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Three major misconceptions concerning quantized tachyon fields, the energy spectrum unbounded from
below, the frame-dependent and unstable vacuum state, and the noncovariant commutation rules, are shown
to be a result of misrepresenting the Lorentz group in a too small Hilbert space. By doubling this space we
establish an explicitly covariant framework that allows for the proper quantization of the tachyon fields
eliminating all of these issues. Our scheme that is derived to maintain the relativistic covariance also singles
out the two-state formalism developed by Aharonov et al. [Phys. Rev. 134, B1410 (1964)] as a preferred
interpretation of the quantum theory.
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I. INTRODUCTION

Tolman’s hypothesis [1] that superluminal particles lead
to causality paradoxes [2–10], has recently been challenged
by Dragan and Ekert [11], who showed that the tachyons
do not create logical paradoxes, but only disturbances of
causality akin to those known in quantum theory. An
important mathematical difficulty, which prevented the
extension of special relativity to include superluminal
phenomena in spacetimes of dimensions greater than
1þ 1 [12], was also recently overcome [13], catalyzing
the discussion around the claim that tachyons, being the
enfant terrible of physics, are not definitively ruled out
from its domain [14–20].
Since the 1960s, physicists have attempted to propose a

quantum theory of tachyons [21–24] and experimentally
detect them [25–30]. Chodos and Kostelecky [31] even
suggested that at least one known neutrino species might be
a tachyon, prompting experimental tests and subsequent
studies [32–42], in particular the infamous claim of a faster-
than-light neutrino in the OPERA experiment [43]. Within
the framework of string theory, the existence of tachyons is
also well recognized, though they are typically regarded as
unwelcome artifacts [44–49]. Tachyons have also been
studied in the context of the Casimir effect [50,51], statis-
tical mechanics, and thermodynamics [52–58]. Studies on

the tachyon field’s potential applications in cosmology
reveal diverse possibilities [59–65], notably in mechanisms
like the “rolling of the tachyon” [66–73] and “transient
tachyonic instabilities” enhancing cosmological perturbation
amplitudes. Tachyons are often associated with instabilities,
as highlighted in several studies [74–76], in particular, in
“tachyonic preheating,” the phenomenon of rapid energy
transfer due to tachyonic instability [77–85]. It has also been
pointed out [13] that fields with “negative mass square,”
i.e., tachyon fields, are integral to models of spontaneous
symmetry breaking, such as the Higgs mechanism [86].
Unfortunately, all attempts for further discussion about

tachyons are held by serious mathematical difficulties that
prevent their covariant description within the framework
of quantum field theory (QFT). Since the earliest attempts
[21–24], at least three such problems remain unsolved: the
energy spectrum is unbounded from below, Lorentz boosts
alter an already unstable vacuum, and the commutation
rules are not covariant with respect to Lorentz boosts.
In this work, we show that these issues stem from the

improper representation of the Lorentz group in a too-small
Hilbert space. After a natural extension of this space,
problems with the quantization of tachyon fields disappear
and it is possible to construct a theory with a stable and
relativistically invariant tachyon vacuum and a lower-
bounded energy spectrum. Notably, our findings align with
the two-state formalism in quantum mechanics, introduced
by Aharonov, Bergmann, and Lebowitz [87] to guarantee*dragan@fuw.edu.pl
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time reversibility of the measurement process. While this
formalism was only an exotic interpretation of nonrelativ-
istic quantum mechanics, in quantum field theory of
tachyons, a similar approach turns out to be a necessary
element guaranteeing the relativistic invariance [88].
Previous attempts at tachyon quantization have proven

unsuccessful. Tanaka’s early study [89] on virtual tachyons
lacked a complete covariant description. Feinberg’s
approach [21] aiming to preserve relativistic covariance
by swapping the scalar theory’s commutation relations
with anticommutation relations also failed. Arons and
Sudarshan [22], through an explicit derivation of the
Bogolyubov transformation of the vacuum state, demon-
strated that Feinberg’s attempt did not succeed and that
Lorentz invariance was still compromised. Arons,
Sudarshan, and Dhar [22,23] proposed their own remedy,
maintaining the Lorentz invariance but adding a frequency
index to the annihilation operators, which caused some
annihilation operators to function as creation operators.
However, they also required the vacuum state to be
“annihilated” by these effective creation operators, which
is mathematically impossible. As a result, their entire
construction hinged on self-contradictory assumptions. In
another attempt, Schwartz [90] suggested a novel quanti-
zation method for the tachyonic field distinguishing two
spacelike directions and treating a third one as a function of
frequency. He also made another observation [41] analo-
gous to Sudarshan’s reinterpretation of the emission/
absorption process [91] that the space of single-particle
states is not Lorentz invariant and should be enlarged. We
also consider this observation as our starting point, but we
approach it more rigorously, making it the foundation of
our relativistically invariant framework of quantum field
theory of tachyons and their interactions with other fields.

II. LORENTZ COVARIANCE OF QUANTUM
TACHYONIC FIELDS

The action of the Lorentz group for standard quantum
fields is represented in the Fock space F constructed as a
direct sum of definite particle number subspaces:

F ≡ ⨁
∞

n¼0

SðH⊗nÞ; ð1Þ

where H is a one-particle Hilbert space and S is the
symmetrization operator. A representation of the Lorentz
group can be characterized by defining the action of the
group elements on the one-particle subspace H only
because Lorentz boosts do not change the number of
particles, thereby keeping H invariant.
Contrarily, the case of tachyons differs. Classically, a

tachyon is a particle moving along a spacelike trajectory
and characterized by a spacelike energy-momentum four-
vector tangent to that trajectory [13,92]. Therefore, a
Lorentz boost can transform a positive-energy tachyon

moving forward in time into a negative-energy tachyon
moving backward in time. This elementary fact has far-
reaching consequences for the quantum theory of tachyons.
To illustrate this point, consider a hypothetical process of a
subliminal particle emitting a positive-energy tachyon as
depicted in Fig. 1(a). There exists another inertial observer,
for whom the same process involves the emission of a
negative-energy tachyon moving backward in time, as
shown in Fig. 1(b). In this reference frame, the process
can be reinterpreted as an absorption of a positive-energy
antitachyon moving forward in time [22]. As a result, both
the number of tachyons in the input state and the number of
tachyons in the output state turn out to be frame dependent.
This scenario indicates that a Lorentz boost can inter-

change an output state of the tachyon field with an input
state. Therefore the Lorentz group’s action for tachyonic
fields should not be represented in the space of input states
F , which lacks boost invariance. Instead, the Lorentz group
should be represented in the twin space F ⊗ F⋆, contain-
ing both input and output states (with F⋆ denoting the
space dual to F ). This twin space characterizes both the
past and the future of the field and is the smallest Hilbert
space preserved under the Lorentz (as well as Poincare)
group’s action for tachyons. Previous issues with the
covariance of the quantum field theory of tachyons seem
to arise from representing the Lorentz group in a too-small
space F , rather than in F ⊗ F⋆.
Delving further into the detailed formulation of our

proposal, we consider a real scalar tachyon field charac-
terized by the Klein-Gordon equation with a “negative
square mass” term:

ð□ −m2Þϕ ¼ 0; ð2Þ

with the standard mode solutions:

ukðt; rÞ≡ 1

ð2πÞ32ωk
eiðk·r−ωktÞ; ð3Þ

orthonormal according to the Wronskian ðψ ;φÞ¼ðφ;ψÞ� ¼
−ðφ�;ψ�Þ≡ i

R
t¼0d

3rψ�
∂

↔

tφ. Note that the dispersion

(a) (b)

FIG. 1. An emission of a positive-energy tachyon (a) in one
reference frame is Lorentz transformed by a boost Λ into an
emission of a negative-energy tachyon (b) backward in time,
which can be reinterpreted as a regular absorption of a positive-
energy antitachyon forward in time, in the boosted reference
frame. The worldlines of tachyons are shown as dashed lines.
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relation ω2 ¼ k2 −m2 dictates that the wave vectors kmust
satisfy the condition jkj > m. This requirement mirrors the
classical case, in which a tachyon’s momentum p must
satisfy the condition jpj > m [13].
Associated with each mode solution ukðt; rÞ is an

annihilation operator âk acting in F and satisfying the
standard commutation relations:

½âk; â†l � ¼ 2ωkð2πÞ3δð3Þðk − lÞ: ð4Þ

In the orthodox QFTall of these annihilation operators give
rise to the field operator:

ϕ̂ðt; rÞ≡
Z
jkj>m

d3kðukðt; rÞâk þ u�kðt; rÞâ†kÞ; ð5Þ

which is a relativistic scalar for normal particles, but fails to
be a scalar for the case of tachyons. A Lorentz boost Λ that
changes the sign of energy k0 of a spacelike four-energy k,
according to sgnðΛkÞ0 ¼ −sgnk0, transforms the mode
solutions in the following way:

ð6Þ

with l0 being the spatial part of the four-vector −Λk. Such a
Bogolyubov transformation acts on the annihilation oper-
ators according to in a way that violates their
commutation relations (4). For this reason the field operator
ϕ̂ is not a valid relativistic scalar.
In order to restore covariance of the theory and represent

the action of a Lorentz boost Λ that changes the energy
sign, it is essential to consider states belonging to the twin
space F ⊗ F⋆. Focusing on the scenario portrayed in
Fig. 1 we expect such a boost Λ to lead to the following
transformation of single-particle states of the F ⊗ F⋆ twin
space:

ð7Þ

This transition corresponds to a similar transformation for
creation operators on F ⊗ F⋆:

ð8Þ

where the star represents a dual operator, which acts on the
dual space as follows: â⋆l0 h0j≡ h1l0 j. Notably, the trans-
formation (8) preserves the commutation relations, because

½â⋆†k ; â⋆l � ¼ 2ωkð2πÞ3δð3Þðk − lÞ: ð9Þ

Moreover, all Lorentz boosts Λ also preserve the twin
vacuum state j0i ⊗ h0j∈F ⊗ F⋆ of such a theory,
defined as

âk ⊗ 1̂j0i ⊗ h0j ¼ 0 ¼ 1̂ ⊗ â⋆†k j0i ⊗ h0j: ð10Þ

This is ensured by the transformation law (8). The obser-
vations outlined above can be formalized through an ex-
plicit unitary representation U∶ SOþð1; 3Þ → UðF ⊗ F⋆Þ,
which relates the tachyonic twin states in different frames of
reference.
A relativistically covariant scalar field Φ̂ acting in the

Hilbert twin space F ⊗ F⋆ has the form

Φ̂ðt; rÞ≡ 1

2

�
ϕ̂ðt; rÞ ⊗ 1̂þ 1̂ ⊗ ϕ̂⋆ðt; rÞ�: ð11Þ

Under the Lorentz group’s representation U, it satisfies
Φ̂ðΛ−1xÞ ¼ UðΛÞ−1Φ̂ðxÞUðΛÞ. In effect, this implies that
in the scenario where sgnðΛkÞ0 ¼ −sgnk0, we have:

UðΛÞðâk ⊗ 1̂þ 1̂ ⊗ â⋆k ÞUðΛÞ−1 ¼ ðâl0 ⊗ 1̂þ 1̂ ⊗ â⋆l0 Þ†;
ð12Þ

with l0 being the spatial part of the four-vector −Λk. This
time the operators on both sides of (12) commute with their
Hermitian conjugates, so the commutation relations are
preserved by the transformation. This implies (8), because
the alternative transformation would
again violate the commutation relations.
Our extension of the Hilbert space, in which the Lorentz

group is represented, defines a theory that does not change
the field operator (11), preserves the commutation rela-
tions, and leaves the vacuum state j0i ⊗ h0j∈F ⊗ F⋆

defined by (10) invariant under the group action. This state
describes a situation where no tachyons are prepared in the
past, nor are there any tachyons detected in the future. In
contrast, neither of the naive vacuum states, j0i∈F nor
h0j∈F⋆, independently admits a covariant description. In
this way, we resolve the problems encountered in previous
attempts to formulate a relativistic quantum theory of
tachyons [21–23].

III. QUANTUM FIELD THEORY IN TWIN SPACE

We now direct our focus towards the formalism and
properties of the tachyon quantum field theory operating in
the Hilbert space F ⊗ F⋆. Our primary goal is to calculate
the probability amplitudes for scattering processes. For this
purpose, we need a c-number valued functional on the twin
space. There is a canonical isomorphism of F ⊗ F⋆ with
the algebra of Hilbert-Schmidt operators, so at least on its
subalgebra of trace-class operators, a good candidate is the
trace: Tr∶ F ⊗ F⋆ → C. For separable twin states of the
form jψi ⊗ hξj∈F ⊗ F⋆ it yields

Trðjψi ⊗ hξjÞ ¼ hξjψi: ð13Þ
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Given operators Ô1;i and Ô2;i on F we construct an opera-
tor Ô on F ⊗F⋆ by setting Ô¼Pi Ô1;i⊗ Ô†⋆

2;i . The corres-
ponding amplitudes are then computed using the identity

Tr

 X
i

Ô1;i ⊗ Ô†⋆
2;i jψi ⊗ hξj

!
¼
�
ξ

����X
i

Ô†
2;iÔ1;i

����ψ
�
:

ð14Þ

This implies that the action of any operator Ô on separable
states of the twin space F ⊗ F⋆ can be effectively repre-
sented using the following operator acting on the Fock
subspace F : X

i

Ô1;i ⊗ Ô†⋆
2;i →

X
i

Ô†
2;iÔ1;i: ð15Þ

Our approach, deduced from the requirement of Lorentz
invariance of QFT of tachyons, bears a remarkable resem-
blance to the two-state vector formalism in nonrelativistic
quantum mechanics, developed by Aharonov, Bergmann,
and Lebowitz [87]. This formalism describes quantum
processes and measurements in a time-symmetric manner,
utilizing states that were prepared both in the past and in
the future. As shown in [87], the quantum theory can be
reinterpreted using this paradigm, which we will adopt to
interpret the states of the twin space F ⊗ F⋆.
The two-state vector formalism offers a useful guiding

principle for understanding the twin space [93–95].
According to that approach, F contains information on
preselected quantum states, i.e., states prepared in the past,
while the factor F⋆ corresponds to postselected states
prepared in the future. In the interaction picture of a free
quantum theory in a given reference frame, this correspon-
dence becomes an equivalence, allowing the preselected
and postselected states to be identified with the “in” and
“out” states, respectively.
The free QFT of tachyons considered in the twin space

becomes even more interesting when we apply this for-
malism to nonseparable twin states, which have no
straightforward analog in conventional QFT. For the most
general twin state

P
j αjjψ ji ⊗ hξjj∈F ⊗ F⋆, we find

Tr

 X
i

Ô1;i ⊗ Ô†⋆
2;i

X
j

αjjψ ji ⊗ hξjj
!

¼
X
j

αj

�
ξj

����X
i

Ô†
2;iÔ1;i

����ψ j

�
: ð16Þ

This expression cannot be represented in the conventional
form given by the right-hand side of (14) for any states hξj
and jψi. Notice that if separable states in the space F ⊗
F⋆ become nonseparable during evolution, such evolution
would be nonunitary within the single space F . In general,
it would be represented by a completely positive map.

The possibility of states analogous to our nonseparable
states within the two-state vector formalism has already
been explored by Aharonov and Vaidman [96,97]. Never-
theless, in a Lorentz-invariant QFT the existence of such
nonseparable states in F ⊗ F⋆ is not merely a mathe-
matical curiosity; instead, they must be acknowledged as
physically accessible twin states, as shown in the following
example.
Consider a pair of “out” states hξ1j, hξ2j∈F⋆, such that

under the representation of a certain Lorentz boost Λ, the
first state remains in the space of “out” states hξ01j∈F⋆,
while the second one is transformed onto an “in” state
jξ02i∈F . Then, consider the superposed state j0i ⊗
1ffiffi
2

p ðhξ1j þ hξ2jÞ, which is separable in F ⊗ F⋆. Under

the action of the Lorentz boost representation this state
becomes nonseparable:

j0i ⊗ 1ffiffiffi
2

p ðhξ1j þ hξ2jÞ↦
UðΛÞ 1ffiffiffi

2
p ðj0i ⊗ hξ01j þ jξ02i ⊗ h0jÞ:

ð17Þ

This example highlights that nonseparable states are
physically significant, and their inclusion in the theory is
crucial to retain its relativistic invariance.
Of course, the above construction can be extended to the

QFT of subluminal particles, but it is somewhat trivial,
as no Lorentz transformation can shift states between F
and F⋆. In this case, we simply end up with two copies of
the theory: one for preselected states and another for
postselected states.

IV. INTERACTING THEORY

In order to consider an interacting theory, we need to
deal more seriously with time evolution and to calculate
S-matrix elements. To this end, we define two operators:

Ĥ� ¼ Ĥ ⊗ 1̂� 1̂ ⊗ Ĥ⋆; ð18Þ

with Ĥ and Ĥ⋆ being the single Fock space Hamiltonians
acting in F and F⋆, respectively. The operator Ĥ−
generates the time evolution of both parts of the twin state
in the same direction, i.e., e−iĤ−tjψð0Þi ⊗ hξð0Þj ¼
jψðtÞi ⊗ hξðtÞj, so it leaves the amplitudes computed as
in (13) invariant.
In contrast, the operator Ĥþ generates the time evolution

of both parts of the twin state in opposite directions, i.e.,
e−iĤþtjψð0Þi ⊗ hξð0Þj ¼ jψðtÞi ⊗ hξð−tÞj, thus allowing a
construction of an “in-out” state jαini ⊗ hβoutj from the
eigenstates of the free Hamiltonian jα0i ⊗ hβ0j. Indeed,
we have

jαini ⊗ hβoutj ¼ lim
T→∞

e−iĤþTeiĤ0þT jα0i ⊗ hβ0j; ð19Þ
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where Ĥ0þ denotes the operator corresponding to the free
Hamiltonian Ĥ0. With this, we can write the S-matrix
element, Sαβ ¼ hβoutjαini, in the following way:

Sαβ ¼ lim
T→∞

Trðe−iĤþTeiĤ0þT jα0i ⊗ hβ0jÞ: ð20Þ

The above formula allows us to compute the S-matrix
elements within the twin space formalism along the same
lines as in standard QFT.
It should be emphasized that the operators Ĥ� are not

derived from the field operator Φ̂. Instead, to obtain them
one constructs the single Fock space operator Ĥ from the
operator ϕ̂ as if it were a Hamiltonian on F , and extends it
to the twin space F ⊗ F⋆ like in (18). This approach
results in the covariant expression (20) providing a
straightforward reference to the standard formulation
of QFT.
Using Eq. (20) we can compute the S-matrix elements in

a perturbative way. It is important to note, however, that the
contraction function

h0jTϕ̂ðxÞϕ̂ðyÞj0i ¼
Z
jkj>m

d4k
ð2πÞ4

ie−ikðx−yÞ

k2 þm2 þ iϵ
ð21Þ

is not relativistically invariant because of the restriction
jkj > m. As proposed by Dhar and Sudarshan [23] the
contraction function can be extended by dropping the
condition jkj > m, which would correspond to including
the virtual tachyons with jkj < m into considerations. The
propagator obtained in this way is relativistically invariant,
as desired. This is similar to the situation in quantum
electrodynamics, where (in the Coulomb gauge) we need
to include in the propagator the nonphysical longitudinal
and scalar photons. Just like the longitudinal and scalar
photons, the tachyons with jkj < m are allowed to appear
as virtual particles, but are excluded from the space of
asymptotic states.
As an illustrative example of the S-matrix element

calculation, let us consider the process depicted in
Fig. 1, where a tachyon is emitted by a subluminal particle
governed by the scalar Yukawa Hamiltonian. Within the
framework of first-order perturbation theory, the S-matrix
element for this process is given by

−igð2πÞ4δð4Þðk − l − pÞ; ð22Þ

where g denotes the coupling constant, and k, l, and p
represent the four-momenta of the subluminal particles in
the initial and final states, and the emitted tachyon,
respectively.
To study relativistic properties, we analyze this process

in a boosted frame (see Fig. 1). Lorentz transformation
UðΛÞ changes an outgoing tachyon with four-momentum p
into an incoming one with p0 ¼ −Λp. The four-momenta

of subluminal particles also shift to k0 ¼ Λk and l0 ¼ Λl. In
this boosted frame, we find that the transformed matrix
element takes the form

−igð2πÞ4δð4Þðk0 − l0 þ p0Þ≡ −igð2πÞ4δð4ÞðΛðk − l − pÞÞ;
ð23Þ

which demonstrates the covariance of the scattering
process.
The renormalization procedure for this theory can be

carried out at one loop in a standard way, since the UV
divergences in diagrams involving tachyons are the same as
for scalars with positive mass squared. At the technical
level, one needs to subtract singularities from on-shell
particles on intermediate lines to avoid double counting and
to restrict integration over momenta for tachyons which
does not affect logarithmic divergences.
Similar reasoning can be carried out for other types of

covariant interactions. Even if some tachyons are boosted
from the initial to the final states, this change is compen-
sated by the minus sign of the boosted momentum. As a
result, the conditions of momentum conservation at each
vertex transform covariantly between all inertial frames.

V. DISCUSSION AND CONCLUSIONS

We showed how to covariantly quantize a tachyonic field
while maintaining the positive-energy spectrum and pre-
serving a stable, Lorentz-invariant vacuum state. Unlike
Feinberg [21], Arons, Sudarshan, and Dhar [22,23],
Schwartz [90], as well as others, but similar to Schwartz
[41] we proposed to solve this problem by extending the
Hilbert space to F ⊗ F⋆. We developed an explicitly
covariant framework that keeps the commutation relations
the same in all reference frames, and it ensures the
dynamical stability and relativistic invariance of the vac-
uum state. We also applied our framework to account for
interactions with other fields.
Our results highlight the existence of a new category

of quantum states bearing resemblance to the generalized
two-state vectors discussed by Aharonov and Vaidman
in [96,97]. But these nonseparable states in the twin space
F ⊗ F⋆ are not merely mathematical curiosities. These
states are physically accessible because they can be
generated by Lorentz boosting the conventional, separable
states. We argue that our framework singles out the two-
vector formalism as a preferred interpretation of the quantum
theory, particularly within its relativistic context. However,
pinpointing the appropriate nonrelativistic quantum
mechanical interpretation in light of our results remains
an open question, one that necessitates more comprehensive
investigation and discourse in future studies.
Numerous other topics require further exploration. The

nonseparable states that emerge within the structure of the
F ⊗ F⋆ space bear a striking resemblance to indefinite
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causal structures [98] studied in the context of nonclassical
gravity [99] and relativistic motion [100,101]. Furthermore, it
is tempting to investigate if our framework can be formulated
in superluminal frames of reference [92] which may turn out
more natural to describe the physics of tachyons.
Finally, an important unanswered question is whether the

Higgs field, which can be formally regarded as a tachyon
field for small values of the field, can be described within
the framework introduced in this study. We believe that our
quantization scheme may help to understand and explore
the physics of the Higgs phase transition and the dynamics
of the broken versus the unbroken phase. One special
aspect of these investigations regards CP-violating inter-
actions in the electroweak sector. The measured Higgs mass
corresponds to a second-order phase transition, violating

Sakharov conditions for dynamical generation of the
baryon asymmetry of the Universe (BAU) in electroweak
interactions in the Standard Model of particle physics.
This prompted many studies about an extended Higgs
sector with additional sources of CP violation, which may
account for the BAU. Further investigation is needed to
explore this idea.
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Phys. B614, 101 (2001).
[65] S. Sarangi and S.-H. Tye, Phys. Lett. B 536, 185 (2002).
[66] T. Padmanabhan, Phys. Rev. D 66, 021301 (2002).
[67] A. Frolov, L. Kofman, and A. Starobinsky, Phys. Lett. B

545, 8 (2002).
[68] L. Kofman and A. Linde, J. High Energy Phys. 07 (2002)

004.
[69] M. Fairbairn and M. H. Tytgat, Phys. Lett. B 546, 1 (2002).
[70] G. Shiu and I. Wasserman, Phys. Lett. B 541, 6 (2002).
[71] G. Felder, L. Kofman, and A. Starobinsky, J. High Energy

Phys. 09 (2002) 026.
[72] J. M. Cline, H. Firouzjahi, and P. Martineau, J. High

Energy Phys. (2003) 041.
[73] C. Kim, H. B. Kim, and Y. Kim, Phys. Lett. B 552, 111

(2003).
[74] G. Felder, L. Kofman, and A. Linde, Phys. Rev. D 64,

123517 (2001).
[75] N. Frusciante, G. Papadomanolakis, S. Peirone, and A.

Silvestri, J. Cosmol. Astropart. Phys. 02 (2019) 029.
[76] C. Acatrinei and C. Sochichiu, Phys. Rev. D 67, 125017

(2003).
[77] G. Felder, J. García-Bellido, P. B. Greene, L. Kofman, A.

Linde, and I. Tkachev, Phys. Rev. Lett. 87, 011601 (2001).
[78] E. J. Copeland, S. Pascoli, and A. Rajantie, Phys. Rev. D

65, 103517 (2002).
[79] N. Koivunen, E. Tomberg, and H. Veermäe, J. Cosmol.

Astropart. Phys. 07 (2022) 028.
[80] E. Tomberg and H. Veermäe, J. Cosmol. Astropart. Phys.

12 (2021) 035.

[81] M. He, R. Jinno, K. Kamada, A. A. Starobinsky, and J.
Yokoyama, J. Cosmol. Astropart. Phys. 01 (2021) 066.

[82] A. Arrizabalaga, J. Smit, and A. Tranberg, J. High Energy
Phys. 10 (2004) 017.

[83] K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamäki,
and A. Väihkönen, J. Cosmol. Astropart. Phys. 03 (2005)
010.

[84] J.-F. Dufaux, G. Felder, L. Kofman, and O. Navros,
J. Cosmol. Astropart. Phys. 03 (2009) 001.

[85] A. Karam, E. Tomberg, and H. Veermäe, J. Cosmol.
Astropart. Phys. 06 (2021) 023.

[86] M. Srednicki, Quantum Field Theory (Cambridge
University Press, Cambridge, England, 2007).

[87] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys.
Rev. 134, B1410 (1964).

[88] It must be pointed out that our work, while it deals with
quantum field theory for tachyons, does not address the
complex interpretational questions linked to the two-state
vector formalism. Issues such as the interpretation of weak
measurements or the validity of the product rule remain
outside the scope of our study. In quantum field theory,
defining certain observables, like the number of particles in
a finite space, can be problematic [102], but our use of the
two-state formalism is confined to its utility in computing
probability amplitudes for processes using S-matrix ele-
ments, and does not extend to these broader interpretative
concerns.

[89] S. Tanaka, Prog. Theor. Phys. 24, 171 (1960).
[90] C. Schwartz, Int. J. Mod. Phys. A 31, 1650041 (2016).
[91] O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G.

Sudarshan, Am. J. Phys. 30, 718 (1962).
[92] A. Dragan, Unusually Special Relativity (World Scientific,

London, 2021).
[93] Y. Aharonov and D. Albert, Phys. Rev. D 29, 228 (1984).
[94] Y. Aharonov, D. Albert, and S. D’Amato, Phys. Rev. D 32,

1976 (1985).
[95] Y. Aharonov, S. Popescu, and J. Tollaksen, Each Instant of

Time a New Universe (Springer, Milano, 2014).
[96] Y. Aharonov and L. Vaidman, J. Phys. A 24, 2315 (1991).
[97] Y. Aharonov and L. Vaidman, The Two-State Vector

Formalism: An Updated Review (Springer, Berlin, 2008).
[98] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,

Phys. Rev. A 88, 022318 (2013).
[99] M. Zych, F. Costa, I. Pikovski, and Časlav Brukner, Nat.

Commun. 10, 1 (2019).
[100] A. Dimić, M. Milivojević, D. Gočanin, N. S. Móller, and

Časlav Brukner, Front. Phys. 8, 470 (2020).
[101] K. Dębski, M. Zych, F. Costa, and A. Dragan, Phys. Rev. A

108, 062204 (2023).
[102] F. Kialka, A. Smith, M. Ahmadi, and A. Dragan, Phys.

Rev. D 97, 065010 (2018).

COVARIANT QUANTUM FIELD THEORY OF TACHYONS PHYS. REV. D 110, 015006 (2024)

015006-7

https://doi.org/10.1088/1126-6708/1999/12/027
https://doi.org/10.1007/BF01565591
https://doi.org/10.1007/s10702-005-6114-0
https://doi.org/10.1007/s10773-011-0937-1
https://doi.org/10.1007/s10773-011-0937-1
https://doi.org/10.1007/BF02813990
https://doi.org/10.1007/BF02813990
https://doi.org/10.1139/p10-094
https://doi.org/10.1139/p10-094
https://doi.org/10.1140/epjp/s13360-021-02238-6
https://doi.org/10.1140/epjp/s13360-021-02238-6
https://doi.org/10.1103/PhysRevD.76.045018
https://doi.org/10.1103/PhysRevD.76.045018
https://doi.org/10.1016/S0378-4371(00)00594-X
https://doi.org/10.1007/BF02721609
https://doi.org/10.1103/PhysRevD.65.023507
https://doi.org/10.1103/PhysRevD.72.043528
https://doi.org/10.1103/PhysRevD.72.043528
https://doi.org/10.1103/PhysRevD.74.043501
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0370-2693(02)01824-5
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1016/S0370-2693(02)02582-0
https://doi.org/10.1016/S0370-2693(02)02582-0
https://doi.org/10.1088/1126-6708/2002/07/004
https://doi.org/10.1088/1126-6708/2002/07/004
https://doi.org/10.1016/S0370-2693(02)02638-2
https://doi.org/10.1016/S0370-2693(02)02195-0
https://doi.org/10.1088/1126-6708/2002/09/026
https://doi.org/10.1088/1126-6708/2002/09/026
https://doi.org/10.1088/1126-6708/2002/11/041
https://doi.org/10.1088/1126-6708/2002/11/041
https://doi.org/10.1016/S0370-2693(02)03126-X
https://doi.org/10.1016/S0370-2693(02)03126-X
https://doi.org/10.1103/PhysRevD.64.123517
https://doi.org/10.1103/PhysRevD.64.123517
https://doi.org/10.1088/1475-7516/2019/02/029
https://doi.org/10.1103/PhysRevD.67.125017
https://doi.org/10.1103/PhysRevD.67.125017
https://doi.org/10.1103/PhysRevLett.87.011601
https://doi.org/10.1103/PhysRevD.65.103517
https://doi.org/10.1103/PhysRevD.65.103517
https://doi.org/10.1088/1475-7516/2022/07/028
https://doi.org/10.1088/1475-7516/2022/07/028
https://doi.org/10.1088/1475-7516/2021/12/035
https://doi.org/10.1088/1475-7516/2021/12/035
https://doi.org/10.1088/1475-7516/2021/01/066
https://doi.org/10.1088/1126-6708/2004/10/017
https://doi.org/10.1088/1126-6708/2004/10/017
https://doi.org/10.1088/1475-7516/2005/03/010
https://doi.org/10.1088/1475-7516/2005/03/010
https://doi.org/10.1088/1475-7516/2009/03/001
https://doi.org/10.1088/1475-7516/2021/06/023
https://doi.org/10.1088/1475-7516/2021/06/023
https://doi.org/10.1103/PhysRev.134.B1410
https://doi.org/10.1103/PhysRev.134.B1410
https://doi.org/10.1143/PTP.24.171
https://doi.org/10.1142/S0217751X1650041X
https://doi.org/10.1119/1.1941773
https://doi.org/10.1103/PhysRevD.29.228
https://doi.org/10.1103/PhysRevD.32.1976
https://doi.org/10.1103/PhysRevD.32.1976
https://doi.org/10.1088/0305-4470/24/10/018
https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.3389/fphy.2020.525333
https://doi.org/10.1103/PhysRevA.108.062204
https://doi.org/10.1103/PhysRevA.108.062204
https://doi.org/10.1103/PhysRevD.97.065010
https://doi.org/10.1103/PhysRevD.97.065010

