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Lay summary

Large software systems can be really complicated, especially when using a design

called Microservice Architecture. This design means that there are many small parts

interacting with each other, which adds to the complexity. Traditional methods to de-

tect issues in these systems can work, but they often need a lot of computing power

and aren’t easy to understand. On the other hand, knowledge-based methods are effec-

tive, easy to understand, and explainable, but they rely on having a good knowledge

base, which is hard to create and maintain. I developed a framework called TREAT,

which automatically creates and updates a knowledge base from system logs, which

record what happens during system runtime. This knowledge base reflects the current

state of the software system and helps with many operation and maintanence tasks. In

the thesis, I showed a case study of how TREAT can be used in the task of locating

faulty components. TREAT is the first framework designed to continually update a

knowledge base from logs to show the system’s internal changes accurately. To assess

the quality of the extracted knowledge, I developed a new method called LP-Measure,

which directly assesses the quality of a knowledge base by looking at how robust and

redundant the knowledge graph is, without extra human examination. Another appli-

cation of the knowledge base is called knowledge graph embedding. I conducted an

in-depth study of probability calibration of knowledge graph embeddings, which con-

firmed that these probabilities are often uncalibrated, explored how to select the best

method to calibrated the probabilities.

In summary, the TREAT framework automates the creation and updating of a

knowledge base from software logs, making it easier to understand and maintain com-

plex software systems. My research also developed new methods to evaluate and im-

prove the quality of these knowledge bases, ensuring they are reliable and accurate for

tasks like finding faults.
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Abstract
Large software systems can be very complex, and they get more and more complex in

the recently popular Microservice Architecture due to increasing interactions among

more components in bigger systems. Plain model-based and data-driven diagnosis

approaches can be used for fault detection, but they are usually opaque and demand

massive computing power. On the other hand, knowledge-based methods have shown

to be not only effective but explainable and human-friendly for various tasks such as

Fault Analysis [35, 25], but are dependent on having a knowledge base. The construc-

tion and maintenance of knowledge bases are not a trivial problem, which is referred

to as the knowledge bottleneck.

Software system logs are the primary and most available, sometimes the only avail-

able data that record system runtime information, which are critical for software sys-

tem Operation and Maintenance (O&M). I proposed the TREAT framework, which

can automate the construction and update a knowledge base from a continual stream

of logs, which aims to, as faithfully as possible, reflect the latest states of the assisted

software system, and facilitate downstream tasks, typically fault localisation (FL). To

the best of our knowledge, this is the first effort to construct a fully automated ever-

updating knowledge base from logs that aims at reflecting the internal changing states

of a software system. To evaluate the TREAT framework, I devised a knowledge-based

solution involving logic programming and inductive logic programming that makes use

of a TREAT-powered knowledge base to fault localisation and conducted empirical ex-

periments of this solution on a real-life 5G network test bed system.

Since evaluating the TREAT framework by fault localisation is indirect and in-

volves many confounding factors, e.g., the specific solution to fault localisation, I ex-

plored and came up with a novel method called LP-Measure that can directly assess

the quality of a given knowledge base, in particular the robustness and redundancy of

a knowledge graph.

Besides, it was observed that although the extracted knowledge is of high quality

in general, there are also errors in the knowledge extraction process. I surveyed the

way to quantify the uncertainty during the knowledge extraction process and assign

probabilities of correct extraction to every piece of knowledge, which led to a deep in-

vestigation into probability calibration and knowledge graph embeddings, specifically

testing and confirming the phenomenon of uncalibrated probabilities in knowledge

graph embeddings and how to choose specific calibration models from the existing

toolbox.
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Chapter 1

Introduction

In this thesis, I focused on the problem of knowledge base (KBs) construction and

updating it from log data for Operation & Maintenance (O&M) of modern software

systems. O&M of modern software systems is challenging as the scale and the inter-

actions among components within the software system are increasing rapidly.

As a consequence, it gets harder and harder for unaided human beings to oper-

ate and maintain large software systems. AI-aided O&M (AIOps) or even Automated

O&M is intended to address this problem [47, 19]. There have been some commonly

used techniques in automated O&M [47]. When a system failure occurs, system logs,

as well as KPI (Key Performance Indicator) metrics, alarms together with other data

sources are useful to help locate and resolve the failure. In some cases, system logs

are the most accessible or even the only available data that record software runtime

information [82] because logs record events of system changes and reveal the latest

system states. Whenever an anomaly is detected and intervention is required, logs are

one of the most valuable sources of information we can analyse to locate the prob-

lems. Therefore, I was considering how to make the best use of log data for typical

O&M tasks. A motivating scenario and potential use case is the vision of Autonomous

Network [134, 71, 64], which refers to a telecommunication network system that can

accurately do self-operation and self-maintenance (monitoring, healing, etc) with min-

imal or no human intervention, and thus greatly reduce the Operation and Maintenance

(O&M) cost.

One way toward this vision is having a sub-system that can be plugged into the

network system to be in charge of self-monitoring and self-healing. Communication

1



2 Chapter 1. Introduction

Service Providers (CSPs) which run the network system, like Vodafone1 and Orange2,

can accumulate data and continually improve their quality of service. However, ven-

dors which build the network systems for CSPs, like Huawei3 and Ericson4, are no

longer allowed to access the network system. Thus, vendors lack enough high-quality

data to build data-driven AI models and push forward the Autonomous Network vision.

This dilemma will not change until the business mode gets changed. Hence, it drove

me to explore another branch of AI, knowledge-based methods [35]. Moreover, in the

field of O&M and tasks like fault handling, it is demanded that the adopted methods

provide explainability to convince human experts. This again puts knowledge-based

methods over data-driven methods.

Thus, I decided to dive into the field of knowledge-based AI methods and explored

solutions that can make the most use of system logs to help O&M tasks for large

software systems. Specifically, I considered the feasibility and approach of extract-

ing knowledge from a stream of system logs to construct and maintain an evolving

knowledge base, which can facilitate a variety of downstream applications in the field

of O&M. Accordingly, the main research hypothesis underlying this thesis is:

Main Hypothesis

It is feasible to extract knowledge from a stream of system logs, and keep
track of the system changes by continually updating a knowledge base,
thus supporting various downstream applications.

I defined my main research question as how to extract knowledge from a stream of

system logs, and keep track of the system changes by continually updating a knowl-

edge base. The solution I proposed is called TREAT, a framework designed as faith-

fully as possible to reflect the latest state of the network system, and can support the

downstream applications, typically anomaly detection (AD), fault localisation (FL),

and root cause analysis (RCA) [177]. To show the effectiveness of TREAT, I con-

ducted experiments that used the TREAT-powered knowledge base to facilitate fault

localisation in a test bed system.

The main research question of knowledge base construction and updating by log

data also derived 2 other questions: how to evaluate the TREAT system directly and

how one can assign probabilities to triples of a Knowledge Graph (see 3.2 for more

1https://www.vodafone.com/
2https://www.orange.com/
3https://www.huawei.com/
4https://www.ericsson.com/en
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details of KGs). Evaluating TREAT is a challenging task. Apart from indirectly evalu-

ating TREAT via a downstream O&M application, meanwhile, I thought about a more

generic approach, less coupled with the O&M domain. As motivated, I developed a

novel approach called LP-Measure which can assess the quality of a newly obtained

Knowledge Graph. Secondly, considering that uncertainties may arise during knowl-

edge base construction and updating, I explored approaches to assign probabilities to

the knowledge within the knowledge base, which led to my work on probability cal-

ibration in Knowledge Graph Embedding, i.e., calibrating the embedding scores of

triples to have a reasonable argument for them to be used as probabilities. I attempted

to apply these outcomes to improve the TREAT framework, but eventually, I decided

not to make the integration because there was a mismatch with the requirements of

TREAT. More details can be found in Chapter 7.

Thesis Structure In this thesis, I will first review some prior efforts related to the

problem I aimed to attack in Chapter 2 and some key background information about

the TREAT project in Chapter 3. Then I will present the TREAT framework, which

implements our hypothesis to extract knowledge from a log stream and continually

update a knowledge base in Chapter 4, as well as a case study of applying TREAT in

a downstream task of fault localisation, also serving an evaluation of its effectiveness

in Chapter 5. In Chapter 6, I will present a novel method called LP-Measure which

evaluates the quality of a Knowledge Graph, and in Chapter 7, I will present an inves-

tigation of probability calibration at Knowledge Graph Embedding. Finally, the thesis

will end with some concluding remarks in Chapter 8.





Chapter 2

Literature Survey

I positioned my research within the area of knowledge representation, and specifically

knowledge base construction & updating. This chapter surveys some related works

to show the big picture and state-of-the-art of this area. I also identified some works

similar to my research but differ in some subtle aspects.

In §2.1 and §2.2, I gathered some important works in the field of knowledge rep-

resentation and knowledge updating respectively. In §2.3, I mentioned some works of

knowledge extraction. In §2.4, I showcased some similar works on building (and ad-

ditionally updating) a knowledge base, and compared them with my research project.

Though there are tons of theories and methods in representing knowledge and extract-

ing knowledge from ordinary text data, such as books, newspapers, and dialogues,

there is a huge research gap in extracting symbolic knowledge from system logs, as

well as methods to organise the knowledge in a dynamically updated knowledge base.

2.1 Knowledge Representation

To build an intelligence engine, an important sub-task is to represent knowledge, as

well as acquire, store, and make use of the knowledge, which is the core scope of

the TREAT project. Knowledge representation is a key topic in artificial intelligence.

This section introduces some basic concepts and methods of knowledge representation.

Roughly speaking, all kinds of knowledge representation methods can be categorised

into two groups: symbolic representations and sub-symbolic representations.

5



6 Chapter 2. Literature Survey

2.1.1 Symbolic Representations

Logical Calculus The idea of representing knowledge by symbolic logic dates back

to a paper by McCarthy and Hayes [119] or even earlier. In that paper, the authors

tried to use first-order logic to represent commonsense and other forms of knowledge.

In particular, they proposed the Situation Calculus, which is a formalism to represent

time, objects, states, actions, and effects of actions upon object states. Since then, re-

searchers proposed various logics to better represent knowledge of different problems,

and the idea of using logic to represent knowledge has become a hot topic in artificial

intelligence, forming a sub-field called Knowledge Representation and Reasoning.

A problem of Situation Calculus is The Frame Problem [119], which is the problem

of representing the effects of actions without explicitly representing the non-effects.

For example, such an action turn_right(ricky). changes the direction of the object

ricky, but not the speed, the type, the mood, and other states of the object. McCarthy

later proposed a solution called circumscription [120]. Among all the other solutions,

the Event Calculus [98, 129, 188] has a long-lasting impact. It is also a logical formal-

ism to represent knowledge about events and their effects. Notably, the Event Calculus

adopted the Commonsense Law of Inertia, which states that if an object has a property

at a time and no event occurs that would change the property, then the object has the

property at all later times [129]. The Event Calculus also offers simpler formalism,

making it easy to use.

Description Logic Description Logic is a family of formal knowledge representation

languages. Compared with Situation Calculus and Event Calculus, Description Logic

focuses on representing ontological knowledge about concepts and their relationships.

It is a subset of first-order logic with a restricted but simpler form. There are several

different variants of Description Logic with different levels of decidability and expres-

siveness [15]. The most popular one is the Web Ontology Language (OWL) [121],

which is recommended by the World Wide Web Consortium 1. However, Description

Logic does not provide a formalism and mechanism to represent dynamic knowledge

like events and actions.

Logic Programming Situation Calculus, Event Calculus, and Description Logic are

mathematical or logical theories, while Logic Programming is a field of technological

studies about how to write programs using logic to solve real computational problems.
1https://www.w3.org/OWL/



2.1. Knowledge Representation 7

The most popular logic programming language is Prolog [39], a declarative language

that only requires the programmer to specify what the program should do, but not how

to do it. A Prolog program (as well as other logic programs) is a collection of facts

and rules written in the Horn Clause format [84, 39]. The reasoning engine behind

Prolog will try to find a solution to the problem by searching and reasoning whether

an assertion can be deductively entailed by the given facts and rules.

2.1.2 Sub-symbolic Representations

Embedding Apart from representing knowledge by symbolic logic, researchers also

considered the representations by numerical values, i.e., vectors, matrices, or more

generally speaking, tensors. The simplest and most popular sub-symbolic represen-

tation is the vector representation, also known as embeddings. For example, the idea

of word embeddings is to represent words by vectors, so that the semantic similarity

between words can be measured by the distance between their vectors, and thus in

a vector space, the words with similar meanings will assemble. Among this line of

research, Word2Vec [123] and FastText [20] are the most outstanding methods for rep-

resenting words. Once the word embeddings are learned, they can be used to perform

various vector calculations. For example, the embedding of the word “Paris” can be

found as the closest one to vec(Berlin)−vec(Germany)+vec(France). Words can be

represented by vectors, and so do sentences and documents [102, 13].

As the nature of linguistics, the same word may have very different meanings in

different contexts. For instance, the word “bank” may refer to a kind of financial

organisation in economic articles or the land alongside a river in geology literature.

Instead of learning the general meanings, researchers also considered learning the con-

crete meanings in a specific passage context, which is called contextualised word em-

beddings. The most well-known contextualised embedding method is BERT [57] for

words and its variants for sentences and documents [162, 4].

The idea of embedding can not only be applied to words, sentences, and docu-

ments, but also to entities and relationships in Knowledge Graphs (KGs), which is

a set of ⟨sub ject, predicate,ob ject⟩ triples. The TransE [22] algorithm is a seminal

work on graph embedding to learn the embeddings of entities and relations in a knowl-

edge graph, such that the links between a subject entity and object entity ⟨s, p,o⟩ can

numerically establish the relation s⃗+ p⃗ ≈ o⃗. Similar ideas also applied to ontologies,

such as the Owl2Vec method [34]. The idea of graph embedding has been widely used
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in knowledge graph completion and knowledge graph reasoning [201].

Neural Network Weight Parameters Recently researchers found that not only do

the embedding vectors encode the meaning of words or entities, but the weight pa-

rameters of neural networks also encode the knowledge of a domain and thus may

serve as a knowledge base. The earliest finding is that the BERT model [57] which

was a probabilistic neural language model trained on a book corpus learnt some fac-

tual knowledge [149]. If we feed the BERT model with the input "The theory of

relativity was developed by ____" and ask BERT to fill in the blank, it will

provide the answer "Einstein" with a high likelihood. As the number of parameters

in a neural network model increases, the amount of knowledge that can be encoded in

the model also increases. The BERT model has only millions of weight parameters,

while the GPT-3 model [23] has 175 billion and was trained on a filtered corpus of

available texts from the Web, which can be used to perform various reasoning tasks,

including answering factual questions. The latest model released in March of 2023,

GPT-4, had passed SAT and GRE tests as well as other knowledge-intensive tasks with

exceptionally high scores [143], it is still being iteratively improved. Many researchers

have found that when training on a huge amount of text data, the neural network model

remembered the knowledge and modelled the process of human language generation,

and jointly encoded them in the model parameters. Therefore, the language model

can understand human instructions and questions and give responses in natural lan-

guage [166, 92, 7, 122].

Text and Other Modality For human beings, it is more natural to represent knowl-

edge in texts and audio & video clips. For thousands of years, we’ve passed knowledge

by playing games, real demonstrations, word of mouth, and more recently, books and

multimedia recordings. These representations seem old-fashioned and have been ig-

nored by the AI community for a long time because we did not discover an effective

computational method to perform reasoning over these representations. However, with

the development of large language models (LLMs) and later foundation models, we

now find that we can throw the texts and data of other modalities into the model and

ask them to do various tasks by natural language instructions. The retrieval-augmented

models proposed to store the knowledge in a collection of texts and retrieve the re-

lated passages every time being instructed to do something, e.g., question answer-

ing [104, 89]. In this way, we can not only update the knowledge easily by simply
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modifying the text, but also relieve the models from memorising a lot of knowledge.

The same idea can apply to data of other non-text modalities, such as images [77].

At this moment, the model weights of LLMs store world knowledge and determine

the reasoning power. Researchers now wish that the model weights ONLY determine

the reasoning power while storing as little as possible knowledge, so that the task of

updating knowledge and upgrading reasoning power can be decoupled. There is also

ongoing research on distilling the reasoning capabilities from large models to smaller

models so that models can get rid of the knowledge and focus on performing reason-

ing [173].

2.2 Knowledge Updating

The previous section §2.1.2 focuses on how to represent data in the computer so that

we can easily use it for various tasks. However, the knowledge in the real world is

not static, it is constantly changing. Updating the existing knowledge is an important

task related to knowledge representation, but also a relatively independent and pop-

ular research topic. In this section, we will introduce some research on knowledge

updating.

Belief revision In the field of symbolic representation, the subject dedicated to up-

dating existing knowledge is called belief revision, or belief change [74], arising in the

1980s. For agents with a belief set represented by formal logical representation, be-

lief revision studies how to revise this logical belief set K, by introducing or removing

logical sentences a, so that the belief can adapt to new information [74]. For example,

adding a piece of new knowledge into the knowledge base K +a may cause inconsis-

tency, and then the agent must decide whether to delete some old knowledge, or other

actions. If it chooses to delete some old knowledge, then the key research question is

which pieces of old knowledge should be deleted. At the core of this subject is the

AGM model[8] setting postulates to which rational revision operations should follow,

which is the dominant theory of belief revision.

One limitation of belief revision is that none of the work in this subject considers

syntactical change[105], e.g., adding new predicate symbols or changing the arity of

predicate symbols. Ontology evolution, like the GALILEO project[30], uses “repair

patterns” represented in higher-order logic to tackle this limitation. It is the timely

adaptation of an ontology to the arisen changes and the consistent propagation of these



10 Chapter 2. Literature Survey

changes to dependent artefacts[180]. Chan and his colleagues conducted a series of

research automating ontology evolution in physical knowledge[24, 30, 103] Li took a

further step[105]. She combined abduction, belief revision, and conceptual change to

repair faulty theories. Given a subset of preferred sentences, the proposed ABC system

can detect insufficiency and incompatibility in a logical theory, and raise repair plans.

It is a pity that both Chan and Li evaluated their work using a relatively small dataset.

We don’t know if their methods can work in large-scale KBs.

Continual Learning As for numeric representations, the majority of efforts fall in

substantially training an existing model with new data. The term Continual Learn-

ing(CL) first appeared in the PhD thesis published by Mark Ring in 1994[165]. Ring’s

continual learning agent focused on solving reinforcement learning tasks, and trans-

ferred the learned skills and knowledge to subsequent, and perhaps even more sophis-

ticated tasks. As time went by the notion of CL got generalised: given an infinite

stream of data, a CL system should learn from a sequence of partial experiences where

all data is not available at once.

Similar to Continual Learning, Lifelong Machine Learning(LML) also emerged

in the field of robotic research. The origin of LML dates back to 1995. Thrun

and Mitchell published a paper on how a robot can learn the invariant knowledge

about the environment and the robot itself[185]. They described the notion of

LML as learning knowledge in N tasks, and leveraged the learnt knowledge to help

the N + 1 task. Mitchell and his colleagues later in 2015 proposed a new learn-

ing paradigm called Never Ending Learning(NEL)[127], which is usually regarded

as a special Lifelong Machine Learning paradigm in the field of unsupervised or

semi-supervised learning. The concept was derived from the famous system, Never

Ending Language Learner(NELL)[29]. There is plenty of continual learning re-

search on computer vision models as well. Learning without Forgetting(LwF)[108],

Elastic Weight Consolidation(EWC)[95], Incremental classifier and Representation

Learning(iCaRL)[161], were designed originally for image classification. There had

been established benchmark datasets for Continual Learning in image classification,

such as Permuted MNIST[214, 17].

Knowledge Editing for LLMs As LLMs and foundation models show their potential

towards artificial general intelligence, updating knowledge encoded in them attracts

more and more interest. A key difference between LLMs and other neural networks
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is that the former ones have orders of magnitude more weight parameters. Re-training

the whole model whenever new data comes would be a theoretically feasible option

but practically not affordable. A potentially more economical option is to update the

model parameters directly. As the knowledge in neural models is jointly encoded in

weight parameters, how to make desired modifications to a specific piece of knowledge

with minimal influence on other knowledge is the main challenge. KNOWLEDGEED-

ITOR [50] is such a method that uses a hyper-network to update the parameters of the

language model such that it prefers an alternative prediction for a specific input x with-

out affecting the prediction of any other input X\x. As for GPT-like models, which

are the dominant architecture of current LLMs, some researchers raised a hypothesis

that factual knowledge is stored in the MLP modules at specific middle layers, and

developed empirically effective methods to edit this factual knowledge [122]. Similar

to the TREAT’s setting, Han et al. [79] developed the RASE framework to continually

update an LLM from a stream of document data. More recent surveys on advances in

knowledge editing and updating for LLMs can be found in [212, 216, 202].

2.3 Similar Works: Knowledge Extraction

Knowledge Extraction has long been a key research topic of artificial intelligence,

particularly extracting knowledge from natural language text [43, 31, 75, 198]. Though

the definitions vary within the literature, the main objective of information extraction

is to extract some structured information, typically entities and their relations as well

as attributes, from unstructured documents.

Stanford CoreNLP2 [117] includes an information extraction module [10] as a

component of its main suites. When deep learning research emerged, deep neural

networks and end-to-end methods were used to extract triples from texts, for ex-

ample, the Universal Information Extraction framework [115]. Today, as recently

(LLMs) [57, 157, 158, 23] achieved unprecedented success in almost all kinds of nat-

ural language processing tasks, researchers found that LLMs also demonstrated the

potential to be a general information extractor [195]. Agrawa et al. [6] have shown

that using few-shot learning techniques, LLMs can serve as information extractors

from clinical documents. Dagdelen et al also [46] explored the method of fine-tuning

LLMs to extract structured information from scientific literature.

One of the main approaches to constructing a knowledge base is to extract triples

2https://stanfordnlp.github.io/CoreNLP/
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from a collection of text documents. For example, DBpedia is initially constructed

by extracting triples from Wikipedia pages [14]. In this way, the quality of an ex-

tracted KG largely depends on the performance of the underlying information extrac-

tion system. To evaluate the performance of an information extraction system, a lot of

benchmark datasets have been created, like OIE2016 [178] and LSOIE [176], which

comprises pairs of text documents and corresponding gold standard triples. Table 2.1

shows some examples of the open-domain texts and gold standard triples.

Document Triples

AMD, which is based in U.S.,

is a technology company.

(AMD; is; technology company)

(AMD; located at; U.S.)

Born in Glasgow, Fisher is a

graduate of the London Opera

Centre.

(Fisher; born in; Glasgow)

(Fisher; graduated from; London Opera Centre)

Table 2.1: Example pairs of texts and human-crafted gold standard triples in open infor-

mation extraction benchmark datasets [178].

The above works are about extracting knowledge from natural language texts. Yet

in the TREAT project, we need to extract knowledge from logs. We identified some

papers on extracting a knowledge graph from system logs, especially in the field of

AIOps (Artificial Intelligence aided Operations) [47].

For example, a paper recently published in 2021 [109] proposed to automatically

build an Alarm Knowledge Graph by knowledge extraction from historical alarm and

system manual alarm descriptions to perform root cause analysis for an optical net-

work. Then, a Graph Neural Network was developed upon this alarm KG to iden-

tify which is the root cause, i.e., which alarm indicates the root cause for a detected

anomaly. This research considers two information sources to build an alarm KG. One is

the semi-structured alarm description in system manuals, and the other is the structured

historical log data stored in relational databases. In terms of extracting knowledge from

the manual, they use some template-based methods to extract knowledge from sen-

tences like “alarm A is possibly caused by fault Z”. Moreover, extracting knowledge

from tabular log records is simply an Extract-Transform-Load pipeline work. This is

a significant difference from our TREAT project; the alarms they handled are already

structured in a relational data format, while we aimed to handle much more general
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forms of system logging, which is one of the great technical challenges.

LogKG [181] is a work closer to ours. It targets constructing a knowledge graph

from raw logs and using this knowledge graph for root cause analysis. different from

the one [109] before, LogKG handles “real” raw logs instead of structured, relational

alarm records. Similar to LEKG [197], which is our intermediate work (§3.3), LogKG

extracts a KG from logs by a pipeline of log parsing, entity recognition, and entity

alignment. The LogKG project includes more efforts in obtaining vector representa-

tions for every system failure case and training models for root cause analysis, which

we don’t review here.

(a) Sample KG from LogKG [109] (b) Sample KG from LogKGKG [181]

Figure 2.1: Sample sub-KGs of Knowledge Graphs extracted from logs

There are also works on extracting/learning causal graph structure from event logs.

A causal graph, generally speaking, is a directed acyclic graph structure whose vertices

are events and whose edges are causal relations. If there is an edge pointing from vertex

vi to another vertex v j, then we say that vi is the cause of v j with some probability.

More importantly, the absence of an edge between 2 vertices means there are no causal

relations between those 2 events. HPCI [215] was designed specifically for extracting

causal graphs for network events. It views the event log generation process as a multi-

dimension Hawkes process [101] and infers the relations between events. Their later

work THP [27] combined the topological information of the underlying network to

improve the accuracy of causal graph extraction.
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2.4 Similar Works: Evolving Knowledge Based Systems

In this section, we review some system implementations that make the knowledge base

evolve over time.

Never Ending Language Learner Our idea of building an ever-evolving knowledge

base was influenced by the NELL project [29, 127]. NELL continually extracts knowl-

edge from Web pages to enrich its KB. The main difference from other Knowledge

Base (KBs) Population projects is that NELL does not limit its knowledge source to

a certain corpus but assumes endless input articles. However, The ultimate goal of

NELL is not to build an evolving KB, but to continually improve its knowledge extrac-

tors (language learners) so that as knowledge is accumulated, its knowledge extractors

can exploit the knowledge to perform more accurate knowledge extraction. Moreover,

NELL only adds new knowledge to its KB, but never deletes or revises its knowledge.

Figure 2.2: An overview of the NELL system [29]

KG-MRC & GATA Instead of simply expanding the knowledge base, KG-MRC (Knowl-

edge Graph - Machine Reading Comprehension) [48] and the later work GATA (Graph-

Aided Transformer Agent) [5] can learn a knowledge graph from texts and substan-

tially update the states of entities and structure of the graph. KG-MRC leverages neu-

ral machine reading comprehension [112] to extract knowledge from procedural texts

e.g., an article explaining the procedure of how plants turn water and carbon dioxide

into starch. Though they claimed to learn and update knowledge graphs, what they

actually operated on were bipartite graphs whose nodes are either entities or locations

of entities, and what they updated were the edges between entities and locations. Thus,

this is a simplified version of the graph learning and updating task. The followed-up

work GATA [5] studied how to learn and update a “belief graph” for an agent playing a
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text-based game[42, 116], which is a partially observable environment that only gives

texts as observations and receives text commands as actions. The agent’s belief is a

graph represented as a real-valued tensor G ∈ [−1,1]R×N ×N , and the agent can up-

date its belief by reading the textual observations each time it issues an action. Though

the belief graph has pre-defined maximum entities and relations, GATA still allows the

agent to dynamically learn the semantics of every dimension (entities and relations)

and the structure of the graph, but we can’t make sense of what the agents learned in

their belief graph, typically, what the entities and relations mean.

Semantic LOG ExtRaction Templating The previous works are about updating a

KB with the new knowledge extracted from natural language text, yet our TREAT

project aims to make use of system logs. The most recent and similar work that ex-

tracts knowledge from logs may be the SLOGERT [61] framework and the follow-up

KRYSTAL [100] framework that aims to construct a knowledge graph from log data.

The SLOGERT framework starts by mining log templates from the log data [219], then

extracts information from logs and meta-information about logs, and finally organises

the extracted data into RDF format [118], resulting in the final knowledge graph. Thus,

the resulting KG is an event knowledge graph whose events represent logs, relating sys-

tem entities identified from the log messages, such as users, files, servers, etc. Indeed,

the major motivation behind SLOGERT is “identifying and linking entities across log

sources and enriching them” [61]. Compared with SLOGERT, TREAT takes a fur-

ther step: unlike SLOGERT which mainly focuses on transforming logs into RDF data

and relating log events and system entities, TREAT aims to directly and dynamically

model the relationships among system entities without the proxy of events, and track

their changes during system evolution.

ALKB-QA Another research project that shares the same spirit of TREAT is the

ALKB-QA project [113], which studied “Dynamic Updating of the Knowledge Base

for a Large-Scale Question Answering System”. This project is designed for updating

a KB in the KB-QA domain. It takes chatbot records (QA pairs) as an information

source and filters out low-quality records, after which these records will be parsed and

appended into the KB. Nevertheless, it was tightly coupled with QA application. Even

the KB model is defined as a collection of QA pairs K = (Q ,A) [113], so the tech-

niques developed for the ALKB-QA project are not so generalisable. Similar to NELL,

ALKB-QA only adds knowledge into its KB, but never does modification or deletion.
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In TREAT, we not only add new knowledge but also revise the existing knowledge

when necessary, e.g., when old knowledge becomes outdated.

Figure 2.3: Snapshot of the dynamic knowledge graph created by KG-MRC [48]

2.5 Summary and Research Gap

There have been tons of works in the popular research field of knowledge representa-

tion and knowledge base construction & updating. Knowledge can be represented by

both symbols and numerics. Symbolic representations are usually in the form of logic,

while sub-symbolic representations are usually in the form of vectors or tensors (neural

networks). Both representations have their advantages. Sub-symbolic representations

are better at scalability and capturing implicit semantics, and become widely adopted

because of the boost of deep learning and neural networks. In terms of transparency

and ease of updating, which is desired in domains including telecommunications, sym-

bolic representations show their supremacy, and thus in the TREAT project, we chose

this representation. Constructing such a knowledge base in symbolic representation

automatically is usually done by extracting formally structured information from ex-

ternal sources. We’ve seen that lots of efforts have been dedicated to extraction from

natural language texts, including methods, systems, and benchmark datasets. However,

extracting knowledge from system logs, especially logical theories from raw logs, is

still under-explored, let alone establishing a continually updating mechanism. One of

the motivations of the TREAT project is to address this gap.



Chapter 3

Background

This chapter provides some background information about the TREAT project and pre-

liminary knowledge about the employed approaches. It is organised as follows. Sec-

tion 3.1 introduces the Autonomous Network Vision, which motivates and positions

the TREAT project. Section 3.2 lays out some fundamentals of Knowledge Graph

(KG), which is chosen to be the main knowledge representation scheme in this project.

Section 3.3 outlines some prior research in the TREAT project mainly conducted by

my collaborators, including an approach to extract knowledge from logs and a method

to perform root cause analysis. Section 3.4 introduces some general methods of log

analysis that will be used in our methods, such as log template mining.

3.1 The Vision of Autonomous Network

The Autonomous Network [71, 63] envisions a telecommunication network system

that can run and adapt to changes with minimal or even no human intervention. Such a

level of autonomy is expected to be achieved by the accompaniment of an intelligence

engine that can process various data and make vital decisions. The TREAT project is a

research effort to build such an intelligence engine or a sub-system of this intelligence

engine.

3.1.1 Telecommunication Networks

A telecommunications network, especially a modern one, is an arrangement of comput-

ing devices(e.g., switches) and transmission links(e.g., fibre optics cable) that enables

information exchange between distant senders and receivers [11].

17
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Figure 3.1: An example of a basic telecommunication network [11]

Figure 3.1 shows an example of a basic telecommunication network. The network

consists of a number of switches, which are connected by transmission links. Instead

of connecting everyone to every other one resulting in a fully connected network, end

users connect to switches, which are responsible for redirecting signals to the correct

destination via other switches and the transmission links. With the help of switches as

intermediaries, the number of transmission links can be reduced significantly compared

with a fully connected network.

Telecommunication networks have a long history and have evolved into numerous

variants. In the very beginning, telecommunication networks were merely post office

networks. Letters and parcels were transmitted on roads and streets by human posters.

After the Second Industrial Revolution, textual telegraphs could be transmitted via

electricity and electromagnetic waves, and telegraph networks were built. Then there

were telephone networks that carried voice messages, and later computer networks that

transport all kings of data signals. Nowadays, telecommunication networks are mostly

computer networks that carry all kinds of data, including voice, video, text, and so on.

With the wide adoption of smartphones, essentially personal mobile computers, mobile

telecommunication networks are becoming increasingly important, and are perhaps the

most widely used network.
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Mobile telecommunication networks have evolved through generations. Starting in

the 1980s, the first generation (1G) mobile telecommunication network supported only

voice calls. In the 4G era, we can watch online movies and have video conferences on

our mobile phones. We are now in the 5G era when a lot of new sophisticated appli-

cations are expected to be realised, including the Internet of Things, remote surgery,

virtual reality, and so forth [137]. As 5G systems are expected to support much more

complicated applications, they are designed to achieve several key requirements: en-

hanced Mobile Broadband, ultra-Reliable Low Latency Communications, and massive

Machine-Type Communications [170]. In order to meet these requirements, new tech-

nologies are introduced. One of the key innovations lies in the system architecture

that the whole network is further virtualised and decomposed into multiple Network

Functions (NFs), which are software entities. In this way, the network system can be

defined and configured by simply composing and configuring software components

based on common hardware infrastructure. Compared with the 2g/3g/4g systems in

which management software is coupled with dedicated hardware, the software-defined

5G network system is more flexible and scalable. Nevertheless, flexibility and scala-

bility come with the challenge of complexity, and the increasing difficulty in O&M.

3.1.2 Autonomous Network

Modern telecommunication network systems are very powerful in terms of transmit-

ting data at high speed, low latency, and high reliability, as well as large capacity to

offer communication services for a huge number of terminal devices simultaneously.

However, the complexity of the network systems has also increased dramatically, due

to the scale, the number of devices, the number of categories of devices, various poli-

cies, all kinds of administrative requirements, etc. In fact, telecommunication net-

work systems are considered to have made up the most complicated equipment in the

world [11]. This complexity not only makes the network systems difficult to operate

and maintain but also potentially introduces more errors and failures. Hence, it is nec-

essary to substantially simplify the network systems and automate as many operations

as possible. The idea of Autonomous Networks was proposed to meet this demand.

The term “Autonomous Network” was first coined in a TM Forum 1 white pa-

per published in May 2019 [71]. The white paper summarised that in the future,

as the number of connected devices increases, presumably 70 to 100 billion termi-

1https://www.tmforum.org
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nals, the complexity of infrastructure will increase exponentially, which incurs huge

maintenance costs and prevents substantial growth. Hence, transformations are neces-

sary, such as simplifying the network architecture and introducing artificial intelligence

technologies to facilitate operations.

Figure 3.2: Driving factors for Autonomous Networks [71]

Yet it was reported that by 2018, about 56% of the CSPs (Communication Service

Providers) around the world will have little or no automation in their network oper-

ations [71]. Consequently, TM Forum initiated a vision of Autonomous Networks,

which is to appeal to the companies, institutes, and standardisation organisations of

the industry to work together and promote automation in the networks. Moving from

no automation to nearly full automation requires progressive efforts. Inspired by the

Autonomous Vehicle dividing automation into 6 (0-5) levels [168], the Autonomous

Network Vision also defines 6 levels of automation, as illustrated in Figure 3.3. The

higher the level, the more and the harder jobs the network can automate. For example,

L0-level networks can only execute operations that are explicitly instructed by human

operators, while L5-level networks can not only run executions and be aware of real-

time environmental changes but also make decisions based on predictive analysis and

handle user intents in order to optimise user experience.

Once the Autonomous Network Vision was proposed, it was immediately advo-

cated by other institutes and companies in the industry [66]. Just to name a few,

ITU-T2 (International Telecommunication Union - Telecommunication Standardiza-

tion Sector) set up a Focus Group on Autonomous Networks (Study Group 13) and

published technical specifications on the architecture framework [87] and evaluation of

trustworthiness [88]. 3GPP3 (The 3rd Generation Partnership Project) issued standards

that introduce levels of automation into 5G networks [1], architecture enhancements
2https://www.itu.int/en/ITU-T
3https://www.3gpp.org
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Figure 3.3: Levels of Autonomy in Autonomous Networks [71]

for 5G systems to support network data analytics services [2], etc. ETSI4 (European

Telecommunications Standards Institute) drafted white papers on the vision and kept

updating it [63, 66]. What’s more, ETSI formed several Technical Committees and

Study Groups that deliver solutions to Autonomous Network related topics, such as

ENI (Experiential Networked Intelligence) [65], ZSM (Zero-touch network and Ser-

vice Management) [67], GANA (Generic Autonomic Networking Architecture) [62],

and so on.

3.1.3 Autonomous Network and the TREAT project

The TREAT project aims to develop a methodology that can constitute part of the in-

telligence engine of an autonomous network. Such an intelligence engine could be

plugged into the telecommunication network so as to gather data from the network,

analyse the data, and recommend actions to the network. Take the ETSI ENI (Expe-

riential Networked Intelligence) for example [65]. ENI is a cognitive network man-

agement system that aims to “quickly recognise and incorporate new and changed

knowledge”, and hence support decision-making, such as which services are appropri-

ate to be offered and which services are in danger and need to be adjusted. Figure 3.4a

shows the position and 3.4b shows the high-level architecture of ENI. In Figure 3.4a,

the “Assisted System” is the telecommunication network that ENI is supporting. ENI

pulls telemetry data and other forms of data, e.g., logs, alarms, KPI metrics, etc. from

the Assisted System, and recommends actions (executable commands) back.

4https://www.etsi.org
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(a) ENI Position [65] (b) ENI Architecture [65]

Figure 3.4: High-level overview of the ENI system

The TREAT system can be viewed as an instance of the ENI, or a subsystem of an

ENI, though it did not aim to fully conform with the ENI architecture. For example, it

does not have the so-called ”recommendation mode” and ”management mode” in ENI.

The core scope of the TREAT project is to develop a method that extracts knowledge

from logs to build a knowledge base and continually update its knowledge when new

knowledge is acquired.

One of the differences from the ENI which takes various forms and sources of

data as input, is that the TREAT project focuses on extracting knowledge from system

logs, due to data availability and computing resources. A telecommunication network

system usually consists of multiple modules, including the access networks that take

charge of different types of device access; the edge networks that offer real-time and

localised computation required by connectivity, administration, and analytics; the core

network where major data processing, forwarding, and storage happens. The core net-

work is equipped with plenty of computing resources, so we can monitor and collect all

kinds of data frequently from the core network, and perform heavy computing tasks,

like deep learning. However, the access networks and edge networks are usually dis-

tributed and the computing resources are limited. For these modules to realise auton-

omy, lightweight data collection and processing methods are necessary. We consider

that the log data are the primary most available data source. Hence, TREAT focused

on developing a method that can use the system logs.
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3.2 Knowledge Representation with Knowledge Graph

To build an intelligence engine, an important sub-task is to represent knowledge, as

well as acquire, store, and make use of the knowledge, which is also the core scope

of the TREAT project. This section introduces some basic concepts of knowledge

representation with a Knowledge Graph, which is our chosen representation.

Built on top of description logic [15], Ontologies and the later Knowledge Graphs [146]

technology is one of the mainstream knowledge representation approaches. Simply

speaking, a knowledge graph is a specification for a domain of interests that describes

the concepts, entities, and the relationships between them. Usually, a knowledge graph

can be represented as a set of subject-predicate-object ⟨s, p,o⟩ triples, where the sub-

ject s and object o represent some individual entities or conceptual classes, while the

predicate p asserts the relationship between s and o. As its name indicates, the whole

body of knowledge can be represented as a graph, where the concepts and entities are

represented by nodes, and the relationships are represented by edges. Figure 3.5 shows

an example knowledge graph.

Figure 3.5: An example knowledge graph [118]

More formally, Knowledge Graphs [147] are represented in a standard format for

graph-structured data. A knowledge graph G is a tuple (E ,R ,T ), where E is a set of
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entities, R is a set of relation types, and T is a set of relational triple {⟨s, p,o⟩|s,o ∈
E , p ∈ R } [144].

Structured knowledge representation by graph or network is not a new idea of on-

tologies and knowledge graphs. Earlier in the 1960s Quillian proposed the Semantic

Network [154, 155], where concepts are indicated by nodes and linked together by

arcs. The meaning of a node is defined as its connection with other nodes5. Later

in the 1980s, Minsky proposed the Frame model [126, 184] to represent knowledge

of a narrow subject, which can include not only attribute-value pairs but also simple

procedures. Figure 3.6 shows 2 simple examples of Semantic Networks and Frames.

Though a Semantic Network or Frame can express knowledge in a structured way, re-

searchers made criticisms that they lack clear semantics [208]. For example, there is

ambiguity in the Semantic Network between set membership and subset, i.e., the “IS-

A” link in the Semantic Network cannot clearly tell whether a concept is equivalent to

another concept, a subclass of another concept, or a member of another concept.

Compared with Semantic Networks and Frames, Ontologies and Knowledge Graphs

were developed based on description logic that has a solid foundation in syntax and

semantics. In practice, Ontology and Knowledge Graph get support from the W3C

standards, which includes the Resource Description Framework (RDF) 6, the Web

Ontology Language (OWL) 7, and the SPARQL Protocol and RDF Query Language

(SPARQL) 8. Hence, engineers and developers can follow the same guidelines to build

and use ontologies and knowledge graphs, which increase the reliability, interoperabil-

ity, and reusability of relevant applications. For these reasons, we chose to represent

knowledge in the form of Knowledge Graphs in the TREAT project.

3.3 Prior efforts of The TREAT Project

The TREAT project is a collaborative project. The research output in this thesis was

more or less inspired by other research outcomes of the project done by my collabora-

tors. This section briefly introduces some prior efforts and the lessons of the project,

including an alternative approach to extract knowledge from logs and a method to per-

form root cause analysis, with the critique of these approaches that led to my other
5“To summarize, a word’s full concept is defined in the model memory to be all the nodes that can be

reached by an exhaustive tracing process, originating at its initial, patriarchal type node, together with
the total sum of relationships among these nodes specified by within-plane, token-to-token links.” [155]

6https://www.w3.org/TR/rdf11-primer/
7https://www.w3.org/TR/owl2-overview/
8https://www.w3.org/TR/sparql11-overview/



3.3. Prior efforts of The TREAT Project 25

(a) Example semantic network describing two paths from “Plant” to

“Live” [155]

(b) Example Frame describing the subject “MacDonald’s” [184]

Figure 3.6: Simple examples of Semantic Network and Frame

approach. Readers can refer to the cited papers for more information.

3.3.1 Extracting a Knowledge Graph from Logs

In the beginning of the TREAT project, we decided to follow a conventional approach

to extract a knowledge graph from textual data, leading to the LEKG (Long Extrac-

tion Knowledge Graph) method [197], which is our first attempt to achieve the project

goals. The main idea of LEKG is to extract triples from logs, apply reasoning tech-

niques to infer more knowledge, and then use filtering to get rid of invalid triples with
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the help of the so-called Background Knowledge Graph (BKG). In a word, LEKG is

not only an extraction method but an “extract-enrich-filter” process. Figure 3.7 shows

the general procedure of LEKG.

Figure 3.7: The general procedure of LEKG [197]

Briefly speaking, this LEKG method regards the manual and logs to be both natural

language texts, and conducts standard information extraction procedure, i.e., Named

Entity Recognition [128] to identify possible entities from texts, Entity Linking [171]

to map the identified text span to an entity ID in an ontology, Relation Extraction [136]

to extract the relation between entities, and so on. Hence, the LEKG extraction method

involves the following steps:

1. Corpus Preparation This step selects a subset of texts from the documentation

and logs and performs preprocessing, such as formatting and human annotation,

enabling model training for subsequent NLP models.

2. Named Entity Recognition This step, as its name indicates, recognises Named

Entities from a piece of documentation text or log text. A notable remark is that

in this program, the NER module is implemented using SpaCy9 NER tools, and

trained on the annotated corpus.

3. Entity Linking The NER step simply outputs text spans that indicate entities.

This module links the text spans to the entity/relation of the Background Knowl-

edge Graph. This is implemented as fuzzy string matching, e.g., computing the

string overlap or other forms of similarity between a text span and the labels,

and descriptions of entities in the ontology. If no match is found, a new entity is

created in the Background Knowledge Graph.

4. Relation Inference This step infers relations for given pairs of entities via pre-

defined rules. At the end of this step, new triples are generated. As the logs
9https://spacy.io/api/entityrecognizer
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are clustered and processed in different groups, the output triples constitute the

so-called Local Instance Graphs (LIGs).

5. Validation with Constraints. After extraction and enrichment, LEKG conducts

an additional post-processing step. This step validates the new triples by the

predefined constraints (could be given by human experts), and filters out invalid

ones. At the end of this step, the valid LIGs will be fused into the BKG.

This procedure can be run iteratively. As new logs are generated by the assisted

network and pushed to the intelligence engine, this procedure captures new knowledge

from the logs and updates the knowledge base (the Background Knowledge Graph).

Limitation Note that the LEKG method demands quite a lot of human labour. First,

the corpus preparation step requires manual annotation. Second, the initial Background

Knowledge Graph is constructed by hand. Third, the relation inference step and the

validation step require inference rules that were predefined by human experts.

Another more serious limitation is the knowledge model. In the LEKG method,

the new triples are continually added to the Background Knowledge Graph, but there

is no mechanism to revise or remove triples from the existing knowledge, which is an

indispensable capability for the intelligence engine to adapt to changes of the assisted

network. Furthermore, a knowledge base with ever-growing size not only gradually

eats out the storage but also makes it difficult to perform reasoning and inference.

The most severe drawback of this approach lies in its core idea of treating the log

messages as natural language sentences and applying NLP techniques, which is an

inappropriate assumption. The logs are generated by some engineer-crafted templates,

and thus they are closer to formal languages than natural languages. Consequently,

though the LEKG is a valuable attempt, we turned to other approaches that exploit the

syntax of logs.

3.3.2 Root Cause Analysis

The ultimate goal of the TREAT project is to build an intelligence engine that can

support various downstream applications of telecommunication networks O & M. One

of the most important applications is Root Cause Analysis (RCA) [177]. Hence, after

we developed the LEKG method, we started to explore a possible means to use the

knowledge base for RCA tasks [106]. This can not only serve as proof of the usefulness

of the constructed knowledge base, but also serve as an indirect way to evaluate how
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well we accurately extract the knowledge and update the knowledge base. To this end,

we developed a method that can discover missing information from the logs that are

instrumental to fault recovery [106].

We took the perspective of theorem proving, a pure logical method (against the

so-called hybrid or neuro-symbolic method [83]), to represent the problem. The as-

sisted network is represented by the knowledge base, and the faults, are represented by

logical formulas. We assumed that when faults occur, it should be possible to deduce

the faults from the knowledge base by establishing proofs. In case the knowledge base

is incomplete and thus the faults cannot be deduced, we use the ABC system, i.e., Ab-

duction, Belief revision, and Conceptual change methods [105] to discover the missing

information and repair the knowledge base. After the missing information is found and

added to the knowledge base, the shortest proof towards the faults is considered as the

root cause of these faults. We then try to block all the proofs of the faults, by adding

or removing formulas from the knowledge base, which mimic the real operations of

fault-healing. The blocking solution with minimal changes to the knowledge base is

considered to be the best one, and corresponding real operations to the assisted network

are considered to be the best fault recovery solutions.

In short, I outlined a novel method for RCA that makes use of the knowledge base

constructed by LEKG. However, the perspective and the way we framed the RCA prob-

lem are different from the common understanding in the literature, which usually de-

fines a root cause as an ultimate event, error, alarm, or component of the system [177],

instead of a proof towards faults. Yet inspired by this work and the idea of indirect

evaluation, I targeted an easier problem, which is Fault Localisation, and developed a

simpler but more general method.

3.4 Log Parsing

Log parsing is a class of techniques that extract structured information from unstruc-

tured log messages [82]. It is a fundamental step and a prerequisite for many log

analysis tasks, such as log summarisation, anomaly detection, and root cause analysis.

As the TREAT project needs to handle logs generated by the assisted network, log

parsing is a valuable tool. This section introduces some basic notions and ideas of log

analysis.

In terms of logging, engineers can log information in whatever manner they like,

e.g., use the print function to draw an ASCII diagram. Figure 3.8 shows various
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(a) Standard log entries generated by logging instructions

(b) Ad-hoc logs generated by printing statements

Figure 3.8: Various logs produced by software systems. The example logs shown are

generated by a deployed Open5GS system.

examples of logs. Because of that, software engineers can produce logs in any format.

Nevertheless, there is a general practice to do logging. To generate logs, engineers

need to decide what information they care about, and write a log template with some

placeholders in the source code of the system. On running, the system will produce

the logs by the log template and fill the placeholders with runtime information.

As we can see in Figure 3.9, a log entry is generated by a logging instruction and

captures a particular system event. The log entry consists of a header and a message.

The header, which includes elements like timestamps, verbosity levels (such as ER-

ROR, INFO, DEBUG), and system components, is set by the logging framework and

is in the same format for all log entries. While the body of the log entry, which is

the message, is set by the programmer and is in a free-text format. The message is

composed of a template (constant strings) and a set of parameters (variable strings that

carry dynamic runtime information of that log event). Due to the nature of the log en-

tries, engineers and researchers believed that it would be a good idea to distinguish the
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Figure 3.9: Log generation and parsing by template [219]

template and the parameters, and the output of log parsing should be a structured log

message containing the log template and the key parameters. Once we turn the seem-

ingly unstructured log messages into structured log events, all the tools in our toolbox

developed for analysing structured data, such as logical rules, statistical learning, etc.,

can be applied to the log analysis tasks.

There have been loads of research [82] and development [219] efforts on log pars-

ing. The simplest way to perform log parsing is by scanning the source code of the

software system to find out all the logging statements, and then design templates, e.g.,

regular expressions, to match the logging statements and extract the parameters. An

obvious drawback of this approach is that it costs a lot of human labour to manually de-

sign templates for each logging statement, especially when modern software updates

frequently. Each time a new version is released, it will need to check again and the

templates need to be updated accordingly. Moreover, it demands access to the source

code, which is not always available.

To address these problems, researchers have proposed automated log parsing tech-

niques. For example, the SLCT (Simple Log Clustering Tool) method [189] counts

the occurrence of all tokens in a corpus of logs and calculates the frequency of each

token. Then it filters the tokens whose frequency exceeds a threshold to form the log

templates. Another approach is to leverage the textual clustering algorithms to cluster

the log messages into groups [72, 190], and then extract the templates from the groups
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by removing the parameters by developer-crafted rules.

However, the aforementioned approaches all run in an “offline” mode, meaning

that they need to collect a large number of log messages and then process them in a

batch manner. When software systems are updated, the log parsing process needs to be

repeated with a new corpus of logs produced by the updated system. This is not only

troublesome but also not applicable in some domains. For example, in the 5G era, the

telecommunication network is built using the Microservice architecture, which allows

users to easily introduce new services into the system in runtime. New services come

with new logs, and the log parsing algorithms need to be able to parse the new logs in

runtime, hence “online” log parsing algorithms are needed. Example methods include

Spell [60] and Drain [81], which maintain a tree-like structure to hold log groups and

allow online log group merging to create new log templates.

3.5 Summary

In this chapter, I provided some background information and context for the research

presented in this thesis. I introduce the vision of Autonomous Networks, which envi-

sion future telecommunication networks that can operate with minimal human inter-

vention, enabled by an intelligent system that gathers data, processes data, and makes

decisions to enable self-operation and self-maintenance. The TREAT project aims to

develop an intelligent system contributing to this vision, with a focus specifically on

extracting knowledge from system logs.

I discussed some prior work in the TREAT project as well, including the LEKG

method for extracting knowledge graphs from logs using natural language process-

ing techniques, and a method on root cause analysis using logical reasoning over the

extracted knowledge. Limitations of these approaches are identified, motivating the

exploration of new methods that better exploit the structured nature of log data. The

chapter also provides an overview of log parsing techniques, which aim to extract

structured information from unstructured log messages and enable further log analy-

sis. This sets the foundation for the log parsing and knowledge extraction methods that

will be presented in subsequent chapters.
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The TREAT Framework

4.1 Overview

Recall that the aim of this research is a systematic methodology that can automate the

construction and updating of a knowledge base from a continual stream of logs. In

this chapter, I present our design of such a systematic framework. Though the TREAT

project contains other outputs than just a final system, for simplicity, I will name this

system TREAT in the rest of this thesis. As mentioned in the §1, the expected input of

the TREAT system is a stream of logs and the expected output is a continually updated

knowledge base (KB), as illustrated in Figure 4.1. Now we formally describe the input

and output of the TREAT System.

4.1.1 Input: Log Stream

We assume that the TREAT system can access a continual stream of logs produced

by the assisted software system, e.g., the autonomous network, and process the logs

to update its maintained KB, and the logs correctly reflect what happened within the

system. A log is a semi-structured textual record, comprising several fixed fields and a

piece of message generated by a log template. A log stream, as the name indicates, is

a possibly unbounded sequence of logs. Formally, it may be defined as:

S = (τ1,d1), · · · ,(τi,di), · · ·

where τi is the ith integer time step and τi ≤ τi+1, while di represents the log generated

at time τi. More formally, we denote T ⊂N to be a set of integer time steps, e.g., Unix

timestamp1, such that τ ∈ T , and denote D to be a set of all possible logs generated by
1https://unixtime.org/

33
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Figure 4.1: The abstract overview of the TREAT system

the assisted software system such that d ∈ D. Therefore, we could define a log stream

to be a function

S : T → 2D

which returns a set of logs for each time step.

Furthermore, a log entry can be decomposed into 3 parts:

1. header attributes, like the timestamp, level, and component of the log. These

header attributes (the key, not the value) are usually the same regardless of the

log type

2. the template of the log message, and we regard the logs generated by the same

template belong to the same log type

3. the log parameters (filling in the placeholders/slots of the template). The log

parameters are dependent on the log types.

Without losing generality, we may formalise a log as a logical term

d = ei(a1,a2, ..., p[i]1 , p[i]2 , ...)

where the predicate ei denotes the log type/template, a1,a2... represent the header at-

tributes that are shared by all log entries, like the timestamp, severity level, etc, and

p[i]1 , p[i]2 , ... represent the parameters that carry specific information of that log type.
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Take the log in Figure 3.9 for example.

2015-10-18 18:05:29,570 INFO dfs.DataNode$PacketResponder:

Received block blk_-562725280853087685 of size 67108864

from /10.251.91.84

2015-10-18 18:05:29,570 is the time, which can be converted to a Unix timestamp

“1445187929570”2; INFO is the severity level; dfs.DataNode$PacketResponder is

the component that generated this log. These are the header attributes (and their values

in this specific log entry). The template is identified as:

Received block <*> of size <*> from /<*>

along with its important parameters (such as [“blk -562725280853087685”, “67108864”,

“10.251.91.84”]). In this context, “<*>” indicates the placeholder for each parameter.

If we assign log_type_1 as the id of that log template, then the log can be converted

into a structured logical term:

log_type_1(

"2015-10-18 18:05:29,570",

"INFO",

"dfs.DataNode$PacketResponder",

"blk_-562725280853087685",

"67108864",

"10.251.91.84"

)

or expressed in JSON format if we can assign meaningful names to the attributes and

parameters:

{

"log_id": "log-xxxxxxxxxxxxxxxxxxxxxxxxx",

"log_type": "log_type_1",

"time": "2015-10-18 18:05:29,570",

"component": "dfs.DataNode$PacketResponder",

"level": "INFO",

"param1": "blk_-562725280853087685",

"param2": "67108864",

2Meaning the 1445187929570-th milliseconds seconds since 00:00:00 UTC on Thursday, 1 January
1970
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"param3": "10.251.91.84"

}

where the “log id” is a randomly generated unique ID for each log entry, and “param1”,

“param2”, and “param3” are dummy names of the parameters. The JSON format

provides more information than the logical terms, as the logical terms only show the

predicate and values, but the JSON format also reveals the names of values as well.

However, converting the extracted log information in JSON format requires that we

assign meaningful names to log parameters, which is not included in raw logs, but we

can get these meaningful names by human labour, or even via Large Language Models.

4.1.2 Output: Self-evolving Knowledge Base

The TREAT system is associated with a KB. Each time the TREAT system receives a

set of logs, it performs necessary updates on its associated KB. Inspired by the field of

Knowledge Graphs [193], we represent a knowledge base in the following form:

K = {E ,P ,T }

where E is the set of entities, P is the set of predicates (relations), and T = {⟨s, p,o⟩|s,o∈
E , p ∈ P} is the set of triple statements.

Partly inspired by Event Calculus [98, 125, 188], I define 3 operations upon this

knowledge model:

• add(K ,⟨s, p,o⟩) add the given triple statement and the involved entities and

relations into the knowledge base: E := E ∪{s,o}, P := P ∪{p}, and T :=

T ∪{⟨s, p,o⟩}

• delete(K ,⟨s, p,o⟩) delete the given triple statement in the knowledge base T :=

T \{⟨s, p,o⟩}

• remove entity(K ,e) delete the given entity and all the triple statements that in-

volve this entity: E := E\e, T := T \{⟨s, p,o⟩|s = e∨o = e}

We employ a Closed World Semantics[163, 59]: for a given triple statement t,

it is considered to be true if and only if it is included in the knowledge base t ∈ K.

Moreover, if the knowledge base K is accompanied by a set of rules R, then a triple

statement t is considered to be true if it could be entailed by the knowledge base and

the rules K∪R |= t
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The design choice of representing knowledge by triples was made at the beginning

of the TREAT project. At that time we wanted to use a flexible representation, and

immediately we thought of Knowledge Graphs. A lot of previous knowledge base

projects [58, 209, 127] also adopted triples to represent knowledge. Thus, we kept

this tradition. Though we considered general first-order logic, JSON, and so on, I still

prefer triple representation because of its simplicity and its good enough expressive

power. What’s more, representing knowledge by triples enables the post-processing of

the knowledge by the existing Knowledge Graph Embedding (KGE) techniques that

map the entities and relations into a continuous vector space, and thus benefits the

downstream tasks which require a vector representation of the knowledge.

The rationale of the 3 defined operations is a bit complicated. At first glance,

readers familiar with Event Calculus (EC) will know that add and delete are terms

borrowed from EC. The first operation, add, is used to add a new fact.

The second operation is used to represent that a fact becomes false, e.g., a con-

nection between 2 components is lost. The implementation of this operation is simply

deleting the triple from the KB, because we employed a Closed World Semantics. We

ever considered adopting an Open World semantic [59], but we would have to assign a

truth value to each added triple, and the delete operation would need to mark the truth

value from ‘true‘ to ‘false‘, leading to more tedious designs.

The remove entity operation, which abstracts multiple subtle delete operations, ex-

cept for offering great convenience, is necessary to remove old entities from the entity

set of the Knowledge base. Some of the application scenarios, such as telecom net-

works, often see objects (e.g., devices, users, etc) added into and removed from the

system frequently. This is unlike a world knowledge base (e.g., Wikidata) and com-

monsense knowledge base (e.g., ConceptNet) which only add new entities but (theo-

retically) never delete old entities. Introducing the remove entity operation simplifies

deleting triples when entities get removed.

We chose to adopt the Closed World Semantics over the Open World Semantics. In

the Knowledge Graph community, the tradition is to adopt the Open World Semantics,

because, in the beginning, the community focused on modelling world knowledge,

where incompleteness is inevitable and not finding a triple in the KG is very likely due

to missing rather than it being wrong. Thus Open World Semantics is more sensible. In

the TREAT project, we aim to extract knowledge from the logs. Considering the logs

only reveal limited information about the assisted system (some information might not

be logged), in the beginning, we also adopted the Open World Semantics. But then
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we realised that this may not be a good choice. Difference from world knowledge and

commonsense knowledge:

• the knowledge in the telecom network scenarios is highly dynamic and vari-

able. A piece of knowledge can be true but soon becomes false, and then turns

true again. Suppose that such a triple <User_1, connected, AMF> means the

knowledge that “the user <User_1 is now connected to the network”. As a user

can disconnect and then connect to the network quickly over and over again,

due to device problems or connection errors, the truth of the triple <User_1,

connected, AMF> would correspondingly fluctuate between True and False.

• unbounded number of entities (e.g., devices, users, etc) can be created and then

deleted. Under Open World Semantics, falsifying a triple can only be done by

carefully crafting an ontology/schema so that the triple cannot be true in any

interpretations. Yet this requires high-level human expertise. Otherwise, we

need to associate a truth value to each triple, and when a triple becomes false,

we explicitly mark it as ‘false‘. But this will (theoretically) require all triples to

be stored, resulting in a monotonically increasing KB size.

Because of these issues brought about by the Open World Semantics, we decided

to turn to the Closed World Semantics.

4.1.3 From Input to Output: The updating mechanism

Having defined the expected inputs and outputs, the TREAT system as a whole, can be

viewed as a state transition function:

K := TREATΘ(K ,d)

Continually updating the KB is achieved by continually fetching logs from the assisted

system and applying the TREATΘ function to the new logs d and the KB K .

If we unroll the formulae and express the time information:

K (τ+1) = TREATΘ(K (τ),S(τ))

where K (τ) is the KB at time step τ, d and S(τ) is the set of logs arrived at time step

t. The TREAT system, or the state transition function TREAT extracts new knowledge

from S(τ), and transitions the states K (τ) to K (τ+1). Note that the time notations τ or

τ+1 merely indicate the time steps (versions) of the knowledge base.
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The function TREAT is bonded with some extra information Θ needed to execute

transitions, which may include inference rules, model parameters, and so forth. The

main stuff included in Θ will be the log templates used to parse log messages (§4.2.1)

and updating rules used to update the knowledge base (§4.3).

4.1.4 Key Procedures

In the previous section, I described the inputs and outputs of the TREAT system, and

introduced the TREAT function. In this section, I describe the key procedures that are

to be used in TREAT, which mainly involves 2 lower-level functions: Extract and

Update.

The Extract function parses/converts the logs into structured log events. We de-

fine the function Extract as followed:

le = ExtractΩ(d)

where d is a set of logs, and le is a set of extracted log events, as defined in §4.1.1.

These extracted log events contain important information about changes that oc-

curred in the assisted system. The Update function will identify these changes and

perform relevant updates upon the knowledge base.We define the Update function as:

K := UpdateΩ(K , le)

Therefore, the function TREAT can be represented by the above three lower-level func-

tions:

TREATΩ(K ,d) = UpdateΩ(K ,ExtractΩ(d))

In the following sections, I will describe the essence of the TREAT function men-

tioned in §4.1.3, which is the mechanism to extract knowledge from the log stream

and to perform updates on the knowledge base by the latest knowledge continually

extracted from the subsequent logs.

The system architecture of the TREATΘ engine is shown in Figure 4.2. The TREAT

engine extracts knowledge by converting the semi-structured log messages into struc-

tured log events with a library of log templates. The knowledge updating operations

are issued by updating rules on new log events extracted. The knowledge is stored and

updated in the Evolving Knowledge Base, which has been specified in §4.1.2, while

the procedures of extracting knowledge and performing updates will be explained in

§4.2.1 and §4.3 respectively.
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Figure 4.2: The architectural overview of the TREAT system

4.2 Extracting Knowledge

4.2.1 Template-Based Event Extraction

In §4.1.1, we defined the scope of logs that the TREAT system can process, which

are the log entries generated by templates. Hence, our idea of extracting knowledge

from the log stream is to first collect the templates, and then extract knowledge from

the log stream by parsing the log entries into structured log events. This can be done

easily by scanning the source code and finding out all the logging instructions. On the

other hand, if we have no access to the source code, it is possible to gather a large set

of system logs, and abduce the templates on the fly. There are several log template

mining tools out there, for example, the Logparser toolkit 3.

The aim of log parsing is to identify the template that generated each log entry, and

extract its important attributes and parameters. We chose the Drain4 [81, 80] algorithm

as the backbone of our knowledge extraction component, because of its popularity and

effectiveness.

3https://github.com/logpai/logparser
4https://github.com/logpai/Drain3
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4.2.1.1 The Drain algorithm

The Drain algorithm is an online log parsing algorithm, meaning that it can do log

matching and parsing as well as log template mining at the same time. For each new

log entry, the algorithm will run an efficient search process with some heuristic rules,

and try to match it with the existing templates. If no template is matched, the algorithm

will create a new template, and continually tune the template as more new log entries

come. Nevertheless, we can still use the Drain algorithm in a 2-phase manner: firstly,

in the preparation phase we run the Drain algorithm on a corpus of collected logs to

mine the templates. Then, in the deployment phase, we use the mined templates to

parse the logs. This 2-phase manner is adopted in the TREAT system, as we need to

make extra annotations for the templates before deployment, e.g., assigning names to

template slots (§4.2.1.2) and generating updating rules for knowledge updating (§4.3).

I will very briefly introduce the Drain algorithm here, and for more details, please

refer to the original papers [81, 80].

Finding the best match of a log message with a set of templates can be simply

done by computing the similarity score between the log message and each template,

and then choosing the template with the highest similarity score. However, this is not

efficient as the number of templates increases. The Drain algorithm uses a heuristic

search process to prune the search space, and only computes the similarity score for a

small number of templates.

In general, the logs will be preprocessed and then roughly classified into several

groups by some heuristic rules. Then, the logs will only need to be matched with the

templates associated with that log group, instead of all the templates. As shown in

Figure 4.3, the Drain algorithm is a 5-stage search procedure operated on a 5-layer

directed acyclic graph (DAG) data structure. The DAG is like a search tree, whose

branches of each layer heuristically prune the search space, and only in the last layer

some results can be merged.

1. At the first stage, the raw logs are preprocessed by pre-defined regular expres-

sions. Commonly known and widely used data items, such as IP addresses,

email addresses, telephone numbers, and so on, will be extracted in this stage.

This stage just performs simple operations but can greatly lower the difficulty of

the extraction task.

2. At the second stage, the logs are categorised according to the log length, i.e.,

the number of tokens in the log message. The logs with the same length will be
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Figure 4.3: The procedural overview of the Drain workflow [80]

grouped together. This is due to the heuristics that the logs with very different

lengths are likely to be generated by different templates.

3. At the third stage, the logs will be further categorised by their split token, which

is the token that we choose as the signal of different log types. Usually the

first or the last token would be selected. This is due to the heuristics that the

logs with the same first/last tokens are probably generated by the same tem-

plates. However, if the first/last token contains digits or special characters, like

#ˆ$’*+,/<=>@ )|˜ then the second/second last token will be selected because

digits and special characters are likely to be parameters instantiating a variable.

4. After 2 rounds of pruning, the logs are sorted into different groups, each of

which is associated with some log templates. At the fourth stage, the logs are

matched with the templates in the same group. The matching process is done by

computing the similarity score between the log and each template. The similarity

score is defined as the number of tokens that are the same between the log and

the template, divided by the total number of non-variable tokens (i.e., non <:*:>

tokens) in the log template:

simSeq =
∑

n
i=1 I(log(i), tmpl(i))

nc

where log(i) and tmpl(i) represent the ith token of the log and the template, nc

is the number of non-variable tokens, and the function I(x,y) is the indicator

function

I(x,y) =

1 if x = y

0 otherwise
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The similarity score is a number between 0 and 1, where 0 means the log and the

template are entirely different, and 1 means the log and the template are regarded

as the same. The template with the highest similarity score will be chosen as the

best-matched template for the log. Yet this similarity score is expected to exceed

a threshold simT hrd. If the similarity score is lower than the threshold, the log

will be regarded as one generated by a template that has not been discovered yet,

and the Drain algorithm will create a new template for this log.

Inspecting the workflow diagram in Figure 4.3, the Drain algorithm runs depending

on the DAG data structure as well as a bunch of internal states, which are the split

tokens, the mined templates, and the thresholds of the similarity calculation. The Drain

algorithm will dynamically update the DAG structure, and add and tune the internal

states as more new logs come.

Add and Tune a Log Template When a new log message comes and it does not

match any existing log template, the Drain algorithm will add a new log template

to the system. The new log template will be initialised with that log message and

no variables/slots. when the next log message traverses the DAG and matches this

new log template, the Drain algorithm will try to tune the log template by adding new

variables/slots to it. Specifically, Drain scans the message and template token by token,

and replaces the token of the template with the wildcard <:*:> symbol in the position

where the tokens of the template and the message are different.

Initialise and Tune the Threshold Each log template is attached with a similarity

threshold, so that the log message could be regarded as generated by the template only

if the similarity score exceeds the threshold. Hence, this threshold is an important

parameter. Instead of setting a fixed threshold, the Drain algorithm will dynamically

tune the threshold as more new logs come. By default, the initial threshold is set by an

empirical formula:

simT hrdinit = 0.5∗ seqLen−digLen
seqLen

where seqLen represents the number of all tokens in the initial log template, and digLen

represents the number of tokens containing digits in the initial log template. This is a

heuristic estimation of the lower-bound ratio of the number of constant tokens to the

total number of tokens in log templates. This is quite a low threshold, encouraging

matches at the beginning and tuning the template. Each time the template gets tuned



44 Chapter 4. The TREAT Framework

(a <:*:> is introduced), the threshold is increased a bit. Specifically, the adjusted

threshold is computed by the following formula:

simT hrd = min(1,simT hrdinit +0.5∗ logbase(η+1))

where base = max(2,digLen+ 1) and η is the number of tokens that have been re-

placed by the wildcard. The intuition behind this formula is that the more tokens have

been replaced by the wildcard, the more likely the log template is to be a generalised

template, so the increment of the threshold each time should be smaller.

4.2.1.2 Log parsing in TREAT

Having explained the Drain algorithm, we now describe how we use the Drain algo-

rithm to extract knowledge from the log stream. Applying Drain is straightforward,

yet there are some extra jobs to do.

The first job is to convert the time information to a standard format and annotate

the extracted log events with additional information (log ID, log type ID, the source

of the log, etc). This job can be easily done by simply parsing the time information

to a standard Unix timestamp, and then assigning the log type ID and giving a unique

random log ID to the log event. Most modern programming language provides utilities

for converting time and generating random unique identifiers in their standard libraries.

The second and the more tricky job is to assign the slots of the log template with

consistent names, meaning that the same entity across different log templates should be

assigned with the same name. During the preparation phase, we mine the log templates

from a corpus of collected logs by running the Drain algorithm. Note that we only

see wildcards <:*:> at the log templates mined by Drain, but we don’t know what

the wildcards mean. To make use of the extracted information, We need to annotate

the wildcards with meaningful and consistent names. For example, in the below log

template

[<:*:>] NF registered

This template indicates an event that a Network Function instance (the building block

of a 5G network system) was registered. The wildcard <:*:> means the ID of a Net-

work Function instance, so we can annotate it with the name nf instance id. In fact,

we can assign arbitrary names to the slot, such as param 101, but we need to make sure

that the names are consistent across all the templates. For example, here is another log

template
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[<:*:>] NF No heartbeat

This template indicates an event that a Network Function instance (the building block

of a 5G network system) was lost. The wildcard <:*:> means the same kind of entity

as the previous template, so we need to assign the same name to it, i.e., then the name

of this slot should be param 101 as well, instead of other names like param 102.

From the NLP perspective, this could be viewed as a task of Named Entity Recogni-

tion and Entity Typing. But we can simply ask human experts to annotate the wildcards

with meaningful names. This is a bit ad-hoc, but it is a one-time job.

4.3 Event-Based Updating Mechanism

Once the log entries are parsed into structured events, they tell us what was happening

at a certain time point inside the system, and we can use these events to update the

knowledge base.

To update the knowledge base with the log events, we need to know which log may

cause what changes. To make things clearer, we can compare our logs with database

logs. Traditional RDBMS systems [174] record SQL queries and the corresponding re-

sults in logs. SQL queries can be roughly classified into SELECT, INSERT, UPDATE,

DELETE, and a few others. SELECT queries are equivalent to observing the system

and don’t modify system states, while INSERT, UPDATE, and DELETE queries are

equivalent to changing events and changing actions to the system states.

The relations between SQL logs and database updates are straightforward, yet the

relations between our logs and software system updates are not that simple. After all,

there are no clear standardised keywords in the log indicating what changes occurred

in the system. Hence, we introduce Updating rules to explicitly connect log events and

updating operations to be performed on the KB. For simplicity, an updating rule can

be formalised as

lei→ ue1, ...,uek

where lei is a log event and ue1, ...,uek are update events5. The meaning of this rule

is: when receiving a log event, and the type of this log event is lei, then update opera-

tions ue1, ...uek should be performed upon the knowledge base. All the allowed update

operations are those defined in the KB model stated in §4.1.2, which are add (adding

5Please note that updating rules are different things from inferences rules used in logical reasoning,
such as Logic Programming
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a fact a the KB), delete (deleting a fact from the KB), and remove entity (remove an

entity and all the facts involving this entity from the KB). For example, the following

updating rule

le1($timestamp, $component, $level, $nf_instance_id, $nf_type)

->

add(($nf_instance_id, type, $nf_type)),

add(($nf_instance_id, type, network_function))

matches the log event type le1, and issues two add operations. The symbols starting

with the “$” sign are variables to be instantiated at runtime. Other symbols that do not

start with the “$” sign predicates are concepts of the knowledge base. Note that all the

variables used in the updating events should appear in the log event.

The above updating rule is the simplest form, which only allows one log event as

the precondition. This significantly limits the ability to recognise patterns of change.

More potential features can be added to the rule, for example, the time interval be-

tween two log events, unordered sequence of log events, etc. There is a whole body of

research called Complex Event Processing (CEP) [45, 188] that deals with this kind of

problem, though, we will not go into the details of CEP here. In this research project,

we will keep using the simplest form of updating rules, which is sufficient for a proof-

of-concept system. What’s more, enabling more features of updating rules demands a

more sophisticated event processing engine, which is an engineering difficulty. How

to trade these off should be left to software engineers and product managers for con-

sideration.

How to obtain these updating rules is a key challenge. At present, we produce these

rules by human experts, but we are also looking for an automated solution for future

work.

Below is a simple example demonstrating how to update the KB according to the

log events and updating rules.

An example

Here is an example log entry from the Open5GS system6:

02/24 08:51:02.485: [sbi] INFO: [nf_5dd8edb8_b420_41ed] NF

registered

6https://open5gs.org
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It matched the following log template:

[<:nf_instance_id:>] NF registered

By parsing the log entry using the methods in §4.2.1, we can obtain the following log

event:

{

"log_type_id": "1",

"log_id": "evt_b77d5cfd-7aa26-4905-bad4-53ec973a4adb",

"timestamp": 1677228662485,

"component": "sbi",

"severity": "INFO",

"nf_instance_id": "nf_5dd8edb8_b420_41ed",

"log_source": "amf",

}

where the log_type_id is the ID of the log template, log_id is the randomly created

unique ID of the log event, and log_source is the source part of the log entry (did not

show in the log itself). This log event will be matched with such an updating rule:

le1($timestamp, $component, $level, $nf_instance_id, $nf_type)

->

add(($nf_instance_id, type, $nf_type)),

add(($nf_instance_id, type, network_function))

meaning that the log event will issue two update operations upon the KB

add((nf_5dd8edb8_b420_41ed, type, network_function)),

add((nf_5dd8edb8_b420_41ed, type, amf)),

The two add operations add two facts to the KB: the NF instance nf_5dd8edb8_b420_41ed

is an entity belonging to the type network_function (the fundamental building block

of the 5G system), as well as the type amf.

Here is another example log entry :

02/28 08:00:25.724: [sbi] INFO: [nf_5dd8edb8_b420_41ed] NF No

heartbeat

It matches the following log template:

[<:nf_instance_id:>] NF No heartbeat

By parsing the log entry we can obtain the following log event:
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{

"log_type_id": "35",

"log_id": "evt_a5fd5cfd-8ef6-4905-bad4-53ec973a8adb",

"timestamp": 1677571225724,

"component": "sbi",

"severity": "INFO",

"nf_instance_id": "nf_5dd8edb8_b420_41ed",

"log_source": "amf",

}

which will be matched with the updating rule:

le35($timestamp, $component, $level, $nf_instance_id,

$log_source) ->

delete(($log_source, available, true)),

remove_entity(($nf_instance_id)) .

meaning that the log event will issue two update operations upon the KB

delete((amf, available, true)),

remove_entity((nf_5dd8edb8_b420_41ed)) .

The second operation falsifies the fact that the AMF function is available, and the last

operation removes the NF instance nf_5dd8edb8_b420_41ed from the KB, together

with all the facts involving the entity, including the two facts added to the KB previ-

ously.

4.3.1 Limitation

As mentioned above, it is a challenging problem to obtain the rules that perform up-

date operations on the entity KB from the log events. At present, we hand-crafted

these rules. However, it demands human expertise to write these rules to map the log

event types to updating operations, though the number of log event types should be

limited. In our experiment §5.1 conducted on the Open5GS system7, we collected

over a hundred thousand log entries, but only mined 102 log event types.

Secondly, the knowledge that can be expressed in the system logs, and therefore

the knowledge base is restricted by the available log types/templates. We can think that

7https://github.com/open5gs/open5gs
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these log types are like the schema of a database. Each log type defines a relation/table,

and all the possible data we can record by that database.

How general/limited is this framework? The framework should be applicable to all

kinds of software systems which continually produce a stream of logs as defined in

§4.1.1. Nevertheless, each time deploying the framework to a new assisted software

system will require human labour to collect logs, prepare regular expressions for pre-

processing, inspect and revise templates, and write event-based updating rules. Among

these human labour, writing event-based updating rules requires high-level expertise.

Within a software system, the log templates are finite, meaning that there is a limited

number of log types. If the number of log templates in a software system is small,

like the Open5GS test bed, then it will only need a trivial amount of expert labour to

write the updating rules, but the knowledge base can merely express a limited amount

of knowledge. But if the number of log templates in a software system is huge, the

knowledge base can express a lot of various knowledge but it will also take a lot of

expert labour to identify useful log events and devise the updating rules.

4.3.2 Summary

This chapter covered the various aspects of a systematic framework called TREAT,

which takes as input a stream of logs continually produced by a large software sys-

tem, extracts the knowledge from the logs, captures the changes occurring within the

system and outputs an evolving knowledge base to reflect as faithfully as possible the

internal states of that software system. I formally described the expected inputs and

outputs. I also depicted the key procedures, including knowledge extraction via log

template mining and parsing and event-based updating via updating rules. In Chapter

5, I will present an application of the TREAT framework to fault localisation, a typical

downstream O&M task in software systems. This downstream application will also

serve as an indirect evaluation of the whole TREAT framework.
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Applying TREAT to Fault Localisation

We have been discussing how to construct a KB from log, yet the ultimate target is to

facilitate various O&M tasks. That means whether our extracted KB is good or bad

depends on how well it can support these tasks, typically fault localisation. In this

chapter, we are going to show how to apply the symbolic knowledge extracted by the

TREAT system in addressing the fault localisation task. We will formulate the problem

of fault localisation within the framework of Logic Programming (LP) [97, 114] and

Inductive Logic Programming (ILP) [130, 44], through which we can make use of the

symbolic/logical knowledge in the TREAT KB. Finally, I will present an experiment

conducted on a test bed 5G system, where I injected system faults into the components

and demonstrate that the TREAT-powered KB can facilitate accurate prediction of the

injected faults.

5.0.1 Some Background

LP is a programming paradigm based on deductive formal logic. Problems are ex-

pressed as sets of facts and inference rules, and the solution is derived by means of

logical inference. ILP is the somewhat “inverse” version of LP. It learns a set of infer-

ence rules from provided examples. ILP is regarded as a machine learning technology,

but it combines with logic tightly, making itself demand less training data and com-

putation than other machine learning methods, as well as being more explainable, and

thus fits in the scenario of autonomous networks. Both LP and ILP have a long history,

and there are many books and papers elaborating on them. Here we only give briefly

some essential concepts of these techniques.

51
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5.0.1.1 Logic Programming using Prolog

The most significant benefit offered by LP is perhaps its declarativeness, whose aim

is that the programmer only needs to specify what the problem is, and the problem

solver, i.e. the inference engine of logical programming in this context, will figure out

how to solve it. To specify a computational problem in LP is to specify a set of facts

and inference rules that capture the knowledge of the problem domain, and queries that

should be proved or satisfied by the inference engine.

Facts are the basic units of knowledge, and inference rules are the logical relations

between facts. In most LP languages, typically the most famous Prolog [39, 204], facts

and inference rules are written in the form of Horn clauses [84]. Simply speaking, in

Prolog, a inference rule is written as h← b1, ...,bn where h and b1, ...,bn are logical

atoms p(t1, ..., tn) consisting of an n-ary predicate p and n arguments ti. h is called the

head of the inference rule, and b1, ...,bn are called the body of the inference rule. A

fact is an inference rule h without a body, meaning that h is always true (thus a fact).

On the contrary, a head h with a body b1, ...,bn is true if the body is true.

The semantics of an inference rule in Prolog reveals the difference between logic

programming and mathematical logic. For example, in first-order logic, an implication

p← q means that p is true if q is true, but it does not mean that p is false if q is false.

However, in Prolog, a logical term h is considered true if and only if it is a fact or if it

can be proved by the inference engine given the existing facts and inference rules. This

principle is called negation as failure [38], a kind of Closed-World Assumption [163,

59]. Hence, an inference rule p← q means that p is true if q is true, and p is false if q

is false, when there is no other rule entailing p.

The following code listing is a simple and widely used example LP program that

specifies the kinship in a family.

Listing 5.1: An example of a Prolog program

% facts

parent(john, mary).

parent(john, tom).

parent(mary, ann).

parent(mary, tom).

parent(tom, bob).

% inference rules
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ancestor(X, Y) :- parent(X, Y).

% the notation ":-" symbolise the left arrow

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

The first part of the program specifies the factual parent-child relations in the fam-

ily. Note that by convention the predicates and constants start with lowercase letters.

The second part is the inference rules, which specify the ancestor-descendant relations

in the family. Note that by convention the variables start with uppercase letters. The

first inference rule says that if X is the parent of Y , then X is the ancestor of Y . The

second inference rule recursively defines that if X is the parent of Z, and Z is the an-

cestor of Y , then X is the ancestor of Y . The syntax of Prolog is much richer than this,

but we do not need to go into details here. Readers can refer to the books [39, 204] for

more information.

Satisfying a Goal is the main approach to making use of the specified knowledge

in an LP program. If we view a Prolog program as a database, then a goal is a query

to that database. Simply speaking, a goal is a logical term with some variables, and

satisfying a goal is finding the constants that can instantiate the variables and make the

goal true. For example, ancestor(X, bob). is a goal, and satisfying this goal is to

find out all the constants that can instantiate the variable X and make the goal true. In

this case, the constants are tom, john, and mary. Thus, in the Prolog interpreter we

can see the following results:

?- ancestor(X, bob). % the notation "?-" is the prompt

of the Prolog interpreter

X = tom ;

X = john ;

X = mary ;

false.

The last line false means that there are no more solutions to the goal. A goal can

have 0 variables, such as ancestor(john, bob). Satisfying such a goal is equivalent

to proving whether the goal is true or false, In this case, the Prolog interpreter will try

to prove the goal by searching the facts in the program or establishing proof with the

given facts and inference rules. Examples are:

?- parent(mary, ann).

true.
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?- parent(mary, anne).

false.

?- ancestor(john, bob).

true.

?- ancestor(bob, john).

false.

5.0.1.2 Inductive Logic Programming

ILP is a machine learning technology that imposes strong inductive bias preferring the

patterns that can be represented by a specified formal language. If we say that LP

mimics the deductive thinking of human beings which derives specific cases (existing

facts and inference rules) from general cases (new facts), then ILP mimics inductive

thinking which comes up with general cases (new inference rules) from specific cases

(existing facts and inference rules). ILP also reuses the concepts of LP. The basic

elements are facts and inference rules as well, and they are all written in the form of

Horn clauses, as introduced in §5.0.1.1.

Formally speaking, a learning problem in ILP is a tuple (B,E+,E−), where B is

the background knowledge, E+ is the set of positive examples, and E− is the set of

negative examples. The objective of ILP is to learn a set of inference rules H that

together with the background knowledge B, can cover the positive examples and not

the negative examples. More concretely, the background knowledge B is, like an LP

program, a set of facts and inference rules.

There are different learning settings [51], depending on which the representation

of positive and negative examples can vary. The most common learning setting is

learning from entailments, where the positive and negative examples are all single

logical atoms without variables (called grounded atoms). In this case, the positive

examples are the logical atoms that can be entailed by the background knowledge, and

the negative examples are the logical atoms that cannot be entailed by the background

knowledge.

∀e ∈ E+ R∪B ⊢ e

∀e ∈ E− R∪B ̸⊢ e
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∀e ∈ Fault+ R∪KB ⊢ e

∀e ∈ Fault− R∪KB ̸⊢ e

Below is a simple demonstrative ILP problem. Suppose we have the following

background knowledge:

% background

parent(john, mary).

parent(john, tom).

parent(mary, ann).

parent(mary, tom).

parent(tom, bob).

and here are the positive and negative examples:

% positives % negatives

ancestor(john, mary). ancestor(mary, john).

ancestor(john, tom). ancestor(tom, john).

ancestor(mary, ann). ancestor(ann, mary).

ancestor(mary, tom).

Feeding this background knowledge and learning examples to an ILP engine, the

following inference rule might be induced:

ancestor(X, Y) :- parent(X, Y).

There are other learning settings, like learning from satisfiability [52], learning
from partial interpretations [70], learning from interpretation transitions [86],

and so forth, but we do not need to go into details here.

ILP by ProbFOIL There are many ILP systems, such as FOIL [156], Progol [131],

and so forth. Here we use ProbFOIL [53]. It is based on FOIL, which is an induction

system that learns from entailments as well. The difference is that FOIL mechanism is

deterministic, while ProbFOIL uses a probabilistic approach to learn inference rules,

adding noise toleration capabilities to the positive and negative examples.

5.0.2 Formulating Fault Localisation as LP

Fault localisation is a typical task in Operation and Maintenance [207]. Usually, it

refers to identifying the component/subsystem/part that is responsible for a fault, so
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that we can fix the system by replacing or simply restarting that faulty component.

Suppose a software system can be decomposed into a set of components Y =

{y1, ...,yn} (which is a reasonable assumption because modularisation/componentisa-

tion is a chief principle of software engineering). We can write a fault localisation

program as a function y = f l(x) that takes some input and returns the faulty compo-

nent y ∈Y that is responsible for the fault. Depending on the underlying algorithm, the

input x can vary. In our scenario, the input is the snapshot of the TREAT-powered KB

at the time τ when the fault happened, i.e., y = f l(K[τ]).

As we shall use LP techniques to address the fault localisation problem, we need

to formulate the problem to be a logic program. That is, we need to transform the

input K[τ] to be a set of facts and inference rules in Horn Clause format, and then feed

the program to a Prolog engine for querying the faulty component. This is what the

function f l does. Recall in §4.1 that the knowledge in the TREAT KB is encoded as

a set of triples. Thus, converting the triples into Horn logic is straightforward: a triple

(s, p,o) can be directly converted to a logical term p(s,o). Then, loading these facts,

as well as the inference rules into a Prolog engine, we can query the faulty component

by means of Prolog’s built-in inference engine using a special predicate faulty. For

instance,

?- faulty(Y).

Y = c1.

Readers may wonder where this seemingly magical predicate faulty comes from

and how to obtain the inference rules to enable logical reasoning. We obtain the in-

ference rules that infer faulty components by the ILP techniques. That is, we can

first collect a set of fault cases as examples and induce the inference rules from these

fault cases. In our scenario, the positive examples are the faulty KB snapshots together

with their corresponding correct faulty components, while the negative examples are

the faulty KB snapshots with the incorrectly identified faulty components., which can

be generated by substituting the correct ones with new components.

5.0.3 Automatically Obtaining Inference Rules by ILP

Taking the snapshot of the knowledge base at the time points when the faults occur, we

can create a dataset consisting of (KBi, f aulti) pairs, where i denotes the time point of

the fault occurred.



57

KB Snapshot Using the log extraction method described in §4.2.1 and event-based

updating method mentioned in §4.3, we can obtain an evolving knowledge base K .

Taking the snapshot of the knowledge base at the time points when we injected the

faults, we can create a dataset consisting of (KBi, f aulti) pairs, where i denotes the

time point of the fault injected.

We then formulate the fault localisation problem as an ILP problem. That is, we

need to convert the (KBi, f aulti) pairs into an ILP problem (B,E+,E−).

1. We find out the facts that remain unchanged in all the snapshot KBs KBi and

put them into B. This is the most general background knowledge, like the type

declarations.

2. For the rest of the facts in every snapshot KB KBi, we rectify them, i.e., insert a

time argument to highlight the time point when the fact is true. For example, a

fact p(s1, o1) in KB1 will be rectified to be p(case1, s1, o1). Afterwards,

we put all these rectified facts into B.

3. Finally, for each fault f aulti, we put it into the positive examples E+ faulty

(snapshot_i, fault_i). As it has been shown that a mixture of positive

and negative examples lead to better learning results than positive examples

alone [132], We also generate some negative examples E−, inspired by the

paradigm of contrastive learning [37], by randomly selecting some other faults

and put them into E−.

An example of ILP formulation

Suppose we have two snapshots of the knowledge base, KB1 and KB2, and the faults

that occurred are f ault1 and f ault2. The following code listing shows the general

background knowledge and the specific background knowledge for the two cases.

% general background knowledge, specifying

% the types of the components that should be available

nf(amf).

nf(smf).

nf(udm).

nf(pcf).

nf(udr).

nf(ausf).
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nf(nssf).

nf(scp).

inuse_nf(Case, NF) :- nf(NF), typeOf(Case, Ent, NF).

% specific background knowledge for case 1

typeOf(case1, nf_d4a8bef4_0a1b_41ee, net_func) .

typeOf(case1, nf_c6edf27a_9d8d_41ed, net_func) .

typeOf(case1, nf_d48324f2_0a19_41ee, net_func) .

typeOf(case1, nf_3c68a5c8_0a1b_41ee, net_func) .

typeOf(case1, nf_aae405d8_0a1b_41ee, ausf) .

typeOf(case1, nf_e5b4272e_0a1b_41ee, pcf) .

typeOf(case1, nf_c6edf27a_9d8d_41ed, scp) .

typeOf(case1, nf_6b25cdd6_3550_41ee, net_func) .

typeOf(case1, nf_e5b4272e_0a1b_41ee, net_func) .

typeOf(case1, nf_d48324f2_0a19_41ee, udm) .

typeOf(case1, nf_3c68a5c8_0a1b_41ee, smf) .

typeOf(case1, nf_aae405d8_0a1b_41ee, net_func) .

typeOf(case1, nf_6b25cdd6_3550_41ee, amf) .

typeOf(case1, nf_cdd54ba6_9d8d_41ed, net_func) .

typeOf(case1, nf_d4a8bef4_0a1b_41ee, udr) .

% specific background knowledge for case 2

typeOf(case2, nf_d4a8bef4_0a1b_41ee, net_func) .

typeOf(case2, nf_c6edf27a_9d8d_41ed, net_func) .

typeOf(case2, nf_d48324f2_0a19_41ee, net_func) .

typeOf(case2, nf_3c68a5c8_0a1b_41ee, net_func) .

typeOf(case2, nf_aae405d8_0a1b_41ee, ausf) .

typeOf(case2, nf_e5b4272e_0a1b_41ee, pcf) .

typeOf(case2, nf_c6edf27a_9d8d_41ed, scp) .

typeOf(case2, nf_c5e117bc_3550_41ee, nssf) .

typeOf(case2, nf_e5b4272e_0a1b_41ee, net_func) .

typeOf(case2, nf_c5e117bc_3550_41ee, net_func) .

typeOf(case2, nf_d48324f2_0a19_41ee, udm) .

typeOf(case2, nf_3c68a5c8_0a1b_41ee, smf) .
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typeOf(case2, nf_aae405d8_0a1b_41ee, net_func) .

typeOf(case2, nf_cdd54ba6_9d8d_41ed, net_func) .

typeOf(case2, nf_d4a8bef4_0a1b_41ee, udr) .

The following code listing shows the examples for the two cases.

% positive and negative learning examples for case 1

positive(faulty(case1, nssf)). % the true fault of case 1 is

nf3

negative(faulty(case1, smf)). % the generated negative fault of

case 1

negative(faulty(case1, pcf)).

negative(faulty(case1, ausf)).

% positive and negative learning examples for case 2

positive(faulty(case2, amf)).

negative(faulty(case2, udr)).

negative(faulty(case2, udm)).

negative(faulty(case2, nssf)).

Feeding this background knowledge and learning examples to an ILP engine, the fol-

lowing inference rule will be induced:

faulty(A,B) :- nf(B), \+inuse_nf(A,B).

meaning that if B is a network function and it is not in use in case A, then it is the faulty

component of case A. Once we induce these inference rules, we can use them to infer

the faulty component of new cases by means of Logic Programming. Figure 5.1 is an

example of how to use the induced inference rules to infer the faulty component of a

new case (I assigned it id “999” so that it would not clash with previous training and

test cases). In the file temp.pl, I included all the background knowledge, case-specific

facts, and the induced inference rules, then ran the Prolog interpreter to infer the faulty

component of this new case.

5.1 Evaluation

In this section, we provide experimental evidence to support the effectiveness of our

approach. The experiment is to evaluate the effectiveness of the TREAT system in
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Figure 5.1: An example of using the induced inference rule to infer the faulty component

in a new case by Logic Programming.

facilitating the fault localisation task. We first describe the experimental setup, includ-

ing the deployed test bed and the experiment steps, and then present the experimental

results. In brief, the TREAT-powered fault localisation methods achieved 90% pre-

diction accuracy in our experiment, showing that the TREAT system can continually

extract high-quality knowledge from the logs and capture the changes of the assisted

system.
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5.1.1 Open5GS Test Bed System

To conduct the experiment, we deployed Open5GS, a simple test bed system, as the

assisted system. We used Open5GS1, an open-source implementation of a 5G System

conforming to the 5G standard Release-172. A 5G System (5GS) can be divided into

three main parts as shown in Figure 5.23

1. User Equipment(UE)

2. 5G Radio Access Network(5G-RAN)

3. 5G Core Network (5GC)

Figure 5.2: The 5G System big picture

UEs are the 5G-enabled devices, typically a 5G smartphone. 5G-RAN is a type of

network infrastructure used commonly for mobile networks that consists of radio base

stations with large antennas. An RAN wirelessly connects user equipment to a core

network. 5G Core network facilitates main data forwarding and other various Network

Functions, such as session management, authentication, policy control, data storage

etc.

We deployed our own Open5GS, i.e., the virtual UE, 5G-RAN, and 5GC by means

of docker in a Linux/Ubuntu server. For reference purpose, here is the list of related

containers running in the test bed. Apart from the Open5GS microservices, there are

some auxiliary microservices, such as the database (MongoDB), etc.

$ # Display the docker containers information of the Open5GS test bed

1https://github.com/open5gs/open5gs
2https://www.3gpp.org/specifications-technologies/releases/release-17
3https://www.3gpp.org/wiki/index.php?id=182
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$ docker ps --format "table {{.ID}}\t{{.Names}}\t{{.Image}}"

CONTAINER ID NAMES IMAGE

28b2025a05dd nr_ue docker_ueransim

c6164c44d8ca nr_gnb docker_ueransim

4e5896d10082 amf docker_open5gs

9fcb45ba2458 upf docker_open5gs

1548c8b5ef5f bsf docker_open5gs

cac9fd79b8cd webui docker_open5gs

0b18d8386cfd udr docker_open5gs

f4c19b067ba0 nssf docker_open5gs

f426d8fc859e udm docker_open5gs

cccd561a338b ausf docker_open5gs

658469b647ad pcf docker_open5gs

5a4bfb697552 smf docker_open5gs

591d3d080498 mongo docker_mongo

8c953da17d42 scp docker_open5gs

fe9f8ffc1208 nrf docker_open5gs

Since the whole 5G system is run by docker, the simplest way to collect logs is to

use the logging command supported by docker. Below are the logs produced by AMF

in the early stage:

$ docker logs amf

Deploying component: ’amf-1’

Open5GS daemon v2.5.5-48-gfa5b2fe

01/24 10:36:07.280: [app] INFO: Configuration: ’/open5gs/

install/etc/open5gs/amf.yaml’ (../lib/app/ogs-init.c:126)

01/24 10:36:07.280: [app] INFO: File Logging: ’/open5gs/install

/var/log/open5gs/amf.log’ (../lib/app/ogs-init.c:129)

01/24 10:36:07.286: [metrics] INFO: metrics_server() [http

://172.20.0.210]:9091 (../lib/metrics/prometheus/context.c

:510)

01/24 10:36:07.286: [sbi] INFO: NF Service [namf-comm] (../lib/

sbi/context.c:1334)

01/24 10:36:07.286: [sbi] INFO: nghttp2_server() [http
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://172.20.0.210]:7777 (../lib/sbi/nghttp2-server.c:237)

01/24 10:36:07.286: [amf] INFO: ngap_server()

[172.20.0.210]:38412 (../src/amf/ngap-sctp.c:61)

01/24 10:36:07.286: [sctp] INFO: AMF initialize...done (../src/

amf/app.c:33)

01/24 10:36:07.288: [sbi] INFO: [e8ff155e-9bd2-41ed-9a11

-0158331531c3] NF registered [Heartbeat:10s] (../lib/sbi/nf

-sm.c:214)

01/24 10:36:16.322: [sbi] INFO: [ee622a4a-9bd2-41ed-989a-

bd451676dded] (NRF-notify) NF registered (../lib/sbi/nnrf-

handler.c:632)

01/24 10:36:16.322: [sbi] INFO: [ee622a4a-9bd2-41ed-989a-

bd451676dded] (NRF-notify) NF Profile updated (../lib/sbi/

nnrf-handler.c:642)

The most significant advantage of deploying a self-owned test bed is that we can

freely perform various operations on the system and observe the behaviours, and thus

collect the logs.

The common operation of normal users with 5G is accessing a website through the

5G network. Below is a simple example. I used the UE (sit in container 28b2025a05dd)

to ping a website on the Internet.

$ docker exec -it nr_ue ping -I uesimtun0 www.huawei.com

PING www.huawei.com.web3.hwgslb.com (10.3.42.32) from

192.168.100.2 uesimtun0: 56(84) bytes of data.

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=1 ttl=243 time

=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=2 ttl=243 time

=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=3 ttl=243 time

=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=4 ttl=243 time

=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=5 ttl=243 time

=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=6 ttl=243 time
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=176 ms

64 bytes from 10.3.42.32 (10.3.42.32): icmp_seq=7 ttl=243 time

=176 ms

ˆC

--- www.huawei.com.web3.hwgslb.com ping statistics ---

7 packets transmitted, 7 received, 0% packet loss, time 6009ms

rtt min/avg/max/mdev = 175.735/176.012/176.351/0.180 ms

Here is what happened: The UE established the connection with the 5G Core with

the interface uesimtun0. When it pings a website, the packets are routed through the

interface uesimtun0 to the Internet via the Open5GC 5G Core network.

An administrator can do almost whatever it wants to do with the network, including

destroying the whole network! Yet the most common operations may be to change

some configuration and then apply the new settings. In the microservice system, this

is normally done by editing the config file and then restarting the container. Below are

some common commands to restart the network functions.

$ docker stop ausf # stop the AUSF function

$ docker start ausf # start the AUSF function

$ docker restart ausf # restart the AUSF function

As for fault injection, we used Pumba4, which is a chaos testing command line tool

for Docker containers. Pumba disturbs containers by crashing containerized applica-

tions, emulating network failures and stress-testing container resources (CPU, mem-

ory, file system, I/O, and others). With Pumba, I can inject faults by disturbing the

network or the container. There are a bunch of fault injection case studies in this thesis

based on Open5GS. For example, I can emulate the “AMF indicates AUSF error” by

stopping the AUSF containers and then issuing a UE connection. In reality, this fault

could happen when the AUSF is down or when it is already deployed and there is a

communication error. Ideally, the following two commands should implement the fault

injection

$ pumba stop ausf # stop AUSF

$ /UERANSIM/build/nr-ue -c /UERANSIM/config/custom-ue.yaml

# UE attempt to connect

This is an instance of microservice-level fault injection. Apart from AUSF, we can

do the same for other network functions like NSSF, PCF, SMF, etc. If we only care
4https://github.com/alexei-led/pumba/
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about the location of faults (which service is erroneous), then the above fault injection

process is enough.

In the simplest version, we consider only one kind of fault: microservice down.

We define a fault as a tuple (t,S), where t is the time of the root fault and S is the set

of down Microservices (containers). Then, by simply running at some time τ1

$ pumba stop amf smf

we killed the service amf and smf, meaning that we injected the fault (τ1,{am f ,sm f}).

5.1.2 Experiment Steps

With the deployed test bed, we now describe our experiment steps. The experiment

is done in 2 phases. In the first phase, we set up the TREAT system to align with the

Open5GS test bed system, meaning preparing the template library and the event-based

updating rules. In the second phase, we use the TREAT system to address the fault

localisation task.

The second phase can be further illustrated in Figure 5.3. We run the test bed sys-

tem and use a script to continuously simulate user operations, i.e., the UE accessing a

website. Occasionally, The script also injects some faults (τ1,S1), ...,(τm,Sm) into the

test bed system (the previous fault would be corrected before a new fault is injected).

During this process, the logs are collected and fed into the TREAT system. The TREAT

system then uses the templates and the updating rules to extract knowledge from the

logs and update the knowledge base. I take snapshots of the knowledge base at each

time point τ1, ...,τm and use these snapshots to perform fault localisation by the method

described in §5, i.e., to infer the faulty components via logic programming and ILP.

The inferred faulty components are then compared with the gold standard faulty com-

ponents, which are the ones we deliberately injected, to evaluate the effectiveness of

the TREAT system.

In the first phase, I collected 102 log templates and wrote 8 event-based updating

rules. The log templates are collected by manually inspecting the logs of the Open5GS

test bed system. The event-based updating rules are written by manually inspecting

the logs and the source code of the Open5GS test bed system.

In the second phase, I injected 520 faults in total. Taking the snapshots of the

knowledge base at each time point τ1, ...,τm (in practice, I postponed 5 seconds to wait

for the system reaction and generating the logs), I obtained 520 KB snapshots, and

hence 520 (KBτ, f aultτ) cases.



66 Chapter 5. Applying TREAT to Fault Localisation

Figure 5.3: The procedural overview of the fault localisation process.

I split all the cases into 220 training cases and 300 testing cases. We used the 220

training cases to induce the inference rules, and then used the inference rules to infer

the faulty component of the 300 testing cases. The precision of the inferred faulty

components is 90% correct. This is the empirical evidence that the TREAT system can

continually extract knowledge from the logs and update the knowledge base, and the

evolving knowledge base can be used to facilitate the fault localisation task.

5.1.3 Discussions

The 10% failed cases were due to the mismatch of log templates and log messages,

and hence not triggering the correct updating operations upon the knowledge base.

Thus, the knowledge base cannot correctly reflect the system states, and therefore lead

to incorrect fault localisation. For example, the two log events <:nf_instance_id

:> NRF NF registered and <:nf_instance_id:> (NRF-notify)registered are

similar but totally different. The former one says that an NRF instance was registered,

while the latter one says that an NF was registered (but it may not be an NRF) and this

log message was triggered by the NRF instance.

In fact, determining which template generates a log message is an ill-posed prob-

lem, and there is no solution guaranteed to give 100% correct results. As an extreme

example, a log event "Service <:serv_name:> created!" tells which service was

created, and the <:serv_name:> could be “WebUI” or “Database”, another logger

monitors the event of the database service "Service Database <:serv_evt:>!"

while the <:serv_evt:> can be “created” or “deleted”. Then, for a log message

"Service Database created!", it is impossible to determine which log template
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generates this log. Arguably, this extreme example indicates bad software engineering

practices that all projects should avoid, but it could exist in the real world.

5.2 Summary

This chapter not only demonstrated how the TREAT framework can be integrated into

a localising the faulty components of a software system, but also provided empirical

evidence supporting our hypothesis that our proposed TREAT framework can con-

struct and continually update a knowledge base that reflects the state of a software

system from its generated log stream. We formulate the fault localisation task as a

Logic Programming problem and solve it using the existing toolkit (Problog & Prob-

FOIL), leveraging the extracted knowledge in the TREAT-powered knowledge base.

We still see limitations of the fault localisation solution and the evaluation developed

in this chapter. For instance, we still see some extent of human labour required, like

writing regular expressions for preprocessing and updating rules for event-based up-

dating, some of which demand high-level expertise. What’s more, the test-bed system

I deployed in this experiment is quite small, so we didn’t see how well the TREAT

framework can scale up in large industrial software systems. In spite of that, this exper-

iment satisfactorily evaluated the effectiveness of the TREAT framework in extracting

knowledge from logs and capturing changes within its assisted software system.





Chapter 6

LP-Measure: A Novel Method for KG

Quality Assessment

In the last chapter, I evaluated the TREAT framework via fault localisation. As this

TREAT-powered downstream application achieved good performance, I claimed that

the knowledge in the TREAT-powered KB is accurate and useful and that the TREAT

framework is effective. However, this evaluation has several limitations, and one of the

most severe ones is that it relies on many external factors, particularly the Prolog-based

fault localisation algorithm and the self-deployed testbed system (§5.1). It would be

better to have an evaluation approach that relies as little as possible on external factors.

To this end, I define the LP-Measure that can automatically assess the quality of a given

knowledge graph without either gold standards or human labelling. To be more precise,

I mainly assess robustness and redundancy rather than correctness and completeness.

The core idea is to randomly remove some triples from the knowledge graph and then

use a set of off-the-shelf link prediction models to predict the removed triples (hence

called LP-Measure). The more removed triples can be recovered, the more the given

knowledge graph is robust and redundant.

I designed experiments to empirically show that our LP-Measure is effective, at

least in distinguishing high-quality KGs from low-quality ones. Though the LP-Measure

is motivated to evaluate the TREAT-powered KB, unfortunately, it does not satisfy its

initial purpose because of some limitations. In this chapter, I present this novel method

for knowledge graph quality assessment and discuss its limitations and why I eventu-

ally did not use it.

This chapter is adapted from a conference paper from NLPIR 2023 [220]

69
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6.1 Introduction

Knowledge Graph (KG) Construction is the prerequisite for all other KG research and

applications. Researchers and engineers have proposed various approaches to build

KGs for their use cases. However, how can we know whether our constructed KG is

good or bad? Is it correct and complete? Is it consistent and robust? In this chapter,

I propose a method called LP-Measure to assess the quality of a KG via link predic-

tion tasks, without gold standard or other human labour. Though theoretically, the

LP-Measure can only assess robustness and redundancy, instead of the more desir-

able correctness and completeness, empirical evidence shows that this measurement

method can quantitatively distinguish the good KGs from the bad ones, even in terms

of incorrectness and incompleteness. Compared with the most commonly used manual

assessment, our LP-Measure is an automated evaluation, which saves time and human

labour.

One widely used method is to estimate the correctness by sampling a small set of

triples from the constructed KG and manually checking the precision of these sampled

triples [142, 73]. For example, the SymbolicKD [205] project constructed a KG with

4.38 million triples by prompting a large language model, after which they manually

checked the acceptance rate of a sample of 1000 triples. This method costs a lot of time

and human labour and it can only estimate the correctness but not the completeness of

a KG, and even this relies on the expertise of the human examiners.

Motivated by the above problem, in this chapter, I consider how to automatically

assess the quality of a given KG with neither gold standards nor human labelling. I

proposed LP-Measure to automatically assess the quality of a KG via the auxiliary

link-prediction task. Simply speaking, the main idea is to remove a small part of the

KG, and then apply a standard suite of link prediction tools to check how many of the

removed triples can be recovered. I claim that the more triples that can be recovered,

the more robust and redundant the original KG is, and the more likely it is that the

original KG is of high correctness and completeness.

We can view this measurement from an intuitive perspective of fitting statistical

models to datasets: using the same collection of datasets, the statistical methods that

produce more accurate predictions are considered to be better methods (e.g., evaluating

probabilistic language models on the GLUE benchmark [196]). Conversely, using the

same collection of statistical methods, the datasets that produce more accurate models

are considered to be better datasets (e.g., higher-quality corpus leads to more powerful



6.1. Introduction 71

language models). Following the same idea, researchers usually evaluate different link

prediction methods on some benchmark KGs, and conversely, we can evaluate the

quality of KGs using the benchmark link prediction methods.

6.1.1 Quality of Knowledge Graphs

Figure 6.1: Linked Data quality dimensions and the relations between them. The di-

mensions marked with ‘*’ are specific for Linked Data [213]

“Quality” is a broad and vague term, so needs to be defined in finer-grained dimen-

sions. Zaveri et al. [213] proposed a comprehensive quality assessment framework de-

signed for Linked Data, which can also be viewed as a knowledge graph but attempts

to inter-connect all the open knowledge graphs. The framework refines “quality” to

be 18 dimensions, grouped into 4 categories, as shown in Figure 6.1. We can see that

some of these quality dimensions are specific to Linked Data, such as whether a KG is

licenced, and some of the quality dimensions are for humans, such as interpretability.

Of the quality dimensions, some of them are related, such as consistency, accuracy

(correctness), and completeness.

Later, based on the framework of Zaveri et al. [213], Chen et. al. [33] proposed

another framework for measuring the quality of “fit for purpose” KGs, or domain-

specific KGs, as shown in Figure 6.2. They exclude the dimensions specific to Linked

Data, and add some dimensions for domain-specific applications. For example, the KG
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should be related to that application domain, and the KG should be of high authority

in the aviation risk field.

Figure 6.2: Knowledge Graph quality dimension curated from representative applica-

tions scenarios [33]

These metrics can be combined together to form a comprehensive quality assess-
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ment framework. For example, the Luzzu Framework [54] is a Java implementation

that allows users to conveniently define as many as possible of their own metrics and

run them on the given KGs to obtain an overall quality score.

In the field of ontology engineering, a formal domain-independent framework called

OntoClean [76] can be used to justify the decisions of ontology engineers. This is done

by examining the ontology and analysing the meta-properties of ontology classes, such

as identity, unity, rigidity, dependence, etc. Faria et al [68] introduced a crowd-based

approach, called Crowd Quality (CQ) that aims at assessing the quality of data linking,

which are mappings of entities across different ontology datasets.

Different from other datasets in the field of machine learning and general data

analysis, Knowledge Graphs (and Semantic Web) usually evolve through time. Most

well-known KGs, e.g., DBpedia and Wikidata are updated every day by users around

the world. ConceptNet and YAGO also experienced several iterative releases in the

past decade. Hence, how well a KG evolves, such as the degree of changes and lifes-

pan of any entity type, is also an important dimension of quality, and is studied thor-

oughly [160, 18, 151].

6.1.2 Assessing the Intrinsic Quality

Though there are many quality dimensions, the intrinsic dimensions, including cor-

rectness, completeness, and consistency, are more important than others. According to

the framework of Zaveri et al [213], correctness (semantic accuracy) means the degree

to which the triples correctly reflect real-world facts, while completeness means the

degree to which the entities and relations of a particular domain are represented in a

KG (population completeness & Property completeness). Consistency means a KG

is free of contradictions with respect to its representation and inference mechanism.

Generally speaking, consistency is a weaker notion of correctness and completeness

because a KG that’s correct and complete should also be consistent, while a KG that’s

consistent may be total nonsense.

Most large KGs assess their quality by human evaluation, such as SymbolicKD [205]

and Knowledge Vault [58]. As mentioned in §6.1, this is done by sampling a set of

triples and manually checking the correctness of the sampled triples. The obvious

drawback of human evaluation is that it costs time and money. There are chapters on

how to save time and optimise the estimation [73, 142] by designing better sampling

strategies, but the drawback still exists.
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Some KGs are built to facilitate downstream applications. In this case, the perfor-

mance of the downstream applications can be used as indirect indicators of the quality

of the KGs. For instance, AttacKG [107] was built to aggregate cyber threat intelli-

gence from textual reports. It was evaluated by the Named Entity Recognition (NER)

task: with the help of AttacKG, the result of recognising cyber-security terminologies

greatly improved. Yet, this merely moves the workload of evaluating a KG to evalu-

ating another task. When no gold standards exist in those downstream tasks, we still

need to employ human labour for those tasks. The AttacKG project manually labelled

16 Cyber Threat Intelligence reports to facilitate their evaluation.

A methodology called Competency Questions [164, 55] can be viewed as a gen-

eral downstream task for ontologies and knowledge graphs. It borrows the idea from

test-driven software development: before implementing any function modules, soft-

ware engineers clarify the engineering requirement and write the test suites. Then, this

test suite can be used as a guide during development, and as an assessment tool after

development: the more tests are passed, the higher quality of the software. Compe-

tency Questions-driven ontology development requires the knowledge engineers first

to write down a suite of questions that the expected ontology can answer. For example,

an ontology of computer science could be expected to answer questions like “Which

program implements algorithm X?” Once we set up a suite of competency questions,

we can use these questions to guide ontology development and quality assessment: the

more questions that can be answered, the higher the quality of the ontology. Besides

this, there are also methods that directly mimic test-driven software engineering to as-

sess and assure the quality of ontology engineering [96]. Yet these methods require the

KGs to be equipped with schemas of the domain of interests, and like the competency

questions, demand human labour to write the test suites.

There are studies on assessing the quality of triples. For instance, KGTtm [91] pro-

posed a confidence measurement called Triple Trustworthiness to evaluate how much

a triple in a KG can be trusted. The Trustworthiness is produced by a neural network

trained to capture the triple semantics and global information of the KG. Besides the

neural net approach, Inductive Summarisation [16] tried to learn a set of rules that can

best summarise the KG, and leverage the induced rules to detect the abnormal triples,

as well as infer missing triples. Both these methods and other similar approaches can

be considered as variants and further applications of the knowledge graph link predic-

tion task, of which the core idea is to train a model that captures the information of the

KG, and use the model to score triples (either new triples or existing ones).
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6.2 Preliminary: Knowledge Graph Link Prediction

In this section, I briefly explain some important concepts used in LP-Measure. Recall

that knowledge graph G is a tuple (E ,R ,T ) (§3.2), Ideal Knowledge Graphs [16]

are the KG G∗ = (E∗,R ∗,T ∗) that contains all the correct triples of the domain of

interest and no incorrect ones. The notion of correctness (precision) and completeness

(recall) is defined by comparing the constructed KG G with this ideal KG G∗:

correctness =
|T ∩T ∗|
|T |

completeness =
|T ∩T ∗|
|T ∗|

Nevertheless, this ideal KG is merely a conceptual aid, and usually does not exist.

After all, if we have such an ideal KG at hand, we don’t need to bother constructing a

KG.

Link Prediction [167, 200], or knowledge completion, is a typical task in the field

of Knowledge Graph that aims to predict missing links between entities (triples) of a

KG based on its existing knowledge. Our proposed measurement, LP-Measure, relies

on the knowledge graph link prediction as an auxiliary task.

Commonly used link prediction methods include TransE [22] and ComplEx [187].

Later methods based on deep neural networks include ConvKB [138] and GNN [210].

More advanced methods, based on pretrained language models, include MEM-KGC [36],

SimKGC [199], and so forth.

In the link prediction research community, a new prediction model M is usually

evaluated in such a way: take an already known high-quality KG as a benchmark,

remove some of its triples, and see how many triples can be recovered (predicted)

by the new prediction model M . The more triples that are recovered, the better the

performance of the prediction model. For example, when TransE [22] was proposed,

it was evaluated on a KG called FB15k, a subset of Freebase [21], and WN11, a subset

of WordNet [124].

More concretely, researchers split the triples of a KG into a training set and a test

set. The triples in the training set are used to train the prediction model, while the

triples in the test set, together with some generated synthetic negative triples are used

to evaluate the performance of the trained model. Since almost all KGs only encode

positive triples [12], so one may wonder how we can obtain the negative triples to

facilitate training and testing. A widely-used method in KG link prediction is negative
sampling under the Local Closed World Assumption [139].



76 Chapter 6. LP-Measure: A Novel Method for KG Quality Assessment

Unlike the Closed World Assumption which asserts all triples not encoded in the

KG to be false, and the Open World Assumption which asserts all triples not encoded

in the KG to be unknown, the Local Closed World Assumption states that for a given

subject-predicate pair (s, p) observed in a KG, we assume that all non-existing ⟨s, p,?⟩
to be false, but for all other (s, p) not observed in the KG, we assume that all non-

existing ⟨s, p,?⟩ to be unknown. Under this Local Closed World Assumption, we can

generate synthetic negative triples by taking a positive triple from the KG and then

randomly replacing its subject and object with other entities to create non-existing

triples. For example, taking a triple <James Cameron, director of, Titanic>,

we may generate a negative triple <James Cameron, director of, God Father>.

Of course, this Local Closed World Assumption is valid for functional predicates like

born in, but not valid for multi-valued predicates like director of, yet in practice,

it can reliably generate negative triples.

To evaluate the performance of a Link Prediction model, I trained and then

tested it: for a positive (correct) triple and several negative (incorrect) triples, the pre-

diction model will output scores of these triples, and rank the triples based on their

scores. If more positive triples are ranked ahead of more incorrect ones, then this pre-

diction model is considered to be more powerful in learning the features of a KG and

predicting new triples. The commonly used metrics are Mean Reciprocal Rank (MRR)

and Hit at K (Hit@k), both of which are within the unit interval [0,1], the larger the

better.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

Hit@k =
1
|Q|

|Q|

∑
i=1

I[ranki < k]

where Q is the test set, and I[·] is the indicator function of an assertion, returning 1 if

the assertion is true while 0 if the assertion is false. The removed triples for testing

are called silver standards[148, 206] instead of gold standards because the benchmark

KG, though high-quality, is not perfect.

The evaluation of link prediction algorithms is a kind of controlled experiment: we

use the same benchmark KGs (FB15k or WN18), and check the performance of differ-

ent link prediction models. Conversely, if we use the same benchmark link prediction

models, we can also check the quality of different KGs. This is the main idea of our

proposed measurement method, LP-Measure.
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6.3 LP-Measure

LP-Measure is inspired by the task of link prediction and the idea of a controlled ex-

periment. One key observation/assumption of link prediction is that:

It is possible to predict the missing triples of a KG based on its existing
structure. The higher quality a KG is, the more reliably we can predict the
missing triples [169, 200].

This observation is quite straightforward and intuitive. After all, the task of link pre-

diction is to capture the information and underlying patterns of the existing triples, and

leverage them to predict the missing triples. If the existing triples contain a lot of noise

or miss a lot of information, then the prediction model cannot learn well and will make

inaccurate predictions. Therefore, to be able to conduct the task of link prediction, a

precondition is that this KG should be already relatively correct and complete. Taking

a further step, I hypothesise that

For a high-quality KG, we can remove a small part of the KG, and reli-
ably recover (predict) the removed part. The higher the quality, the more
removed triples we can recover.

In other words, a high-quality KG is also highly recoverable. Based on the hypoth-

esis above, I propose to use a standard set of link prediction models (served as a

benchmark) to assess the quality of different KGs.

The idea is simple: first of all, we determine a controlled set of link prediction

algorithms as the benchmark, e.g., TransE or ComplEx. Given a KG G whose quality

is unknown, we randomly remove a small part of the KG. We denote the removed

triples to be g and the rest to be G (similar to the training/test set split). Then we train

the benchmark link prediction model M on G.

Finally, we apply the trained model to recover the removed triples in g. If most of

the removed triples can be recovered, then we can claim that the given KG G is of high

quality. Algorithm 1 is the pseudo-code of our proposed method. Figure 6.3 illustrates

the main process. The returned link prediction result, e.g., mrr score, indicates the

quality of the KG G , the higher the score mrr, the higher the quality of G
In the demonstrative pseudocode, the prediction mode, M is a combination of

multiple chosen models, such as TransE [22] and ComplEx [187]. The output of the

function evaluate prediction(m, g) is also the average of the MRRs or Hit@ks by

every single prediction model.
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Algorithm 1: Measuring quality of KG by Link Prediction
Data: The given knowledge graph G , the given link prediction model M
Result: The link prediction result mrr or hit@k

G,g← split(G) ;

m← train(M ,G) ;

mrr,hit@k← evaluate prediction(m,g)

One point to note is that LP-Measure is not a single metric, but an assessment

method. The metrics to tell the good or bad are those of the link prediction tasks,

such as MRR and Hit@k mentioned in §6.2. The higher these metrics of a KG, the

better correctness and completeness, or to be more exact, the higher robuestness and

redundancy.

6.4 Evaluation

In this section, I provide empirical evidence to support the effectiveness of our pro-

posed measurement method, LP-Measure. It is a direct application of the hypothesis

For a high-quality KG, we can remove a small part of the KG, and reli-
ably recover (predict) the removed part. The higher the quality, the more
removed triples we can recover.

To evaluate the hypothesis, I conducted an empirical experiment:

1. Identify a well-known good KG G .

2. Create a worse KG G ′ i.e., less correct and less complete ones, based on the

good KG G .

3. Apply LP-Measure on both G and G ′, obtaining corresponding link prediction

results. In this experiment, I showed the results of MRR, Hit@1, and Hit@3.

If we see the link prediction results of G significantly greater than that of G ′, then

here is the evidence supporting our hypothesis, and justifying the efficacy of our LP-

Measure.

Within this framework, I chose 4 good KGs: FB15k, FB15k-237, WN18, WN18RR [22,

186, 56]. These 4 KG datasets are widely used in the link prediction research commu-

nity, and the popularity of these benchmark KGs indicates their well-recognised high

quality (correctness, completeness, and consistency). I chose 2 models, TransE [22]
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(a) Remove a small proportion of triples from the KG

(b) Train a controlled set of prediction models on the rest of the KG, and try to recover the

removed triples

Figure 6.3: The main idea of LP-Measure

and ComplEx [187], implemented by Ampligraph1, which are also well-known in the
1https://github.com/Accenture/AmpliGraph/
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link prediction community. There are many more powerful and later models, but

TransE and ComplEx are simple and easy to run. The deep neural network models

or even the transformer models are too slow and demand too much computing power.

After all, the important point is to use fixed link prediction models, not to use state-

of-the-art models. When removing triples, I randomly take off 10% of the triples, i.e.,

I did a 90%/10% split, and LP-Measure will check how many triples of the removed

10% can be recovered from the rest 90%.

I created 2 types of “worse” KGs: incorrect KGs and incomplete KGs.

6.4.1 Incorrect KG

I create an incorrect KG by replacing part of the triples with negative ones generated

by negative sampling techniques as mentioned in §6.2. Here I chose 25% and 50%

triples to corrupt because I consider it to be a fair enough proportion to create a noisy

KG. I apply the LP-Measure on both good and worse KGs. Figure 6.4 shows the

experimental results.

Recall that both MRR and Hit@k are within the unit interval [0,1], the larger the

better. We can see that the link prediction results of the original (good) KGs signif-

icantly outperform the injected (worse) KG, which is empirical evidence supporting

that our measurement method is effective in distinguishing the correct KGs from the

incorrect ones. Given that the more incorrect triples injected, the lower the MRR

and Hit@k, we can say that LP-Measure is a quantitative assessment method, i.e., the

higher LP-Measure, the better KG quality.

6.4.2 Incomplete KG

I create an incomplete KG by randomly taking out some triples from the original KG.

Unlike the previous experiment on incorrectness, I didn’t inject any corrupted triples.

Again I took out 25% and 50% of the triples, to create incomplete versions compared

with the original one. I apply the LP-Measure on both the good and worse KGs. Figure

6.5 shows the experimental results2.

Similar to the previous experiment on inconsistency, We can see that the link pre-

diction results of the original (good) KGs significantly outperform the incomplete

(worse) KG, except in the FB15k dataset, where the KG taken out 50% of triples

2I conducted the experiments 3 times and took the average of every datum, so did the later experi-
ments on incompleteness.
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Figure 6.4: LP-Measure results of the original datasets and the worse versions with

injected incorrect triples. Metrics are computed by averaging those of TransE and Com-

plEx.

got even better results than the one taken out only 25%. The experimental results of

incompleteness do not look as convincing as those of the experiment on incorrectness,

this also indicates that the LP-Measure may not be good at distinguishing the complete

one and the incomplete one, which is also evidence supporting our thought that the

LP-Measure concerns the self-consistency and redundancy of a KG.

Interestingly, the datasets FB15k vs FB15k-237, and WN18 vs WN18RR also con-

stitute 2 pairs of incompleteness comparison. I show the MRR results of them in

Table 6.1. FB15k-237 and WN18RR are subsets of FB15k and WN18 respectively

by removing the inverse relations, e.g., (s, hyponym, o) and (o, hypernym, s)

to avoid test leakage [186, 56]. Thus, a link prediction algorithm always gets lower
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Figure 6.5: LP-Measure results of the original datasets and the worse versions with

missing triples. Metrics are computed by averaging those of TransE and ComplEx.

results in FB15k-237 and WN18RR than FB15k and WN18, which is commonsense

in the research community. This commonsense is also evidence supporting the claim

that the higher LP-Measure a KG would be, the more complete (redundant) it is.

FB15k FB15K-237 WN18 WN18RR

TransE 0.145 0.127 0.180 0.143

ComplEx 0.417 0.241 0.813 0.395

Average (LP-Measure) 0.281 0.184 0.495 0.269

Table 6.1: MRRs on all the original datasets



6.5. Discussion & Limitations 83

Another interesting result is that the LP-Meausre of WN18 (WN18RR) is signif-

icantly better than that of FB15k (FB15k-237). This also aligns with our intuition,

since the domain of FB15k is open-world knowledge, so we expect that the KG would

be fairly incomplete and involve many mistakes. In contrast, the domain of WN18 is

merely lexical knowledge, which is a much smaller and restricted domain. Therefore,

we would expect that such a constructed KG would be more correct and complete than

the one of open-world knowledge.

6.5 Discussion & Limitations

Though the LP-Measure is simple, effective, and doesn’t require gold standards and

extra human labelling, there are limitations.

The most significant limitation is that LP-Measure only works well on large KGs.

Because we exploit link prediction models to do the measurement, and most link pre-

diction models require large data to learn the statistical patterns and perform link pre-

diction. Thus, our measurement may not well reflect the quality of small KGs. There

could be KGs with less than 100 triples describing a very small domain, e.g., the rela-

tionship within a family. In this case, most data-driven link prediction models cannot

work. This is why I mentioned in the beginning of this chapter that LP-Measure does

not satisfy its initial purpose of evaluating the quality of TREAT-powered KB/KG.

Currently, the TREAT KB size is relatively small, and the LP-Measure cannot produce

meaningful metric scores for the small KBs.

Secondly, by removing part of a KG and measuring how much can be recovered,

LP-Measure cannot assess the correctness and completeness of a KG. Rather, it mea-

sures the aspect of robustness or redundancy of a KG. This is due to the nature of link

prediction methods [167]: they essentially learn the statistical patterns of the graph

topology, including the similarity between nodes based on shared attributes, and the

patterns of relationships between nodes in the graph, and then use these learned pat-

terns to predict the new links (triples) that are not shown in the KG but are statistically

consistent with the existing graph structure. In an extreme case, there might be a KG

whose triples are entirely incorrect with respect to the real world but internally con-

sistent. Then LP-Measure could output a high score for this nonsense KG, but its

correctness and completeness should be indeed low. For instance, a KG created in

2012 may be a highly correct KG, but standing in 2022, most of the triples can be out-

dated and thus become incorrect, e.g, <USA, president, Barack Obama> is correct
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in 2012 but incorrect in 2022. Suppose there are 2 KGs G1 and G2 on the same specific

domain of interest. G1 is created at t1 while G2 is an evolved version created later at t2.

In this case, LP-Measure could not distinguish which one is better, though standing at

t2, most of the triples in G1 may become incorrect.

Last but not least, LP-Measure is also an indirect measurement. What we can

obtain are the standard link prediction metrics in the research community, like MRR

or Hit@k on that KG, not as straightforward as direct measurements like precision and

recall, or the more general ROC-AUC. What’s worse, there’s no guarantee that it could

work in all KGs. LP-measure is built on the basis of Link prediction tasks, and not all

KGs are applicable to this task. However, there are few studies on the precondition of

KGs applicable to link prediction.

However, in case we don’t have gold standards to compute precision and recall,

our measurement can serve as a quick and easy-to-use probe. We can always use the

LP-Measure first, after which we can decide whether or not to spend some time on

human labelling and compute the precision for correctness (and hopefully the recall

for completeness).

6.6 Summary

In this chapter, I proposed a method called the LP-Measure to assess the quality of a

KG by means of link prediction tasks. The biggest advantage of our LP-Measure is

that it can be run in a fully automated manner, without needing extra human labour to

provide gold standards. Though the applicability is limited, and LP-Measure essen-

tially assesses the consistency of a KG instead of the more desirable correctness and

completeness, empirical experiments show that our proposed measurement is effective

for large KGs, at least where it can distinguish the good KGs from the bad ones.



Chapter 7

A Closer Look at Probability

Calibration of KG Embedding

In the TREAT framework, knowledge extraction is done by template parsing. However,

as templates can be mismatched, there could be some false positives, and that’s the

main reason for the 10% failed predictions in the fault localisation evaluation. Thus,

I wished to assign probabilities to the extracted triples, so that we could realise the

potential risks in downstream reasoning. During research, I found that probability cal-

ibration is a widely adopted approach to convert scores without probabilistic semantics

into mathematical probabilities as well as refining probability estimations. That led

my research interests to probability calibration, and its application in knowledge graph

embeddings.

When the estimated probabilities do not match the relative frequencies, we say

that these estimated probabilities are uncalibrated [191], which may cause incorrect

decision-making, and is particularly undesired in high-stakes tasks [217]. Knowledge

Graph embedding models are reported to produce uncalibrated probabilities [183], e.g.,

for all the triples predicted with probability 0.9, the percentage of them being truly

correct triples is not 90%. In this chapter, I take a closer look at this problem. First, I

confirm the claim that typical KG Embedding models are uncalibrated [183]. Then, I

show how off-the-shelf calibration techniques can be used to mitigate this issue, among

which binning-based calibration produces more calibrated probabilities. I also inves-

tigated the possible reasons for the uncalibrated probabilities and found that the expit

transform [183], the way typically used to convert embedding scores into probabilities,

is ineffective in most cases.

This chapter is adapted from a conference paper from IJCKG 2022 [221]

85
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7.1 Introduction

One approach to assigning probabilities to triples of a KG is to train embedding mod-

els [26] (see §6.2 for more details), e.g., TransE [22] or ComplEx [187], for KGs, and

then use the scoring function of the trained embedding model to score the new triples:

score = fembed(⟨⃗s, p⃗, o⃗⟩)

where fembed is the scoring function of the embedding model, and s, p, o represent

subject, predicate and object, respectively. There have been some works suggested that

these scores can be converted into probability values via expit transform [139, 183],

i.e., passing these scores through the Sigmoid function as follows.

prob = σ(score) =
1

(1+ exp(−score))

where σ represents the Sigmoid function. However, this treatment is problematic as

the expit transform does not necessarily convert scores into values of probabilistic

sense. Even it if does, later works [183] showed that the probability values obtained

in this way are uncalibrated; e.g., for all the triples with probability 0.9, the percent-

age of them being correct triples w.r.t. the real world is not 90%. Thus, these expit-

transformed probability values need to be calibrated

prob∗ = fcalib(prob)

where fcalib is a calibration model, and prob∗ are calibrated probability values that nei-

ther over-estimate nor under-estimate the truth of triples. Then, a subsequent question

is how to pick an appropriate calibration model from the off-the-shelf toolkit.

In this chapter, I looked deeper at the research of probability calibration for knowl-

edge graph embedding, with the following findings:

1. I stressed 1 that not all expit-transformed scores are appropriate to be interpreted

as probabilities. Also, I argue that probability calibration can serve as an accurate

technique to convert embedding model scores into probability values.

2. Though expit-transformed scores of some embedding models can be interpreted

as probabilities, I found that even these probabilities are uncalibrated, and thus

calibration is needed.
1We are not the first to show this phenomenon, but unfortunately still many people mess up.
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3. I provided empirical evidence for a useful rule of thumb [141] for how to choose

calibration techniques: for a large set of held-out data (say, over 10 thousand

triples), binning-based calibration techniques perform better, such as Isotonic

Regression and Histogram Binning. Otherwise, scaling-based techniques, such

as Platt Scaling, are more suitable.

7.2 Preliminaries: Probability Calibration

In this section, I briefly explain some important notions of calibration used in this

chapter.

Score vs Probabilitiy Numeric scores are common tools to express uncertainty and

rank items, usually without formal definitions. Scores can range between arbitrary

real numbers, for example, an un-thresholded Linear Support Vector Machine f (x) =

w⊤x + b output a score within [−∞,+∞], and the higher the absolute value of the

score, the more likely the corresponding instance is classified. Probabilities are scores

with formal mathematical definitions to express uncertainty. Clear distinctions be-

tween scores and probabilities include that probabilities lie in [0,1] while scores can

be unbounded; and probabilities follow a set of Probability Axioms [69] while scores

don’t.

Although there is a firm mathematical foundation for probability, and it is agreed

that probability is a measure of uncertainty, the exact interpretation of probability val-

ues is still not controversial [85]. Some argue that probabilities measure the objective

uncertainty behind this real world, while some argue that there is no such thing as ob-

jective uncertainty probabilities are subjective estimates of the degree of belief. And

there is a wide spectrum between these 2 extreme interpretations. In this chapter,

the term “probabilities” is used to refer to the estimates of the degree of uncertainty,

whether the uncertainty is believed to be objective or subjective. As they are estimates,

there could be calibrated probabilities and uncalibrated probabilities.

Epistemological Origin of Calibration In a word, calibration means that the fore-

cast probabilities should match the relative frequencies: f r(X |pr(X) = β) = β, where

f r(X) represents the relative frequency of X and pr(X) represents the predicted prob-

ability of X . It is also a technique to adjust the uncalibrated probabilities, or directly

transform classifier scores with no probability meanings into probabilities that satisfy
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probability axioms and have probability semantics. The notion gained attention and

became well-studied in the 1960s [133, 191, 49] from a philosophical inquiry of an

epistemic virtue for partial beliefs (aka, subjective probabilities or credence), analo-

gous to the virtue of truth for full beliefs.

Suppose that I would like to go to a picnic tomorrow. But here in Edinburgh it often

rains. If it won’t rain tomorrow then I can begin to buy some food and make phone calls

to friends. If it will rain tomorrow then I shall not bother preparing. The key question

is whether it will rain tomorrow. I can make a full belief prediction that “Tomorrow

it will rain!” I can verify this prediction by waiting for tomorrow’s actual weather. By

this verification, I can say that my full belief prediction has an epistemic virtue of truth,

meaning that I can assert it as a good prediction if it matches reality, or a bad prediction

if it fails to match reality. What if I make a partial belief prediction that ”It seems 70%

probable to rain tomorrow”? We cannot verify this prediction through the actual result

of tomorrow’s weather, even if it would rain tomorrow indeed. Although we cannot

verify the truth of my partial belief by one prediction, we can evaluate the quality of

my partial beliefs in a long series of predictions.

Formally, consider binary classification tasks. Given a set of samples (X ,y) ∈ D ,

if ∀β ∈ [0,1], we have f r
(
X |pr(X) = β

)
= β, where f r(X) represents the frequency of

X being a positive sample, and pr(X) represents the predicted probability of X being

a positive sample, we say the predicted probabilities pr(X) are calibrated. Otherwise,

we say they are uncalibrated, and thus calibration is needed.

Technical Mechanism of Calibration In Machine Learning, probability calibration

is also a family of techniques to obtain well-calibrated probabilities. Some statistical

classifiers produce scores that are NOT probabilities, such as the Support Vector Ma-

chine [40]. Calibration can be used to convert these scores into probabilities [150].

Sometimes even probabilistic classifiers do not produce calibrated distribution, due

to over-fitting or other reasons [159]. In this case, calibration methods can also be

applied.

In principle, we can see the original classifiers f (x|w) as feature extractors [159].

They take raw input data and produce scores or (uncalibrated) probabilities as features

of the input data. Then a calibration model, essential a simple probabilistic classifier

p[ f (x|w)|θ] like logistic regression, can be applied to learn from these extracted fea-

tures, and output calibrated probabilities. We call this method post-calibration, mean-

ing post-processing the output of the original model to produce well-calibrated proba-
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bilities.

Why does this post-calibration idea work? Why do those original models (even

probabilistic ones) fail to produce well-calibrated probabilities? A recent paper [78]

gives an explanation. If we assume there exists a ”true distribution”, then this true

distribution is well-calibrated by nature. Once our probabilistic model successfully

learns that true distribution, then our learned distribution will also be well-calibrated.

However, that’s not the case. Our model may get over-fitted to the training set. The

more complicated our model, like deep neural networks, the more possible it is to get

over-fitting. Another reason could be that the feature space and/or the landscape of the

loss function are too complex that our learning model may be trapped in local optima,

during optimisation. Because of these, our model (even probabilistic) usually learns

an approximate distribution possibly far away from the true distribution, and thus pro-

duces uncalibrated probabilities. Post-calibration techniques use simple probabilistic

models, such as logistic regression, or one-layer probabilistic neural networks to learn

from a simple feature space, which is the original output of the model, such as scores

of an SVM model [40], or uncalibrated probabilities of a deep probabilistic neural

network.

When using post-calibration methods, we should have at least 3 datasets for train-

ing (Xtrain,ytrain), calibration ( f (Xcal|w),ycal), and testing (Xtest ,ytest). We train the

original model on the training set, train a calibrator on the calibration set, and evaluate

the performance, including how accurate the prediction is and how well-calibrated the

probabilities on the test set.

How do we check if a forecast distribution is well-calibrated? In the last section, we

decomposed the Brier Score into the calibration term and refinement term. In theory,

the calibration term

C =
1
K

K

∑
j=1

n j(p j− r j)
2

can serve as a metric. Yet there are practical difficulties. The calibration term

requires grouping events by their exact probability p j, and computing the relative fre-

quency of these n j events. This requires the n j to be big enough for every unique

probability value p j to produce a frequency value of statistical significance. But this

is rare in practice. Mostly we have events whose probability value p j occurs only

once, and the corresponding n j equals 1, where it is impossible to calculate a meaning-

ful frequency value. As a compromise, we sometimes use directly the Brier Score to
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evaluate probability calibration. Or we make some relaxation to the grouping criteria,

not to group events by their exact probabilities, but similar probabilities, so that each

group can have enough events to calculate a meaningful frequency. This is how the

widely used ECE(Expected Calibration Error) [135] works.

ECE =
1
n

n

∑
i
|pri− f ri|

where pri represents the average probability of the ith group and f ri represents the

relative frequency of the ith group. Here is a naive example:

P = [(0.11,0.12,0.13,0.14,0.15),(0.81,0.82,0.83,0.84,0.85)]

Y = [(0,0,0,0,1),(1,1,1,1,0)]

ECE =
1
2
(|0.13−0.2|+ |0.83−0.8|) = 0.10

In this example, there are only events whose predicted probability value occurs

only once. We group the events with close probabilities into 2 clusters, and calculate

the average probabilities and relative frequencies of these 2 clusters, and compare the

cumulative distances, which is 0.10, a relatively small and satisfying result.

7.3 Expit-Transformed Scores as Probabilities?

Recall that some works suggested that the scores fembed(⟨⃗s, p⃗, o⃗⟩) can be converted

into probabilities via expit transform [139, 183]. Depending on the scoring function

of KG embedding models, expit-transformed scores sometimes can be interpreted as

probabilities but sometimes not. I was not the first to point out this issue. It has even

been noted in some libraries documentation2. For instance, TransE adopts a distance-

based scoring function:

fTransE(⟨⃗s, p⃗, o⃗⟩) =−||⃗s+ p⃗− o⃗||2

Hence fTransE(⟨⃗s, p⃗, o⃗⟩) ∈ [−∞,0], and thus σ
(

fTransE(s, p,o)
)
∈ [0,0.5]. That is

to say, the expit-transformed scores of TransE are always lower than 0.5, which can

hardly be recognised as probabilities, regardless of the truth of a triple. Any embedding

2https://pykeen.readthedocs.io/en/stable/reference/models.html
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models adopting distance-based scoring functions as TransE, such as TransD [90],

TransR [203], TransH [110], RotatE [182], PairRE [32] and BoxE [3] do suffer from

this problem.

Some may suggest it is not a problem because we can always map the scale to the

unit interval, for example, doubling the scale of expit-transformed scores of TransE so

that now the range turns from [0,0.5] to [0,1], and obey the probability axioms [194].

In our later experiments (§7.4.1), the expit-transformed values of TransE did achieve

relatively high accuracy in the triple classification task. Nevertheless, it is not the case

when it comes to other embedding models. As shown in Figure 7.2, the doubled expit-

transformed values of TransR and RotatE3 are still lower than 0.5.

Then, scores of which models can apply expit-transform? One necessary condi-

tion (but not sufficient) is that a) the range of the scoring function should be the whole

real interval: fembed(⟨⃗s, p⃗, o⃗⟩) ∈ [−∞,+∞]; b) the model optimises the Negative Log

Loss or Binary Cross Entropy during the training course. Optimising a Negative Log

Loss or Binary Cross Entropy is equivalent to performing Maximum Likelihood Es-

timation, so the whole training procedure is equivalent to estimating the probability

distribution of the fitted dataset. Because of this, we can, mathematically, regard these

expit-transformed values as probabilities.

Whether the expit-transformed scores are probabilities could be arguable, but in

the following experiments, I can show that even if we consider them as probabilities,

they are uncalibrated, and thus require calibration before being used in high-stake ap-

plications.

7.4 Experiment and Results

I conducted experiments4 to examine the following hypothesis:

1. Expit-transformed probabilities of current KG Embedding Models are uncali-

brated, but off-the-shelf calibration techniques can effectively make the uncali-

brated probabilities calibrated, producing more accurate probability estimations

(see §7.4.1).

2. To perform calibration, Binning-based techniques, such as Isotonic Regression

and Histogram Binning, generally work better than scaling-based ones (Platt
3These two models are not implemented in Ampligraph, so I used the PyKEEN [9] library imple-

mentations.
4Code available at https://github.com/TREAT-UOE/kgcal
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TrainE TrainC Test Entities Relations

FB13k 316232 11816 47464 75043 13

WN11 110361 4877 19706 38194 11

YAGO39 354994 18471 18507 37612 37

DBpedia50 32388 246 4196 24624 351

UMLS 5216 1304 1322 135 46

Kinship 8544 2136 2148 104 25

Table 7.1: Size of the datasets used in this experiment. The TrainE sets are used to

train embedding models, while TrainC sets are just held-out triples that used to train

calibration models.

Scaling and Beta Calibration) when large datasets (e.g. over 10k triples) are

available (see §7.4.2).

Extending the setting of the previous work by Tabacof et al [183], in our experi-

ment, I trained 4 typical KG embedding models, TransE [22], ComplEx [187], Dist-

Mult [211], and HoLE [140] on 6 datasets: FB13k [175], WN11 [175], YAGO39 [56],

DBpedia50 [172], Kinship [93], and UMLS [93]. Each dataset is split into 3 subsets for

training, calibration, and testing. Statstics of datasets are summarised in Table 7.1. The

calibration and testing sets of FB13, WN11 and YAGO39 have ground truth negative

samples, while the other 4 don’t. Therefore, I generated synthetic negative samples via

corruption: randomly sampling triples and replacing the subject or object entities with

some random entities. In all datasets, we have balanced positive and negative samples.

We used the implementation of Knowledge Graph Embedding Models from Ampli-

Graph5 [41] and the implementation of calibration techniques from NetCal6 [99]. Fol-

lowing the similar setting of Tabacof et al [183], I trained each model for 500 epochs to

optimise the Negative Log Loss, using early-stopping to avoid over-fitting. The vector

dimensionality is set to 100. I used the Adam optimiser [94] with an initial learning

rate of 1e−4.

5https://github.com/Accenture/AmpliGraph
6https://github.com/fabiankueppers/calibration-framework
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7.4.1 Uncalibrated Probabilities

To evaluate hypothesis (1), our goal is to compare the expit-transformed probabilities

and calibrated probabilities and show whether the former incurs higher calibration er-

rors. Firstly, I trained KG embedding models on a training set (TrainE) and computed

the expit-transformed probabilities of triples in the test set. Specifically, I doubled the

expit-transformed values of TransE so that the range of them is turned from [0,0.5]

to [0,1]. Then, I trained a calibration model on a held-out set (TrainC) and obtained

the calibrated probabilities of triples in the testing set via the calibration model. I

compared the expit-transformed probabilities and the calibrated probabilities in Figure

7.1, which illustrates that expit-transformed values get higher ECEs and BSs than cal-

ibrated ones, meaning that the KG embedding models are more or less uncalibrated,

and almost all calibration techniques produced better-calibrated probabilities than the

expit-transformed ones.

The results suggest that calibration is a better way than expit transform to convert

embedding scores into more calibrated and accurate probabilities. Expit-transformed

probabilities, after the range adapted to [0,1], should be used only when no extra data

(the calibration set TrainC) is available to train a calibration model.

7.4.2 Binning-based Calibration

During the experiment, we can observe that binning-based calibration (Isotonic and

Histogram) performs better in general. We can also notice that binning-based methods

dominated in FB13k, WN11 and YAGO39, which has more data than the rest. Pre-

vious work also suggested that binning-based methods tend to overfit, especially on

smaller datasets [141]. Thus, to evaluate hypothesis (2), we took these 3 datasets, and

gradually shrunk the size of the calibration sets by randomly sampling k% of them, and

comparing the number of wins in terms of BS, NLL, and ECE between binning-based

and scaling-based methods. I plotted the results in Figure 7.3.

Results show that the performance of binning-based calibration techniques domi-

nates at the beginning. As the size of the calibration sets shrinks, the winning count

of Isotonic Regression and Histogram Binning decreases, while that of Platt Scaling

and Beta Calibration increases. This implies that we should prefer binning-based cal-

ibration when large datasets are available (e.g. over 10k triples). When the dataset

is relatively small, determining which calibration technique is better requires careful

empirical evaluation.
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7.5 Summary and Discussion

In this chapter, I presented a closer look at probability calibration of knowledge graph

embedding. I stressed that not all expit-transformed scores are appropriate to be inter-

preted as probabilities. What is worse, probabilities obtained by expit transform are

generally uncalibrated for various KG embedding scores on various datasets. However,

off-the-shelf calibration techniques can effectively calibrate these probabilities. If large

datasets (over 10k triples) are available, binning-based techniques, including Isotonic

Regression and Histogram Binning produce the best calibrated probabilities. In the

long run, we will still need to compare the usefulness of probability against other kinds

of uncertainties, like possibility [152, 153] and fuzziness [145, 179]. What’s more, in

this research I only focused on those widely used embedding models. In the future, I

will look at the recently proposed models, such as DualE [28] and JointE [218].

Though probability calibration is a great tool to help assign probabilities to KG

triples, unfortunately, I found that inapplicable in TREAT. The main reason is that

assigning probabilities to KG triples by calibration would require training a KG em-

bedding model first, and then scoring each triple, after which calibration can turn the

scores into probabilities. Yet the KG of the TREAT framework keeps updated and

evolving along with the assisted software system. Each time the KG gets updated, the

embedding model will need to be retrained, which can incur unaffordable computing

costs. Considering the weakness, eventually, I decided not to integrate the calibration

technique into the TREAT framework.
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(a) Expected Calibration Error

(b) Brier Score

Figure 7.1: Bar charts of ECE and BS for the probabilities produced by expit transform

and the probabilities produced by various calibration techniques per model per dataset.

The smaller ECE or BS, the better calibrated.
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Figure 7.2: Histograms of doubled expit-transformed values of TransR, and RotatE,

compared with DistMult and ComplEx (not doubled). Models were trained on UMLS

dataset, optimising the NLL loss, with 500 epochs and early-stopping trick.

Figure 7.3: Number of winning counts for different calibration techniques for the 4 KG

embedding models when the calibration sets of FB13, WN11, and YAGO 39 shrink. For

each calibration result, we compute all the 3 metrics (BS, NLL, and ECE), so that every

bin in the figure has 36 counts in total.



Chapter 8

Conclusion

In this thesis, motivated by the problem of more and more difficult O&M tasks in in-

creasingly complex large software systems, we explored the approach of KBs construc-

tion and updating from system log streams, which we believed to be under-explored

yet effective, efficient and low-cost.

8.1 Contributions

We presented the TREAT framework (§4) which is able to extract knowledge from a

stream of logs and maintain a self-evolving knowledge base. The TREAT framework

can serve as an intelligence engine plugged into any large software system that contin-

ually produces a stream of logs. TREAT then takes this log stream as input, extracts

structured knowledge from the logs via log template mining and parsing, and then

builds and updates a knowledge base via updating rules.

The TREAT framework is a “proof-by-construction” to the hypothesis that it is fea-

sible to extract knowledge from a stream of system logs, and keep track of the system

changes by continually updating a knowledge base, thus supporting various down-

stream applications. To the best of our knowledge, compared with previous works

in the research community (§2), the TREAT framework is the first effort dedicated

to extracting symbolic knowledge from logs and establishing a continually updating

mechanism for addition/deletion of new knowledge once extracted.

We demonstrated the effectiveness of the TREAT framework by applying it in

a typical downstream Operation & Maintenance task called fault localisation (§5).

Empirical evidence shows that the TREAT-powered KB can successfully support a

knowledge-based solution to the fault localisation task, meaning that the knowledge

97
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extracted in the TREAT-powered KB is useful, and up-to-date along with the changes

of its assisted system.

The TREAT framework also derived 2 other research contributions. Firstly, as the

evaluation of TREAT by fault localisation relies on external factors, such as the Prolog-

based fault localisation algorithm and our self-deployed test bed system, I would like to

find a less dependent evaluation method. The one I produced is called the LP-Measure

(§6), which assesses the quality of a knowledge graph by means of link prediction

tasks, in particular the robustness and redundancy of the knowledge graph. The biggest

advantage of our LP-Measure is that it can be run in a fully automated manner, without

human labour to provide gold standards.

Secondly, during the research, I explored a potential way to quantify the uncer-

tainty in knowledge extraction and assign probabilities to triples in the KB, I found

probability calibration an interesting technique to convert scores with no probability

semantics to mathematical probabilities. I took a further step to investigate probability

calibration, and its application in knowledge graph embeddings (§7). With extensive

experiments, I explored the phenomenon of uncalibrated probabilities in knowledge

graph embeddings and provided empirical evidence for a useful rule of thumb for how

to choose specific calibration techniques from the existing toolbox.

8.2 Limitations

The TREAT framework is far from a perfect approach. Recall that the updating mech-

anism of the TREAT-powered KB relies on a set of carefully defined updating rules,

which are triggered on new extracted log events and issue updating operations upon

the KB. It is a challenging problem to obtain these rules. Currently, we delegate this

problem to human experts. This becomes the bottleneck of the whole framework, be-

cause the quality of extracted knowledge depends on the expert-crafted rules, and once

new log types get introduced (software upgraded), the rules may not be able to cope

with them.

What’s more, the experiment conducted in our evaluation did not fully examine

all aspects of the TREAT framework. For example, the test bed system I used for the

experiment is quite small, so we can’t be sure the limit of scalability of the TREAT

framework can scale well to the size of truly large systems. Apart from scalability,

industrial scenarios always bring about wield problems of “unknown unknown”, which

were not revealed in our experiments.
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In terms of LP-Measure, we found that it is only applicable to large-scale world

knowledge graphs or commonsense knowledge graphs such as Freebase, WordNet, and

Yago, but not dynamic knowledge graphs that update frequently, such as the TREAT-

powered KBs. Hence, we eventually cannot apply the developed method in evaluat-

ing the TREAT framework. Nevertheless, the LP-Measure is a novel and convenient

method to probe the quality of large-scale world knowledge graphs. The same pity

exists in our investigation of probability calibration in knowledge graph embeddings,

as assigning probabilities to KG triples by probability calibration only applies to static

KGs, not dynamic and ever-evolving ones like the TREAT-powered KBs. But fortu-

nately, the findings we made may still benefit the general research community.

8.3 Future Work

There are several potential future works remaining to be done. Regarding the limita-

tions of the TREAT framework, since it still demands some human labour and exper-

tise, especially in manually crafting the updating rules for knowledge base updating, it

is desirable to improve it to be a fully automated framework, at least to increment the

level of automation. An apparent direction is to exploit the recently developed large

language model technologies, such as prompt engineering or fine-tuning a foundation

model [111]. Besides, more extensive experiments need to be conducted in order to

thoroughly examine the potential and limits of the TREAT framework in various as-

pects, e.g., generality and scalability. we are keen to establish deeper collaboration

with companies that allow us to deploy and test of methods in their industrial test bed

and products. What’s more, as TREAT is a complicated framework, it would always

be a good idea to think about developing easier methods of evaluation, which boost the

speed of feedback collection and iterative development.
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AD Anomaly Detection. A typical Operation and Maintenance job of detecting whether

an anomaly happens within the running system.. 2

FL Fault Localisation. A typical Operation and Maintenance job of localising the

faulty components when a system fault occurs.. iii, 2
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NF Network Function. The basic unit of functionality of 5G systems, including Ac-

cess Management Function (AMF), Session Management Function (SMF), and

Network Repository Functions (NRF). More NFs are defined in relative 3GPP
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operate and maintain a complex system. Typical jobs include fault diagnosis and

resource planning, etc.. 1, 19, 97

RCA Root Cause Analysis. A typical Operation and Maintenance job of finding out

the root cause of a fault when it happens.. 2



Appendix A

Worked Example

Below is a worked example of how my implemented TREAT framework extracts

knowledge from log data, continually updates the knowledge, and uses the TREAT-

powered knowledge base to address the fault localisation problem. As mentioned in

Chapter 5.1, I will demonstrate this case study based on the Open5GS testbed system.

We run the testbed system and use a script to continuously simulate user operations.

Occasionally, The script also injects some faults (τ1,S1), ...,(τm,Sm) into the test bed

system, where taui represent time and Si represent the faulty component, e.g., AMF,

SMF, and other network functions of Open5GS. The previous fault would be corrected

before a new fault is injected, so that at the same time at most 1 component becomes

faulty.

Listing A.1: fault injection records

2023-08-07 19:28:17,616 - INJECT: nssf

2023-08-07 19:28:43,856 - USER REQUEST

2023-08-07 19:29:03,035 - RECOVERED: nssf

2023-08-07 19:29:31,052 - INJECT: amf

2023-08-07 19:30:00,630 - RECOVERED: amf

2023-08-07 19:30:15,646 - USER REQUEST

2023-08-07 19:30:34,180 - INJECT: nssf

2023-08-07 19:31:16,200 - USER REQUEST

2023-08-07 19:32:02,722 - USER REQUEST

2023-08-07 19:32:32,855 - RECOVERED: nssf

During this process, the logs generated by each component are collected and stored

in respective log files. Here is an excerpt of the logs from amf.log.

103
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Listing A.2: example logs from amf.log

01/24 10:36:07.280: [app] INFO: Configuration: ’/open5gs/

install/etc/open5gs/amf.yaml’ (../lib/app/ogs-init.c

:126)

01/24 10:36:07.280: [app] INFO: File Logging: ’/open5gs/

install/var/log/open5gs/amf.log’ (../lib/app/ogs-init.c

:129)

01/24 10:36:07.286: [metrics] INFO: metrics_server() [http

://172.20.0.210]:9091 (../lib/metrics/prometheus/context

.c:510)

01/24 10:36:07.286: [sbi] INFO: NF Service [namf-comm] (../

lib/sbi/context.c:1334)

01/24 10:36:07.286: [sbi] INFO: nghttp2_server() [http

://172.20.0.210]:7777 (../lib/sbi/nghttp2-server.c:237)

01/24 10:36:07.286: [amf] INFO: ngap_server()

[172.20.0.210]:38412 (../src/amf/ngap-sctp.c:61)

01/24 10:36:07.286: [sctp] INFO: AMF initialize...done (../

src/amf/app.c:33)

01/24 10:36:07.288: [sbi] INFO: [e8ff155e-9bd2-41ed-9a11

-0158331531c3] NF registered [Heartbeat:10s] (../lib/sbi

/nf-sm.c:214)

01/24 10:36:16.322: [sbi] INFO: [ee622a4a-9bd2-41ed-989a-

bd451676dded] (NRF-notify) NF registered (../lib/sbi/

nnrf-handler.c:632)

01/24 10:36:16.322: [sbi] INFO: [ee622a4a-9bd2-41ed-989a-

bd451676dded] (NRF-notify) NF Profile updated (../lib/

sbi/nnrf-handler.c:642)

01/24 10:36:18.238: [amf] INFO: gNB-N2 accepted

[172.20.0.223]:54772 in ng-path module (../src/amf/ngap-

sctp.c:113)
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A.1 Knowledge Extraction and Updating

The first step of TREAT is to mine log templates from the collected logs. Below are

some example log templates mined from the above logs. Note that the templates are

represented as JSON key-value objects, whose keys are the log type and values are the

corresponding log template, with several instances of the template placeholders.

Listing A.3: log templates

{

"log_type_1": {

"template": "Configuration: <:*:>",

"extracted": [

[

"’/open5gs/install/etc/open5gs/amf.yaml’"

],

[

"’/open5gs/install/etc/open5gs/smf.yaml’"

],

[

"’/open5gs/install/etc/open5gs/udm.yaml’"

]

]

},

"log_type_2": {

"template": "File Logging: <:*:>",

"extracted": [

[

"’/open5gs/install/var/log/open5gs/amf.log’"

],

[

"’/open5gs/install/var/log/open5gs/smf.log’"

],

[

"’/open5gs/install/var/log/open5gs/udm.log’"

]

]
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},

"log_type_8": {

"template": "[<:*:>] NF registered [Heartbeat:10s]",

"extracted": [

[

"[e8ff155e-9bd2-41ed-9a11-0158331531c3]"

],

[

"[c8a841ba-9d8d-41ed-9e3e-a3911d88e970]"

],

[

"[63483ac2-b41d-41ed-a57f-d1adf4fc2ee6]"

]

]

},

"log_type_13": {

"template": "[Added] Number of <:*:> is now <:*:>",

"extracted": [

[

"gNBs",

"1"

],

[

"gNB-UEs",

"1"

],

[

"AMF-UEs",

"1"

]

]

},

"log_type_35": {

"template": "[<:*:>] NF de-registered",

"extracted": [
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[

"[5dd8edb8-b420-41ed-a8e5-f34e82ad16f1]"

],

[

"[5dd8edb8-b420-41ed-a8e5-f34e82ad16f1]"

],

[

"[961f63aa-f750-41ed-9c48-87a0bd6fb563]"

]

]

}

}

So far, the outputs of the mining step are the log templates with nameless place-

holders, such as "Configuration: <:*:>". We want to assign names to the place-

holders ”¡:*:¿” so that in the following steps we can extract key-value pairs from the

log messages with the aid of these annotated templates. we can simply ask human

experts to annotate the wildcards with meaningful names. This is a bit ad-hoc, but it

is a one-time job. We can also prompt LLMs, such as GPT1 and Claude2, to annotate

the placeholders first, and then ask human experts to review and make minor revisions,

which can further reduce human workload. Below is the prompt I used to ask GPT-4.

Here is a log template with placeholders "<:*:>":

{template}

Here are some example information that instantiate the

placeholders:

{instances}

What is the best possible name for the placeholders? Please

directly output the names separated by comma, e.g., "name1,

name2".

The outputs of GPT-4 are appended to the templates in the fields:

Listing A.4: log templates

{

"log_type_1": {

1https://chatgpt.com/
2https://claude.ai/
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"template": "Configuration: <:*:>",

"extracted": [

[

"’/open5gs/install/etc/open5gs/amf.yaml’"

],

[

"’/open5gs/install/etc/open5gs/amf.yaml’"

],

[

"’/open5gs/install/etc/open5gs/amf.yaml’"

]

],

"fields": [

"config_file_path"

]

},

"log_type_2": {

"template": "File Logging: <:*:>",

"extracted": [

[

"’/open5gs/install/var/log/open5gs/amf.log’"

],

[

"’/open5gs/install/var/log/open5gs/smf.log’"

],

[

"’/open5gs/install/var/log/open5gs/udm.log’"

]

],

"fields": [

"log_file_path"

]

},

"log_type_8": {

"template": "[<:*:>] NF registered [Heartbeat:10s]",
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"extracted": [

[

"[e8ff155e-9bd2-41ed-9a11-0158331531c3]"

],

[

"[c8a841ba-9d8d-41ed-9e3e-a3911d88e970]"

],

[

"[63483ac2-b41d-41ed-a57f-d1adf4fc2ee6]"

]

],

"fields": [

"nf_instance_id"

]

},

"log_type_13": {

"template": "[Added] Number of <:*:> is now <:*:>",

"extracted": [

[

"gNBs",

"1"

],

[

"gNB-UEs",

"1"

],

[

"AMF-UEs",

"1"

]

],

"fields": [

"item_type",

"item_count"

]
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},

"log_type_35": {

"template": "[<:*:>] NF de-registered",

"extracted": [

[

"[5dd8edb8-b420-41ed-a8e5-f34e82ad16f1]"

],

[

"[5dd8edb8-b420-41ed-a8e5-f34e82ad16f1]"

],

[

"[961f63aa-f750-41ed-9c48-87a0bd6fb563]"

]

],

"fields": [

"nf_instance_id"

]

}

}

Afterward, we can make use of these annotated log templates to parse the log mes-

sages into structured log events:

Listing A.5: Extracted log events

{"log_id": "evt_9b8e88be-3f6c-4020-b933-c813ca68aa8e", "

timestamp": 1674556567280, "component": "app", "severity

": "INFO", "codeline": "../lib/app/ogs-init.c:126", "

log_type_id": "1", "config_file_path": "’/open5gs/

install/etc/open5gs/amf.yaml’"}

{"log_id": "evt_c3c8b9b2-a2ac-44d2-892b-2f6fcb75d503", "

timestamp": 1674556567280, "component": "app", "severity

": "INFO", "codeline": "../lib/app/ogs-init.c:129", "

log_type_id": "2", "log_file_path": "’/open5gs/install/

var/log/open5gs/amf.log’"}

{"log_id": "evt_461e539d-c5f0-436f-8660-c4d2594d814e", "

timestamp": 1674556567286, "component": "metrics", "
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severity": "INFO", "codeline": "../lib/metrics/

prometheus/context.c:510", "log_type_id": "3", "ip":

"172.20.0.210"}

{"log_id": "evt_9ab0c803-5a34-46c8-9851-79607a37f6d1", "

timestamp": 1674556567286, "component": "sbi", "severity

": "INFO", "codeline": "../lib/sbi/context.c:1334", "

log_type_id": "4", "service_name": "namf-comm"}

{"log_id": "evt_5f83d3b8-4ad7-421e-9646-d1fadfad3a93", "

timestamp": 1674556567288, "component": "sbi", "severity

": "INFO", "codeline": "../lib/sbi/nf-sm.c:214", "

log_source": "amf.log", "log_type_id": "8", "

nf_instance_id": "e8ff155e-9bd2-41ed-9a11-0158331531c3"}

The log events parsed from log messages in the above step will be fed to an event

processing engine that captures the changes in the system from the log events and

performs relative changes to the knowledge base. The event processing engine relies

on a set of predefined updating rules. Updating rules connect log events and updating

events. For simplicity, here we design such rules, which focus on tracking the addition

and deletion of network functions:

Listing A.6: updateing rules

{

"log_type_8": {

"add": [

"nf_{nf_instance_id};typeOf;{log_file}"

]

},

"log_type_33": {

"remove_entity": ["nf_{nf_instance_id}"]

},

"log_type_34": {

"remove_entity": ["nf_{nf_instance_id}"]

},

"log_type_38": {

"remove_entity": ["nf_{nf_instance_id}"]

}
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}

Each rule is a map from a log event type (log template) to a set of updating opera-

tions. For example, the first rule says that when a log comes and its type (template) is

log_type_8, then a triple (nf_{nf_instance_id}; typeOf; {log_file}) is ini-

tiated. The symbols in the curly brackets are parameters that will be instantiated by

the extracted log parameters. Ideally, these rules should be obtained in an automated

manner. However, this is a huge challenge, and currently, we can only obtain high-

quality rules manually. In the future, we will explore how to derive usable rules via

LLM technologies.

When all the updating rules are ready, we can execute the event processing pipeline.

When the event processing engine keeps consuming the events, its maintained knowl-

edge base also keeps being updated. We may dump the snapshots of the evolving

knowledge base at some desired time points, which can serve as the knowledge repre-

sentation of the system at the corresponding timepoints. Below is the dumped snapshot

of the knowledge base after the TREAT framework processes all the log events.

{

"entities": [

"ausf",

"scp",

"nf_7357ad38_3566_41ee_8b3b_55200db0a294",

"nrf",

"nf_16080ef8_356a_41ee_ac4b_6f21805f7d19",

"udr",

"amf",

"udm",

"nf_cdd54ba6_9d8d_41ed_a30a_45676ecf6589",

"nf_b9ddadc8_3568_41ee_b59c_2fee4387a34e",

"nf_3d40bc78_3569_41ee_9994_530712d94060",

"nssf",

"nf_c6edf27a_9d8d_41ed_96db_73930f919161",

"pcf",

"nf_864b66ac_3569_41ee_8fac_7f2339d9a9b0",

"smf",

"nf_89ce4084_3568_41ee_a169_0598f8d6b34f",
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"nf_a0e74ecc_3569_41ee_a561_21c4794bc1ef"

],

"predicates": [

"typeOf"

],

"triples": [

"nf_c6edf27a_9d8d_41ed_96db_73930f919161;typeOf;nrf",

"nf_16080ef8_356a_41ee_ac4b_6f21805f7d19;typeOf;nrf",

"nf_864b66ac_3569_41ee_8fac_7f2339d9a9b0;typeOf;nrf",

"nf_c6edf27a_9d8d_41ed_96db_73930f919161;typeOf;scp",

"nf_cdd54ba6_9d8d_41ed_a30a_45676ecf6589;typeOf;nrf",

"nf_7357ad38_3566_41ee_8b3b_55200db0a294;typeOf;udr",

"nf_7357ad38_3566_41ee_8b3b_55200db0a294;typeOf;nrf",

"nf_89ce4084_3568_41ee_a169_0598f8d6b34f;typeOf;nrf",

"nf_a0e74ecc_3569_41ee_a561_21c4794bc1ef;typeOf;nrf",

"nf_b9ddadc8_3568_41ee_b59c_2fee4387a34e;typeOf;nrf",

"nf_a0e74ecc_3569_41ee_a561_21c4794bc1ef;typeOf;ausf",

"nf_3d40bc78_3569_41ee_9994_530712d94060;typeOf;smf",

"nf_3d40bc78_3569_41ee_9994_530712d94060;typeOf;nrf",

"nf_89ce4084_3568_41ee_a169_0598f8d6b34f;typeOf;amf",

"nf_864b66ac_3569_41ee_8fac_7f2339d9a9b0;typeOf;udm",

"nf_16080ef8_356a_41ee_ac4b_6f21805f7d19;typeOf;nssf",

"nf_b9ddadc8_3568_41ee_b59c_2fee4387a34e;typeOf;pcf"

]

}

A.2 Perform fault localisation

The dumped KB snapshots, together with the fault injection records, will serve as the

learning samples and ground truths of machine learning. Here we use Inductive Logic

Programming to perform fault localisation. Each time a fault occur in a system and

localisation is required, we call that a case. Every dumped snapshot at the time of fault

injection is also a case. Suppose we have two snapshots of the knowledge base, KB1

and KB2, and the faults that occurred are f ault1 and f ault2. The following code listing
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shows the two cases represented in Prolog syntax.

% specific background knowledge for case 1

typeOf(case1, nf_d4a8bef4_0a1b_41ee, net_func) .

typeOf(case1, nf_c6edf27a_9d8d_41ed, net_func) .

typeOf(case1, nf_d48324f2_0a19_41ee, net_func) .

typeOf(case1, nf_3c68a5c8_0a1b_41ee, net_func) .

typeOf(case1, nf_aae405d8_0a1b_41ee, ausf) .

typeOf(case1, nf_e5b4272e_0a1b_41ee, pcf) .

typeOf(case1, nf_c6edf27a_9d8d_41ed, scp) .

typeOf(case1, nf_6b25cdd6_3550_41ee, net_func) .

typeOf(case1, nf_e5b4272e_0a1b_41ee, net_func) .

typeOf(case1, nf_d48324f2_0a19_41ee, udm) .

typeOf(case1, nf_3c68a5c8_0a1b_41ee, smf) .

typeOf(case1, nf_aae405d8_0a1b_41ee, net_func) .

typeOf(case1, nf_6b25cdd6_3550_41ee, amf) .

typeOf(case1, nf_cdd54ba6_9d8d_41ed, net_func) .

typeOf(case1, nf_d4a8bef4_0a1b_41ee, udr) .

% specific background knowledge for case 2

typeOf(case2, nf_d4a8bef4_0a1b_41ee, net_func) .

typeOf(case2, nf_c6edf27a_9d8d_41ed, net_func) .

typeOf(case2, nf_d48324f2_0a19_41ee, net_func) .

typeOf(case2, nf_3c68a5c8_0a1b_41ee, net_func) .

typeOf(case2, nf_aae405d8_0a1b_41ee, ausf) .

typeOf(case2, nf_e5b4272e_0a1b_41ee, pcf) .

typeOf(case2, nf_c6edf27a_9d8d_41ed, scp) .

typeOf(case2, nf_c5e117bc_3550_41ee, nssf) .

typeOf(case2, nf_e5b4272e_0a1b_41ee, net_func) .

typeOf(case2, nf_c5e117bc_3550_41ee, net_func) .

typeOf(case2, nf_d48324f2_0a19_41ee, udm) .

typeOf(case2, nf_3c68a5c8_0a1b_41ee, smf) .

typeOf(case2, nf_aae405d8_0a1b_41ee, net_func) .

typeOf(case2, nf_cdd54ba6_9d8d_41ed, net_func) .

typeOf(case2, nf_d4a8bef4_0a1b_41ee, udr) .
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% positive and negative learning examples for case 1

positive(faulty(case1, nssf)). % the true fault of case 1

is nf3

negative(faulty(case1, smf)). % the generated negative

fault of case 1

negative(faulty(case1, pcf)).

negative(faulty(case1, ausf)).

% positive and negative learning examples for case 2

positive(faulty(case2, amf)).

negative(faulty(case2, udr)).

negative(faulty(case2, udm)).

negative(faulty(case2, nssf)).

Before we can run the ILP task, some background knowledge of the problem

should be provided to the ILP engine. Here is the background knowledge we used.

It just declares all the available network functions, and one inference rule saying that

at some time is there is a triple (Inst; typeOf; NF) then NF is the network function used

at Case.

Listing A.7: background knowledge for the fault localisation inductive logic programming

nf(amf).

nf(smf).

nf(udm).

nf(pcf).

nf(udr).

nf(ausf).

nf(nssf).

nf(scp).

inuse_nf(Case, NF) :- nf(NF), typeOf(Case, Inst, NF).

Feeding this background knowledge and learning examples to an ILP engine, the

following inference rule will be induced:

Listing A.8: inference rules

faulty(A,B) :- \+inuse_nf(A,B), nf(B).
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meaning that if B is a network function and it is not in use in case A, then it is the

faulty component of case A. Once we induce these inference rules, we can use them

to infer the faulty component of new cases by means of Logic Programming. Below is

the example results of the new case case999

Figure A.1: An example of using the induced inference rule to infer the faulty component

in a new case by Logic Programming.
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Marc-Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam

Trischler, and Will Hamilton. Learning dynamic belief graphs to generalize

on text-based games. Advances in Neural Information Processing Systems,

33:3045–3057, 2020.

[6] Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, and David Son-

tag. Large language models are few-shot clinical information extractors. In

Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1998–2022, 2022.
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