDL capacity. We use asymptotic analysis to derive a power-
law relationship between MDM phenotype and lipid content at steady-state. This
relationship enables us to understand why, for example, lipid-laden MDMs have a
more inflammatory phenotype than lipid-poor MDMs when blood LDL lipid density
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greatly exceeds HDL capacity. We show further that the MDM phenotype distribution
always attains a local maximum, while the lipid content distribution may be uni-
modal, adopt a quasi-uniform profile or decrease monotonically. Pathological lesions
exhibit a local maximum in both the phenotype and lipid content MDM distribu-
tions, with the maximum at an inflammatory phenotype and near the lipid content
capacity respectively. These results illustrate how macrophage heterogeneity arises
in early atherosclerosis and provide a framework for future model validation through
comparison with single-cell RNA sequencing data.

Keywords Phenotype · Lipid · Structured population model · Atherosclerosis ·
Discrete · Continuum

1 Introduction

Atherosclerosis is a chronic inflammatory condition of the artery wall (Bäck et al.
2019). The disease begins with the retention of low-density-lipoprotein (LDL) parti-
cles in the artery wall. LDL particles, which carry fatty compounds called lipids, enter
the artery wall from the bloodstream and are retained via interactions with extracel-
lular matrix. Retained LDL (rLDL) particles are rapidly modified via oxidation and
aggregation. The accumulation of rLDL particles triggers an immune response that
attracts monocyte-derived macrophages (MDMs) to the lesion. MDMs are typically
themost numerous immune cell type in early atherosclerotic lesions (Willemsen and de
Winther 2020). They play a key role in disease progression by ingesting extracellular
lipid and offloading lipid to high-density lipoprotein (HDL) particles, which also enter
the lesion from the bloodstream (Kloc et al. 2020). Importantly, MDMs may adopt a
variety of phenotypes depending on their interactionwith the lesionmicroenvironment
(Tabas and Bornfeldt 2016; Bäck et al. 2019). This includes inflammatory (M1-like)
and resolving (M2-like) phenotypes. Over time, sustained inflammation and the death
of lipid-laden MDMs may cause the lesion to transition into an atherosclerotic plaque
with a large core of extracellular lipid (Guyton and Klemp 1996; Gonzalez and Tri-
gatti 2017). The rupture of this plaque releases the lipid core into the bloodstream,
where it promotes blood clot formation and can induce an acute clinical event. Plaque
rupture is the most common cause of myocardial infarction (Costopoulos et al. 2017)
and a leading cause of ischaemic strokes (Rothwell 2007). Understanding how the in
vivo distribution of MDM phenotype is influenced by MDM lipid content and blood
LDL/HDL densities are active areas of research.

Macrophages in atherosclerotic lesions exhibit a continuum of inflammatory to
resolving phenotypes (Leitinger and Schulman 2013; Bäck et al. 2019). This view
supersedes the traditional dichotomous M1/M2 classification of macrophage phe-
notype; M1 and M2 polarisation now typically refer to the extremes of a phenotype
continuum (Barrett 2020).Macrophage phenotypemodulation appears to be reversible
(Barrett 2020; Lin et al. 2021; Wang et al. 2014), and is largely determined by the
balance between (pro-)inflammatory and (pro-)resolving mediators (Tabas and Born-
feldt 2016; Bäck et al. 2019). Following the classification presented in Tabas and
Bornfeldt (2016), inflammatory mediators include cytokines such as TNF and IL-1,
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that are secreted by MDMs upon uptake of modLDL (Liu et al. 2014), and damage
associated molecular patterns (DAMPs) that are released upon the secondary necro-
sis of apoptotic cells (Sachet et al. 2017). Resolving mediators include the cytokines
IL-10 and IL-13, and specialised pro-resolving lipid mediators. Resolving mediators
are synthesised by macrophages upon apoptotic cell uptake (Decker et al. 2021) and
interaction with HDL (Serhan and Levy 2018). LDL and HDL promote the synthesis
of opposing mediator types (inflammatory and resolving respectively) and, so, are
likely to induce opposing effects on MDM phenotype.

Mathematical models of atherosclerosis are an emerging field of study (Parton et al.
2016; Avgerinos and Neofytou 2019; Cai and Li 2021; Mc Auley 2022). The existing
literature includes (i) models of LDL infiltration (Prosi et al. 2005; Yang and Vafai
2006, 2008), (ii) mechanical models of plaque growth (Fok 2012; Watson et al. 2018;
Fok and Lanzer 2018; Watson et al. 2020; Fok and Mirzaei 2021), and (iii) models
that focus on lesion immunology. Lesion immunology has been modelled using ODEs
(Bulelzai and Dubbeldam 2012; Cohen et al. 2014; Islam and Johnston 2015; Thon
et al. 2018; Lui and Myerscough 2021; Xie 2022), spatial PDEs (Calvez et al. 2009;
Fok 2012; Hao and Friedman 2014; Chalmers et al. 2015; Mukherjee et al. 2019;
Mohammad Mirzaei et al. 2020; Ahmed et al. 2023) and agent-based approaches
(Corti et al. 2020; Bayani et al. 2020). Importantly, existing models which incorporate
macrophage phenotype do so via binaryM1/M2 classification rather than a continuum
setting (Friedman and Hao 2015; Bezyaev et al. 2020; Liu et al. 2022). Macrophage
lipid content is also typically treated via a binary distinction between macrophages
with little internalised lipid (simply termed ‘macrophages’) and those that are lipid-
laden (termed ‘foam cells’) (Calvez et al. 2009; Hao and Friedman 2014; Chalmers
et al. 2017; Silva et al. 2020). However, several recent studies capture gradual lipid
accumulation in lesion macrophages via structured population modelling (Ford et al.
2019; Meunier and Muller 2019; Chambers et al. 2022, 2023; Watson et al. 2023).

Of particular relevance is the recent lipid-structured model of Chambers et al.
(2023), which serves as the foundation of the present study. By extending this model
to account for simultaneous variation inMDMphenotypeand lipid content,weprovide
amechanistic framework to explore the diversity of lipid-associatedmacrophage states
revealed by single-cell RNA sequencing (Dib et al. 2023). Other authors have proposed
dual-structuredmathematical models (e.g. Bernard et al. 2003; Doumic 2007; Laroche
and Perasso 2016; Hodgkinson et al. 2019, reviewed in Kang et al. (2020)). A key
difference between these existing models and ours relates to the time evolution of the
structure variables: in most existing models, the structure variables are independent
whereas in our model their time evolution is coupled. We use our dual-structured
model to address the following questions:

1. How do blood LDL/HDL levels impact lesion composition?

a. How do they affect the time-evolution of lesion composition?
b. How do they affect lesion composition at steady state?

2. How are phenotype and lipid content distributed among MDMs?

a. How do MDM phenotype and lipid content evolve over time?
b. Are MDM phenotype and lipid content correlated?
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c. What are the qualitative features of the phenotype and lipid content
marginal distributions at steady state?

The remainder of the paper is structured as follows. Sect. 2 details the model devel-
opment, including the derivation of a closed subsystem and discussion of parameter
values. Sect. 3 contains the results of our model analysis. Key questions 1 and 2 are
addressed in Sects. 3.1 and 3.2, respectively. Finally, we discuss the results and their
implications in Sect. 4.

2 Model Development

In this section we present a phenotype-lipid dual-structured model for MDM popu-
lations in early atherosclerosis. Model schematics for the MDM dynamics and LDL
retention are given in Figs. 1 and 2, respectively.

2.1 Assumptions and Definitions

We assume for simplicity that macrophage phenotype and lipid content change by
finite increments, �φ = 1 and �a > 0 respectively. Specifically, we let mφ,�(t)
denote the number density of MDMs with phenotype φ and lipid content a0 + ��a at
time t ≥ 0. The phenotype index runs over both positive and negative integer values:
φ = 0,±1, . . . ,±φmax. Macrophages with φ > 0 are pro-inflammatory and have
an M1-like phenotype; those with φ < 0 are anti-inflammatory and have an M2-like
phenotype. The extreme values φ = ±φmax can be interpreted as complete M1 and
M2 polarisation. The lipid index runs over non-negative values: � = 0, 1, . . . , �max,

so that macrophage lipid content ranges from their endogenous content, a0 ≥ 0, to a
maximum value, a0 + κ , where κ := �max�a is the maximum capacity for ingested
lipid.

We also introduce variables to describe the extracellular environment. We denote
by LLDL(t) ≥ 0, L r(t) ≥ 0, Lap(t) ≥ 0 and Ln(t) ≥ 0 the mass densities of free LDL
lipid, retained LDL lipid, apoptotic lipid and necrotic lipid respectively.We let H(t) be
the lipid capacity of HDL particles in the lesion. Finally, we denote by S+(t) ≥ 0 and
S−(t) ≥ 0 the mass densities of inflammatory and resolving mediators respectively.

We note that all dependent variables in the model denote densities within the tunica
intima. This is the innermost region of the artery wall where atherosclerosis develops
(Bäck et al. 2019). As shown in Figs. 1 and 2, the intimal densities are nonetheless
affected by the bloodstream and tunica media (the next layer of the artery wall) via the
flux of cells and lipids. We assume for simplicity that the contents of the bloodstream
and tunica media are static in the equations below.
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Fig. 1 A schematic of the MDM-lipid dynamics in the model. Processes represented with blue arrows
stimulate the secretion of resolving mediators by MDMs, while those represented by red arrow stimulate
the emission of inflammatory mediators. The lower half illustrates the discrete phenotype-lipid structure
space that underpins the MDM dynamics. LDL retention and constitutive mediator production by MDMs
are not shown
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Fig. 2 Schematic of the LDL kinetics in absence of MDMs. The model distinguishes between free LDL
(LLDL ), which diffuses freely between the bloodstream, tunica intima and tunica media, and retained LDL
(Lr) that is bound to the ECMwithin the tunica intima. We assume in Eqs. (7)–(8) that the ECM has a finite
capacity for rLDL, Kr, and that the rate of binding is proportional to the available capacity: kb(Kr − Lr)

2.2 Model Equations

MDMs. We propose that the MDM population evolves according to the following
ODEs:

d

dt
mφ,� = kL · L [

(�max − � + 1)mφ,�−1 − (�max − �)mφ,�

]

︸ ︷︷ ︸
lipid uptake

+ kH H
[
(� + 1)mφ,�+1 − �mφ,�

]

︸ ︷︷ ︸
lipid efflux to HDL

+ kSχ S+
[
(φmax − φ + 1)mφ+1,� − (φmax − φ)mφ,�

]

︸ ︷︷ ︸
inflammatory phenotype modulation

+ kSχ S−
[
(φmax + φ + 1)mφ+1,� − (φmax + φ)mφ,�

]

︸ ︷︷ ︸
resolving phenotype modulation

+ Rφ,�(t)︸ ︷︷ ︸
recruitment

− (β + γ )mφ,�︸ ︷︷ ︸
apoptosis and egress

,

(1)

and closure conditions:

mφ,−1 ≡ mφ,�max+1 ≡ m−φmax−1,� ≡ mφmax+1,� ≡ 0, (2)

for every φ = 0,±1, . . . ,±φmax and � = 0, 1, . . . , �max.
The first term on the right hand side of Eq. (1) accounts for lipid uptake. Following

Chambers et al. (2023), we model lipid uptake with a mass-action treatment of the
following reactions:

mφ,�(t) + Li (t)/�a
ki (�max−�)−−−−−−→ mφ,�+1(t), (3)
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for every (φ, �) and i ∈ {LDL, r, ap, n}. Reactions (3) assume that the rate of lipid
uptake decreases linearly with lipid content in a manner commensurate with available
capacity. For notational brevity in Eq. (1), we introduce vectors for the uptake rates,
kL := (kLDL, kr, kap, kn), and the extracellular lipids, L := (LLDL, L r, Lap, Ln), so
that kL · L = kLDL LLDL + krL r + kapLap + knLn.

The second term of the RHS of Eq. (1) accounts for lipid efflux to HDL. Again,
following Chambers et al. (2023), we treat efflux with mass-action kinetics according
to the reactions:

mφ,�(t) + H(t)/�a
kH �−−→ mφ,�−1(t), (4)

for every (φ, �). The reactions (4) assume that the efflux rate increases linearly with
lipid content.

The third and fourth terms of the RHS of Eq. (1) account for MDM phenotype
modulation by inflammatory and resolving mediators (Bäck et al. 2019), S+ and S−
respectively. We model phenotype modulation via the reactions:

mφ,�(t) + S±(t)/�s
kS−→

{
mφ±1,�(t) w/ probability p±

φ := χ(φmax ∓ φ)

mφ,�(t) w/ probability 1 − p±
φ ,

(5)

for every (φ, �). Here kS is the rate of mediator binding to MDM surface recep-
tors and �s is the mediator mass bound per interaction. We assume each mediator
binding interaction stimulates a move to a new phenotype class with probability:
p±
φ = χ(φmax ∓ φ). The parameter 0 ≤ χ ≤ (2φmax)

−1 which modulates this prob-
ability can be interpreted as the phenotypic plasticity of the MDMs. We assume that
p±
φ decreases linearly to zero as φ → ±φmax, so that it becomes increasingly difficult

for MDMs to become more polarised the more polarised they are. Biologically, this
property reflects the saturation of intracellular signalling pathways whenmacrophages
are continually exposed to inflammatory or resolving mediators.

The final terms on the RHS of Eq. (1) account for MDM recruitment, apoptosis and
egress. We assume that newly recruited MDMs enter the lesion from the bloodstream
carrying only endogenous lipid and with an uncommitted phenotype:

Rφ,�(t) :=
⎧
⎨

⎩
σM

(
S+

S++Sc50+ +ρS−

)
if (φ, �) = (0, 0);

0 if (φ, �) �= (0, 0).
(6)

The recruitment rate is a first-order Hill function of the inflammatorymediator density,
S+, which saturates at the maximum value σM . Resolving mediators, S−, inhibit
recruitment by linearly increasing the threshold for half-maximal recruitment from
the basal value Sc50+ ; the parameter ρ governs the sensitivity of the recruitment rate to
S−. We assume for simplicity that the rates of MDM apoptosis, β, and egress, γ , are
constant.
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Extracellular lipids. We assume that the densities of free and retained LDL evolve
according to the ODEs:

dLLDL

dt
= π

(0)
L (L(0) − LLDL)︸ ︷︷ ︸

lumenal flux

−π
(1)
L (LLDL − L(1))

︸ ︷︷ ︸
tunica media flux

− kbLLDL(Kr − L r)︸ ︷︷ ︸
retention via ECM binding

+ k−bL r︸ ︷︷ ︸
unbinding

− kLDL�aLLDL

∑

φ,�

(�max − �)mφ,�

︸ ︷︷ ︸
uptake by MDMs

, (7)

dL r

dt
= +kbLLDL(Kr − L r) − k−bL r

− kr�aL r

∑

φ,�

(�max − �)mφ,�. (8)

The first two terms on the RHS of Eq. (7) account for the flux of free LDL between
the lesion and the lumen/tunica media. The parameters π

(0)
L and π

(1)
L denote the LDL

exchange rate at the endotheliumand internal elastic lamina, respectively. The densities
of free LDL in the lumen, L(0), and tunica media, L(1), are assumed to be non-negative
constants. We assume that free LDL binds to ECM proteoglycans with rate constant
kb in a capacity-limited manner, and unbinds at rate k−b; the maximum capacity for
LDL retention is Kr. The final terms on the RHS of Eqs. (7) and (8) account for MDM
uptake of free and bound LDL via reactions (3).

We propose that the densities of apoptotic and necrotic lipid satisfy:

dLap

dt
= β

∑

φ,�

(a0 + ��a)mφ,�

︸ ︷︷ ︸
apoptosis

− νLap − kap�aLap

∑

φ,�

(�max − �)mφ,�, (9)

dLn

dt
= β

∑
(a0 + ��a)mφ,� + νLap︸︷︷︸

necrosis

− kn�aLn

∑

φ,�

(�max − �)mφ,�

︸ ︷︷ ︸
uptake by MDMs

. (10)

The first term of the RHS of Eq. (9) accounts for lipid deposition into the extracellular
space due to MDM apoptosis. We assume that apoptotic cells undergo secondary
necrosis at rate ν, which provide linear sink and source terms in Eqs. (9) and (10),
respectively. The final terms on the RHS of Eqs. (9) and (10) describe apoptotic and
necrotic lipid uptake by MDMs.

123



Blood Lipoproteins Shape the Phenotype and Lipid Content... Page 9 of 44   112 

HDL lipid capacity. We assume that the lipid capacity of the HDL particles in the
lesion evolves according to:

dH

dt
= π

(0)
H (H (0) − H)

︸ ︷︷ ︸
lumenal flux

−π
(1)
H (H − H (1))

︸ ︷︷ ︸
tunica media flux

− kH�aH
∑

φ,�

�mφ,�

︸ ︷︷ ︸
lipid efflux by MDMs

. (11)

The first two terms on the RHS of Eq. (11) describe the flux of HDL lipid capacity (via
HDLparticle diffusion) between the lesion and the lumen/tunicamedia. For simplicity,
we assume that the diffusivity of HDL particles is independent of their lipid capacity,
so that π(0)

H and π
(1)
H represent the common permeability of HDL particles and HDL

lipid capacity at the endothelium and internal elastic lamina respectively. The final
term accounts for MDM lipid efflux to HDL particles.
Inflammatory and resolving mediators. We propose that the densities of inflamma-
tory and resolving mediators satisfy the following ODEs:

dS+
dt

= αL r︸︷︷︸
resident
signals

+μ
[
(kLDL LLDL + krL r)�a

∑

φ,�

(�max − �)mφ,�

︸ ︷︷ ︸
LDL-stimulated emission

+ νLap︸︷︷︸
DAMPs

]

+ kc
∑

φ,�

(
1 + φ

φmax

)
mφ,�

︸ ︷︷ ︸
MDM constitutive production

−
[
kS�s

∑

φ,�

mφ,� + δS

]
S+

︸ ︷︷ ︸
MDM binding and decay

, (12)

dS−
dt

= μ
[
kap�aLap

∑

φ,�

(�max − �)mφ,�

︸ ︷︷ ︸
efferocytosis-stimulated emission

+ kH�aH
∑

φ,�

�mφ,�

︸ ︷︷ ︸
HDL-stimulated emission

]

+ kc
∑

φ,�

(
1 − φ

φmax

)
mφ,� −

[
kS�s

∑

φ,�

mφ,� + δS

]
S−. (13)

The first term on the RHS of Eq. (12) models the release of inflammatory signals
by resident cells (e.g. smooth muscle cells, tissue-resident macrophages) (Williams
et al. 2019, 2020). The signal cascades which first stimulate MDM recruitment are, as
yet, unknown, but are thought to be the result of excessive LDL retention (Williams
and Tabas 2005). Hence, we assume for simplicity that the resident cells produce
inflammatory mediators at rate proportional to the retained LDL lipid density.

Equations (12) and (13) also account for mediator production due to lipid activity.
This includes MDM production of inflammatory mediators due to LDL uptake (both
native and modified forms of LDL induce inflammatory responses in macrophages
(Allen et al. 2022; Chen and Khismatullin 2015)), and MDM production of resolving
mediators upon apoptotic lipid uptake (Dalli and Serhan 2012) and interaction with
HDL (Serhan and Levy 2018). We also include production of inflammatory DAMPs
that are released by apoptotic bodies upon secondary necrosis (Sachet et al. 2017). We
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assume for simplicity that the magnitude of mediator production is proportional to the
amount of lipid involved in each of the above interactions; the parameter μ represents
the mediator mass produced per unit lipid.

The remaining source terms in Eqs. (12) and (13) account for constitutive mediator
production by MDMs. Indeed, macrophages are potent cytokine emitters (even in
the absence of stimulants (Chen and Khismatullin 2015)) and exhibit a phenotype-
dependent secretion profile (Kadomoto et al. 2021). To account for these effects, we
assume that MDMs constitutively produce mediators at the constant rate 2kc per cell,
but that the ratio of inflammatory to resolving mediator production is skewed linearly
according to phenotype. M1-polarised cells with φ = φmax secrete only inflammatory
mediators while M2-polarised cells with φ = −φmax emit only resolving mediators.

We further assume that mediators bind to MDM surface receptors, according to
reaction (5), and undergo natural decay at rate δS . We use a common decay rate for
both inflammatory and resolving mediators since experimentally reported half-lives
for inflammatory and resolving cytokines are comparable (Liu et al. 2021). Similarly,
we use a common binding rate in the absence of evidence for MDM preferential
binding.
Initial conditions We close Eqs. (1), (7)–(13) by supposing that at t = 0:

mφ,� = 0 for every (φ, �),

LLDL = π
(0)
L L(0) + π

(1)
L L(1)

π
(0)
L + π

(1)
L

, L r = kbLLDL Kr

kbLLDL + k−b
, Lap = Ln = 0,

H = π
(0)
H H (0) + π

(1)
H H (1)

π
(0)
H + π

(1)
H

, S+ = αL r

δS
, S− = 0.

(14)

The conditions (42) describe the atherosclerotic lesion immediately prior to MDM
recruitment. These expressions are derived by solving Eqs. (1), (7)–(13) at steady
state with mφ,� = 0 for every (φ, �). We find that free LDL lipid and HDL lipid
capacity are balanced by their fluxes at the endothelium and internal elastic lamina.
Retained LDL levels reflect a balance of binding/unbinding kinetics and directly scale
inflammatory mediator levels. The remaining variables are initially zero.

2.3 A Closed Subsystem

We can derive a closed subsystem from Eqs. (1), (7)–(13) by defining the population
variables:

M(t) :=
∑

φ,�

mφ,�(t), (15)

�̂M (t) := 1

M(t)

∑

φ,�

( φ

φmax

)
mφ,�(t), (16)

L̂M (t) := 1

M(t)

∑

φ,�

( �

�max

)
mφ,�(t). (17)
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Here M(t) ≥ 0 represents the total MDM density. The quantity −1 ≤ �̂M (t) ≤ 1
is the mean MDM phenotype, normalised such that �̂M = 1 corresponds to M1-
polarisation and �̂M = −1 to M2-polarisation. Finally, 0 ≤ L̂M (t) ≤ 1 is the mean
MDM lipid content, normalised by the maximal capacity.

By differentiating definitions (15)–(17) with respect to time and substituting from
Eq. (1), we obtain ODEs for M , �̂M and L̂M :

dM

dt
=

(
σMS+

S+ + Sc50+ + ρS−

)
− (β + γ )M, (18)

d�̂M

dt
= ksχ

[
S+(1 − �̂M ) − S−(1 + �̂M )

] −
(

σMS+
S+ + Sc50+ + ρS−

)
�̂M

M
, (19)

d L̂M

dt
= kL · L (1 − L̂M ) − kH H L̂M −

(
σMS+

S+ + Sc50+ + ρS−

)
L̂M

M
. (20)

Sink terms arise in Eqs. (19) and (20) because recruited MDMs enter the lesion with
φ = � = 0, reducing the mean (absolute) phenotype and lipid content. We can also
rewrite Eqs. (7)–(13) as follows:

dLLDL

dt
= π

(0)
L (L(0) − LLDL) − π

(1)
L (LLDL − L(1))

− kbLLDL(Kr − L r) + k−bL r − kLDLκLLDLM(1 − L̂M ), (21)

dL r

dt
= kbLLDL(Kr − L r) − k−bL r − krκL rM(1 − L̂M ), (22)

dLap

dt
= βM(1 + κ L̂M ) − νLap − kapκLapM(1 − L̂M ), (23)

dLn

dt
= νLap − knκLnM(1 − L̂M ), (24)

dH

dt
= π

(0)
H (H (0) − H) − π

(1)
L (H − H (1)) − kHκHML̂M , (25)

dS+
dt

= αL r + μ
[
(kLDL LLDL + krL r)κM(1 − L̂M ) + νLap

]

+ kcM(1 + �̂M ) − (kS�sM + δS)S+, (26)

dS−
dt

= μ
[
kapκLapM(1 − L̂M ) + kHκHML̂M

]

+ kcM(1 − �̂M ) − (kS�sM + δS)S−. (27)

Equations (18)–(27) with the initial conditions (14) comprise a closed subsystem that
can be solved independently of Eq. (1).

2.4 Parameter Values

The parameters that appear in Eqs. (1), (18)–(27) are summarised in Table 1.
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The blood densities of LDL lipid, L(0), and HDL lipid capacity, H (0), are key
parameters in our model. Since these quantities are sensitive to modifiable lifestyle
factors such as diet and exercise (Schoeneck and Iggman 2021), we explore a range
of plausible values in our analysis. The range for L(0) is based on the human serum
LDL cholesterol distribution reported in Lee et al. (2012), in which 99.8% of the
subjects had LDL cholesterol below 280mg/dL. We multiply this figure by 78/50 to
account for LDL phospholipid to obtain an upper estimate of 480mg/dL (Orlova et al.
1999). We take H (0) = 230mg as a conservative upper bound, which exceeds the
highest recorded HDL cholesterol concentrations ( 193mg/dL) in a sample of 116508
individuals from the general population (Madsen et al. 2017).

We consider a range of values for the LDL retention capacity, Kr , since it varies
between artery wall sections (Lewis et al. 2023). As LDL retention is driven by LDL-
proteoglycan binding, we estimate Kr by considering the artery wall proteoglycan
density. Artery wall extracellular matrix prior to atherosclerosis-induced collagen
degradation consists of 4% proteoglycan and 40% collagen (Wight 2018). Using
0.01-3 mg/mL as an estimate for the collagen density (0.75 mg/mL is used to replicate
the tunica intima in culture models (Liu et al. 2023)), we obtain a proteoglycan den-
sity of 0.001–0.3 mg/mL. Assuming each proteoglycan molecule (est. mass 800kDa
(Yoneda et al. 2002)) can support a single aggregate of LDL (typical diameter 75nm,
corresponding to 0.0002 pg lipid for spherical droplets (Guyton and Klemp 1989)),
we estimate Kr ≈ 15 − 4500 mg/dL.

The values of the remaining parameters are fixed. SeeAppendixA for further details
on these choices of parameter values.

2.5 Non-dimensionalisation

We recast the model in terms of the following dimensionless variables:

t̃ := βt, m̃φ,�(t̃) := β

σM
mφ,�(t), M̃(t̃) := β

σM
M(t),

L̃(t̃) := β

a0σM
L(t), H̃(t̃) := β

a0σM
H(t), S̃±(t̃) := 1

Sc50+
S±(t).

(28)

This scaling measures time in units of mean MDM lifespan, β−1 ≈ 1month, and
MDM densities relative to the maximum influx per MDM lifespan, σMβ−1 ≈ 17000
mm−3. We express the extracellular lipid densities and HDL lipid capacity relative to
the maximum influx of MDM endogenous lipid per MDM lifespan, a0σMβ−1 ≈ 45
mg/dL.Mediator densities aremeasured relative to the density for half-maximalMDM
recruitment, Sc50+ ≈ 5ng/mL.Wealso introduce anumber of dimensionless parameters
in Table 2.

Applying the non-dimensionalisation (28) and definitions of Table 2, and dropping
the tildes for notational convenience, we obtain the following dimensionless ODEs
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Table 2 Dimensionless parameters in the rescaled Eqs. (29)–(41)

Parameter Definition Interpretation Estimate

L̃� β
a0σM

L(0) Lumen LDL lipid density 0–10

H̃� β
a0σM

H (0) Lumen HDL lipid capacity 0–5

K̃r
β

a0σM
Kr LDL retention capacity 0.3–100

π̃
(0)
L

1
β

π
(0)
L Endothelial LDL exchange rate 1.5

π̃
(0)
H

1
β π

(0)
H Endothelial HDL exchange rate 3.0

π̃
(1)
L

1
β

π
(1)
L Internal elastic lamina LDL exchange rate 4.5

π̃
(1)
H

1
β π

(1)
H Internal elastic lamina HDL exchange rate 9.0

k̃b
a0σM

β2 kb LDL retention rate 2.7

k̃−b
1
β
k−b LDL unbinding rate 1.8

γ̃ 1
β γ MDM egress rate 0.2

ν̃ 1
β

ν Secondary necrosis rate 37

κ̃ 1
a0

κ MDM lipid capacity per unit endogenous lipid 29

k̃LDL
a0σM

β2 kLDL LDL uptake rate 0.016

k̃r
a0σM

β2 kr rLDL uptake rate 1.1

k̃ap
a0σM

β2 kap Apoptotic lipid uptake rate 5.5

k̃n
a0σM

β2 kn Necrotic lipid uptake rate 1.4

k̃H
a0σM

β2 kH Lipid efflux rate 16

ρ̃ ρ MDM influx sensitivity to resolving mediators 0.4

k̃S
σM�S

β2 kS Mediator binding rate to MDM receptors 47

δ̃S
1
β δS Mediator natural decay rate 1600

k̃c
σM

Sc50+ β2 kc Constitutive MDM mediator production rate 5100

μ̃
a0σM
Sc50+ β

μ Lipid-stimulated mediator production 9200

α̃
a0σM
Sc50+ β2 α Resident mediator production per rLDL lipid 850

χ̃
kS S

c50+
σM

χ MDM phenotypic plasticity 0.28

φmax φmax MDM phenotype resolution 50

�max �max MDM maximum lipid capacity 100

for the MDM population:

d

dt
mφ,� = kL · L[

(�max − � + 1)mφ,�−1 − (�max − �)mφ,�

]

+ kH H
[
(� + 1)mφ,�+1 − �mφ,�

]

+ χ S+
[
(φmax − φ + 1)mφ−1,� − (φmax − φ)mφ,�

]

+ χ S−
[
(φmax + φ + 1)mφ+1,� − (φmax + φ)mφ,�

]

+ Rφ,� − (1 + γ )mφ,�,

(29)
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where:

Rφ,� :=
{

S+
S++1+ρS− if (φ, �) = (0, 0);
0 if (φ, �) �= (0, 0),

(30)

mφ,−1 ≡ mφ,�max+1 ≡ m−φmax−1,� ≡ mφmax+1,� ≡ 0, (31)

for every φ = 0,±1, . . . ,±φmax and � = 0, 1, . . . , �max. The remaining variables
solve the closed subsystem:

dM

dt
= S+

S+ + 1 + ρS−
− (1 + γ )M, (32)

d�̂M

dt
= χ

[
S+(1 − �̂M ) − S−(1 + �̂M )

] −
( S+
S+ + 1 + ρS−

) �̂M

M
, (33)

d L̂M

dt
= kL · L(1 − L̂M ) − kH H L̂M −

( S+
S+ + 1 + ρS−

) L̂M

M
, (34)

dLLDL

dt
= π

(0)
L (L� − LLDL) − π

(1)
L LLDL

− kbLLDL(Kr − L r) + k−bL r − kLDLκLLDLM(1 − L̂M ), (35)

dL r

dt
= kbLLDL(Kr − L r) − k−bL r − krκL rM(1 − L̂M ), (36)

dLap

dt
= M(1 + κ L̂M ) − νLap − kapκLapM(1 − L̂M ), (37)

dLn

dt
= νLap − knκLnM(1 − L̂M ), (38)

dH

dt
= π

(0)
H (H � − H) − π

(1)
L H − kHκHML̂M , (39)

dS+
dt

= αL r + μ
[
(kLDL LLDL + krL r)κM(1 − L̂M ) + νLap

]

+ kcM(1 + �̂M ) − (kSM + δS)S+, (40)

dS−
dt

= μ
[
kapκLapM(1 − L̂M ) + kHκHML̂M

]

+ kcM(1 − �̂M ) − (kSM + δS)S−. (41)

Finally, we assume that at t = 0:

mφ,� = 0 for every (φ, �),

LLDL = π�
L L

�

π
(0)
L + π

(1)
L

, L r = kbLLDL Kr

kbLLDL + k−b
, Lap = Ln = 0,

H = π
(0)
H H �

π
(0)
H + π

(1)
H

, S+ = αL r

δS
, S− = 0.

(42)
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2.6 Numerical Solutions and Timescales

The dimensionless parameters in Table 2 span several orders of magnitude. In partic-
ular, the mediator parameters α, δS , kS and μ are considerably larger than the other
constants. Numerical solutions of Eqs. (29)–(41) consequently require small timesteps
to maintain stability. We address this issue in our numerical solutions, computed with
Wolfram Mathematica, by using the routine NDSolve with the “StiffnessSwitching"
option.

Another way to reduce numerical stiffness is to approximate themediator dynamics
via separation of timescales. With δ−1

S 
 1 and assuming that α, kS , μ = O(δS), it
is straightforward to show that S± satisfy the following uniformly-valid quasi-steady
state approximations:

S+ ∼ α̂L r + μ̂
[
((kLDL LLDL + krL r)κM(1 − L̂M ) + νLap

]

+ k̂cM(1 + �̂M ), (43)

S− ∼ μ̂κM
[
kapLap(1 − L̂M ) + kH H L̂M

] + k̂cM(1 − �̂M ), as δ−1
S → 0, (44)

where α̂ := α/δS , μ̂ := μ/δS and k̂c := kc/δS . Although approximations (43)-(44)
are not used for the simulations presented in Sect. 3, they reveal that, at leading order,
the mediator densities are proportional to their net rates of production.

3 Results

We present the results in two sections. In Sect. 3.1 we analyse the subsystem (32)–
(41) to generate insight into lesion composition. In Sect. 3.2 we focus on the MDM
phenotype-lipid distribution, mφ,�.

3.1 Lesion Composition

We begin our analysis of lesion composition by computing time-dependent solutions
of the subsystem (32)–(41); the results are presented in Sect. 3.1.1. In Sect. 3.1.2 we
then analyse the impact of the key parameters: L�, H � and Kr on the steady state
values.

3.1.1 Time Evolution

Two typical numerical solutions of the subsystem (32)–(41) are shown in Fig. 3. The
left and right solutions respectively correspond to healthy (L� = 3, H � = 2.5) and
unhealthy (L� = 4.5, H � = 1) blood levels of LDL lipid and HDL capacity. We set
Kr = 10 for both cases. The quantity L(t) in plots (d) and (i) is the total extracellular
lipid density:

L(t) := LLDL(t) + L r(t) + Lap(t) + Ln(t), (45)
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whereas plots (e) and (j) show the components of the total lesion lipid content:

L tot(t) := LLDL(t) + L r(t) + [
1 + κ L̂M (t)

]
M(t) + Lap(t) + Ln(t), (46)

which includes MDM lipid. The model dynamics can be broadly divided into three
phases that we detail below.

The first weeks after initial MDM influx (0 < t < 0.2) are characterised by a
decline in lesion LDL and rLDL content (Fig. 3e, j). Both reductions are driven by
MDMuptake of rLDL, which also promotes binding of free LDL by restoring the LDL
retention capacity. The rise in L̂M is accompanied by increases in �̂M and S+ since
rLDLuptake stimulates production of inflammatorymediators that drive inflammatory
phenotype modulation (see Fig. 3b, c, g, h).

For 0.2 < t < 2, the growthof L̂M and S+ slows and �̂M decreases (seeFig. 3b, c, g,
h). These behaviours arise because theMDM population has ingested enough lipid for
the lipid efflux rate to become comparable to that of uptake. For both simulations, the
efflux rate exceeds the uptake rate at t ≈ 0.5, where L̂M attains a local maximum. The
corresponding increase in resolvingmediators, S−, relative to inflammatorymediators,
S+, promotes resolving phenotype modulation.

For 2 < t < ∞, the model tends to a non-zero steady state in a manner sensitive
to parameter values. For healthier balances of blood LDL lipid and HDL capacity
(L�, H �): mean MDM lipid content declines to a small non-zero value and mean
MDM phenotype remains negative (i.e. resolving) (Fig. 3b), resolving mediators out-
balance inflammatorymediators (Fig. 3c), extracellular lipid levels are lowwhile HDL
capacity remains substantial (Fig. 3d), and lesion lipid content decreases to densities
below those prior to MDM influx (Fig. 3e). By contrast, when L� is sufficiently high
relative to H � (quantified in Sect. 3.1.2): MDM densities are greater (Fig. 3f), mean
MDM lipid content increases to a large value and mean MDM phenotype is positive
(i.e. inflammatory) (Fig. 3g), inflammatory mediators outbalance resolving mediators
(Fig. 3h), HDL capacity is largely exhausted while extracellular lipid levels remain
substantial (Fig. 3i), and lesion lipid densities increase to values higher than those
prior to initial MDM influx (Fig. 3j).

In Fig. 4 we show how the LDL retention capacity, Kr, impacts the timescale of
lesion development. The left plot depicts the time to steady state, defined numerically

as the smallest time t for which
√∑

i

( 1
yi

dyi
dt

)2 ≤ 10−8, where the sum is taken

over all subsystem variables: y = (M, �̂M , L̂M , H , L, S±). The time to steady state
increases with Kr. The trend is more pronounced in the unhealthy case (L� = 4.5,
H � = 1), which exhibits a 20-fold increase over 0.3 ≤ Kr ≤ 100. The right plot
shows the time, tM, for MDM lipid to exceed 450mg/dL (the smallest t satisfying
(1 + κ L̂M (t))M(t) > 10), which we use as a proxy for fatty streak onset. We find
that increases to Kr yield smaller values of tM; regions with higher LDL retention
capacity develop fatty streaks earlier. Moreover, if Kr is sufficiently small, the MDM
lipid density never exceeds the 450mg/dL threshold; fatty streaks will not develop in
regions of sufficiently low LDL retention capacity.
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Fig. 3 Time evolution of lesion composition. The plots a–j show numerical solutions of the subsystem
(32)–(41) for a case with healthy LDL–HDL balance: L� = 3, H� = 2.5 (left), and unhealthy LDL-HDL
balance: L� = 4.5, H� = 1 (right). The system tends to a non-zero steady state as t → ∞ with values that
depend sensitively on L� and H�. We set Kr = 10 for both cases (Color figure online)
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Fig. 4 LDL retention capacity modulates the timescale of lesion development. Plot a shows how time to
steady state increases with Kr. Plot b shows how the time for MDM lipid to exceed 450mg/dL, a proxy for
fatty streak onset, decreases with Kr (Color figure online)

Fig. 5 Lesion composition at steady state depends on the bloodstream balance of LDL lipid (L�) to HDL
capacity (H�). The plots depict solutions to Eqs. (32)–(41) at equilibrium across a uniform grid of values
for (L�, H�). We use a grid resolution of 0.1 and assume Kr = 10. Note that the markers of pathology: M ,
�̂M , L̂M and L tot, each increase with L� and decrease with H� (Color figure online)

3.1.2 Steady State Solutions

The results of Sect. 3.1.1 show that the model tends to a non-zero equilibrium as
t → ∞. Steady state solutions to the subsystem (32)-(41) are computed numerically
via the Mathematica FindRoot routine.

Figure5 illustrates how blood levels of LDL lipid, L�, and HDL capacity, H �,
impact the model lesion at steady state. Lesion composition becomes more patholog-
ical as L� increases and H � decreases; MDM density, mean phenotype, lipid content
and total lipid content each monotonically increase with L� and decrease with H �,
while HDL capacity monotonically decreases with L� and increases with H �. We note
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Fig. 6 Lesion composition at steady state varies with LDL retention capacity(Kr). The plots show solutions
to Eqs. (32)–(41) at steady state across 0.3 ≤ Kr ≤ 100. We show a case with healthy LDL–HDL balance:
L� = 3.0, H� = 2.5, and one with unhealthy LDL-HDL balance: L� = 4.5, H� = 1.0 (Color figure
online)

that all plots exhibit regions in which the contours are approximately linear. For the
case Kr = 10 shown, these contours take the form 0.4L�−H � = constant. The greater
weighting on H � in the linear combination reflects the higher value of the dimension-
less lipid efflux rate, kH , relative to the uptake rates in Table 2. Values of (L�, H �)

above the �̂M = 0 contour (0.4L� − H � ≈ 0.4) yield healthy lesions with smaller
MDM densities, resolving mean phenotypes and small mean lipid loads. Lesion lipid
content is low and HDL capacity remains substantial. Values of (L�, H �) below the
�̂M = 0 contour yield pathological lesions with higherMDMdensities, inflammatory
mean phenotypes and higher mean lipid loads. Lesion lipid content is also large. These
markers of pathology each increase with 0.4L� − H �. By contrast the HDL capacity
is exhausted in this region.

Figure6 shows how the LDL retention capacity, Kr, impacts lesion composition
at steady state. We find that MDM density, MDM mean phenotype and MDM lipid
content increase non-linearly with Kr. These trends are amplified when the values
(L�, H �) are more pathological (i.e. 0.4L� − H � is larger). HDL capacity instead
decreases with Kr. Moreover, total lesion lipid content increases or decreases with
Kr if the values (L�, H �) are pathological or healthy respectively. This difference
arises because higher LDL retention capacities give rise to higher MDM densities,
due partially to elevated signalling by resident cells. In healthy cases, HDL capacity
remains substantial so that MDMs provide a net reduction in lesion lipid content by
consuming extracellular lipid and efficiently offloading to HDL. In pathological cases,
HDL capacity is exhausted and lipid taken up by MDMs can only leave the lesion via
MDM egress. This makes MDMs net contributors to lesion lipid content; on average,
they remove less lipid from the lesion than they supply via their endogenous lipid
content.
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3.2 MDM Phenotype-Lipid Distribution

We now turn to Eq. (29) to study how phenotype and lipid content are distributed
amongst lesionMDMs. After presenting numerical solutions formφ,�(t) in Sec. 3.2.1,
we derive a continuum approximation of Eq. (29) in Sect. 3.2.2 to make analytical
progress. In Sect. 3.2.3 we show how analysis of the leading-order advective dynamics
enables us to characterise the expected trajectories of MDMs through phenotype-lipid
space. Finally, in Sect. 3.2.4 we analyse the MDM distribution at steady state.

3.2.1 Time Evolution

In Fig. 7 we present the dynamics of the MDM phenotype-lipid distribution,
mφ,�(t), for the cases shown in Fig. 3). At early times (0 ≤ t ≤ 0.2, the distribu-
tion evolves in a wave-like manner, from (φ, �) = (0, 0), in the direction of increasing
φ and � due to the initial phase of LDL uptake noted in Sect. 3.1.1. At later times
(0.2 ≤ t ≤ 2), the distribution moves leftwards, becoming concentrated at lower val-
ues of φ. This resolving phenotype modulation reflects greater production of resolving
mediators, S−, relative to inflammatory mediators, S+, in this phase (c.f. Fig. 3e, h).
At longer times, the distribution settles to a steady state. In the healthy case, lipid loads
gradually reduce to equilibrium as HDL capacity increases and the extracellular lipid
densities decrease to their equilibrium values (c.f. Fig. 3d, e). In the unhealthy case,
lipid loads increase towards equilibrium as the extracellular lipid densities increase
and HDL capacity declines to their steady state values (c.f. Fig. 3i, j).

We note that the MDM distribution, in both cases and at all times, is concentrated
about a central curve which begins at the origin (φ, �) = (0, 0) and terminates at an
interior point in (φ, �) space. This feature indicates that phenotype and lipid content
are non-linearly correlated. At steady state, this correlation is monotonic but may be
negative (as in case a) or positive (as in case b) depending on model parameters.

It is not straightforward to understand how the MDM distributions in Fig. 7 arise
by directly considering Eq. (29). In order to make progress, we consider a continuum
approximation of Eq. (29) in the analysis below.

3.2.2 Continuum Approximation

Weassociate thediscretely structuredMDMdistributionmφ,�(t),φ = 0,±1, . . . ,±φmax,
� = 0, 1, . . . , �max, with a function m(φ̃, �̃, t) ≥ 0 of two continuous structure vari-
ables, φ̃ and �̃, and time t . Specifically, we make the identifications:

φ̃ ∼ φ

φmax
, �̃ ∼ �

�max
, m(φ̃, �̃, t) ∼ φmax�maxmφ,�(t). (47)

Here φ̃ ∈ [−1, 1] and �̃ ∈ [0, 1], so that φ̃ = −1 corresponds to fully M2-polarised
MDMs, φ̃ = 1 to fully M1-polarised MDMs, �̃ = 0 to MDMs with only endogenous
lipid, and �̃ = 1 to MDMs at maximal lipid content. The function m(φ̃, �̃, t) can
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Fig. 7 MDM phenotype-lipid distribution dynamics for two typical simulations. The plots show numerical
solutions of Eq. (29) for mφ,�(t) for a case with healthy LDL/HDL balance. a L� = 3, H� = 2.5, and
unhealthy LDL-HDL balance. b L� = 4.5, H� = 1. We use Kr = 10 for both simulations. At steady state
(see t = 100), the distribution may skew towards resolving (case a) or inflammatory (case b) phenotypes
(Color figure online)

be interpreted as the number density of MDMs across a continuous phenotype-lipid
structure space, with scaling such that we may identify:

M(t) =
∑

φ,�

mφ,�(t) ∼
∫ 1

0

∫ 1

−1
m(φ̃, �̃, t) dφ̃ d �̃. (48)
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We seek an expansion of Eq. (29) in the limit �max ∼ φmax → ∞. More precisely,
we set ε := �−1

max 
 1 and assume that θ := φmax/�max = O(1). Substituting the
identifications (47) into Eq. (29), Taylor-expanding about ε = 0, and neglectingO(ε2)

terms, yields the advection–diffusion PDE:

∂m

∂t
= ∇ · (D∇m − vm) − (1 + γ )m, (49)

where ∇ =
(

∂

∂φ̃
, ∂

∂�̃

)T
, and the velocity vector, v, and diffusivity matrix, D, are

respectively:

v =
[
χ(S+ − S−) − χ(S+ + S−)φ̃

kL · L − (kL · L + kH H)�̃

]
+ ε

2

[
θχ(S+ − S−)

kL · L − kH H

]
, (50)

D = ε

2

[
θχ

[
(S+ + S−) − (S+ − S−)φ̃

]
0

0 kL · L − (kL · L − kH H)�̃

]
. (51)

We note that Eq. (49) is advection-dominant since v = O(1) and D = O(ε).
We derive boundary conditions for Eq. (49) by requiring that the dynamics of

the MDM population, M(t), as defined by Eq. (32), are consistent with those of
the continuous MDM distribution (48). Integrating Eq. (49) over (φ̃, �̃) ∈ R :=
[−1, 1] × [0, 1] and applying the divergence theorem yields:

dM

dt
=

∮

∂R
(D∇m − vm) · n ds − (1 + γ )M, (52)

where n is the outwards pointing normal vector. We set:

(D∇m − vm) · (±1, 0)T = 0 on φ̃ = ±1, (53)

(D∇m − vm) · (0,+1)T = 0 on �̃ = 1, (54)

(D∇m − vm) · (0,−1)T = R0,0 · δ0(φ̃) on �̃ = 0. (55)

Equations (53) and (54) are no-flux conditions so that MDMs cannot enter or leave the
system by exceeding the phenotype bounds φ̃ = ±1 or maximal lipid content �̃ = 1
respectively. We use the Dirac-delta distribution, δ0, in Eq. (55) to ensure that MDMs
enter the lesion at the origin (φ̃, �̃) = (0, 0).

3.2.3 Advection at Leading Order

Equation (49) reduces to a hyperbolic PDE at leading order as ε → 0:

∂m

∂t
+ χ

∂

∂φ̃

[(
(S+ − S−) − (S+ + S−)φ̃

)
m

]

+ ∂

∂�̃

[(
kL · L − (kL · L + kH H)�̃

)
m

]
= −(1 + γ )m.

(56)
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Eq. (56) describes the advection, in (φ̃, �̃) space, of MDMs according to a time-
dependent velocity field:

dφ̃

dt
= χ

[
(S+ − S−) − (S+ + S−)φ̃

]
, (57)

d �̃

dt
= kL · L − (kL · L + kH H)�̃, (58)

where the coefficients: S±(t), L(t) and H(t), are time-dependent solutions of the
subsystem (32)–(41).

The dynamics of the velocity field defined by Eqs. (57)–(58) are illustrated in
Fig. 8. A striking feature of the plots is that, at all times, the vector field has a single
point (φ̃×, �̃×) of zero instantaneous velocity. This time-dependent point represents
the target phenotype and lipid content that MDMs are driven towards by advection.
Setting time derivatives to zero in Eqs. (57)–(58), and solving for φ̃ and �̃ shows that:

φ̃×(t) : = S+(t) − S−(t)

S+(t) + S−(t)
, �̃×(t) : = kL · L(t)

kL · L(t) + kH H(t)
. (59)

The time-evolutionof the zerovelocity point, givenbyEq. (59), is shown inFig. 8c).We
find that (φ̃×, �̃×) first moves from an inflammatory position towards resolving pheno-
types. This initial transition occurs because resolving mediator production by MDMs
opposes the initially pure inflammatory environment due to rLDL-stimulated resident
cells. When the LDL/HDL balance is healthy, the target phenotype becomes resolv-
ing and the target lipid content decreases towards steady state. When the LDL/HDL
balance is unhealthy, the target phenotype remains inflammatory and the target lipid
content increases as the system evolves to its steady state.We note further that (φ̃×, �̃×)

aligns well with the MDM distribution end points shown in Fig. 7.
Since MDMs enter the model lesion with minimal lipid content and a neutral phe-

notype, we are particularly interested in solutions to Eqs. (57)–(58) which satisfy the
initial conditions:

φ̃(t�) = 0, �̃(t�) = 0. (60)

Such solutions represent the trajectory of MDMs that enter the lesion at time t = t� in
the limit ε → 0. They can be expressed in terms of the subsystem variables as follows:

φ̃(t) = I1(t)
−1

∫ t

t�
χ

(
S+(τ ) − S−(τ )

)
I1(τ )dτ, (61)

�̃(t) = I2(t)
−1

∫ t

t�
kL · L(τ )I2(τ )dτ, t ≥ t�, (62)

where I1(t) and I2(t) are integrating factors:

I1(t) := e
∫ t
t� χ

(
S+(τ )+S−(τ )

)
dτ

, I2(t) := e
∫ t
t�

(
kL ·L(τ )+kH H(τ )

)
dτ

.

123



  112 Page 26 of 44 K. L. Chambers et al.

Fig. 8 Dynamics of the MDM phenotype-lipid velocity field. The vector field plots illustrate the right
hand side of Eqs. (57)–(58) using the numerical solutions of the subsystem (32)–(41) shown in Fig. 3.
The velocity magnitude is indicated by larger arrows and brighter colours. The point of instantaneous zero
velocity is indicated by a circle at each time point in the vector field plots, and plotted against time in the
bottom plot. We fix Kr = 10 and use L� = 4.5, H� = 1.0 for case a) and L� = 3.0, H� = 2.5 for case b)
(Color figure online)
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Fig. 9 Expected trajectory through phenotype-lipid content space of MDMs that enter the lesion at time
t = t�. The curves are numerical solutions to Eqs. (57) –(60). The opacity of each point on the curves
represents the probability that MDMs travel through that point before either dying or emigrating from the
lesion. Note how MDMs which enter at later times have simple monotonic trajectories, in contrast to those
that enter earlier (Color figure online)

We use numerical solutions of the subsystem (32) –(44) to evaluate Eqs. (61) –(62)
in Fig. 9. As MDMs travel along the trajectories shown, they emigrate from the lesion
and die via apoptosis at the constant rate (1 + γ ). The probability that MDMs which
enter the lesion at time t = t� are still alive and in the lesion at time t ≥ t� is given
by e−(1+γ )(t−t�). This probability is represented in Fig. 9 by the opacity of the curves.
The plots illustrate that MDMs which enter the lesion early (e.g. at t� = 0.2) can be
expected to first transition from phenotypic neutrality to an inflammatory state with
moderate lipid loads, before evolving to either a resolving phenotype with low lipid
load (case a), or a milder inflammatory phenotype with high lipid load (case b). The
trajectories of MDMs that enter the lesion at later times are typically monotonic, in
contrast to the looping trajectories of MDMs that enter at earlier times. We note in
particular that trajectories with t� = 100 (near steady state) align well with the centre
line of the MDM distributions (c.f. Fig. 7 at t = 100).

3.2.4 Steady State Solutions

It is straightforward to show that m�(φ̃, �̃), the steady state solution of Eq. (49), satis-
fies:

εθq

2

∂2

∂φ̃2

[
(1−φ̃∞φ̃)m�

]
+ ε

2

∂2

∂�̃2

[(
�̃∞ − (2�̃∞ − 1)�̃

)
m�

]

− q(φ̃∞ − φ̃)
∂m�

∂φ̃
− (�̃∞ − �̃)

∂m�

∂�̃
− (p − q)m� = 0,

(63)
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where the constants φ̃∞, �̃∞, q and p are defined in terms of model parameters and
the equilibrium values of the subsystem variables:

φ̃∞ := S+ − S−
S+ + S−

, �̃∞ := kL · L
kL · L + kH H

,

q := χ(S+ + S−)

kL · L + kH H
, p := −1 + 1 + γ

kL · L + kH H
.

(64)

We note that φ̃∞ ∈ (−1, 1) and �̃∞ ∈ (0, 1) coincide exactly with the target phenotype
and lipid content, φ̃× and �̃× respectively (c.f. Eq. (59) at steady state). We note also
that p ∈ (−1,∞) and q ∈ (0,∞). The boundary conditions (53)–(55) become:

Jφ |φ̃=−1 = 0, Jφ |φ̃=1 = 0, J�|�̃=1 = 0, J�|�̃=0 =
( �̃∞R0,0

kL · L
)

· δ0(φ̃), (65)

where the dimensionless fluxes are given by:

Jφ = q(φ̃∞ − φ̃)m� − εθq

2

∂

∂φ̃

[
(1 − φ̃∞φ̃)m�

]
, (66)

J� = (�̃∞ − �̃)m� − ε

2

∂

∂�̃

[(
�̃∞ − (2�̃∞ − 1)�̃

)
m�

]
. (67)

Rather than searching for a closed-form solutions to Eq. (63) in full generality, we
characterise the solutions via asymptotic analysis in the limit ε → 0. More specifi-
cally, we derive equations for the central curve of the MDM distribution and marginal
distributions with respect to lipid content, W (�̃), and phenotype, V (φ̃), where:

W (�̃) :=
∫ 1

−1
m�(φ̃, �̃) dφ̃, V (φ̃) :=

∫ 1

0
m�(φ̃, �̃) d �̃. (68)

Finally, we consider the impact of the LDL lipid and HDL capacity blood densities,
L� and H � respectively. The results are summarised in Figs. 10 and 11.
Central curveWedetermine the curve about whichm�(φ̃, �̃) is centred by considering
Eq. (63) at leading order. Indeed, when ε = 0, Eq. (63) reduces to a first order
hyperbolic PDE, with characteristics that satisfy the equation:

dφ̃

d �̃
= q(φ̃∞ − φ̃)

�̃∞ − �̃
. (69)

Solving Eq. (69) subject to φ̃(�̃ = 0) = 0 yields:

φ̃ = φ̃c(�̃) := φ̃∞
[
1 −

(
1 − �̃

�̃∞

)q]
. (70)
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Fig. 10 Comparison of continuum analytical results to numerical solutions for the discrete MDM distribu-
tion, mφ,�, at steady state. Cases a–d use the values (L�, H�) = (3, 2.5), (1.7, 0.8), (1.9, 0.6) and (4.5, 1)
and are ordered roughly by pathology. The first column overlays Eq. (70) for the central curve with mφ,�

(same colour legend as in Fig. 7). The second and third columns compare the exact solutions for the lipid
content and phenotype marginals, given by Eqs. (73) and (83) respectively, with the discrete marginals. We
set Kr = 10 for all cases (Color figure online)
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In the first column of Fig. 10, the solution (70) is superimposed on numerical solu-
tions for mφ,� at steady state, showing good agreement with the centre of the MDM
distributions.

Equation (70) confirms that, at steady state, phenotype and lipid content are mono-
tonically correlated via a power law. The correlation is positive when φ̃∞ > 0 and
negativewhen φ̃∞ < 0. Equivalently, using the first of Eqs. (64), if inflammatorymedi-
ators dominate resolving ones (S+ > S−) then MDMs with higher lipid loads have a
more inflammatory phenotype; if, however, resolving mediators dominate (S+ > S−)
thenMDMswith higher lipid loads have amore resolving phenotype. The nonlinearity
of the correlation is determined by the constant q, which measures the relative amount
of mediator-MDM activity to lipid-MDM activity.
Distribution of lipid content Integrating Eqs. (63) and (65) with respect to φ̃ ∈
[−1, 1] yields the following ODE for W (�̃):

ε

2

d2

d �̃2

[(
�̃∞ − (2�̃∞ − 1) �̃

)
W

]
− (�̃∞ − �̃)

dW

d �̃
− pW = 0, (71)

and the boundary conditions:

−ε

2

d

d �̃

[(
�̃∞ − (2�̃∞ − 1) �̃

)
W

]
+ (�̃∞ − �̃)W =

{
�̃∞R0,0
kL ·L at �̃ = 0,

0 at �̃ = 1.
(72)

Equation (71) admits an exact solution (found via the Mathematica DSolve routine):

W (�̃) = e− f (�̃)
[
K1U

2− f (�̃∞)
p ( f (�̃)) + K2L1− f (�̃∞)

−p ( f (�̃))
]
, (73)

where f is the function:

f (�̃) := 2

(1 − 2�̃∞)ε

[
�̃ +

(
�̃∞

1 − 2�̃∞

)]
, (74)

Ub
a (z) is the confluent hypergeometric function and Lb

a(z) the generalised Laguerre
polynomial. The constants K1 and K2 are determined by substituting Eq. (73) into the
boundary conditions (72); exact expressions are readily obtained via the Mathematica
Solve routine, but are too involved to be insightful and so are omitted here for brevity.
We compare the solution (73) to numerical solutions of the discrete model in the
second column of Fig. 10, showing excellent agreement.

The form of Eq. (73) makes it difficult to understand howW (�̃) depends on the con-
stants defined in Eq. (64). Nonetheless, analysis of the leading order “outer" solution
shows how the qualitative behaviour of W (�̃) depends on p and �̃∞. Here we follow
the asymptotic analysis in Chambers et al. (2023). Setting ε = 0 in Eq. (71) admits
the following solution:

Wouter(�̃) = K3

(
1 − �̃

�̃∞

)p

, (75)
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where K3 ≥ 0 is a constant of integration. Equation (75) admits three possible
behaviours as �̃ → �̃∞ from below. For p > 0, Wouter decreases monotonically
to zero (with non-zero derivative if p < 2); for p = 0, Wouter is constant; and for
p < 0, Wouter diverges to +∞. The full solution does not exhibit such discontinuities
at �̃ = �̃∞ due to the regularising effects of the second derivative term. The corre-
sponding behaviour for W (�̃) is as follows. For p > 0, W decreases monotonically
and smoothly to zero near �̃ = �̃∞ (Fig. 10b); for p = 0, W takes a quasi-uniform
sigmoidal profile with a rapid decrease to zero near �̃ = �̃∞ (Fig. 10c); and for p < 0,
W increases monotonically before attaining a local maximum near �̃ = �̃∞ (Fig. 10a,

d). In the above, “near �̃ = �̃∞" means an O(ε
1
2 ) neighbourhood of �̃ = �̃∞. This

scaling can be derived by searching for an inner variable �̂ = (�̃ − �̃∞)/εn for some
�̂ = O(1) in Eq. (71); an exponent n = 1

2 is required to bring the second derivative
into the dominant balance.
Distribution of phenotype Integrating Eqs. (63) and (65) with respect to �̃ ∈ [0, 1]
gives the following boundary value problem for V (φ̃):

εθ

2

d2

dφ̃2

[
(1 − φ̃∞φ̃)V

] − (φ̃∞ − φ̃)
dV

dφ̃
− rV = − �̃∞R0,0

qkL · L · δ0(φ̃), (76)

−εθ

2

∂

∂φ̃

[
(1 − φ̃∞φ̃)V

]
+ (φ̃∞ − φ̃)V = 0 at φ̃ = ±1, (77)

where r := −1 + p+1
q . As in the derivation of a Green’s function, we first recast the

Dirac-delta source, which describes MDM recruitment, as a jump condition. That is,
we seek a solution of the form:

V (φ̃) =
{
V−(φ̃), −1 ≤ φ̃ ≤ 0;
V+(φ̃), 0 ≤ φ̃ ≤ 1,

(78)

where V± solve the ODE:

εθ

2

d2

dφ̃2

[
(1 − φ̃∞φ̃)V±]] − (φ̃∞ − φ̃)

dV±
dφ̃

− rV± = 0, (79)

and satisfy:

V−(0) = V+(0) (80)

V ′−(0) = V ′+(0) + 2�̃∞R0,0

εθqkL · L (81)

− εθ

2

[
(1 − φ̃∞φ̃)V±

]′ + (φ̃∞ − φ̃)V± = 0 at φ̃ = ±1. (82)

The exact solution for Eq. (79) can be written as:

V±(φ̃) = J±,1U
1+g(φ̃∞)
−r (g(φ̃)) + J±,2Lg(φ̃∞)

r (g(φ̃)), (83)
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where:

g(φ̃) := 2(φ̃∞φ̃ − 1)

εθφ̃2∞
. (84)

Expressions for the constants J±,1, J±,2 can be found by substituting Eq. (83) into
conditions (80)–(82). As for W (�̃), they are too complicated to be insightful and are
omitted for brevity. The comparison of solutions (83) with the discrete model output in
column 3 of Fig. 10 shows good agreement. We note that the jump condition amounts
to a small reduction in slope at φ̃ = 0 that is almost imperceptible for the parameter
values in Table 1.

Following the analysis of W (�̃), we compute the leading order “outer" solution to
Eq. (76):

Vouter = J3
(
1 − φ̃

φ̃∞

)r
. (85)

Equation (85) is of the same form as Eq. (75); φ̃∞ and r play the same roles for V as
�̃∞ and p play for W . The main difference, as shown in Fig. 10, is that only the case
r < 0 manifests in numerical solutions. Consequently, V (φ̃) always attains a local

maximum in a small (again O(ε
1
2 )) neighbourhood of φ̃ = φ̃∞. This observation is

supported by the numerical results below.
Impact of blood LDL lipid and HDL capacity levels. We conclude our steady state
analysis by examining how the qualitative form of the MDM distribution changes as
L� and H � vary. The results are summarised in Fig. 11 where we plot the parameter
groupings in Eqs. (64) against L� and H �; the four cases shown in Fig. 10 are also
indicated. Recall that p and r determine the overall shape (e.g. whether they attain a
local maximum) of the lipid and phenotype marginal distributions, W (�̃) and V (φ̃)

respectively, while φ̃∞, �̃∞ and q determine the central curve.
We note first how r and p vary with L� and H �. The value of r decreases mono-

tonically with L� and is less sensitive to H �. Importantly, we find that r < 0 for
all L� ∈ (0, 10) and H � ∈ (0, 5), indicating that the phenotype marginal attains a
local maximum near φ̃ = φ̃∞ across the range of physiologically plausible values
for blood LDL lipid and HDL capacity. By contrast, p ≥ 0 for values of (L�, H �)

sufficiently close to the origin. This suggests that monotone decreasing and sigmoidal
lipid marginals only occur when blood levels of LDL lipid and HDL capacity are both
sufficiently low; otherwise the lipid marginal attains a local maximum near �̃ = �̃∞.

The target phenotype, φ̃∞, and lipid content, �̃∞, both increasewith L� and decrease
with H �. In particular, their plots exhibit the linear contours prominent in Fig. 5;
increases to the relative level of LDL lipid to HDL capacity raise both these markers
of pathology.

Finally, we note that the exponent q of the central curve is largest when L� and H �

are comparable. This causes the central curve to appear straighter (i.e. φ̃c(�̃) ≈ φ̃∞
except for the smallest values of �̃) in cases of intermediate pathology. Indeed, in
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Fig. 11 Impact of blood LDL lipid (L�) and HDL capacity (H�) on the qualitative features of the MDM
distribution. The values were computed by combining the results shown in Fig. 5 with the formulae (64)

and r = −1+ p+1
q . The four cases presented in Fig. 10 are also indicated: (L�, H�) = (3, 2.5), (1.7, 0.8),

(1.9, 0.6) and (4.5, 1) (Color figure online)

Fig. 10 the intermediate cases b) and c) are notably straighter than the unhealthy case
d).

4 Discussion

In this paper we have developed a mathematical model for early atherosclerosis in
which the MDM population is structured by phenotype, φ, and lipid content, �. This
framework allows for incremental changes in phenotype and lipid content, which con-
trasts their treatment as binary variables in much of the existing modelling literature.
The model couples the MDM dynamics to the densities of: free LDL lipid LLDL(t),
retained LDL lipid L r(t), apoptotic lipid, Lap(t), necrotic lipid, Ln(t), HDL capacity,
H(t), inflammatorymediators, S+(t), and resolvingmediators, S−(t). These variables
form a closed subsystem of ODEs when coupled with the MDM density, M(t), mean
phenotype, �̂M (t), and mean lipid content, L̂M (t). This subsystem can be solved
independently of the structured MDM population, mφ,�(t).

We parameterised the model using data from the biological literature. Where pos-
sible, we used human in vivo data (e.g. blood measurements for L(0) and H (0)) or ex
vivo data (e.g. surgical data for π

(0)
L and postmortem data for L(1) and H (1)). How-

ever, the majority of the model parameters are calibrated to in vitro experiments. We
prioritised studies with human cell lines (e.g. for a0, kLDL , kr, kH , Sc50+ , ρ), and used
data from nonhuman cell lines when necessary (e.g. murine data for κ , kap and kn).
Since the point estimates in Table 1 are likely to carry high degrees of uncertainty,
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we have cautiously interpreted the results of the current study by focusing on trends
rather than precise quantitative outputs.

Our model analysis focused on the impact of three dimensionless parameters: L�,
H � and Kr. The quantities L� and H � are proportional to the blood densities of LDL
lipid and HDL capacity, respectively. These vary considerably according to genetic
and lifestyle factors.We explored values in the range L� ∈ (0, 10) and H � ∈ (0, 5); the
upper bounds correspond to densities of 450 and 225mg/dL, respectively. The quantity
Kr is proportional to the capacity for LDL lipid retention. This varies according to the
specific region of arterywall under consideration.We explored values Kr ∈ (0.3, 100),
which span athero-resistant regions with capacity 15mg/dL to athero-prone regions
with capacity 7500 mg/dL.

We discuss our findings below in relation to the key questions posed in Sect. 1.
Q1.a. How do blood LDL/HDL levels affect the time-evolution of lesion compo-
sition? Time-dependent numerical solutions revealed that the model lesion evolves in
three phases. The first phase consists of the initial influx of MDMs and corresponding
decline in lesion LDL and rLDL content. MDM lipid loads are small but increasing
and MDM mean phenotype is inflammatory. The second phase is characterised by
modulation towards resolving MDM phenotypes and a slower rise of MDM lipid con-
tent. These phases are consistent with observations of macrophage behaviour during
acute inflammation. Macrophages first adopt inflammatory phenotypes and transition
to resolving phenotypes during a phase of inflammatory resolution and tissue repair
(Pérez andRius-Pérez 2022). To the best of our knowledge, the presentmodel is thefirst
to capture this transition as an emergent property of the dynamics. Rather than com-
pletely resolving, however, themodel lesion enters a final phase in which the dynamics
tend to a nonzero steady state. If blood LDL lipid is low relative to HDL capacity, the
lesion tends to a healthy state with low lipid burden and resolving phenotypes. This
behaviour suggests that the well-documented spontaneous regression of many early
atherosclerotic lesions (Insull 2009) may simply be the natural and expected progres-
sion under a healthy blood lipoprotein balance. By contrast, when blood LDL lipid
is high relative to HDL capacity, MDM lipid loads increase to equilibrium and the
model lesion accumulates necrotic lipid. Overall, the three-phase dynamics support
the idea that chronic inflammation in atherosclerosis can be understood as an acute
inflammatory response to LDL retention with incomplete resolution (Sansbury and
Spite 2016).

We also studied the impact of LDL retention capacity on the timescale of atheroscle-
rosis development. In particular, we computed the time for MDM lipid to exceed a
density of 450mg/dL; we use this lipid density as a proxy for fatty streak formation,
which is characterised by the appearance of foam cells (Daskalopoulos et al. 2015).
Our results indicate that this time decreases with LDL retention capacity; fatty streak
onset in the model lesion occurs earlier for regions of high LDL retention. This finding
is consistent with observations of the murine aortic arch in which regions of lower
retention capacity (e.g. central zone of the arch) developed atherosclerosis later than
regions of high retention (e.g. dorsal and ventral zones) (Lewis et al. 2023).
Q1.b. How do blood LDL/HDL levels affect lesion composition at steady state?
Analysis of steady state solutions revealed how equilibrium lesion composition
depends on the parameters L�, H � and Kr. The results indicate that the degree of
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pathology is largely determined by a linear combination of the form: 0.4L� − H �; it is
the (weighted) relative value of LDL lipid to HDL capacity in the blood that matters.
The greater weighting on H � in the linear combination reflects the higher value of the
dimensionless lipid efflux rate, kH , relative to the uptake rates in Table 2. Hence, the
increased amount of lipid efflux promoted by a rise in blood HDL lipid capacity is
greater than the increase in lesion lipid content by an equal rise in blood LDL lipid
density. Overall, the model predicts that early atherosclerotic lesions regress upon
blood LDL lipid density increases or blood HDL capacity increases. The degree of
pathology also generally increases with Kr. Regions of higher LDL retention capac-
ity exhibit greater MDM densities, more inflammatory MDM phenotypes and higher
MDM lipid loads.
Q2.a. How do MDM phenotype and lipid content evolve over time? We analysed
the MDM distribution by deriving a continuum analogue of the discrete equations
(29) for mφ,�(t). Analysis of the continuum model showed that the time-evolution of
phenotype and lipid content for individual MDMs depends on the time of entry into
the lesion. MDMs which enter the lesion at early times are expected to first transition
from phenotypic neutrality to an inflammatory state, and then to a resolving state (if
the blood LDL–HDL balance is healthy) or to a milder inflammatory state (if the
LDL–HDL balance is unhealthy). The trajectories of MDMs which enter the lesion at
later times are monotonic (in phenotype-lipid structure space) and follow the central
curve of the equilibrium MDM distribution. These results suggest that MDMs which
enter the lesion during early stages of lesion development experience a greater amount
of phenotype modulation throughout their lifespan than those entering at later times.
Q2.b. AreMDMphenotype and lipid content correlated? The asymptotic analysis
presented in Sect. 3.2.4 showed that MDM phenotype and lipid content are correlated
via a power law at steady state. If LDL lipid density dominates HDL capacity in
the blood, lipid-laden MDMs have a more inflammatory phenotype than lipid-poor
MDMs, while if blood LDL lipid density is sufficiently low, lipid-ladenMDMs have a
more resolving phenotype thanMDMs with a lower lipid burden. The non-linearity of
the correlation is determined by a constant, q, thatmeasures the relative amount of lipid
activity to mediator activity in the lesion (made precise by Eq. (64)). Although we did
not pursue a time-dependentmathematical analysis, numerical solutions (e.g. Figure7)
demonstrated that theMDMphenotype-lipid distribution is always concentrated about
a central curve, indicating that a monotone correlation between phenotype and lipid
content holds for all times. These findings are consistent with the recent discovery
of PLIN2hi/TREM1hi macrophages in human lesions, for which the transcriptional
signatures of lipid loading and inflammation are coupled (Dib et al. 2023).
Q2.c. What are the qualitative features of the phenotype and lipid content
marginal distributions at steady state? Further analysis in Sect. 3.2.4 showed that
the phenotype marginal distribution always attains a single local maximum. The loca-
tion of the maximum, which represents the most common phenotype in the lesion, is
a close approximation to the “target" phenotype that MDMs are driven towards by the
extracellular environment over their lifetime. By contrast, the lipid marginal distribu-
tion varies more in shape as L� and H � are varied; it may exhibit a local maximum,
adopt a quasi-uniform profile, or decrease monotonically according to the value of p,
a constant which quantifies the amount of MDM-lipid activity in the lesion.
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Future directions and conclusions There is considerable scope to extend our model.
In the present model, phenotype influences the MDM dynamics via its impact on
mediator production; macrophage phenotype is largely characterised by the profile
of cytokines/effector molecules produced by the cell (Brown et al. 2009). In prac-
tice, phenotype is also correlated with other behaviours, including: phagocytic ability
(Schulz et al. 2019), lipid efflux to HDL (Lin et al. 2021) and migratory propensity
(Cui et al. 2018). These effects could be incorporated by respectively allowing the
rates of lipid uptake, kLDL, kr, kap, kn, lipid efflux, kH , and MDM egress, γ , to depend
on φ.

Lipid-dependent MDM behaviours could also be included by allowing the corre-
sponding rates to depend on �. Lipid-dependent apoptosis, emigration and proliferation
were analysed in the work of Watson et al. (2023), who found that such dependencies
substantially altered total lesion lipid content, and the distribution of lipid amongst
MDMs, apoptotic cells and the necrotic core. Importantly, some experimental stud-
ies indicate that lipid loading can inhibit macrophage pro-inflammatory responses
(Leitinger and Schulman 2013; Kim et al. 2018). This effect could be accounted for in
our model by allowing p+

φ to decrease with � in reaction (5). Extending our model to
account for phenotype and lipid-dependent rates produces coupling in the ODEs that
would not admit a closed subsystem; analysis of these effects would rely heavily on
numerical solutions.

Finally, we could extend the model to allow for spatial heterogeneity. Based on
previous studies using spatially-resolved structured population models (Celora et al.
2023; Fiandaca et al. 2022; Pan 2022; Boulouz 2022; Hu 2019; Liu et al. 2015),
we anticipate that analysis of a spatial extension would rely heavily on numerical
simulations and bifurcation analysis.

In conclusion, in this paper we have presented a new mathematical model for early
atherosclerosis in which the MDM population is structured according to phenotype
and lipid content. The model indicates that lesion composition depends sensitively on
the relative density of LDL lipid to HDL capacity in the blood, and the LDL retention
capacity of the artery wall. Numerical and analytical results at steady state show that
MDM phenotype and lipid content are monotonically correlated via a power law, the
phenotype marginal distribution is unimodal, and the lipid content distribution may
attain a unimodal, quasi-uniform or decreasing profile. These findings develop the
current understanding of macrophage heterogeneity in early atherosclerosis.

Appendix A Parameter Estimation

The exchange rates, π0
L , π1

L , π0
H and π1

H are obtained by dividing the respective
permeabilities by the human coronary artery tunica intima thickness (∼ 0.24 mm
(Holzapfel et al. 2005)). We note that the intimal thickness in mice is considerably
smaller (∼ 0.01mm (Thon et al. 2018)), and so murine exchange rates are higher.

ThemaximumMDMentry rate,σM , is based on data frommonocyte transmigration
experiments (Williams et al. 2009). Specifically, Williams et al. observed that when
humanmonocytes were placed above stimulated endothelial cells, approximately 20%
entered the sub-endothelial layer within 1.5 hours.Multiplying this rate by 350mm−3,
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a typical bloodmonocyte density (Nelson 2014), gives 34000mm−3 per month. Since
approximately half the incomingmonocytes do not differentiate intomacrophages and
leave the lesion within 48 hours (Lee et al. 2019), we estimate σM = 17000 mm−3

per month.
The uptake and efflux rates are obtained from in vitro experiments. We note that the

free LDL uptake rate, kLDL , is calibrated to data for native LDL (data for oxidised LDL
yields a slightly higher but comparable estimate), while the larger rLDL uptake rate, kr,
is based on aggregated LDL data. This is reasonable since proteoglycan-bound LDL
aggregates into lipid droplets that are more readily taken up by MDMs in vivo (Öörni
and Kovanen 2021). The apoptotic lipid uptake rate, kap, has been scaled down from
its in vitro estimate by a factor 19 to account for the 19-fold deficiency in efferocytosis
measured in human atherosclerotic plaques (Schrijvers et al. 2005).

The mediator mass,�s, and natural decay rate, δS , are based on data for the inflam-
matory mediator TNF, which has a molecular weight of 17kDa in its secreted form
as a monomer and a 19 minute half-life (Atzeni and Sarzi-Puttini 2013; Liu et al.
2021). Other mediators have a comparable mass and half-life (e.g. 15 kDa and 20min
respectively for the resolving mediator IL-4 (Liu et al. 2021)).

We estimate the rate of rLDL-stimulated mediator production from resident cells,
α, using reports that MDMs are observed in murine atherosclerotic lesions within 2
weeks of high fat diet treatment (Williams et al. 2020). The value α = 3.5 × 10−3

per month ensures that the MDM density in our model is approximately 350 mm−3

(approximately blood monocyte concentration) in 2 weeks when L(0) = 750 mg/dL.
The MDM phenotypic plasticity, χ , is calibrated to experiments of macrophage

phenotype modulation in vitro (Tarique et al. 2015). Tarique et al. observed that
macrophages exposed to inflammatory and resolving mediators at 20 ng/mL under-
went phenotypic polarisation in 2 days. We fix χ = 6.3 × 10−4 so that phenotype
modulation in our model occurs on this timescale (i.e. �̂M (t = 2days) = ±1/2 if
S± = 20ng/mL and �̂M (t = 0) = 0).

Finally, we note that the lipid uptake/efflux increment, �a, and maximal structure
indices, �max and φmax, are model abstractions. In reality, lipid increments vary sub-
stantially depending on the specific interaction. The smallest increment is likely that
associated with efflux, given that each HDL particle can store approximately 75kDa
of cholesterol. The largest increment is likely that due to apoptotic or necrotic lipid
uptake, which we can assume to be smaller than the endogenous lipid content, a0,
since cellular uptake in vivo is typically piecemeal rather than involving whole cell
engulfment (Taefehshokr et al. 2021). We fix�a = 16pg as a reasonable intermediate
value. This choice means that �max = κ/�a ≈ 100. The value of φmax has an upper
bound of (2χ)−1 ≈ 83000 since the phenotype transition probabilities in Eq. (5) must
satisfy p±

φ ≤ 1. We fix φmax = 50 so that phenotype and lipid content are equally
resolved in our model.
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