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Abstract

Although specialized hardware promises orders of magnitude performance gains, their

uptake has been limited by how challenging it is to program them. Hardware accelerators

present challenges programmers are not used to, exposing details of the hardware that

are often hidden and requiring new programming styles to use them effectively.

Existing programming models often involve learning complex and hardware-specific

APIs, using Domain Specific Languages (DSLs), or programming in customized as-

sembly languages. These programming models for hardware accelerators present a

significant challenge to uptake: a steep, unforgiving, and untransferable learning curve.

However, programming hardware accelerators using traditional programming models

presents a challenge: mapping code not written with hardware accelerators in mind to

accelerators with restricted behaviour.

This thesis presents these challenges in the context of the acceleration equation, and

it presents solutions to it in three different contexts: for regular expression accelerators,

for API-programmable accelerators (with Fourier Transforms as a key case-study) and

for heterogeneous coarse-grained reconfigurable arrays (CGRAs). This thesis shows

that automatically morphing software written in traditional manners to fit hardware

accelerators is possible with no programmer effort and that huge potential speedups are

available.
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Lay Summary

Computer hardware has changed dramatically over the past 15 years, and the software

we use to program this hardware has not kept pace. With changing hardware, computer

programmers spend increasing amounts of time and energy programming complex

computer hardware to keep their software running at the highest performance possible.

However, this workload is becoming unsustainable, with each hardware company

providing different ways to program their hardware.

This thesis introduces a mathematical framework to address this problem, called

the accelerator equation, and solves it in three unique cases. The accelerator equation

generalizes the idea that hardware designers and programmers have different ideas

about what their programs do, and provides a practical way to make sure that advanced

hardware can do what programmers want it to, without requiring the hours and hours of

research and understanding typically required for this advanced hardware.

This thesis looks at three key case studies. It first looks at hardware designed for

pattern-matching in text, solving the accelerator equation in this case. It subsequently

looks at solutions to the accelerator equation for Fourier Transforms, a mathematical

construct frequently used in signal processing. Finally, it sets the groundwork to

apply the accelerator equation for an entire class of advanced hardware called CGRAs

(Coarse-Grained Reconfigurable Accelerators).

In summary, this thesis sets out to address the challenges that modern hardware poses

to programmers. It outlines the difference in how hardware designers and software

programmers think about and express problems as a challenge to be overcome. It

introduces a mathematical framework for addressing this problem and demonstrates

that this framework is practical with a number of case studies.

1





Chapter 1

Introduction

Running software on hardware accelerators promises more performance than genera-

tions of software optimization [184]. With increased transistor densities [29] and more

challenges powering these transistors [171], hardware accelerators are set to become

even more prominent [474].

However, programming these accelerators is challenging [143]. Programs often

require manual modification to run on hardware accelerators [511], which defeats one

of the biggest benefits of compilers: portability. Existing approaches to hardware accel-

erator support largely focus on support from DSLs [10, 402] or pattern-matching [189].

However, DSL approaches do not easily support all kinds of accelerators, and pattern-

matching is very brittle [127]. Figure 1.1 shows where current techniques fall short —

a gap this thesis fills.

1.1 Limits of Existing Strategies

Traditional compilation techniques (Section 3.3) are a common solution; but for ac-

celerators whose behaviour is not reprogrammable in a fine-grained manner, these are

challenging to develop [190] and frequently fail [530] for these types of hardware

accelerator. Lifting strategies [249, 341] are popular, but are again limited when code

and accelerator do not overlap in behaviour exactly.

The lack of an easy, portable and automated way of programming hardware ac-

celerators has restricted their development and potential. The recent explosion of

machine-learning accelerators is testament to this. Tensor programs, written using

libraries such as Torch can be compiled to hardware accelerators using traditional

compilation strategies that break programs into smaller, more suitable-for-hardware

3
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Figure 1.1: The space of accelerators (left) and compiler strategies (right) categorized

by the number of steps in each step (Operational Complexity) and how difficult is to

communicate with the accelerator (Input/Output Complexity). The smallest step and

simplest to communicate with instructions are supported by traditional compilation

strategies. Compiler support for big-step accelerators that perform a large number of

operations but present simple interfaces is limited, despite their potential to provide

speedup. This thesis addresses the lack of compiler techniques in this space.

components. However, for legacy programs, and for technologies without these stan-

dardised programming interfaces designing hardware accelerators leaves a key usability

question.

1.2 Effects of Lack of Compiler Strategies

This has effects we see in practice. Thousands of papers [387, 408, 409] and entire

conferences are dedicated to the development of specialized hardware accelerators, yet

the vast majority of these are not further developed — in no small part due to concerns

that they will not be used enough to be viable. A key reason for this concern is that

hardware accelerators and software behaviour often do not match exactly, creating a

situation where the volume of software a hardware accelerator can accelerate is not

well-understood, and defeating existing compilation strategies [530].
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1.3 Contributions

This thesis introduces a number of techniques to enable easy use of hardware accel-

erators. This thesis first introduces the acceleration equation (Chapter 2.1), a set of

equations that, once solved, enable wider accelerator use. Solutions to these equations

capture the diversity of solutions that programmers come up with when presented with

the flexibility of programming languages, while using the available hardware acceler-

ators to present the flexibility of high-level software and performance of specialized

hardware.

We look at three key case studies of these equations, looking at regular expression

accelerators in Chapter 4, FFT accelerators in Chapter 5 and domain-specific CGRAs

in Chapter 6.

This thesis makes the following key contributions:

• It introduces the accelerator equation (Chapter 2) that can be solved to enable the

use of hardware accelerators.

• It introduces three toolchains (Chapters 4, 5, 6) that demonstrate the practical

applicability of these equations in enabling the use of hardware accelerators.

Aside from these key contributions, this thesis introduces key benchmark suites

and a novel manner of benchmarking these changes, focused on compiler performance

across a wide range of kernels rather than finely tuning the compiler for a few kernels.

To explore FFTs, we introduce a benchmark suite of 24 different FFT implementations:

critical in enabling evaluations of our compiler. Similarly, to evaluate FlexC, we

introduce a benchmark suite of more than 2,000 loops to enable a broad analysis of our

compiler. These benchmark suites are released as part of this thesis.

The challenges that this dissertation addresses open up a new direction of compilers

for hardware accelerators: using compiler technology to make the next generation of

fast hardware as flexible as the programmers require.





Chapter 2

The Acceleration Equation

Hardware accelerators and application behaviour often do not exactly line up. When

hardware accelerators are designed with a single application in mind, it is easy to ensure

that the behaviours are identical: but when accelerators are pre-designed, changes in the

computation requirements result in accelerators that no longer match the programmer’s

code exactly. Figure 2.1 shows an example of this: a specialized bit of programmer code

for reverse-sorting byte lists cannot be directly replaced with a more generic sorting

accelerator.

This chapter will introduce two concepts central to understanding the problem: a the-

oretical framework (the acceleration equation) and an overview of existing programming

models.

2.1 The Acceleration Equation Definition

To capture differences between accelerator behaviour and code behaviour in a construc-

tive manner, we introduce the accelerator equation:

U = g◦A◦h (2.1)

In this equation, A is a function representing the accelerator, U is the function

performed by the user code, and g and h are the functions that enable solutions to this

reverse_sort_bytes(...)

unpack_bytes_to_ints(...)

sort_accelerator(...)

pack_ints_to_bytes(...)

reverse_list(...)

Figure 2.1: Example solution to the accelerator equation: a sorting accelerator for

integers used to reverse sort bytes.

7
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h

g

A

U

Figure 2.2: Supporting user code (blue line) that performs a different function to an

accelerator, A (red line) using the accelerator equation. The functions g and h are used

to wrap around the accelerator function, making it possible to go between the same two

points that the original function U computed by using the fast accelerated function A

instead. In this diagram, the green circles are ordered sets of values, and each function

is an ordered mapping between those sets, mapping the nth element to each other. In

general, to solve the acceleration equation, we are given some user code U and some

accelerator function A and need to find the f and g.

equation. Solutions to this equation are constructive because we can simply run g and h,

enabling the use of the hardware accelerator to run the function U . Figure 2.2 shows an

example, with g and h represented by dashed lines.

To find a solution to the accelerator equation, given some user code U and some

accelerator function A, we must find the functions f and g so that equation 2.1 holds.

Finding a solution to this equation enables the replacement of user code with faster

code that relies on an accelerator instead.
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Figure 2.3: Speedup considering the overhead of g and h against the original software

implementation. Each line represents an accelerator where g and h have different

relative performance to user code. We can see that even if g and h take 50% as much

time as the entire original program, if the accelerator provides 5x speedup, we can pass

on a ˜1.5x speedup to the programmer.

2.1.1 Overheads of the Acceleration Equation

These functions, f and g, add overheads to running accelerators. However, provided

that the accelerator provides significant speedup, these approaches can still pass on

large speedups to programmers. Figure 2.3 shows the speedups available over user code.

Each line represents an accelerator with different relative performance to user code. We

can see that even if g and h take 50% as much time as the entire original program, if the

accelerator provides 5x speedup, we can pass on a ˜1.5x speedup to the programmer.

This indicates that we can still find significant speedup for the programmer, even if the

functions required to adapt the accelerator appropriately are long and complex.

2.2 Conclusion

This chapter introduces the acceleration equation, an equation generalizing the chal-

lenges of compiling for specialized hardware accelerators. We extend this equation to

the reconfigurable accelerator equation, which allows us to capture the challenges of

compiling to reconfigurable hardware accelerators. The rest of this thesis will explore

solutions to these accelerator equations.





Chapter 3

Related Work

This chapter covers the related work to this thesis. In Section 3.2, we cover a range of

hardware accelerators, with particular focuses on the types of accelerators used as case

studies in this thesis. In Section 3.3, we cover the existing compilation techniques used

for these hardware accelerators, along with approaches that are further developed in

this thesis.

3.1 More Moore

Despite being in an era of heterogeneous hardware [217], the levels of dark silicon

promised by decade-old techniques [170, 250, 474] have not emerged. Considering only

power consumption would predict 80% dark silicon at existing process nodes [170].

However, heat dissipation is the key limiting metric here, and there are three key ways

to increase heat dissipation: increasing spacing between components, using DVFS

(Dynamic Voltage and Frequency Scaling) and running non-compute components (e.g.

memories) at lower frequencies.

These techniques clearly have their limits. For example, increasing spacing between

high-frequency components increase communication costs between these elements.

Likewise, despite DVFS becoming extremely fine-grained [196], it can lead to difficult-

to-track performance problems [280].

Online articles [353] discuss dark silicon under the term “white space” in which

interviews with semiconductor companies reveal 75% utilization targets. With these

75% utilization targets, Moyer’s interviewees seem to be filling their white space with

verification logic.

11
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3.1.1 Why More Dark Silicon is on the way

There are two key reasons why we see more dark silicon on the way. The first is the

continuation of Moore’s law, and the second is the introduction of stacked chips.

Despite frequently voiced concerns over the health of Moore’s law, at least for the

foreseeable future, semiconductor company technology road maps1 continue to predict

reducing technology feature sizes. Further, post-FinFET transistor designs are already

being discussed [426], and such technologies give rise to the possibility of continued

transistor scaling. The IRDS roadmap for 2020 [29] is simply subtitled “More Moore”,

and contains estimates for transistor density increasing using GAA (gate all-around)

transistors and 3D stacking up until 2034.

The Challenges of Manufacturing Dark Silicon Adding dark silicon makes chips

larger, which adds significant technical challenges:

1. Enabling large chips to be used within existing lithgraphy tools.

2. Solving the yield problem without vastly over-provisioning redundancy.

3. Solving packaging issues.

Fortunately for accelerators, such problems are being addressed by existing chip design-

ers [295].

3.1.2 On Accelerators without Dark Silicon

Even in a regime in which we are faced with decreasing processor fixed-function

hardware, accelerators provide a significant step forward. For example, the Analog

Devices FFTA [19] operates at half frequency of the core while still out-performing it

by a factor of five [23] enabling both power-saving and performance gains.

It seems that predictions by Esmaeilzadeh et al. [170] have not come true due to a

number of architectural techniques. However, with 3D-stacked-fabrication techniques in

the IRDS pipeline, and no specified solutions to the enhanced heat-dissipation problems

this will entail [29], it seems that dark silicon is still likely.

3.2 Hardware Accelerators

Large-scale accelerators are often designed with a particular application in mind. Many

are wrapped as “xPUs” [537], such as TPUs for tensors [246], IPUs for images [429],

HPUs for holographics [343] and EPUs for emotions [168]. Generally, these xPUs are

1https://www.tsmc.com/english/dedicatedFoundry/technology/future_rd

https://www.tsmc.com/english/dedicatedFoundry/technology/future_rd
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marketing terminology and lack publicly available details implementations — but they

do demonstrate a wide potential for hardware accelerators.

Hardware accelerators are commonplace in large companies, with Meta [299],

Google [421] and Microsoft [343] all developing their own accelerators, and hardware

companies such as Intel [352] and Xilinx [538] developing a wide variety of hardware

accelerators for tasks from machine learning to key-value stores.

These hardware accelerators exist at a variety of scales, from H.264 accelerators

that exist in large blocks, to Xilinx’s Vitis libraries that are intended to be used as small

accelerated components and reduce programming complexity [185] e.g. implementing

BLAS [541] or matrix algorithms [539]. Nvidia [375] and Intel [236] both provide image

processing accelerators. Even these large-scale image processing accelerators have the

potential to provide reusable blocks [248]. Intel [237] and Texas Instruments [235]

provide network function accelerators, and a large number of DSP companies provide

accelerator for the FFT-family of functions [15, 125].

A vast number of startups are/have recently been designing hardware accelera-

tors from regex acceleration [157, 202, 480] Blockchain [435], Cryptography [441],

video codecs [98, 99, 438–440, 443], image processing [97, 101, 137] network func-

tion offloading [201, 203, 442], networking [100, 436, 437], compression [102], query

processing [77, 204, 205], finance [451, 465], automotive industries [307] and bioinfor-

matics [151, 391] among other algorithms [58].

3.2.1 Generating Accelerators

Generating customized accelerators from source code is a common way to design an

accelerator for a particular application. Researchers have explored manually finding

accelerators [407] within the SHOC benchmark suite [144]. But the most common

approach is to profile and then extract [287, 288, 559]. Function merging [87] and

architectural optimizations [423] can be used to make the accelerators more profitable.

Conservation cores [493] take the automated approaches to the extreme, accelerating

95% of the Android system using 43,000 static instructions [197].

Pragma/OpenMP-style offload is also a popular strategy to offload high-level code

onto FPGAs [334]. Compilers such as LegUp [94] and ROCCC [496] take similar

pragma-based approaches to enabling FPGA compilation.
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3.2.2 Fixed Function Accelerators

Fixed-function accelerators tend to provide the best energy-efficiencies [300], and have

been explored for checksums [61, 479], network stacks [283], sorting [399], database

query acceleration [210, 247, 533] and regular expressions [194, 535], among many

other types of accelerator. Many of the explored academic accelerators do not have the

profitability constraints required by real hardware accelerators, making them interesting

compilation targets, but practially infeasible [264].

3.2.3 Reconfigurable Accelerators

Reconfigurable accelerators differ from programmable accelerators because there is a

single reconfiguration phase that happens before the accelerator starts running. However,

there are a number of examples of coarse-grained reconfigurable accelerators, most

notably Plasticine [397]. There are many such academic examples of coarse-grained

reconfigure architectures [32,338, 339, 406, 452,463, 473, 526] Reconfigurable cores for

certain tasks have also been explored. LAC [388] is a linear-algebra core designed to

support linear-algebra implementations.

Xilinx are moving towards this domain with their Adaptive Compute Acceleration

Platform (ACAP) [540]. A number of tightly coupled reconfigurable accelerators have

been available for some time. Processors such as Tensilica’s Xtensa [30], and Arm’s

customizable processors [119] offer such acceleration. Compiler work to enable use of

these (re)configuable processors typically relies on profiling [123], similar to the FPGA

work explored earlier.

FPGAs in the Cloud FPGAs are the most common type of reconfigurable ac-

celerator, and are common in both the Azure [104] and AWS [49] clouds. Research

surrounding these accelerators focuses on the interconnects [335], access methods [556]

and costs [567] among the development of many FPGA-specific accelerators discussed

above.

3.2.4 CGRAs

Research on CGRAs has been extensive [314, 329]. Older CGRAs [198, 215, 339] tend

to provide a homogeneous grid of PEs (Processing Elements) with a programmable

interconnect. However, the design-space of CGRAs is immense, including heteroge-

neous on-chip networks [35, 255, 325, 519, 566], decouplings of memory and com-



3.2. Hardware Accelerators 15

pute [516, 520], unifying memories [141], and various techniques to specialize PEs [55,

90, 192, 340, 383, 455, 523, 565]. To handle these proposals, toolchains have been

developed to enable the development of CGRAs [116, 207, 309, 395, 444, 467, 468, 521]

and to aid design decisions [66, 158, 515], meaning it is relatively easy to design and

build a domain-specific CGRA.

Domain-Specific CGRAs Domain-specific CGRAs have been designed for a

wide range of applications including neural networks [22, 56, 188, 298], scientific

kernels [90, 108, 152, 164, 398], approximate computing [39, 508] and streaming appli-

cations [306]. Domain-specific CGRAs have also been explored for stencil computa-

tions [481], HPC [325], signal processing [313] and multimedia [337, 364, 551].

Industrial CGRAs Xilinx’s ACAP provides a CGRA-like model of computa-

tion [542] and Xilinx have developed an MLIR-based toolchain for this engine [543].

Wave Computing [368] develop a very high frequency CGRA using a clustered ap-

proach. SambaNova Systems have designed a high-performance CGRA [22] targeting

ML-workloads. Samsung have designed the SLP-URP [265] for low-power medical

use-cases. Recore Systems have developed a low power CGRA designed to extend

battery life of embedded systems [219]. Beyond these existing industrial CGRAs,

various large-scale research projects have been funded with the intent of producing real

CGRA hardware [195, 378].

3.2.5 Regular Expression Accelerators

We see a number of accelerators for regular expressions (or, more generally, Automata).

Several commercial IP models exist, such as the accelerators Grovf [202] and Titan

IC [480] (now purchased by Mellanox). Micron also manufacture an automata processor

(AP) [157]. There also exist a large number of academic accelerators designed to be run

as ASICs, such as HARE [194], CICERO [384], or HAWK [470] which is not designed

for high speed regex matching, but does support it. A number of ASIC accelerators are

designed to couple closely with DRAM or SRAM banks [53, 175, 282, 414].

There are a range of academic works focusing on FPGA-based automata accelera-

tors [344,382,432,550,551]. REAPR [535] is a key player in this space, having spawned

various adaptations to provide more configurability [83], better output reporting [498],

more complete ecosystem [403], extended debugging capabilities [96] and more effi-

cient compilation strategies [529]. LAP [534] presents an ADFA, a model more suited

to small buffer sizes that can be made fast in hardware. Karakchi et al. [254] implement
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an FPGA overlay — a topic that also generates interest in P4-enabled devices [240].

Acceleration on CPUs is also a common topic, with application-targeted accelera-

tors for text matching introduced in Intel’s Nehalem architecture [479]. Intel’s Hyper-

scan [507] is a CPU-based approach, capable of parallelising to achieve 100Gbps [564]

given sufficient power and CPU resources. Nourian et al. [370] compare CPU-based

models to FPGA and GPU models and conclude that FPGA models are the most ef-

ficient — although we note that this comparison was completed before Hyperscan.

Veanes et al. [490] explore the use of Brozowzky derivatives to make the execution of

regular expressions more deterministic on a CPU.

As with many accelerators, a common suggestion for overcoming the memory-wall

involves in-memory computation. REACT [239] is one such proposal, using in-memory

processing to achieve 6 GB/s throughput. A number of similar proposals use CAMs to

achieve high energy efficiency [148, 230].

Reconfigurable Regular Expression Accelerators There is a variety of other work

that looks at the idea of supporting multiple regular expressions with a single accelerator.

Bo [83] looks at reprogramming the edge transition labels. Becher et al. [71] explores

the concept of generating smaller accelerators for regular expressions that filter almost

all of the data before checking the remainder on the CPU.

Our work in chapter 4 utilizes these concepts, but focuses on automating the process,

rather than relying on the user for the bulk of the work to input unintuitive automata.

Moussalli et al. [351] and Teubner et al. [476] explore overlays that are for database

applications, and Ng et al. [363] explore overlays for bioinformatics applications using

read alignment.

3.2.6 FFT Accelerators

Hundreds of research implementations [73, 187] and commercial implementations [3,

13, 14, 16, 17] of FFT accelerators exist intended both as stand-alone accelerators, and

to be integrated in larger accelerators [482]. Work on supporting FFT acceleration

exists for FPGAs [348], GPUs [318] and specialized architectures from linear algebra

cores [389] to CGRAs [222,319], machine-learning accelerators [162,301,450], optical

computers [290] and sonic computers [386].

FFT accelerator performance is largely memory-bandwidth limited [160, 477], a

problem exacerbated by access patterns that make poor use of DRAM buffers [40, 75].

Much work has been focused on reducing memory demands. Computing twiddle
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factors on-chip has been explored [111, 113, 212] and applied in industry [336]. In-

memory FFT accelerators have also been proposed to reduce this communication

overhead [122, 302, 553] along with 3D-stacked memory accelerators [206].

3.2.7 Data-Structure Accelerators

Data-structure accelerators focus largely on data-structures that:

• Have high operational complexities (fairly uncommon)

• Require high throughputs

• Require huge volumes of memory

Accelerators have been designed for hash tables [296, 549], queues [274] and B-

trees [289]. Research into distributed hash tables [80,231] shows that these accelerators

provide speedups even over the network.

3.2.8 Machine Learning Accelerators

A huge number of machine learning accelerators exist. FPGA-based accelerators

frequently rely on reshaping the hardware to fit the FPGA [154, 503]. The latest

generation of these accelerators tend to support sparse matrix multiplicaiton [377,

489], and they are typically programmed using APIs [226], compilation frameworks

from generic APIs [112] and more generally, can be programmed using polyhedral

techniques [76], or by learning programs to run on them [271].

ASICs ASICs provide almost 100x more performance than CPUs in the context of

ML [85, 374] and so have been a large research focus. Beyond generic ML accelera-

tors [312], ASIC-based ML accelerators exist for important applications [322, 475] and

numerous tools exist to aid the design of these networks [31, 404, 492, 560].

In-Memory ML Accelerators Since deep learning is often memory-bound [117],

a huge number of PIM (Processing-in-memory) accelerators have been proposed for

GANs [328], GCNs [548], sparse matrix multiplications [536] and hyperdimensional

neural networks [163]. Architectural techniques using analog operations [244] and

overcoming granularity/performance tradeoffs have also been explored [563].

3.2.9 In-Memory Accelerators

More generally, in-memory accelerators exist using DRAM operations and embedded

logic [50, 51, 103] and tightly coupled general purpose processors [147, 234]. Samsung
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Delegate

Task

CPU

Accelerator

Figure 3.1: An offloading model between a CPU and an accelerator. In this example,

there is only one accelerator, and there is nothing else running on the CPU, but with

suitable parallelization (e.g. as explored in POAS [330]), multiple accelerators, and

longer-running CPU tasks can be supported.

have developed PIM accelerators [267], and design-tools for power estimation have

been developed [167].

Algorithm-Specific Accelerators Beyond these generic architectures, domain-

specific PIM architectures have been developed for sorting [570], bioinformatics [120],

NTT algorithms [302]. Sky-Sorter [570] introduces a PIM architecture designed for

sorting.

3.2.10 Compilers for PIM Accelerators

PIM accelerators can be programmed with compiler directives [179] or traditional in-

structions [419]. Work on exploiting these hardware accelerators has explored the chal-

lenges of detecting regions where speedups are likely [153], compilation of DSLs [433],

instruction issue costs [38] and instruction selection [37].

3.3 Accelerator Programming Models

To understand how we can automate compilation to hardware accelerators, we should

understand how we can interact with these accelerators. Here we explore a model in

which a chunk of the program is offloaded to, and run on, an accelerator as shown

in Figure 3.1. Below we cover the three main categories of programming models for

accelerators. Cãscaval et al. [95] discuss two of these, but the development of DSL-

programmed accelerators has changed the options for accelerator programming. There

are commonalities between these types of accelerators; the simplest DSLs are similar to

APIs, and the most complex DSLs are close to C-level programmability.
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3.3.1 API-Programmable Accelerators

API-programmable accelerators are good for algorithm-scale applications, where the

task to accelerate forms a task that can be easily documented and easily represented

using a function name.

They key benefit of an API-programmable accelerator is that it abstracts from

the actual implementation — which can then be in software, hardware, or over the

network [360].

3.3.2 DSL-Programmable Accelerators

DSL-programmable accelerators tend to be far more flexible. Particularly prominent ac-

celerators that can be programmed with DSLs include Barefoot’s Tofino switches [] (pro-

grammed using P4), DSPs (which can be programmed with DSLs such as Halide [402])

and GPUs (programmed using DSLs such as CUDA or OpenCL).

These DSLs serve different purposes, overcoming various issues with traditional

programming languages, which are designed for CPUs:

• Explicit parallelism (e.g. CUDA/OpenCL), used to overcome challenges with

auto-parallelization in languages designed for CPUs.

• Explicit structure (e.g. P4), used to overcome challenges with fitting general

high-level code to structured pipelines.

• Separation of algorithm and scheduling decisions (e.g. Halide), used to overcome

challenges of compiling highly optimized code to new architectures.

DSLs are common choices for more flexible accelerators because they can overcome

the relevant limitations of high-level programming languages for accelerators. These

DSLs tend to allow for a wide range of algorithms to be implemented on accelerators:

critically, programmers can implement algorithms that accelerator designers may not

have considered to be relevant when they designed the accelerators.

However, the learning curve for these kinds of accelerators is high. DSLs must be

integrated into existing systems (as they often do not support the entire program that

must be written); moreover, they require that programmers must learn entire languages,

which may not be useful for the next-generation of accelerators. Further, these DSLs

require significantly more work on the side of the company designing the hardware

accelerator, requiring the development of entire compiler toolchains and significantly

complex abstractions over hardware.
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3.3.3 High-Level Programming Languages

Most high-level programming languages have been designed for single- or multi-

core CPUs. As a result, they often encounter limitations when compiled to hardware

accelerators, either in extracting parallelism or matching the structure of the hardware

available appropriately. Further, in a similar manner to DSLs, code written immaculately

for one kind of accelerator may not work on another kind of accelerator (e.g., we can

use intrinsics to make a loop fast on AVX-512, but these make it more challenging to

compile this code to run on a GPU).

Despite these limitations — which constitute a significant limit on the potential of

accelerators using this programming method, cf. [397] and [339] — the potential for

high-level language programmable accelerators is huge. They provide a low barrier

to entry, as existing programming languages can simply be recompiled to target new

accelerators.

Largely — but not exclusively — accelerators supporting C-language reprogramma-

bility support the widest range of programs.

Compiling for hardware accelerators requires the development of several key tech-

niques. First, there are identification techniques, that identify whether regions of code

should be offloaded, and second, there are compilation techniques, that take these

regions and offload them appropriately.

Any truly automated compiler will do both of these steps. Either is optional: pragmas

can be used to overcome lack of identification techniques, and APIs can be used to

mask a lack of compiler techniques. The techniques developed in this thesis automate

both of these tasks, but this chapter covers existing researching into identification and

compilation techniques for hardware accelerators.

3.4 Compiling to Hardware Accelerators

As discussed above, there are three key models for compiling to hardware accelerators:

• Compiling high-level software

• Compiling a DSL

• Compiling with APIs

Each of these techniques applies well to different kinds of accelerator, so all are relevant,

and all require the development of different techniques for automation.

A fundamental challenge of hardware accelerators is that many they are big-step:
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they perform a big step of computation in one action, making them difficult to compile

to from traditional programming languages, which are designed for CPUs, small-step

architectures.

3.4.1 Compiling to API Programmable Accelerators

A large number of accelerators are API programmable. These accelerators tend to

compute full algorithms on each call, which provides a great deal of architectural

flexibility. However, these accelerators can see limited use if the algorithms provided

are not the ones the programmer is interested in using. Usability of APIs has been

an important research topic. Work on effective API design and debug methodologies

has been extensive [177, 569], but does not address the question of automation that

compilers need to tackle.

Automatically programming API-programmable accelerators has been an active

research topic. Huang et al. [227] explore replacing APIs with formal specifications,

which allows for EGraphs-based rewriting for these targets. Exocompilation [232] ex-

plores externalizing optimization techniques from an API using a Halide-like scheduling

language.

Constraint-based approaches [81, 146, 191] take a formal description of the API,

in the form of constraints on the code. However, writing these constraints is challeng-

ing [190] and constraints are brittle, rarely scaling beyond the implementation they were

designed for [146]. For accelerators that accelerate polyhedral problems, polyhedral

matching approaches can be used to address some of the challenges of the matching

problem [76, 469].

Compiling for API programmable accelerators has been explored using equality

saturation [228] and program synthesis [530]. Equality saturation has also been used to

optimize tensor programs for tensor accelerators [447].

3.4.2 Compiling to DSL-Based Accelerators

DSLs can be split into two categories: architecture-focused DSLs and problem-focused

DSLs. Architecture-focused DSLs are designed to overcome the challenges of compil-

ing high-level code to particular hardware accelerators, while problem-focused DSLs

simplify the programmer’s job. We will focus almost entirely on architecture-focused

DSLs, but there are countless problem-focused DSLs (e.g. HTML, XML) that are in

popular use.
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Architecture-focused DSLs are largely designed around extracting extra paral-

lelism [34, 68, 124, 166, 169, 273] or removing programming language features that

make compilation to particular targets challenging [326,346,401,424]. DSLs have been

designed for a vast range of targets, including DSPs [401], linear algebra [68, 166], sim-

ulations [74, 124], FPGAs [2, 5, 273, 303, 326, 424, 428] cluster programming [34, 169]

and embedded programming [346, 454].

The popularity and importance of these features in DSLs has exploded beyond just

DSLs, with compiler frameworks like MLIR [293] and TVM [458] adopting similar

ideas and programming languages like Julia adopting similar programming styles [173].

3.4.3 Compiling to DSLs

The challenges of writing DSLs beg the question: can we automatically generate

DSLs? Compiler writers have been trending towards answering this question, with

compiler-frameworks like MLIR [293] bringing architecture-specific DSLs into vogue

and prompting automatic translation techniques from high-level languages to a number

of these DSLs [110, 172, 349]. Lifting into traditional DSLs has also been a fruitful

research topic. Program synthesis is a common tactic to achieve translations into DSLs:

Halide has been targeted from C [36] and x86 [341], and Smith and Albargouthi [446]

explore compilation to MapReduce accelerators. Schuts et al. [425] explore translation

between DSLs for program specification. Large-language models have also been

leveraged for this task, with BabelTower [514] enabling C to CUDA compilation.

3.4.4 Compiling to CGRAs

Research on compiling to CGRAs has been particularly extensive. Numerous authors

address compiling branches [64, 193, 257, 365, 528, 558], nested loops [256, 410, 528],

scheduling of large loops [165, 211, 275, 278, 376] and irregular memory accesses [193].

Compilation time is relevant in many fields [297,525] and has been addressed both with

faster algorithms [297] and hardware acceleration [93, 495].

CGRA scheduling can be done with a number of algorithms: binary decision

diagrams [72], the polyhedral model [310, 325], SAT solvers [345, 372] and ILP mod-

els [109,354,502,555]. Various heuristic approaches have also been explored leveraging

information from failed placements [65, 564], rewrite rules to simply routing [268],

sharing information between placement and routing phases [145] and integration of

hardware features within the compiler model [277, 547]. Machine-learning has been
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used to automate a number of these approaches [106, 252, 278, 311, 568]. Idiomatic

compilation [190] has been used to target closely-related spatial accelerators [517]. This

incredibly broad range of algorithms all focus on the task of placing operations so that

loops execute quickly, but none address the challenges introduced by domain-specific

CGRAs.

DSL Programming A number of CGRAs are tightly coupled to DSLs that can

program them. Plasticine [397]/Spatial [273] are a key example, but other DSL com-

pilers have been explored [62, 260, 316, 562]. However, achieving high-performance

DSL support is non-trivial [178] and DSLs do not solve the problem of supporting

otherwise-unsupported software. API interfaces have been used for CGRAs [319, 405],

but these make the compilation task harder.

3.4.5 Compiling to Regular Expression Accelerators

A number of previous works focus specifically on compilation of automata. Bo [83] and

Becher et al. [71] are discussed above, but they are not the only examples. Industrially,

Grovf have explored compilation of unsupported regex features to supported regex fea-

tures on their automaton accelerator, GRegex [263]. Likewise, the Automata Processor

explores post-processing in software to support PCRE features not compatible with

NFAs [157]. Liu and Torng explore the benefits of partial conversion from NFA to DFA

for hardware accelerators [308]. APmap [557] is a compiler targeting Micron’s AP

among other traditional automata accelerators, aiming at achieving efficient resource

utilization within an accelerator. A number of architectures aim to reduce reconfigura-

tion time, such as Pantarelli et al. [380], who use a similar grouping concept similar to

what we will explore in Chapter 4 to enable hardware sharing.

Several compilation-centric approaches have focused on reducing compile time for

FPGA accelerators. Generalized overlays such as NAPOLY [254] and HARE [194]

and others [130, 501] achieve this aim, but at the cost of large reductions in throughput,

increases in area, or both. Bo [82] addresses compilation time using an improved

compilation workflow, but this does not bring compilation time down to acceptable

levels for real-time applications. Similarly, Park et al. [381] introduce a partial recon-

figuration approach, but their approach is aimed at debugging applications so has a

far higher overhead (30%) and does not reduce compile time to the extend RXPSC

does, as expensive place and route steps must still be executed. More generally, full

reconfiguration approaches are often vendor-specific, require extremely high power
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utilization and largely targets reduction in reconfiguration time rather than reduction in

compilation time [497].

Previous Work on Regular Expression Compression As part of the development

of the Cache Automaton, Subrymanian et al. [457] explore prefix merging to reduce the

required space. ENREM extends this by exploring both prefix and infix sharing [220].

Impala [413] explore compression of lookup tables to enable multi-stride automata

without lookup-table blowup. As work that treats the underlying automata structure as

a black box, our approach is compatible with these approaches.

Numerous techniques exist for compressing DFAs, with D2FA [286] a particularly

prominent one. Kong et al. [276] and Becchi and Crowley [70] explore the use of

Alphabet Compression Tables to translate the input stream and reduce the number of

characters that need to be considered. More recently, Nourian et al. [370] apply the

same concept to FPGAs.

RXPSC can also be used to compress NFAs, where it achieves an approximately

50% reduction in regexes required across ANMLZoo. Our work focuses on NFAs, for

which reduction is known to be a PSPACE-complete problem [200]. Algorithms exist

that approximate this compression of individual NFAs [233], and we note that RXPSC

is compatible with these approaches.

A number of works focus on generating regular expressions, from IO examples [69],

natural language text [291] or both [304].

Approximate Regular Expressions There is also a body of work on approximate

regular expression computation. Becher et al. [71] is one such example. Ceska et al. [105]

explore approximate nondeterministic automata in the context of network intrusion

detection — they do not propagate any errors to the CPU, instead using simpler matches

in series with more complex matches to enable greater parallelism for less area. Sa-

bet et al. [412] explore a theoretical framework for examining how errors in DFA

execution propagate into DFA outputs. Grachev et al. [199] run experiments exploring

the similarity between input/output-based measurements of similarity and structural

measures of similarity between automata.

3.4.6 Compiling to FFT Accelerators

DSP optimizations [180, 262] can aid FFT performance, but do not come close to

accelerator performance [23]. DSL approaches get closer [400, 401, 454, 487], and

work to extract such DSLs from source code has been developed [36, 52, 249, 341], but
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these approaches rely on programmable small-step accelerators and do not generalize

to big-step accelerators such as the FFT accelerators we explore.

Constraint matching [81, 146, 189] provides a way of matching and extracting

interfaces from high-level code. Unfortunately, these approaches are brittle [146]

— they do not scale beyond a single implementation/accelerator pair, and constraint

patterns are extremely hard to write [128,129,190]. Rewrite-rule based compilers can be

used to target accelerators [284], but these still rely on initial matching using constraints

or similar. For affine algorithms, approaches using polyhedral analysis have also been

attempted [76, 315, 458, 469] — but these are inapplicable to non-affine or highly-

optimized implementations. Other authors focus on ensuring that the presented API

retains easy programmability [320], aiming to help programmers program accelerators

directly.

A large amount of work has been done on API migration [127, 366, 367, 369,

392],the task of migrating code using one API to use a new API. Likewise, a number

of API-recommendation tools [229, 545] have been developed, although these do

not tell the programmer how to integrate the API. Another common approach is a

backend-independent API [347, 471] allowing for migrations to happen under the

hood. Samak et al. [417, 418] approach a similar problem in the object-oriented space,

using embeddings and synthesis to generate adapter classes for drop-in replacement

classes in Java. The tools, MASK and CLASSFINDER, use symbolic execution to prove

equivalence, a technique which does not scale to FFT-sized algorithms. Work applying

program synthesis to take advantage of its syntax-independence has been applied in

software optimization [135, 393, 422].

3.4.7 Equality Saturation

Equality saturation [472,524] has been used for a range of tasks, including: optimization

and translation validation of Java bytecode and LLVM programs [453], improving

accuracy of floating point expressions [379], synthesizing structured CAD models [359],

optimizing linear algebra expressions [509], tensor graph superoptimization [552],

vectorization for digital signal processors [488], optimizing integer multiplication on

FPGAs [484], hardware datapath optimization [136].

A proposed DSLs to Accelerators (D2A) methodology [228, 447] uses equality

saturation for optimization and hardware mapping of DSLs.
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3.5 Identifying Code to Accelerate

Code identification techniques form the second part of existing accelerator compilation

techniques. Identification strategies are critical for all accelerators: either to identify

which code can fit, or which code should fit — as the lifting and extraction techniques

developed in this the as lifting and extraction techniques developed in this thesis are

often slow.

Code classification is a broad subject, often requiring holistic understanding of

wide and varied contexts [494]. There have been a large number of attempts to classify

code [79]. Classification has been done on many scales; from application-wide clas-

sifications [225, 245, 460] to basic-block-level classification [513] and for a variety of

reasons ranging from classification for the sake of classification [362] to classification

for bug detection [460]. We set out to answer the question, what existing program

classification tools apply well to classification of code for accelerators?

3.5.1 Size Matters: How big are the regions we should be classify-

ing?

The size of region of code that can be accelerated depends on the accelerator in question:

some accelerators (e.g. DSPs) can be used to accelerate whole programs, while some

accelerators (e.g. the x86 CRC32 acceleration instructions) only implement a single

step in a function. Appropriate classification techniques also differ across scales.

Program-wide Classification Program-wide classification focuses on classifying

whole-programs by microachitectural characteristics [245], or more frequently by

making performance predictions [225, 411, 460, 554]. These classifications can be used

to guide accelerator selection [510].

Function Classifiers Function classifiers are designed for numerous tasks, from

document generation [33,149] to algorithm labelling [46,47], function naming [43], code

clone detection [350,512,561,571] and as refactoring tools [238,569]. Embeddings [46],

and more recently, transformers [571] have been popular ways to classify functions.

Snippet-scale classification Snippet-scale classification has been used for code-

clone detection [242, 258, 456, 506]. More generically, idiom-detection techniques aim

to extract common programming patterns [45, 445]. Because snippets are not one fixed

size, techniques developed for snippets are often composable [241, 258]

Small-scale classification Most existing hardware accelerator works operate in this
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space: the space of a few instructions that can be easily matched. Graph-matching

techniques [357] for code extraction and variable name classification [44] techniques

apply here.

3.5.2 Broadly applicable classification techniques

To enable classification at all these scales, a number of techniques have been developed.

Clustering algorithms [361, 362], embeddings [47, 149], GNNs [305], LSTMs [466]

have been proposed, and most have, or could be, applied to regions of any size.

3.5.3 Semantic Classifiers

We are after a classifier that produces some semantic interpretation of a program. A

number of the embeddings discussed above do this by using program features in their

feature vectors [46,47,149,156,366]. In addition to code features, identifier names [373],

formal models [243, 266] and commit log messages [223] can be used to classify code

by behaviour.

Vector Classifiers Before the machine-learning revolution, a number of techniques

based on statistics were developed for programs [241] and executables [464]. Classifiers

using “bag-of-operations”, where features are reordered but structure is omitted address

a similar problem [258, 415]. These vectors have simple mathematical properties,

which makes them useful for comparisons across gigantic code-bases [416]. Program

embeddings such as ProGraML [138] also achieve high success rates on code clone

detection.

Functional Equivalence-Based Classifiers Functional equivalence is the idea that

functions are equivalent if they behave the same. EqMiner [242] explores functional

equivalence between different code snippets. Heuristics such as function names [461]

can be used to increase the scalability of this approach, which has been applied to

code-clone detection [176, 333].

3.5.4 Limitations of Classification Techniques

Existing classification techniques can be applied directly to accelerator program-

ming [483], but do have several key limitations. Primarily, they do not specify how

accelerator programming should be done, which is the hole that this thesis addresses.

Each individual aspect of classification has limits: neither lexical similarity [115] nor
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structural similarity [221, 500] are sufficient on their own, and functional similarity has

challenges scaling, both in number of problems [261] and due to I/O differences [150].

Hybrid approaches [118] have been shown to be effective at overcoming some of these

limitations — but there are still limitations to what similarity of code even means [251],

and serious limitations to existing datasets [281].

3.5.5 Existing Datasets

All the learned measures of similarity require datasets. There are relatively few labelled

datasets available in practice, with BigCloneBench [462] and OJClone [350] the two

frequently used datasets — both from coding websites/courses. For unsupervised

models (e.g. [238, 259]), large datasets such as Java’s 50K-C [332], Anghabench

(C) [139] or Exebench (C, with I/O exmaples) [57] can be used.

Multilingual datasets like CodeScope [546] also exist.

3.5.6 Applications for Hardware Accelerators

Vector-embedding techniques such as code2vec [47] can be used to identify and label

algorithms in code. There are numerous techniques that use larger, code-clone specific

datasets to achieve quantifiable results. Embeddings such as ProGraML [138] achieve

upwards of 95% accuracy in clone detection, and a number of other machine-learning

approaches using static information exist [89,174,186,350,373,512,518,561]. Dynamic

runtime information can also be used for this task [504] and numerous approaches

developed without machine learning exist [241, 243, 266, 416]. API-recommendation

tools [216, 229] can also be used for algorithm identification. Finally, NLP has been

applied to code comments to identify the algorithm [270]. Algorithmic mismatch has

been explored on a number of dimensions in relation to AI accelerators [491], and with

relation to different FFT API calls [471]. Identification tools such as those developed

by Uhrie [483] are capable of achieving high-accuracy on the kernel matching tasks

required for binding.

3.6 Summary

This section has discussed the research surrounding code classification and identification

technologies, which form a critical part in enabling compilation to hardware accelerators.

We will discuss more direct ways to apply these techniques in the next section.
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Regular Expression Accelerators

Regular expressions (regexes) play a key role in a wide range of systems including

network intrusion detection. FPGA accelerators can provide power savings over CPUs

by exploiting MISD (Multiple Instruction, Single Data) parallelism inherent in regex

processing. However, FPGA solutions are brittle, requiring hours to reprogram when

rulesets change, while real-world security threats evolve rapidly.

We present RXPSC (Regular eXPression Structural Compiler), a compiler designed

to compile new regexes to existing regex accelerators. We use input-stream translation

to enable fixed FPGA accelerators to accelerate new patterns with minimal overhead

and little update delay. Compared to a solution where new regexes run on a CPU,

RXPSC reduces CPU load by more than a factor of ten for 84% of unseen regexes in

ANMLZoo benchmarks.

4.1 Introduction

Regex processing is critical in a wide range of fields, from genome processing to

network intrusion detection [499]. This range of applications, and the applicability of

the regular expression computational model to a MISD (multiple instruction, single

data) processor model, has driven the development of a number of hardware accelerators.

MISD tasks are well-suited to acceleration, as they fit traditional models of parallelism

poorly (as processors must be capable of executing multiple instructions simultaneously)

and have relatively low data-transfer overheads. IP companies such as Grovf [202]

currently offer automata accelerators, and Micron offers a physical automata processing

board [157]. FPGAs are also able to take advantage of the parallelism available in

regex processors [403], offering an alternative to high ASIC design costs, latencies and

29
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low design utilization [371]. In particular, the network intrusion detection setting has

seen significant support for reconfigurable regex acceleration, from P4 programmable

architectures [240] to FPGA-based accelerators [105]. However, FPGA-based automata

accelerators face problems with the dynamic nature of network intrusion detection

rulesets. As Xu et al. [544] state, “FPGAs do not support fast dynamic updates, so

are not applicable in network security applications where signature rules are altered

frequently”.

Existing work on regex update times focuses either on better utilizing FPGA

toolchains [82] which still leaves pattern update times orders of magnitude too long,

or on introducing architectures that make reconfigurability easier [83, 254]. Of these

architectures, generalized FPGA overlays such as NAPOLY [254] reduce compile time

drastically, but have far less throughput and capacity than single-level reconfigurable

designs [403]. There have been attempts at fast reprogrammability [83] but they lack

compiler support, and only support regex replacement rather than regex addition.

We present a methodology for supporting acceleration of new regexes on existing

accelerators using the acceleration equation introduced in chapter 2. Given some

regular expression A, and some new regular expression U , we generate g a stateless

translator (Section 4.3) and h, a post-acceleration check (Section 4.4.2.2) that when

combined result in U = g ◦A ◦ h. We provide a compiler, RXPSC which supports

dynamically adding regexes. Our methodology is independent of the implementation

of the underlying accelerator, and allows the new and old accelerator to coexist with

negligible latency and no throughput penalty. We compare to an existing automatic

compilation technique that can be applied to this problem, prefix merging, as discussed

by Wadden et al. [499] and show that prefix merging is limited by its requirements for

complete equality between prefixes, an assumption that often does not hold.

In our methodology, regexes are efficiently translated to each other using stateless

translators, a hardware feature that converts the input-stream character-by-character to a

new input-stream and pass the new input stream into an existing accelerator. Compared

to a hybrid solution where new regexes are run on the CPU, this translation can reduce

the number of bytes that must be checked on the CPU by more than a factor of ten in

84% of cases across ANMLZoo [499]. Stateless translation allows regexes to share

underlying accelerators regardless of their implementation and provides easy scalability

for higher performance. Our work exploits underutilized FPGA resources in use cases

where not all regexes must be run over every input, for example anti-virus programs

with different rules for different file types, protein-search operations with different
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proteins or network intrusion detection systems where different rules apply to different

protocols/ports. We use the accelerators that would not otherwise be in use to accelerate

new patterns. Given a set of existing accelerators of the same family, RXPSC finds

accelerators for 97% of ANMLZoo patterns among the regex family benchmarks, Brill,

ClamAV, Dotstar, PowerEN, Protomata and Snort. We examine the network intrusion

detection usecase in more detail, where RXPSC finds accelerators for 96% of patterns

in the registered Snort ruleset.

We make the following contributions:

• A model for accelerator re-use that is scalable and independent of the underlying

accelerator implementation.

• RXPSC, a compiler for finding structural similarities between regexes and gener-

ating stateless translators.

Our model is capable of reducing the CPU load of unseen accelerators by more than a

factor of ten in 84% of cases across the ANMLZoo benchmark suite.

4.1.1 Connection to the Accelerator Equation

This chapter solves the accelerator equation for regex accelerators. These accelerators

run some function A that computes a regex, and we have some user code U that

computes a different regex. As this chapter will cover, we solve the accelerator equation,

generating a stateless translator that is executed for function g and a check function that

is executed for function h.

4.2 Background

Regular expressions (regexes) are matching rules used in numerous domains, from

network intrusion detection (indicating malicious packets based on text matches) to

bioinformatics (indicating genome sequences).

Regexes include character ranges ([a-z]), optional substrings (a?) and repeated

substrings ((ab)*). As an example, the regex ab* matches the strings a, ab, abb,

.... Regex processing engines provide various syntax to simplify the writing process.

In this chapter, we will use the + notation, which matches one or more of the preceeding

regex, and the [abc] notation, which matches any of the characters in the brackets. The

notation [ˆabc] is used to match any character except a, b or c. Finally, regex engines

often provide character classes, such as \s which matches all white space characters.
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PASS\s*\n PASS\s[ˆ\n]*%[ˆ\n]*% PASS\s[ˆ\n]50

Table 4.1: Three prefix mergable patterns from the Snort ruleset. Syntax is explained in

Section 4.2.

Some examples of regexes from the Snort network intrusion detection ruleset are shown

in Table 4.1.

Regexes are usually implemented using either Deterministic Finite Automata (DFAs)

or Non-deterministic Finite Automata (NFAs). Grapefruit [403] implements regexes

using NFAs, which take advantage of the parallelism available on an FPGA.

Regexes are useful in numerous contexts, as they provide a high-level portable

description that can be used across different execution contexts [54]. Although regexes

are frequently used as one-off string matching, for example for input validation [431],

there are numerous applications where large sets of regular expressions must be executed

over the same inputs, for example Snort [478], a network intrusion detection ruleset,

where rules are written in a DSL specifying a number of parameters often including

a regex. For other applications such as NLP tag matching, the rules are written to

find common sequences of word classes. These approaches result in large rulesets,

all of which must be accelerated at the same time, presenting a large MISD (multiple

instruction single data) problem that FPGAs accelerate effectively. In this programming

model, it is difficult to add new expressions to an FPGA accelerator as FPGA compile

times are excessively long. RXPSC is evaluated on this style of regular expression

application, but there is no barrier to using RXPSC to accelerate the bespoke pattern

matching regexes that regularly appear in high-level code, which would enable these

patterns to use fixed regex hardware accelerators.

4.2.1 Regular Expression Accelerator Architectures

FPGA accelerators are designed to take advantage of the MISD model that regular

expression modelling presents. This makes them excellent offload opportunities as the

size of the input data does not increase with the number of regular expressions: there

is one stream of input data (single data) and each regular expression is run over that

stream. Architectures typically convert regular expressions to non-deterministic finite

automata (NFAs) for execution. In a non-deterministic finite automaton, multiple states

may be active at any one point in time. This fits the capabilities of FPGAs very well as

many active states may exist on-chip at the same time, taking advantage of the inherent
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parallelism. In CPU models, keeping track of multiple active states at the same time is

much more difficult. By comparison to CPUs and GPUs, FPGAs provide a much better

performance-per-watt [370].

4.2.2 Why Use Accelerators?

Since CPUs are general purpose, they have lower power-efficiency per-watt than FPGAs

when running regexes. Further, the generality of CPUs means that they can be used

for any task, and as discussed the MISD parallelism of regexes makes them a good

offloading target. Thus, a key goal of accelerators for regexes is to reduce the workload

of the CPU, and to free it to execute other, less-acceleratable tasks.

4.2.3 Summary of Existing Architectures

Numerous FPGA acceleration strategies exist for regexes, all with different benefits.

Grapefruit [403] converts regexes to NFAs, then distributes NFA states through the

FPGA fabric. States are either activated by a centralized memory for each accelerator

that looks up which states can become active on each input character (BRAM-mode),

or by a distributed symbol check (LUT-mode). Applications with large numbers of

automata perform better in a BRAM mode, while applications with smaller numbers

of automata perform better in a LUT mode due to the challenges of wiring optimiza-

tion [83]. Impala [413] changes the structure of the underlying automata to read multiple

characters per cycle without incurring the cost of exponential lookup table blowup that

would normally come from reading multiple symbols per cycle by reducing the size

of each input symbol to be considered. Ceska et al. [105] introduce an approach for

very high throughput automata by using partial matching. These partial accelerators are

small, so can be parallelised efficiently, but still eliminate almost all text sequences. This

enables throughputs that can keep up with the demands of modern network intrusion

detection workloads. RXPSC is designed to work with all of these approaches, as it

does not rely on the implementation of the accelerator. This is a further advantage over

related work on the topic such as symbol-only-reconfiguration [82] that relies on a

particular accelerator design.
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4.2.4 Regular Expression Use Cases

Regular expressions (regexes) are used in many fields from network intrusion detection,

where rules are used to detect suspicious patterns in packets to bioinformatics, where

rules can be used to detect common genome sequences. ANMLZoo [499] is a popular

benchmark suite containing patterns for these applications. There are two categories of

application in ANMLZoo: those that are regular expression-based, and those that are

finite-automaton based. These two are representations of the same concept, but some

problems are easier to express in one framework than the other. For example, finite

automata can be used to calculate the number of mismatches between strings: it is easy

to design automata for this task, but designing regular expressions for this is much more

challenging.

This work focuses on regex-based tasks in ANMLZoo. These are summarized below

(reproduced from [499]):

Snort are regular expressions from the Snort network intrusion detection ruleset, and

often used to benchmark regular expression processing engines.

Dotstar is a synthetically-generated set of regular expressions used by Becchi et al. [70]

for their evaluation.

ClamAV is a set of regexes for identifying viruses in files.

PowerEN is a set of synthetic regexes from IBM [59].

Brill is a set of rules for part-of-speech tagging in NLP.

Protomata is a set of mixed real and synthetic protein motif signatures.

The benchmarks we use are sized to fit on FPGA accelerators, so are roughly 2,000

regexes large each. In real usecases, the number of expressions can be much larger, with

Snort’s full ruleset exceeding 30,000 rules. Similarly, applications such as representing

bioinformatics motifs can easily become enormous. In general, the techniques in this

section scale well to larger benchmark suites, since they rely on similarities that are

easier to find with larger benchmark suites. However, it is worth bearing in mind

that more development of FPGA technology, and work to select smaller parts of these

applications to be accelerated for them to be applicable as real-world applications.
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UDP Rules TCP Rules Other Protocol Rules....

Packet
Classify

Protocol

Figure 4.1: Not all rules have to be run for every byte of input data in all streams.

4.2.4.1 Groups of Regular Expressions

A recurring theme that occurs in this chapter is the idea of a “group” of regular ex-

pressions. This is a common theme across many of these tasks: not all data must be

run through every regex. For example, in Snort, rules are associated with particular

protocols, so we can devise acceleration techniques that share hardware as long as

the time required to switch between rulesets is small. An example of this is shown in

Figure 4.1.

4.3 Input Stream Translation

The model we present for translating input streams is stateless-translation. We use a

character lookup that applied to every input character. We present this model because it

is easy to implement as a lookup on FPGA, easy to parallelize for higher throughput as

there are no stateful dependencies, easy to enable or disable in a fine-grained manner

and independent of the underlying accelerator implementation.

A diagram of how this integrates into a Grapefruit [403] accelerator is shown in

Figure 4.2. Input data is streamed into the FPGA, which distributes it between multiple

regex accelerators. These report to the CPU when they match. Our translator sits

between the regex and the input, and can optionally be enabled for certain types of input.

It behaves as a lookup table, translating characters byte-by-byte. The CPU can be used

to inject new patterns on to the accelerator in milliseconds by updating the stateless

translators without a full recompilation which takes hours.
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Figure 4.2: Data is read into the accelerator, which sends match indexes to the CPU.

Translators (T) are used to change the behaviour of accelerators to enable acceleration

of new regexes. After matching, the indexes are sent to the CPU to be checked.

These functions correspond to g and h in the accelerator equation with g = T and

h = Checking on CPU.

4.3.1 Motivating Example

RXPSC is designed to allow for fast addition of new regular expressions using old

accelerators. In this section, we briefly describe how prefix merging can be used to

solve the same problem, and demonstrate where it falls apart.

4.3.1.1 Prefix Merging

Prefix merging is a well-known automata compression technique [499]. As an example,

suppose we have accelerators for the regexes abx and aby. These share a common

prefix of ab, which can be extracted at compile time and accelerated. If we add a regex,

abz, this common prefix can be used to reduce the computational load of accelerating

this third regex without recompiling the FPGA accelerator. An example architecture

supporting this is shown in Figure 4.3.

Prefix merging scales well as an acceleration technique as the number of rules

increases, as each additional rule increases the number of common prefixes. However, it

scales very poorly with rule length, as prefixes become much less likely as the length of

rules increases. In fact, as we will see below, many rules do not share common prefixes

despite sharing significant structure.
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Figure 4.3: Example showing how we can partially accelerate the expression abz using

prefix merging. Although matching just ab does not guarantee that abz was found, it

significantly reduces the workload to check for the regex abz.
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Figure 4.4: Example showing how RXPSC can be used to accelerate the expression

cd* given an accelerator for ab*.

4.3.1.2 Limits of Prefix Merging

However, prefix merging fails in many cases. Suppose we have an accelerator for

the regex ab*, and we wish to accelerate the regex cd*. Despite significant similarity

between the regexes, prefix merging fails to provide even a partial accelerator, as the

two regexes do not share a prefix. As a result, we would have to run the regex cd*

on the CPU despite is sharing a great deal of structural similarity with our existing

accelerator.

Stateless translation can generate the character lookup table shown in Figure 4.5

and the use of this table is shown in Figure 4.6. If we translate the input stream through

the stateless translation table, a match for the regex ab* means that the (pretranslation)

input stream contained the string cd*. We can see what this accelerator looks like in

figure 4.4. We will explore how our algorithm generates this translation as a running

Input Output Input Output Input Output

c a d b * x

Figure 4.5: A stateless translator converting cd*to ab*. x is an arbitrarily selected

character to avoid false-positives. An example of this table in use is shown in figure 4.6



38 Chapter 4. Regular Expression Accelerators

ab*

In
p
u
t 

Te
x
t

fcddeefa

Tr
a
n
s
la

to
r

xabbxxxx

M
a
tc

h
e
s

xabbxxxx

Accelerator

Match region

Figure 4.6: How a stateless translator (Table 4.5) is used to accelerate the expression

cd* using an accelerator for ab*.

Input Output Input Output Input Output

F U : ‘ ’ \n \r

r S \r ‘ ’ ‘ ’ %

o E ; ’ < \r

m R , ’ " \r

Table 4.2: A stateless translation table to convert from From: +[ˆ\r\n"<]*[;’,] to

USER *[ˆ\r]+%’.
example in Section 4.4.

In general, regexes are more complex, and deriving translators is challenging as

stateless translators must satisfy larger sets of constraints. To be compatible, regular

expressions must have some degree of structural similarity, meaning that they share

similar constructs and symbol similarity, meaning that the symbols are translatable.

These are discussed in more detail in Section 4.5.

4.3.1.3 Examples from Snort

The Snort network intrusion detection ruleset [478] is a set of network rules that are

used to identify security threats. A large number of these rules have regexes that must

be applied to incoming packets — a task that makes sense to accelerate since it is easy

to offload to a NIC (network interconnect card) without additional data transfers. This

is a convenient place to run network intrusion detection, as all network traffic passes

through the NIC before reaching the computer. FPGA accelerators fit this domain well,

as many existing NICs now feature FPGAs [104]. Further, Snort updates are issued

frequently — every few days — so requiring FPGA recompilation is time consuming

and slow.

A real world example from the Snort ruleset supported by prefix merging is shown

in Table 4.1. Here, we can see that PASS is a prefix of all the rules. With any two of

these rules already accelerated and the prefix extracted, we can reduce the CPU load

required by using the prefix. However, using stateless translation, we can support more
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rules and further reduce the CPU load of supporting prefix-merged rules. Table 4.2

shows one such real-world example of a translator for the Snort ruleset, in a case where

prefix matching would fail.

4.3.1.4 Why not Stateful Translators?

In this section we have covered stateless translators, the technique RXPSC uses to map

one regex to another accelerator. Generally, stateless translators (i.e. those that require

only a single state to do the translation) require fewer resources that stateful translators.

However, more generally, stateful translators are rarely useful in practice.

The intuition here is that each state of a translator maps certain states of the regex

to states in the accelerator. Having multiple states can reduce the number of symbol

collisions (which we will cover in more detail in Section 4.5.3), but only when the

translator can always be in a certain state for a certain state in the accelerator. In

generally, this is not possible, as common features like symbol looks (e.g. with a*)

make it impossible for the translator to stay in sync with the accelerator.

As a result, using a stateless translator is the best choice, as it has low resource

usage, but covers the same cases in practice.

4.3.2 Groups

RXPSC exploits groupings of regexes that do not have to evaluated at the same time.

A group contains a set of regexes that are all evaluated at the same time: it means

that the hardware used to accelerate other groups is unutilized during the operation

of any particular group. An example is shown in Figure 4.1. Groups are application-

dependent; for example, network intrusion detection provides groups in the form of

protocol, port numbers and IP address ranges. These can be distinguished rapidly in

hardware [60, 380], to activate a group of accelerators. RXPSC takes advantage of

the otherwise unutilized accelerators. This enables RXPSC to add new regexes to

the existing accelerators, rather than just replacing old regexes. Figure 4.7 shows an

example of a TCP rule being multiplexed onto hardware designed for UDP rules.

4.4 Compilation Overview

RXPSC takes as input a set of regexes that already have accelerator implementations,

and a number of new regexes to be accelerated. It then translates each new regex to an
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UDP Rules TCP Rules Other Protocol Rules....

Packet
Classify

Protocol

Multiplex TCP/UDP rules

Figure 4.7: Since UDP hardware is unused when a TCP packet arrives, we can use it to

accelerate new TCP regexes, provided that we can quickly multiplex between the new

TCP pattern and the original UDP pattern.

accelerator in a different group, enabling acceleration of the new regex. The difference

between these two phases is shown in Figure 4.8.

4.4.1 Accelerator Assignment

When adding a regex, RXPSC will calculate the similarity (Section 4.5) of that regex to

all of the existing accelerators. Once RXPSC has all the potential translations, it picks

the best, operating in a greedy manner. Existing accelerators may not accelerate the

whole regex, so RXPSC identifies and configures accelerators that can accelerate the

remainder. The set of accelerators covering the new regular expression, and correspond-

ing stateless translators, is the output of RXPSC. The core technique of determining

similarity is described in the next section.

4.4.2 Striking a Balance for Stateless Translation

Stateless translation tries to strike a balance between hardware overheads, which are

smaller if expressions are larger and regex compatibility, which is better if expressions

are smaller. As discussed in Section 4.6, the architectural overheads are fairly small. In

this section, we discuss the techniques we use to ensure better regex compatibility.

4.4.2.1 Prefix Splitting

Smaller expressions are more likely to generate regex matches. Although we cannot

control the size of the expressions that need to be accelerated, we can split them into
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Figure 4.8: RXPSC fits into the update pipeline of FPGA accelerators, and the initial

design can be done by any regex to FPGA tool. Grapefruit [403] is a good example of

such a tool.

distinct translation regions. We do this using a technique we call prefix splitting.

In prefix splitting, we inspect the set of expressions to be accelerated. At the initial

design time, we split common prefixes (longer than five regex terms1) into individual

accelerators. This results in a large number of small accelerators that represent the

common patterns that expressions that must be added at short notice will often share.

When RXPSC adds support for a new expression, it can use these prefixes to find

matches. For example, if we have accelerators for the expressions ab*c* and ab*d,

these have a prefix ab*. If a new expression cd*d is introduced, we can achieve partial

acceleration using the prefix ab* using the stateless translator discussed before, shown

in Table 4.5. Had the prefix not been extracted, we could not simply use the first portion

of ab*c*, as b* does not report as an accepted string.

4.4.2.2 Overapproximation

To find accelerators for a wider range of regexes, RXPSC can find overapproximations,

meaning that they always accept strings that the original regex would have accepted, but

they also accept additional strings. These additional matches can be filtered on the CPU

— but since almost all potential matches are eliminated, the workload is drastically

1This number was selected empirically to be a good tradeoff between too many false-positives (which
we would get with shorter prefixes) and omitting too many possible prefix matches (which we would get
with a longer length requirement).
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Figure 4.9: How the compilation passes in RXPSC fit together.

reduced. To distinguish between accelerators that overapproximate by various degrees

internally, we use an overapproximation factor, which is the fraction of states in the

accelerator that are spuriously activated by input symbols. This is a simplification

of more complex error representations [412], but allows RXPSC to make informed

decisions about which accelerators are likely to be useful. Overapproximation is not

a required property — RXPSC can still find compatible regexes without overapprox-

mation. However, as regexes get longer, the probability of a perfect match is reduced.

Overapproximation is required to support many real-world usecases. The result of this

overapproximation is discussed in terms of the extra bytes it involves sending to the

CPU in Section 4.7.

In the above example, where we accelerate the expression cd*d using ab* by

translating c -> a, d -> b demonstrates overacceptance. For example, the string c

would be accepted, even though it does not match the original expression. As a result,

matches must be filtered on the CPU.

4.5 Regular Expression Similarity

RXPSC breaks compilation down into structural similarity (Section 4.5.1) and symbol

similarity (Section 4.5.3). Structural similarity determines whether regular expressions

use similar constructs and symbol similarity determines whether symbols in expressions

can be translated to each other. How these operations fit together in RXPSC is shown in

Figure 4.9



4.5. Regular Expression Similarity 43

4.5.1 Structural Similarity

Structural similarity matches a new regex to parts of existing accelerators, while ab-

stracting away any symbol. Symbol similarity (Section 4.5.3) subsequently determines

whether a translator is feasible once symbols are taken into account. We approach

structural similarity by compiling regexes to an intermediate language, the accepting

path algebra, that abstracts structure from each regex. We then use this algebra to

determine which accelerators can structurally support a regex.

For example, ab*, cd* and aa* are structurally similar, but ab* and b* are not

structurally similar.

4.5.1.1 Accepting Path Algebra

We propose the accepting path algebra, which can be created from regexes. The

accepting path algebra enables comparison between different regexes to determine

which regexes are similar to each other. The elements of the algebra are:

n ∈ {0,1} This means n symbols are read from the input.

a This means there is an accept.

e Means that this branch of the regex continues no further.

x+ y Where x and y are accepting path algebra terms. This means y follows x. It is not

commutative.

We collapse long sums for readability (e.g. writing 1 + 1 + 1 as 3), but our

algorithms work on unary digits.

x∗ Where x is an accepting path algebra term. This means that there are loops, one

represented by x.

{x0, . . . ,xn} This means that there is a branch and each arm of the branch is one element

within the set. Each of the xi are accepting path algebra terms.

(x) Where x is an accepting path algebra term. This is used to indicate order of

operations, frequently in conjunction with ∗.

This representation is based on the structure of regexes, but abstracts away from

the symbols in the regex. This differs from a closed semiring in that the multiplication

operation (here +) is not annihilated by the identity of the addition operation (here {,},

with identity 0).
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Regex Accepting Path Algebra

ab* 1+(1)∗+a+ e

cd* 1+(1)∗+a+ e

a(b|c)de 1+{1,1}+2+a+ e

Table 4.3: Accepting path algebras for some example regexes. The accepting path

algebras are representative structure of the corresponding regexes, abstracting away

symbol-specific parts of these.

4.5.1.2 Example

In practice, we generate the accepting path algebra from NFAs. We will use regexes

in these examples for simplicity. The accepting path algebras for various regexes are

shown in Table 4.3.

4.5.1.3 Determining Structural Support

We describe the algorithm used to determine whether an accelerator can structurally

support a different regex. We define the notation x ≤ y (read as y structurally supports x)

by cases on the structure of the accepting path algebra in Algorithm 1. This algorithm

shows simplified boolean version of this algorithm — our implementation uses heuristics

to reduce the size of the search space. Given two accepting path algebras A and B, we

apply this algorithm with a recursive walk through the algebra structures.

4.5.1.4 Walk-Through Algorithm

We will walk-through the example shown in Figure 4.10. In this figure, we apply

Algorithm 1 to two identical accepting path algebras, showing that 1+(1)∗+a+ e ≤
1+(1∗)+a+ e. To show this, we take the following steps:

1. Apply the plus rule. This application is heuristic guided, and described more in

Section 4.5.2. In this case, we find the following groups: XGroup = [1,(1)∗,a,e]
and YGroup = [1,(1)∗,a,e]. We proceed to show that: ∀m.XGroup[m]≤YGroup[m].

(a) 1 ≤ 1: by inteq

(b) (1)∗ ≤ (1)∗: We apply rule muleq and need to show that 1 ≤ 1.

i. 1 ≤ 1: by inteq

(c) a ≤ a: by accepteq
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Algorithm 1 Simplified structural support algorithm, defined by structural recursion

over terms in the accepting path algebra (Section 4.5.1.1). The implementation of the

two most abstract rules (plus and set) is discussed in Section 4.5.2.
1: procedure A ≤ B

2: e ≤ x: if x ̸= a+ ... return True ▷ (trim)
3: a ≤ a+ x: return True ▷ (dropadd)
4: 0 ≤ y∗: return True ▷ (dropmul)
5: m ≤ n (m,n ∈N) return m == n ▷ (inteq)
6: a ≤ a: return True ▷ (accepteq)
7: e ≤ e: return True ▷ (endeq)
8: x∗ ≤ y∗: return x ≤ y ▷ (muleq)
9: x0 + · · ·+ xn ≤ y0 + · · ·+ ym: return True if: ▷ (plus)

10: ∃i. with x0 + · · ·+ xi ≤ y0 + · · ·+ ym

11: Or, ∃.i with x0 + · · ·+ xn ≤ y0 + · · ·+ yi

12: Or, ∃
13: XGroup = [x0 + · · ·+ xi,xi+1 + · · ·+ x j, . . . ]

14: YGroup = [y0 + · · ·+ ya,ya+1 + · · ·yb, . . . ].

15: Such that: ∀m. XGroup[m] ≤ YGroup[m]

16: (Covered in Detail in Section 4.5.2)

17: {x0, . . . ,xn} ≤ {y0, . . . ,ym}: return True if: ▷ (set)
18: ∀xi.∃y j.xi ≤ y j

19: Otherwise: return False

20: end procedure
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(d) e ≤ e: by endeq

This algorithm produces a number of equivalencies that must hold to be able to

replace one accelerator with the other. These are discussed in Section 4.5.3.

4.5.1.5 Example

Consider the regexes ab* and cd*. As we can see in Table 4.3, these both have accepting

path algebras 1+(1) ∗+a+ e. That structural support exists here is clear since the

algebras are the same, and is shown in Figure 4.10. A non-trivial example of structural

support is shown in Figure 4.11, showing that the regex h(i|jk|l)m* structurally

supports the regex a(b|c).

4.5.1.5.1 Algorithm Walk-Through The regex g(i|jk|l)m* has accepting path

algebra 1+{1,2,1}+(1)∗+a+ e and the regex a(b|c) has accepting path algebra

1+ {1,1}+ a+ e as shown in Table 4.3. We wish to show that 1+ {1,1}+ a+ e ≤
1+{1,2,1}+(1)∗+a+ e. Applying Algorithm 1, we take the following steps:

1. Apply the plus rule. The exploration of which sub-case to use is heuristic guided

(see Section 4.5.2), and in this case, we find the following groups: XGroup

= [1,{1,1},a,e] and YGroup = [1,{1,2,1}+(1)∗,a,e]. To show that this rule

holds, we must show that ∀m.XGroup[m]≤ YGroup[m] and we proceed with one

application of ≤ for each case:

(a) 1 ≤ 1: This holds by rule inteq.

(b) {1,1} ≤ {1,2,1}+(1)∗: We apply the plus rule, rewriting {1,1} to the

equivalent {1,1}+ 0. We find: XGroup = [{1,1},0] and YGroup =

[{1,2,1},(1)∗]. Again, we must show that ∀m.XGroup[m] ≤ YGroup[m]

and we proceed with one application of ≤ for each case:

i. {1,1} ≤ {1,2,1}: We apply rule set. For each element x of {1,1}, we

must find an element y of {1,2,1} such that x ≤ y.

A. 1 ≤ 1: By inteq

B. 1 ≤ 1: By inteq

ii. 0 ≤ (1)∗: By dropmul

(c) a ≤ a: By accepteq

(d) e ≤ e: By endeq
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Figure 4.10: Rules from Algorithm 1 applied to show how the accepting path algebra for

ab* structurally supports the algebra for cd*.
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Figure 4.11: Rules from Algorithm 1 applied to show how the accepting path algebra for

h(i|jk|l)m* structurally supports the algebra for a(b|c).

We can see that the algorithm produces a true answer. Figure 4.11 shows a diagram

of the result of this algorithm application. Each case of inteq results in a mapping that

is used for symbol-unification in Section 4.5.3, while each application of a dropX-rule

results in a symbol that should be disabled (again this will be covered in Section 4.5.3).

4.5.2 Implementation of Structural Support

Algorithm 1 has an exponential runtime in the number of algebra terms (or the length

of the regex). As a result, RXPSC makes a number of heuristic decisions to reduce

the runtime. There are two cases where the structural support algorithm can produce

excessive runtimes:

• The (set) case

• The (plus) case

(set) In the set case, we must try every combination of branches — this produces a

1 + {2 + a + e, 1} + 1 + a + e

3 + a + e

3 + a + e
endeq

endeqaccepteq

accepteq
inteq

inteq
inteq

inteq

Figure 4.12: Base-case rules from Algorithm 1 applied to show how the accepting path

algebra for a(bc|dd) structurally supports the accepting path algebra for xyy in two

different ways. Only one way has symbol similarity. For the sake of clarity, only the

base-case rules are shown.
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huge number of combinations that must be tried. To avoid dealing with large numbers

of unlikely combinations, we use heuristics to select likely branch assignments first. For

example, a naı̈ve permutations-based approach results in many failed assignments, even

though it is the true implementation of the structural similarity algorithm. In practice,

we find it to be exceedingly infrequent that two different branches of a regex can be

unified to the same set of states in an accelerator — using combinations rather than

permutations solves the bulk of the problem with the number of unifications in the (set)
case.

The other problem with the (set) rule is that we often encounter a large number of

false positives — that is structural matches without sufficient symbol similarity. We

resolve this problem by partially executing the symbolic similarity algorithm (Sec-

tion 4.5.3 while determining structural similarity. The reasoning behind this issue and

mitigation are discussed more in Section 4.5.2.2.

(plus) Implemented naı̈vely, the (plus) case can result in exponential behaviour, as

each “splitting” of the respective pluses results in an exponential number of subterms in

the number of terms. In the appendix, we show a lower bound of 2min(m,k) where m,k

are the lengths of each term respectively. It is not uncommon to find regexes with sums

hundreds of terms long — a perfect implementation is clearly not feasible.

We address this problem with the one-at-a-time heuristic. In the vast majority of

cases, we can reduce the (plus) by reducing the size of one of the algebras by one. For

example, 1+1+1 has structural similarity to 2,1+1 using the first two terms of the

first sum, and the first term of the second sum. Instead of checking all possible splits of

the two sums, we can try to match all sums to the first term of each algebra, and pick

the split that finds the most structural similarity. This produces a heuristic that reduces

the problem from an exponential-sized problem to an O(n3) problem in the length of

the algebras.

O(n3) is still no efficient execution time, so in addition to the one-at-a-time heuris-

tics, several other heuristics feature to avoid the quadratic behaviour that the one-at-a-

time heuristic results in. If both sums start with 1+ x and 1+ y respectively, there is

structural similarity between the sums iff there is structural similarity between x and

y. Similarly, if the accelerator regex sum starts with a product term but the regex to be

accelerated starts with a non-product, then we can try disabling the term for the product

and continuing finding structural similarity in the tails.
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4.5.2.1 Dropping Rules

The dropadd and dropmul rules operate on the basis that we can represent a smaller

accelerator with a larger accelerator. It is correct to drop unneeded algebra components,

as the corresponding regexes can be disabled.

For example, suppose we have an accelerator for the regex ab*c. If we wish to

accelerate the regex ac, we could use stateless translation from b to x (where x is a fresh

variable, not otherwise used in the accelerator), so that the term b* is never activated.

Using the dropmul rule, we show structural support of ac. The dropadd rule captures

a similar idea.

Structural support is a necessary, but not sufficient, condition for the existence of

a stateless translator. Finding an accelerator that structurally supports a new regex

shows that acceleration is plausible; but to be useful, we must have sufficient symbol

set similarity.

4.5.2.2 Costs of Algebraic Abstraction

The accepting path algebra does not come without costs. Abstracting the symbol-set

from the structure means that local structural choices can have negative effects of global

symbol similarity and similarly that equally good matches from a structural perspective

may not be equally good matches from a symbolic perspective. An example of this

is shown in figure 4.12. In this example, although the two shown matches are both

structurally similar, only the upper match will result in a complete translator — the

lower match will require translation of y to b and also y to c which is impossible.

To address the potential for uninformed decisions to effect the probability of finding

a match, we:

1. Maintain a set of sets of assignments from one symbol to another rather than a

single set.

2. To avoid an exponential blowup in the number of sets of assignments, we maintain

only the top 202. Discarding elements from this set is based on a quick symbolic-

collision detection algorithm, a partial evaluation of the algorithm described in

Section 4.5.3.

2A number determined experimentally to be a good trade-off between speed and performance.
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Figure 4.13: Effects of completeness and correctness on the set of strings accepted by

a generated translator.

4.5.3 Symbol Similarity

Symbol similarity receives, as input, pairs of symbol sets and produces a stateless

translation. One input set is a “virtual” set of symbols that corresponds to the symbols

of the expression we wish to accelerate, while the other set is a “physical” symbol set

which corresponds to the symbols used on the accelerator. Symbol similarity operates

in two steps: symbol completeness then symbol correctness. Symbol completeness
means our translator does not miss any regexes, and symbol correctness means our

translator does not accept any patterns that should not be accepted. These steps can fail,

in which case we either reject the translation, or accept it as an overapproximation. The

different aims of the two steps are shown in figure 4.13

4.5.4 Terminology

Symbol Set A range of symbols, e.g. {a} or {[0-9]}.

Symbol Set Pairs The pairings produced by the structural support algorithm, for ex-

ample in Figure 4.10.

Virtual Symbols Symbols in the regex to accelerate.

Physical Symbols Symbols in the existing accelerator.
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Algebra Symbol Set (ab*) Algebra Symbol Set (cd*)

1 {a} 1 {c}
(1)* {b} (1)* {d}

a {} a {}
e {} e {}

Table 4.4: The symbol sets related to each algebra term.

Disable Symbols Symbols that activate terms in the accelerator that should not be

activated. For example, the term jk in Figure 4.11.

Algorithm 2 Algorithm for generating symbol complete translators.
1: procedure SYMBOLCOMPLETE(SymbolSetPairs)

2: ∀x. Translator(x) =U ▷ Universal set

3: for (VirtSymbs, AccSymbs) in SymbolSetPairs do
4: for Each symbol in VirtSymbs, v do
5: Translator(v) = Translator(v)∩AccSymbs

6: end for
7: end for
8: end procedure

4.5.4.1 Symbol Complete Translator

Symbol completeness (Algorithm 2) begins with the pairwise assignment of accepting

path algebra terms produced by the structural support algorithm. It produces a translator

that accepts all strings the added regex accepts. The output of this step is passed to

symbol-correctness to produce a stateless translator.

4.5.4.2 Example

We take a simple example to demonstrate this algorithm. Suppose we are computing

a symbol-complete translator for expressions ab* and cd*. We saw in Section 4.5.1.2

that these have algebras 1+(1)∗+a+e. We know that each term has the sets shown in

Table 4.4.

Using Algorithm 2, we generate the complete translator shown in Figure 4.14.
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Translator(a) = {a...z}

Translator(b) = {a...z}

Translator(c) = {a}

Translator(d) = {b}

Translator(e) = {a...z}

. . .

Figure 4.14: An example symbol-complete translator. This translator translates symbols

to sets of symbols, any of which would achieve completeness. An example specializing

this symbol-complete translator into a usable translator is shown in Figure 4.15.

Of course, this translator cannot be applied, as it translates each character to a set

of characters rather than to an individual character. To generate an overapproximating

accelerator from this translator, we can select one element arbitrarily from each set.

Suppose we arbitrarily select the first element of each set, resulting in the translator

shown in figure 4.15.

This complete translator results in the expression [abce-z][d]*, as all characters

except d are translated to a. This may be a partially useful accelerator, as it can help

us detect some patterns that do not match the pattern we wish to accelerate. It accepts

all valid strings (i.e. c, cd, cdd, ...) but also accepts strings such as ad, zd,

xdd. Thus, matches for this expression must be checked as it can no longer be trusted.

Symbol-correctness addresses this issue, arriving at a complete translator that does not

overapproximate.

4.5.4.3 Symbol Correct Translation

Symbol-correctness (Algorithm 3) begins with a symbol-complete translator. The

process for arriving at a symbol-correct translator ensures that terms are not spuriously

activated in the accelerator, which would cause acceptance of strings that should be

rejected. For example, suppose we have the accelerator ab* and we wish to accelerate

the regex cd*. We ensure that a and b are translated to characters that are neither a

or b to avoid incorrectly accepting strings such as ab, abb, .... We often omit or

partially execute the correctness phase of stateless translator generation. This results

in complete accelerators that overapproximate and leave some extra computation for
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Translator(a) = a

Translator(b) = a

Translator(c) = a

Translator(d) = b

Translator(e) = a

. . .

Translator(z) = a

Figure 4.15: An example symbol-complete translator derived from the sets shown in

Figure 4.14. To find this symbol-complete translator, we arbitrarily select the first element

of each set which determines the possible targets.

Algorithm 3 Algorithm for generating correct translators from a regex R to an accelera-

tor A. Xc denotes the set compliment.
1: procedure SYMBOLCORRECT(CompleteTranslator, ToDisable)

2: ∀x. ActiveSet(x) = {T | T is a term in A with x in its symbol set}
3: ∀x. MustBeActive(x) = {T | T is a term in A paired to T ′ in R where x is in the

symbol set of T ′ }
4: for Each Symbol, x do
5: ApproxSymbs = Active(x)∩MustBeActive(x)c

6: Trans(x) = CompleteTranslator ∩ ApproxSymbsc

7: end for
8: InactiveTerms = {x | ActiveSet(x) = /0}
9: ToDisable = ToDisable ∩ InactiveTerms

10: if ToDisable = /0, fail.

11: if Translator(x) = /0 for any x, fail

12: Select an arbitrary element from each Translator(x).

13: end procedure
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Translator(a) = x

Translator(b) = x

Translator(c) = a

Translator(d) = b

Translator(e) = x

. . .

Figure 4.16: A symbol-correct translator derived from the symbol-complete translator in

Figure 4.14.

the CPU. We discuss this overapproximation more in Section 4.4.2.2 and evaluate it in

Section 4.7.2.

Disabling Terms In addition to ensuring that symbols do not activate the wrong

terms, symbol correctness must disable certain terms completely. This enables regexes

with different structures to compile to each other rather than requiring exactly the same

structure between different regexes. For example, consider the structural similarity

shown in figure 4.11 from the regex a(b|c) to the regex h(i|jk|l)m*. We can see

that the term jk (represented by 2 in the accepting path algebra) and the term m* must

not be triggered in order to maintain correctness of the underlying accelerator. We can

achieve this using stateless translation by ensuring that our translator never translates

any character to the symbol j or to the symbol m. Notice in this example that we may

still translate to the symbol k, as if we never activate the term j, activations of the term

k will have no impact.

4.5.4.4 Example

Suppose we are given the symbol-complete translator we derived in Section 4.5.4.2. We

wish to ensure that no terms are spuriously activated. The intuition here is that we require

that the symbols a and b activate no terms as we do not wish our stateless translator and

accelerator pair to accept strings such as abbbb, even though the underlying accelerator

would respond to such characters by default.

Executing the correctness phase, we compute the translator shown in Figure 4.16

which is the same table shown in Figure 4.5.
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4.5.4.5 Heuristics to Reduce Overapproximation

There are two ways that an accelerator may overapproximate:

1. Accelerated prefix is too short (e.g. accelerating ab* when the whole expression

is ab*c*)

2. Translator activates too many terms

When accelerators overapproximate, they produce matches for regions that should

not be matched: the host CPU must check the intended regular expression actually

matches. Given a large set of potential accelerators, RXPSC must chose the one that

is likely to require the least CPU checking. In some sense this is a domain-specific

problem, as some patterns that have near-zero probability in a random string may occur

very frequently in particular domains (for example, the device IP address in network

intrusion detection). However, we find that a domain-agnostic ranking of accelerators is

sufficient to determine which accelerators are likely to perform best.

We give each accelerator two values, one based on accelerator size, the prefix cost,

and one based on translator overapproximation, the overapproximation cost. These

represent a measure of the frequency with which the accelerator will overapproximate.

Each is calculated as follows:

Prefix Cost Measures the fraction of strings that the selected prefix will accept — it

does not take into account the fraction of strings that should be accepted by

a particular regex as that is likely to be (a) low and (b) is constant across all

potential accelerators, so does not need to be accounted for.

Prefix Cost =

∏
t∈PrefixTerms

Symbols(t)
SymbolCount

Here, PrefixTerms refers to all the accepting path algebra terms, Symbols(t) refers

to the symbols that activate the term t and SymbolCount refers to the total number

of available symbols.

Overapproximation Cost Measures the fraction of strings that are spuriously accepted

due to the translator translating them to a valid string.

Overapproximation Cost =

∏
t∈Terms

Symbols Activating Term t After Translation
Symbols Activating Term t Before Translation
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We then rank all translators by the likelyhood of overapproximation using the

combined metric given by 1−max(Prefix Cost,Overapproximation Cost). These two

costs represent the probability that, given a uniformly distributed input of characters

from the set of possible symbols, that there is overapproximation due to prefixing

of the new expression, and the probability that there is overapproximation due to an

imcomplete translator. This ranking of translators is critical in achieving consistent

performance, as for many patterns, we find the existence of many accelerators that are

too short or overapproximate too much to be effective.

4.5.4.6 Time Complexity and Speed Optimizations

The symbol completeness algorithm, shown in Algorithm 2 has a time complexity

of O
(
AcceleratorSize×SymbolSetSize2), where AcceleratorSize is the number of ac-

cepting path algebra terms required to represent the accelerator. The symbol correctness

algorithm (Algorithm 3) has time complexity O
(
SymbolSetSize2 +AcceleratorSize

)
.

In the ANMLZoo benchmarks, which we evaluate in more detail later, symbol set

size is always 256. The accelerator size varies from very small (we set a threshold size

of 2) to hundreds of terms large. Although the time complexities of these algorithms

are not excessive, we find that without careful management of set operations which

are frequent in these two algorithms, the implementations can easily become very

slow, particularly as we often compute multiple translators for each new regex to be

accelerated in order to enable us to pick the translator with the most potential for

acceleration.

4.6 Architectural Overheads

The introduced overheads of our technique are minor for the instant programmability

measures they enable. Before each accelerator, we require a stateless translator, which

requires 256 B of memory per regular expression. Due to signal splitting, we require

twice as many FIFO IP blocks within the design to keep the branching factor low (and

thus the clock frequency high). Including the duplicated FIFOs, we estimate an increase

in resource usage of 10% for a typical Xilinx FPGA.
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Figure 4.17: Fraction of patterns that can run on the accelerators for the other patterns

in each benchmark.

4.7 Evaluation

We examine RXPSC’s performance on the ANMLZoo [499] benchmarks in the regex

family: Brill, Snort, Protomata, PowerEN, Dotstar and ClamAV. We also consider a

network intrusion detection setting.

4.7.1 Setup

Experiments are run by taking each benchmark set, and removing a regex. The remain-

ing regexes are compiled. We then add the new regex, by computing whether some

prefix of the new regex can be represented using the other regexes. In each experiment,

we generate simulators for each converted regex and run the 1 MB ANMLZoo inputs

into each simulator. We compare these to the unmodified expression to compute the

overapproximation rate — the rate at which the accelerator generates spurious accepts.

Using the average accepting length as a proxy for the number of bytes that the CPU

must then check, we can compute the fraction reduction in bytes that the CPU must

scan. We run these experiments for every regex within each benchmark (˜2,500 regexes

each).

RXPSC is implemented within the REAPR framework [535]. This is a python

framework for generating regex accelerators on FPGAs, which we have modified to

compile to stateless translators. In this section, we only provide simulation results, as
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Figure 4.18: Fraction of bytes executed on the CPU using RXPSC.
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Figure 4.19: Fraction of bytes executed on the CPU using prefix merging.
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we were unable to reproduce the full end-to-end FPGA compilation within REAPR.

RXPSC is particularly useful within a network intrusion detection setting as it

provides easy-to-form groups of regexes and requires pattern updates without excessive

compile time. We consider Snort [478], a set of network intrusion detection rules from

Cisco and look at two different rule sets, the unregistered rule set (1,497 regexes). We

split rules by their protocol, port numbers and IP addresses. This results in a number of

different groups of regexes, that can each be run on different packets and creates a less

general, but more realistic, situation than that used for ANMLZoo. For each generated

accelerator, we compute the fraction of bytes that must be scanned on the CPU. We

compute this by pessimistically assuming that each false-positive must scan on average

the same number of bytes in an accept for that accelerator. We compare this to the

number of bytes that would have to be scanned without RXPSC in place.

For the Snort experiment, we remove one class of regexes from the set of all

regexes. A class of regexes is some set of regexes that must be run for a particular

protocol/port/IP address combination. We then compile each of these regexes to the

accelerators presented by the remaining regexes (of different groups).

4.7.2 Results

Figure 4.17 shows what fraction of unseen regexes RXPSC and prefix merging can find

any accelerator for. We can see that RXPSC finds accelerators for 97% of supplied

regexes on average, performing particularly well on ClamAV, Dotstar and PowerEN in

this metric, where RXPSC finds accelerators for more than 99% of regexes. In contrast,

prefix merging only finds accelerators for 43% of regexes.

As discussed above, finding an accelerator does not tell the full story, as for some

regexes RXPSC only achieves partial offload from the CPU. We show the number

of additional bytes that must be scanned on a CPU as a fraction of the total data in

Figure 4.18 for RXPSC, and Figure 4.19 for prefix merging.

We see that for some benchmarks, PowerEN, Dotstar, Snort, and Brill, RXPSC is

able to almost entirely remove the need for the CPU with new patterns. For others,

ClamAV and Protomata, we see that the generated accelerators are only able to reduce

the CPU in a smaller fraction of cases, reducing CPU by more than a factor of ten in

51% and 72% of cases respectively. We can also see that RXPSC outperforms prefix

merging by a significant margin on all benchmarks, where only Brill and Dotstar can be

run without complete reliance on the CPU for more than 50% of regexes.
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RXPSC generates assignments reducing the quantity of data that must be scanned

by the CPU by more than a factor of ten in 84% of cases, performing particularly well

on Dotstar, PowerEN and Snort where RXPSC achieves this benchmark in 99.5%, 96%

and 93% of cases respectively. Prefix merging reaches this threshold for 85%, 9% and

32% respectively.

The differences between the accelerator generation graph (Figure 4.17) and the

bytes requiring CPU graph (Figure 4.18) are down to two key features: first, we do

not require an entire regex match; and second, translators often overapproximate. For

some benchmarks, such as ClamAV, regexes often begin with large series of single-

character symbol sets (e.g. \x00\x00\x00). RXPSC is capable of finding accelerator

matches for these, which under our own heuristics perform well, but these do not

distinguish test data significantly. Similarly, for Protomata, a very reduced dictionary of

16 characters is used, again resulting in poor choices of accelerator to use. We expect

both benchmarks could see improved performance with more appropriate heuristics for

their particularities.

4.7.2.1 Network Intrusion Detection

Figure 4.20 shows that 96% of regexes can be accelerated using existing accelerators in

the registered ruleset and 93% of regexes can be accelerated in the unregistered ruleset.

The difference is down to ruleset size — the larger ruleset provides more accelerators to

choose from. Prefix merging finds alternatives for only 49% and 25% of each ruleset,

again showing the benefit of having more accelerators to choose from. In this real-world

situation where we must load a new pattern onto an accelerator quickly, RXPSC does

so in the vast majority of cases, reducing the volume of data the CPU must process, and

freeing CPU cycles.

4.7.3 Compile Time

RXPSC is capable of compiling new regexes to existing accelerators in a number of

seconds. In this experiment, we explore compile times for additional regexes using

RXPSC, and compare them to the reported compile times for the ANMLZoo benchmark

suite [82] on REAPR [535] (a prior version of Grapefruit), showing both the default

compile times and compile times improved with compilation toolchain optimizations.

Figure 4.21. RXPSC’s compile times that are almost all a factor of 10,000 less than

those reported for REAPR. This is because RXPSC does not require re-compilation
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Figure 4.20: Fraction of regexes that can be supported by existing accelerators.

Benchmark
Number of
States [499]

Number of
Regexes REAPR [82]

Optimized
REAPR [82] RXPSC

Prefix
Merging

Brill 26,364 2050 21168 s 15864 s 1.8 s 0.2 s

ClamAV 42,543 515 17100 s 13020 s 0.9 s 0.1 s

Dotstar 38,951 3000 Unreported Unreported 0.5 s 0.1 s

PowerEN 34,495 2860 Unreported Unreported 0.7 s 0.1 s

Protomata 38,251 2340 23388 s 17130 s 12.4 s 0.1 s

Snort 34,480 3379 25020 s 25020 s 0.9 s 0.03 s

Figure 4.21: Time required to add additional regexes. We compare to REAPR [535], a

prior version of Grapefruit, as numbers for Grapefruit are unreported.
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through the FPGA tool-chain.

RXPSC’s compilation time is dominated by how quickly the structural-similarity

algorithm can determine which accelerators are valid and which are not. Protomata has

a particularly slow compile time here because the expressions have significant structural

similarity but often fail to have symbolic similarity. The other benchmarks have more

structural differences between the expressions and raise fewer symbolic similarity issues,

which means RXPSC is more quickly able to identify suitable accelerators.

4.8 Conclusion

We present RXPSC, a regex compilation tool capable of compiling new regexes to

existing accelerators. RXPSC finds structural similarity between regexes and generates

stateless translators that allow in-place accelerator updates without recompiling an

FPGA accelerator. We find that we can reduce CPU workload by more than a factor of

ten for 84% of unseen regexes across the ANMLZoo benchmarks, outperforming prefix

merging, which only reaches this benchmark for 34% of unseen regexes in ANMLZoo.

We demonstrate a usecase in network intrusion detection, where new rules must be

implemented quickly in response to new threats, and again show that RXPSC achieves

significant improvement over prefix merging.

This chapter explores the acceleration equation (Chapter 2) in the context of regular

expressions, solving it in the context of regular expression accelerators, by setting g to

be the stateless translator, and h to be the post-match check.
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Fourier Transform Accelerators

Specialized hardware accelerators continue to be a source of performance improvement.

However, such specialization comes at a programming price. The fundamental issue

is that of a mismatch between the diversity of user code and the functionality of fixed

hardware, limiting its wider uptake.

Here we focus on a particular set of accelerators: those for Fast Fourier Transforms.

We present FACC (Fourier ACcelerator Compiler), a novel approach to automatically

map legacy code to Fourier Transform accelerators. It automatically generates drop-in

replacement adapters using Input-Output (IO)-based program synthesis that bridge the

gap between user code and accelerators. We apply FACC to unmodified GitHub C

programs of varying complexity and compare against two existing approaches. We

target FACC to a high-performance library, FFTW, and two hardware accelerators, the

NXP PowerQuad and the Analog Devices FFTA, and demonstrate mean speedups of

9x, 17x and 27x respectively.

5.1 Introduction

Specialized accelerators deliver significant performance improvements [474]. However,

specialization is in direct tension with programmability [140]. The more specialized

the accelerator, the greater its potential performance [515], but the less likely it is to be

used [371].

Fast Fourier Transform (FFT) acceleration is a good example of this. While there

are hundreds of commercial accelerator designs [3, 13, 14, 16, 17, 73], the API calls

used to program them lack the portability and flexibility of software libraries [21, 182]

making offloading the domain of experts [396]. Manually migrating to new software

63
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APIs is complex and time-consuming [155, 253], and made more challenging by the

inability for APIs to hide the complex eccentricities exposed by real hardware [78, 80].

Ideally, we would like hardware to be as specialized and idiosyncratic as needed

for performance. We also want existing code to automatically morph to new acceler-

ators with no user involvement [88, 159]. Unfortunately, “most applications require

modifications to achieve high speedup on domain-specific accelerators” [143]. Here we

focus on FFT acceleration as a real-world example of this problem. We demonstrate

that automatic modification is possible and achieve significant speedups on GitHub

legacy C programs1.

Attempts at replacing application code with accelerator library calls [191] are

brittle and do not scale to real-world code or algorithms complex enough to justify

acceleration [48]. The fundamental issue is mismatch. As the complexity of accelera-

tor functionality increases, the likelihood that it exactly matches a user’s application

becomes vanishingly small [333, 531].

Mismatch occurs at a variety of levels. The most basic form is code mismatch where

the number of different ways of writing the same algorithm defeats approaches based

on code-shape. Significant mismatch also occurs at a data-representation level, data

mismatch. Here the code and accelerator may have different types or values — for

instance using a custom definition of a complex type. Further still, domain mismatch

is common, with many accelerators only supporting powers-of-2-sized FFTs [19] or

limiting the size of inputs [14]. Finally, there may be behavioral mismatch. For

example, accelerator output values or user code may be bit reversed or un-normalized.

We tackle this fundamental issue in targeting accelerators: the mismatch between user

code and accelerator functionality using a novel input-output behavioral scheme using

generate-and-test over fuzzing samples to find unique solutions.

5.1.1 Current Schemes

Programming accelerators typically involves rewriting code in an language or with

a new API [511] but this is time-consuming and requires expert knowledge [155,

253]. Recently, work trying to automatically match and replace existing code with

accelerator libraries for simple operations has used constraint matching of code to an

API description [81, 126, 146, 191]. However these schemes are brittle and fail with

minor code variations, and constraints are challenging to write [190]. Exact matching

1All code available at [24]
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techniques [358, 430] fail once the code scales beyond an order of magnitude of ten

instructions, and FFTs scale up to thousands. The near duplicate codes these techniques

require is highly unlikely, even when implementations are copy-and-pasted [527].

There is a different stream of research aimed at code-clone detection and algorithm

classification [47, 138]. Rather than focusing on code structure via constraint solving,

it uses machine-learning-based embeddings of code. Codes with similar behavior

will have similar embeddings. These have been successful at labelling sections of

code [114] and we leverage this as a novel filter to our IO program synthesis. While

these code-embedding schemes can identify relevant sections of code, they cannot

reason, transform code or compile to accelerators. We evaluate constraint and code

embedding approaches in Section 5.10.

5.1.2 Our Approach

We present FACC (Fourier ACcelerator Compiler), a compiler that maps user code

to Fourier transform accelerators. FACC builds a neural classifier [47, 138] to isolate

procedures within user code as candidates for potential acceleration. It then explores a

space of possible bindings from user variables to accelerator parameters. Next, FACC

uses input-output behavioral synthesis to generate accelerator wrappers that bridge the

mismatch between user code and accelerator. This allows us to match user code as

small as 12 lines of code scaling up to procedures with more than 2000.

We take two accelerators: the Analog Devices FFTA [19] and the NXP Pow-

erQuad [18], and an optimized software library, FFTW [182], and automatically match

them to unmodified GitHub code, showing large performance improvement: 27x, 19x

and 9x over the original software respectively.

This chapter makes the following contributions:

• We introduce four key mismatches that must be overcome for source-code to

accelerator compilation.

• We implement a synthesis-based IO-matching solution to overcome these mis-

matches for FFT accelerators.

• We evaluate on real-world code and show significant speedups of automatically

compiling to hardware accelerators and optimized libraries.
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5.2 Motivation

Compiling software to specialized hardware accelerators faces the challenge of mis-

match between user code and accelerator behavior. Fourier transforms are an excellent

example of this problem: they are one of the most widely used transforms in DSP [459],

and offer a number of performance/flexibility tradeoffs [485]. This results in a large

amount of legacy C code implemented in drastically different styles and optimized for

different input sizes. Current-generation hardware accelerators for FFT can out-perform

even the most optimized software implementations [23] provided we can bridge the gap

between software and hardware.

Consider Figure 5.1: there is a section of existing legacy C code that performs a

Fourier transform. We would like to cut it out and replace it with a call to an accelerator

API. Unfortunately, there is a mismatch between the user code and the accelerator API

that prevents this. FACC automatically generates an adapter that acts as a mediator

between user code and the accelerator API. User code is now replaced with a call to the

adapter enabling acceleration.

5.2.1 Mismatch Example

Fourier transforms can be implemented in any number of different ways [161]. Fig-

ure 5.2 shows a number of Fourier transforms that are not trivially acceleratable due to

mismatches between user codes and accelerators.

The first, left-most column shows a code mismatch. The user code is a recursive

FFT implementation, but the optimized library provides an iterative implementation.

This kind of difference is extremely common in real-world code, but cannot be handled

by pattern-matching solutions, which struggle to match copy-pasted code [527]. Indeed,

the core FFT in the code we evaluate on ranges from 12 to over 2000 lines, representing

a huge diversity in code despite performing the same task.

The second column shows a data mismatch. The user code uses a custom complex

type different from the complex representation used by the accelerator. To run this code

on the accelerator, the types must be de-constructed and mapped to the inputs to the

accelerator.

The third column shows a domain mismatch. The user code implements a mixed-

radix FFT, which allows for inputs of many different lengths, but the Analog Devices

FFTA only supports inputs that are powers of two. As a result, only some inputs to the

original user code can be accelerated and dynamic or static checks must be added.
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Figure 5.1: FACC takes user code and an accelerator interface as input and produces

an adapter that appears identical to the user code, but uses the accelerator. FACC

identifies target regions in the user code that implement FFTs (highlighted in blue),

then automatically finds and replaces compatible parts of the FFT with their hardware

equivalent where functionality overlaps, while falling back to the software for other

operations. Code is synthesised to bridge the gap (in yellow) in implementation and data

structures.

struct complex_float { 

float real;

float im; 

}; 

void FFT( 

    float  *real, 

    float  *imag, 

   int n) { .... }

fftw_call( 

    complex_float  *acc_input, 

complex_float  *acc_output, 

   int length, 

   int direction 

)

void  DenormalizedFFT ( 
      complex *input, 
      complex *twiddles, 
      int n) { 
  .... 
}

NXP PowerQuad
fft ( 
   complex *input, 
   complex *output, 
   int length 
)

Analog Devices FFTA 
(Power of 2 Only)

fft_accel( 
   float_complex *input, 
   float_complex *output, 
   int len 
)

void  mixed_radix_fft ( 
    float_complex *in, 
    float_complex *out, 
    int len) { 
  ....  
  if (len % 2 == 0) 
      radix_2_step(....) 
  else if (len % 3 == 0) 
    .... 
}

Code  
Mismatch

void  recursiveFFT (...) { 
     ... 
      recursiveFFT (...); 
     ... 
}

optimized_iterative_fft(...){     ... 

for  (...) 

for  (...) 

    .... 

}

Data  
Mismatch

Domain 
Mismatch

Behavior 
Mismatch

Optimized Library

Optimized Library

for (...) { 
    real[i] = 
      input[i].real; 
    imag[i] = 
      input[i].im; 
}

PrograML Neural Embeddings
 Used to Identify Code

Automatically Compute to/from 
Types

Program Synthesis to Equalize 
Behaviour

accelerator(....) 
denormalize(output)

Range-Check: Fallback 
to User Code

if (inputs in range) { 
   fft_accel(...) 
} else { 
   mixed_radix_fft(...) 
}

Figure 5.2: Examples of common mismatches between source code and accelerators,

with FACC’s resolution below them.
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Finally, the right-most column shows a behavioral mismatch. The user code im-

plements an FFT but does not normalize the result. To undo the normalization the

accelerator does perform, an adapter that denormalizes the output from the accelerator

must be used.

Despite these mismatches, this code is acceleratable provided the code, data, domain

and behavioral gaps are bridged.

5.2.2 The General Challenges of Generic FFT Support

There are potentially an unbounded number of differences between functionally equiv-

alent FFTs. Mismatches of code, data domain and behavior can all be handled by

FACC’s combination of code detection, program synthesis, and generate-and-test IO

equivalence.

5.2.2.1 Code Mismatch

Different programmers use different strategies for solving the same problem. This

results in incidental differences between implementations which defeat constraint-based

approaches. FACC achieves independence of coding style by first using code neuro-

embedding to find candidate regions in user code. Once it has synthesised candidate

adapters for these regions, FACC uses IO examples to test whether the adapter and

original candidate code are behaviorally equivalent.

5.2.2.2 Data Mismatch

Different implementations of the same algorithm can use different representations of

the same data. FACC explores the space of possible mappings between user code

and accelerator API variable types via binding synthesis. It uses constraints on data

types and variable ranges to reduce the space of possible mappings which are then later

evaluated for input-output (IO) behavioral equivalence.

5.2.2.3 Domain Mismatch

A valid input to user code may not be a valid input to an accelerator and vice-versa,

and this causes complex constraints on functional equivalence between accelerator and

code. For example, the Analog Devices FFTA [17] only supports inputs that are powers

of two of size greater than 64 and less than 2048 in small mode, and 65536 in large
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mode. There are two issues to deal with here. The accelerators may not support the full

range of inputs that the user code supports. This is a task that requires the generation

of a static or dynamic range check. The user code may also not support the full range

of its own inputs, either throwing errors or resulting in undefined or arbitrary behavior

when fed with unintended random inputs, which can make equivalence testing difficult.

FACC uses value profiling [92] and range analysis [214] to address this problem.

5.2.2.4 Behavioral Mismatch

Accelerators may not implement the same functionality as user code. To make code

match, we either specialize or generalize.

Behavioral specialization is where accelerator input/configuration parameters are

assigned constant values. For example an accelerator may support both FFT and IFFT

algorithms, but user code may only implement FFT and so the accelerator should be

specialized to match the user code.

Behavioral generalization is where software performs some function that the acceler-

ator does not. For example, the user code may compute un-normalized results, while

a hardware accelerator may return normalized results. A software function should be

used to generalize the accelerator to produce compatible results.

5.2.3 Correctness

Implementations of FFTs vary between tens of lines of code and thousands (see Sec-

tion 5.10.1) and handle arrays of floating-point numbers. Proving traditional correctness

is impossible, as different implementations have different error properties [317, 342].

Correctness is further complicated by a lack of formal models available for commercial

hardware accelerators, whose designs are often corporate secrets [12]. Even if these

issues are overcome, modern floating-point theorem provers are not capable of proving

equivalence of such large-scale floating-point algorithms.

Instead of relying on formal proofs of equivalence, we use a pragmatic approach

based on fuzzing via input/output examples to determine behavioral equivalence in

a number of test cases. Once FACC has confidence that the code can be replaced,

it is the developer’s role to sign off the source-code replacement via code output in

the source language they understand (e.g. Figure 5.3). False positives are very rare

without malicious input designed to disguise itself as an FFT. During our evaluation,
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we encountered no false positives.

5.3 Fourier Transforms

The Fast Fourier Transform (FFT) was (re)discovered by Cooley and Turkey in 1964 [132],

and has since revolutionized signal processing. In this section, we provide an overview

of the FFT.

5.4 Math

The Discrete Fourier Transform (DFT) is the following sequence:

DFT[i] =
N−1

∑
n=0

x[n]× e− j 2πnk
N

Given inputs x, the DFT produces the frequencies that make up these inputs. It can

be used for a wide range of techniques, from image compression [327] to processing

analogue signals. However, computed in the manner above, the DFT requires O(N2)

operations in the length of the input x. The FFT improves on this, using a butterfly of

multiplications and twiddle factors. A typical radix-2 FFT only works on arrays that

are sized by powers of two — a modified algorithm is used for all other array lengths.

However, the vast majority of implementations focus on lengths that are powers of two.

A typical approach that enables the use of these implementations for non-power of two

inputs is to pad input data with zeroes until it is a power of two. For most usecases, this

is a suitable tradeoff, however this means that FFTs loose their orthogonality traits [485]

and the cost of padding to the next power of two is can be too high [356].

5.4.1 Bit-Reversal

The result of a typical FFT provides the results out of order. There is a bit-reversal step

that must be computed. The bit-reversal step reverses the bits in any individual index

(e.g. 0001 becomes 1000). The bit-reversal step can be done on the inputs, the outputs

or implicitly within the FFT algorithm, but must be done somewhere.

5.4.2 Decimation in time (DIT) vs decimation in frequency (DIF)

There are two key ways to structure the butterfly computation. Either, we can do

the multiplication with the twiddle factors before the corresponding data crossover or
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afterwards. Both are valid and result in different orderings of the FFT operations.

There are a large number of ways to arrange the butterflies depending on whether

you want to do bit-reversal on the inputs or the outputs, and whether you want to do the

small FFT operations first or last [390].

5.4.3 Efficiently Managing Twiddle Factors

Twiddle factors have a large effect on algorithm-design. The computation of twiddle

factors on-demand reduces memory-bandwidth requirements in bandwidth-limited solu-

tions [477]. Despite efforts to reduce the overhead of computing twiddle factors [394],

computing twiddle factors in the general case is expensive [532].

Due to this overhead, many implementations choose to store precomputed twiddle

factors in memory. Loading twiddle-factors from memory can be cache-unfriendly due

to large strides between required indexes. Thus, many implementations arrange the

twiddle factors based on their use order. However, this use order is often dependent on

the exact algorithm used, and so generic twiddle factors are not always possible [121].

5.4.3.1 Twiddle-Factor Free FFTs

Some FFT algorithms are twiddle-factor free. These algorithms have the desireable

property of removing many otherwise required sin and cos operations.

Twiddle-factor-free algorithms are based on the idea of using smaller-length DFTs

for lengths that are co-prime factors of the original FFT. These are then combined to

produce the longer FFT arrays [161]. Good’s algorithm is a good example of this.

5.4.4 Radix-N FFT

In the FFT, the radix refers to the number of signals that go into each butterfly flap. The

most commonly used radix is radix-2, but using a larger radix can be worthwhile as

it reduces the number of multiplications needed, an effect magnified for larger FFTs.

The downside of using a larger radix is the restricted range of viable input sizes. For a

general radix-N FFT, the inputs must be of size Nr.
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5.4.5 What Other Algorithms Could We Accelerate with an FFT

Accelerator?

The DCT (Discrete Cosine Transform) is one example of a function that can be computed

with an FFT, but often is not. A convolution can also be accelerated using a combination

of an FFT and an inverse FFT. We can also explore the multi-dimensional FFT, which

can be broken down into multiple single-dimensional FFTs.

Less drastic, but possibly more useful is to accelerate FFTs of different sizes than

the ones supported by the underlying accelerators. We can use the existing accelerator

to support behaviour like this using algorithms like the ones discussed above.

5.5 System Overview

FACC uses Input-Output (IO)-based program synthesis to generate an adapter that is

a drop-in replacement for the original user code, matching the output behavior for all

inputs even though the implementation is different. Given some accelerator performing

a function A and some user code performing a function U , FACC finds adapter functions

g,h such that ∀x.U(x) = g(A(h(x))), where x represents test input. Crucially, this test

for IO equivalence is invariant of the exact structure of the code, which in FFTs can

vary from tens to thousands of lines, and so can match any code which given the same

inputs produces the same outputs. Adapters are created via a generate-and-test approach,

by generating many plausible candidates, filtered first using known constraints and

heuristics, before all but one option is eliminated using fuzzing. Finally, the synthesised

adapter is presented to the user for verification.

5.5.1 A Generic Framework for Accelerator Support

Our key insight is that to support an accelerator performing function A, and use it to

accelerate diverse user code U , we must patch the difference using functions range (r),

pre-binding (b), post-binding (b′), pre-behavioral (s) and post-behavioral (s′) such that

U = if r then s◦b◦A◦b′ ◦ s′ else U

where each function provides the following behavior:

b,b′ address the data mismatch problem by mapping between accelerator variables

and user-code variables. b takes user-code inputs and produces conversions to
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complex *FFT_accel(complex *x, int N) {

// Check if valid accelerator inputs

if (power_of_two(N) && N <= 65536) {

// Bind user inputs to accelerator

int len = N;

#pragma align 64

complex_float output[len];

complex_float input[len];

#pragma end

for (int i = 0; i < len; i++) {

input[i].re = x[i].real;

input[i].im = x[i].imag;

}

// Call accelerator

accel_cfft(input , output , len);

// Bind accelerator outputs

for (int j = 0; j < N; j++) {

x[j].imag = output[j].im;

x[j].real = output[j].re;

}

// De-normalize outputs

for (int k = 0; k < N; i ++) {

x[k].imag *= N;

x[k].real *= N;

}

} else { // Not valid input

// Fallback to user code.

UserFFT(x, N);

}

}

Figure 5.3: A drop-in replacement for user code generated by FACC. The Analog

Devices FFTA used here requires that inputs are 64-byte aligned, and is out-of-place,

while the user’s code is in-place. Pre-binding is highlighted in gray, post-binding in pink,

post-behavior in green and range in orange — pre-behavior is empty in this case.
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accelerator inputs, while b′ takes the accelerator outputs and converts them to

user outputs (Section 5.7.1).

r addresses the domain mismatch problem with input range checking to determine

whether the inputs presented can be run on the accelerator. FACC does this with

a mix of static and dynamic analysis, generating the minimal possible check with

the static information available (Section 5.7.2).

s,s′ address the behavioral mismatch problem by adding or undoing accelerator

functionality to match the user code. FACC sets s to the identity function, as

many pre-behavioral FFT problems have a post-behavioral equivalent s′ which

can be used instead (Section 5.7.3).

An example output is shown in figure 5.3. In order to match the accelerator’s data

format (gray) the adapter converts the user code’s input to a different datatype — aligned

and changed to be out-of-place. After accelerator execution, the adapter restores the

in-place representation (pink). The normalization performed by the accelerator but not

the user code is undone (green). If the accelerator’s constraints on size and being a

power of two aren’t met, the user code is run instead (orange).

Generic and Domain-Specific Components The framework described above is

domain-agnostic. However, to make the synthesis problem tractable, some parts are

domain-specific. In particular, our solution to behavior mismatch relies on sketch-based

synthesis [449] and is domain-specific to FFTs. We expect our sketches to be easily

extendable to new domains. Our solutions to the data mismatch and domain mismatch

problems are general and applicable to many types of accelerator.

5.5.2 Operation

FACC uses synthesis to generate an adapter that enables drop-in accelerator use. Multi-

ple candidates are generated and tested against the user code to pick the correct one.

Figure 5.4 shows the stages of the tool:

1. An API to compile to and limitations of the hardware are provided as input.

2. Candidate detection discovers potential targets using neural classification [138],

and analyzes user code using static analysis to aid in generating a match (Sec-

tion 5.6.3).

3. Synthesis generates candidates for the r,s,s′,b,b′ functions, discarding those

made invalid via constraints and heuristics (Section 5.7).
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4. Generate and Test filters the combination of all possible matches using IO tests

to generate a drop-in replacement (Section 5.8).

5.6 Identifying Acceleratable Candidates

FACC bridges the gap between user code and accelerator behavior by generating

adapters. Before it can do that, it employs an existing tool [138] to identify candidate

acceleratable code regions. FACC then gathers information on how variables within

code regions are used to drive adapter synthesis.

5.6.1 Identifying Acceleratable Regions

FACC is a binding tool, using a neural classifier based on ProGraML [138], to detect

likely acceleratable FFT-based code.

Data We use the OJClone algorithm classification dataset introduced in Mou et al. [350]

consisting of 105 classes, each composed of different implementations of the same

task. We add FFT as an additional class, with the same FFT code snippets obtained

from Github used in the rest of the article. We restrict all classes to 20 instances for a

balanced dataset. Each instance is parsed and transformed into a data flow graph of its

LLVM instructions with ProGraML [138], which uses the instruction characteristics as

node information and dataflow and controlflow as edges. Due to the reduced size of the

dataset, we implement 10-fold cross validation, such that each train split contains 80%

of the dataset and the remaining 20% is left as holdout.

Model We implement a Graph Convolutional Neural Network with two graph con-

volutional layers followed by max-pooling and a linear layer to perform the actual

classification, using PyTorch [385] and DGL [505]. We do not perform any hyperparam-

eter search (instead, set reasonable default values), and use the Adam optimizer [269]

with weight decay as regularization. All models are trained for a maximum of 100

epochs using early stopping with a patience of 10, which led to convergence in all

experiments.

Identifying Invalid Regions No code detection tool is perfect, and so ProGraML

may misclassify algorithms. FACC evaluates all of these as potential generate-and-test

targets, and if an invalid region (i.e. one not matching the accelerator interface) is

identified, FACC will fail to generate valid bindings and leave the spuriously identified



76 Chapter 5. Fourier Transform Accelerators

Figure 5.4: FACC takes a specification of an accelerator, and produces an equivalent

version of the original program with acceleration. It uses neural embeddings to find

plausible candidates for replacement, then creates a set of possible input and output

bindings, filtered by constraints and heuristics. It then tries to patch the functionality

of the accelerator to match that of the user code via behavioral synthesis. Finally,

FACC generates all possible combinations of these mappings, and tests them for IO

equivalence with the user code.
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region unchanged. In this sense, the neural classifier is used to cut down the search

space: rather than considering all instruction sequences of all programs as possible

targets, it only tries to match those labelled by the neural classifier2.

Code Mismatch Identifying code regions is only the first part of overcoming code

mismatch. The second is that code itself is highly diverse; our evaluation set ranges

from 12 lines to over 2000 for similar behavior. In Section 5.8, input-output (IO) testing

is used to test whether the adapter synthesized in Section 5.7 matches the behavior

of the identified code. IO-testing allows us to ignore the underlying code structure

eliminating code mismatch by focusing only on the interface.

5.6.2 Identifying Input/Output Variables

FACC relies on existing liveness analysis to determine which variables are output

variables and which are input variables. This allows for extraction of functions with

side-effects, or extraction of sub-function regions of code. We use variable range

analyses [214, 294, 323], points-to analyses [67, 213] and value-profiling [92] to reduce

compilation time.

5.6.3 Type Inference

FACC expands types in two ways: by inferring the lengths of arrays, and by inferring

more structured types over base types where they may be required by the accelerator.

This step takes a single type from the user code as input, and produces a number

of plausible extended types to use for the remainder of the synthesis as an output. A

pseudo-code type augmentation algorithm is shown in Algorithm 4.

Length Inference Arguments passed as arrays to functions often have a variable

number of values. For example, a type signature that takes a single integer as argument

can only take a single input, but a function that takes an array can take N inputs, where

N is the length of the array. In languages like C, array lengths are implicit, not directly

specified by the programmer. Although best-effort compiler passes can assist with

providing this information [321], FACC is able to infer array lengths using a generate-

and-test approach. Each array is assigned a number of possible length parameters, and

the correct one is determined during testing.

This testing is done by selecting random values that are assumed to correspond to

2Code is available at [25]
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Algorithm 4 Type Augmentation Algorithm. Takes a type as input, and produces all

plausible types that can replace it. IsCompatible is a function encoding the heuristics of

the type search, and marks different types of integer (e.g. int32, int64) as compatible,

but types such as bool and float32 incompatible.
procedure AUGMENTTYPES(Typein)

Types = /0

if IsArray(Typein) then ▷ Infer Lengths

for len ∈ Possible Length Variables do
Add Typein#len to Types

end for
else

Add Typein to Types ▷ Not Array so No Length

end if
for T ∈ All Possible Types do ▷ Infer Structure

for T ′ ∈ Types do
if IsCompatible(T , T ′) then

Add T to Types

end if
end for

end for
return Types

end procedure



5.7. Synthesis 79

Figure 5.5: Type constraints reject two impossible bindings. The green boxes (top) are

user-code variables. The yellow box (bottom) is an accelerator variable, and each arrow

marks a mapping that was considered.

array length. When the wrong length parameter is picked, it will be a different value

to the correct array length parameter3. If the value is too small, the array will not be

accessed to its full extent, so some of it will remain unchanged. If the value is too large,

an access to the array will segfault, triggering the address sanitizer, which we enable.

Structure Inference API designers are often encouraged to present APIs with the

most syntactic information possible [218]. The user code faces no such restrictions. As

a result, FACC needs to infer more syntactic information over base types. All plausible

(dependent on the types in the accelerator API) inferred types are considered, and

filtered via generate-and-test (see Algorithm 4).

5.7 Synthesis

Here we describe the core accelerator support problem. We address three key mis-

matches: data mismatch using binding synthesis, domain mismatch using range-check

generation, and behavioral mismatch using behavioral synthesis.

5.7.1 Data Mismatch: Binding Synthesis

In binding synthesis, we take a set of input variables and a set of output variables from

the user code. We generate every mapping that Type Inference (section 5.6.3) does not

allow us to eliminate either via constraint or heuristic, between these variables and the

accelerator API variables, to be evaluated using generate-and-test. Figures 5.5 and 5.6

show an example creating possible bindings for a single variable while rejecting those

statically known to be impossible. Figure 5.7 shows a full candidate mapping.

3This is a requirement of the testing inputs: that every pair of parameters must differ in value in at
least one example.
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Figure 5.6: A non-trivial conversion (2n) is considered, but ruled out due to range

heuristics. The green boxes (top) are user-code variables, along with their range

analyses. The yellow box (bottom) is an accelerator variable, along with the input

constraints specified for that variable. Each arrow represents a mapping that was

considered.

Figure 5.7: An example solution to the binding problem. To determine the correct

binding, FACC tries all plausible bindings that cannot be statically determined impossible.

API information, like specifying the length of an array, is provided by the Accelerator

Specification, which specifies information about the API.
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5.7.1.1 Non-trivial Conversions

The vast majority of accelerator parameters can be copied directly from parameters

existing in user code. However, frequently, the same information is encoded in indi-

rectly compatible ways. A typical example is using N to directly encode array length,

compared to using 2N to represent array length. Another typical example is the many

different ways that a flag can be represented in C: 0 and 1, -1 and 1, 1 and 0, etc. FACC

generates conversions allowing compatibility between implementations with different

flag values. Variable-range information is used to vastly reduce the search-space of

conversions.

5.7.1.2 Constraints

FACC applies constraints to generated bindings, limiting the search of impossible

matches.

Type Conversions If a variable x is to be assigned to some variable y, then there must

be a known conversion between the two types, including over distinct representations

of complex numbers.

Array Assignments If any two array variables share a length variable, then the arrays

that they are assigned to must also share a length variable — and those two length

variables must be assigned to each other.

5.7.1.3 Heuristics

FACC also applies a number of heuristics to the bindings generated.

Range Heuristics are applied to determine whether the accelerator is likely to be

useful. For example, if a variable x may take any one of 100 values (as determined

by a variable range analysis), and is assigned to an accelerator API variable y, which

only supports one value, the odds of successful acceleration are extremely small, so the

binding is not considered likely (figure 5.6).

Single-Read Heuristics FACC assumes that user-code variables should only be read

from once when assigning to accelerator variables. This heuristic greatly reduces

the synthesis space by assuming a lack of unneeded redundancy in the programmer’s

original code.
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5.7.2 Domain Mismatch: Range-Check Generation

Fixed function accelerators are often extremely specialized — significant performance

is possible by making the common case fast. However, legacy C code is more general

in scope.

It is important that offloaded code only operates within the valid range of the

accelerator. To ensure this, we synthesize range checks, which offload to the accelerator

if the inputs are valid, and fall back to the user code otherwise.

We use two sets to determine the overlap region of an accelerator and user source

code.

Accelerator Specification The accelerator API is expected to specify what set of

inputs the API functions on. These inputs are used both to direct testing of compatibility,

and to generate input-range checks.

User-Code Analysis Inter-procedural range analysis complements the accelerator

specification by allowing FACC to reduce the quantity of input checking to the intersec-

tion of the accelerator’s range and the user code’s range, rather than all possible FFT

inputs.

5.7.3 Behavior Mismatch: Behavioral Synthesis

Behavioral synthesis introduces adapters that make accelerators transparently compat-

ible with more user code. For example, suppose we have a user FFT function that

does not normalize the results, even though the FFT accelerator available does. We use

post-behavioral synthesis to generate de-normalizing code and enable accelerator use

while allowing the programmer to use de-normalized results.

We implement domain-specific post-behavioral synthesis program using sketch-

based synthesis [449]. For FFT functions, there are a small number of behaviors that

are often omitted: normalization/denormalization and bit-reversal.

We provide a number of sketches with holes, and a procedure to fill the holes and

produce all options. No infinite sketches are allowed — all sketches must be finite once

holes are filled, and there must be a finite number of ways to fill each hole. Generated

candidates are tested against user code.
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5.8 Generate and Test

FACC is an Input-Ouput (IO)-based synthesis tool. The candidate adapters generated

by synthesis are compared to the original code using fuzzing to determine equivalence.

The working adapter is output in the original source language (figure 5.3) and used as a

drop-in replacement in the user’s code.

5.8.1 Random-Input Generation

Tests are randomly generated with a bias towards smaller examples that run more quickly.

Examples are constrained to be within the computed range analyses of user code, and

the valid-input range of the accelerator. As discussed in Section 5.6.3, variable-length

arrays have inferred length variables and so order of generation is important. We use a

topology sort to ensure that that variables are assigned in a valid order. In addition to

IO-equivalence, AddressSanitizer [427] is used to detect arrays with incorrect length

parameters assigned by detecting out-of-bounds accesses.

5.8.2 Challenges with Bounded Model Checking

Bounded model checking is an approach where a theorem-proving tool shows that a

program cannot enter a specified error state, or provides a counter example. Given that

the accelerators we support have bounded input sizes and for other sizes we call the

original code, bounded model checking is sufficient. However, FFT algorithms are

reliant on floating-point analyses and fall into a significantly harder category of model

checking. The input to a floating-point model checker can be phrased as:

f l o a t *u = u s e r f f t ( . . . ) ;

f l o a t * a = a c c e l f f t ( . . . ) ;

f l o a t e = e r r o r ( u , a ) ;

a s s e r t ( e < t h r e s h o l d ) ;

Despite the portability of IEEE 754 floating point [20], it is designed for small-

step operations, rather than full algorithms such as FFTs. Floating-point tools such

as XSat [183] or Klee [91] can accept bounded model checking problems that could

theoretically prove equivalence between functions within accuracy bounds. Existing

techniques fall far short from being computationally efficient enough to prove the

correctness of complex floating-point functions. Beyond this, a definition of the error

function is challenging in the case of floating-point arrays as simple definitions like
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mean-squared error tend to have deficiencies around very large or very small numbers,

and even more so in the case of FFTs, which have inputs (exact sine-waves) for which

they are unstable.

FACC requires programmer sign-off due to imprecision of hardware and software

implementations, as well as the IO testing mechanism. Instead of providing these

guarantees, the IO testing provides high confidence that the accelerator is equal to the

original code (under various assumptions about the algorithms, which are discussed in

more detail in Section 8.2).

5.8.3 Numerical Characteristics

Different implementation strategies, and by extension different accelerators, have differ-

ent numerical characteristics. These numerical characteristics are typically part of the

accelerator’s documentation. Internally, FACC relies on mean-squared error (despite

the challenges with it discussed above), and the tolerable mean-squared error (MSE)

is a controllable parameter. This enables users to prohibit certain types of hardware

accelerator that would frequently be outside the error they are willing to accept. Further,

FACC enables testing with particular examples that are particularly relevant to the

programmer, ensuring that the accelerator performs within error in those cases.

In general, it is left to the programmer to determine whether the numeric charac-

teristics of a particular accelerator are suitable for the task they have at hand: and the

support that FACC provides makes these assurances easier.

5.9 Setup

We search GitHub for “FFT”, and restrict the results to C. Of the first 100 results, we

have identified 24 distinct complex floating-point FFT implementations after excluding

buggy code4, code with missing dependencies, clones and implementations in different

languages. We have added the FFT in MiBench [209]. We have placed these 25

implementations into a benchmark suite, and used FACC to compile from each. Where

required, we have constructed a value-profiling environment, to enable FACC to compile

the benchmark to the accelerator.

Implementation FACC is implemented using OCaml, with behavioral synthesis

4Buggy should be interpreted as “the authors were unable to make the code produce correct results to
the Fourier transformation.”
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Table 5.1: Features of each benchmark used, representative of a wide range of imple-

mentation styles, from highly-optimized several-thousand line implementations to short,

simple Discrete Fourier Transforms (DFTs).

Project
Lines of

Code

Lengths

Supported
Algorithm Twiddle Factors

Imaginary

Numbers

Pointer

Arithmetic
Loop Structure Optimizations

0 83 Only 64 Radix-2 FFT Constant Custom No While-True-Break Minimal

1 278
Powers of 2

(≤ 256)
Radix-2 FFT Constant Custom No Do-While/For Minimal

2 65 Powers of 2 Radix-2 FFT Computed in FFT Custom No For/Recursive Minimal

3 107 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal

4 934 All Mixed-Radix FFT Computed in FFT Custom No For/Recursive Unrolling

5 2159 All Mixed-Radix FFT Pre-Computed Custom Yes For Vectorized/Unrolled

6 77 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal

7 237 Powers of 2 Radix-2 FFT Pre-Computed Custom Yes For Minimal

8 101 Powers of 2 Radix-2 FFT (DIF) Computed in FFT C99 Complex No For Minimal

9 1627 All Mixed-Radix FFT Pre-Computed Custom Yes For/While/Recursive Unrolling

10 75 Powers of 2 Radix-2 FFT Pre-Computed Custom No For Minimal

11 538 All Mixed-Radix FFT Pre-Computed Custom Yes Do-While/For Memoization

12 367 All Mixed-Radix + Bluestein Computed in FFT Custom No For/Recursive Unrolling

13 101 Powers of 2 Radix-2 FFT (DIT) Computed in FFT C99 Complex No For Minimal

14 314 Powers of 2 Radix-2 FFT Computed in FFT None No For Minimal

15 215 All Recursive FFT Computed in FFT C99 Complex No Recursive Minimal

16 20 All DFT Unneeded C99 Complex No For None

17 12 All DFT Unneeded C99 Complex No For None
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Figure 5.8: FACC success and failure classification.
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Figure 5.9: Performance of different strategies: constraint matching, neural embeddings

and FACC.
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libraries implemented in C. FACC currently has a C backend which is compatible with

toolchains for the various backend targets. In total our implementation is 13,000 lines

of OCaml, with 1,000 lines for range check generation, 1,000 lines for behavioural

synthesis, 3,000 lines for binding, and 4,000 lines for backend-specific generation and

the remaining 4,000 used for various utilities. All compiler and benchmark code is

available at [24].

Experimental Setup Codes were placed in a benchmark suite that tests them on inputs

that could be accelerated by the accelerator in question. We evaluate on three platforms:

FFTW: A desktop environment running Windows Subsystem for Linux and using

an Intel i9-10900X processor and the FFTW optimized library. Code is available at [24].

ADSP board (SC589/FFTA): A multicore embedded environment using the Analog

Devices ADSP-SC589 Development board with an Arm Cortex A5 as a primary core,

an SC589 SHARC DSP core and an FFTA Fourier transform hardware accelerator.

Code is available at [26].

NXP Board (Powerquad): A single core embedded environment using the NXP

LPC55S69 Development board with an Arm M33 as a primary core and an NXP

PowerQuad accelerator capable of accelerating Fourier transforms. Code is available

at [28].

Competitive Approaches We evaluate IDL [191], an existing constraint based ap-

proach to identifying code sections for acceleration. We evaluate our ProGraML-based

classifier’s [138] speedup by offloading FFTs to an SC589 DSP core. FFTs can be

offloaded to the SC589 DSP core simply by identifying them, but the semantic informa-

tion required to offload to the FFTA is not inferred. Rather, we use ProGraML as a hint

that the code is likely to perform better on the DSP than the CPU.

5.10 Results

We evaluate FACC along several dimensions, comparing against success rates of IDL

and ProGraML (Section 5.10.2), performance of IDL and ProGraML (Section 5.10.3),

performance across multiple platforms (Section 5.10.4) and properties of the compila-

tion (Section 5.10.5).
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5.10.1 Which Benchmarks Does FACC Support?

FACC compiles 18 of the 25 implementations as shown in Figure 5.8. Table 5.1 shows a

summary of the code features used in the projects FACC is able to compile. We can see

that implementations vary both at the level of functionality they support, with different

implementations supporting different lengths of input, and in the way they implement

the Fourier transform. Approaches vary between 12 and 2,159 lines of code, using

iterative and recursive approaches. A number of implementations unroll loops and

base cases by hand to achieve better performance, while others introduce memoization

between calls and others still use hand-vectorized instructions. It is very common to

use custom-defined complex types, rather than the standard C99 type.

Figure 5.8 shows why FACC cannot compile some cases. Printfs during execution

results in observably different behavior than can be supported on an accelerator that does

not print to stdout. Void* pointers and Integer FFTs both require more implementation

work to support the appropriate type conversions required. Support for nested memory

structures requires implementation of support for nested calls to malloc. The features to

support these are work in progress.
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Figure 5.10: Comparing offloading techniques between on the Analog Devices ADSP-

SC589 Development board. Inputs of size 1024 are used unless otherwise noted. An

Arm Cortex-A5 is the master core, and can offload either to the SC-589 DSP or to

the FFTA accelerator. A neural embedding is used to offload to the DSP core and

achieves geometric mean speedup of 3.5x. FACC offloads to the FFTA, and achieves

corresponding speedup of 27x.
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5.10.2 Which Benchmarks Do IDL and ProGraML Support?

Figure 5.9 shows the performance of three different compilation techniques on our

benchmark suite.

IDL For IDL [191], we design a pattern for project 0 (in Table 5.1). We can see

that IDL can compile the single benchmark we hand-crafted a pattern for, but cannot

generalize. Figure 5.12 shows why: from our workload set, no pattern becomes similar

enough to any other past 50 lines, and most diverge much more quickly. While simple

function prologue snippets are sometimes similar enough to allow us to match them

between functions for a few lines, the level of code mismatch in the core FFT algorithm

makes this strategy ineffective. Even if we charitably try to match the two simplest

codes, 16 and 17 at 20 and 12 lines respectively, we immediately fail; they use different

library functions for complex arithmetic.

ProGraML By contrast, the modified ProGraML [138] classifier is effective at

detecting FFTs: Figure 5.11 shows a cross validation. Top-1 refers to classifying a code

region solely by the highest predicted probability class. Top-3 refers to considering

those 3 classes with the highest probability. The FFT top-3 recall reaches 100% with as

few as 11 examples. Using top-3, we also find precision converges rapidly to 1. This

means FACC will try binding on all code regions labelled FFT by Top-3, discarding

those where there is no legal binding, to avoid false-positive code outputs — it is better

to have a classifier that identifies too many regions than too few regions.

Although we use a top-3 scheme, a top-1 scheme for FFTs provides a different

performance point with an F1 score of 0.8. Such classification schemes can be tuned to

obtain suitable performance/coverage characteristic for the compute power available.

We also show the overall performance for predicting all classes - not just FFT. We

observe that with around 8 examples per class, top-3 accuracy is consistently above 50%.

Overall, the model does not overfit to the train split, and reaches useful performance

with relatively few examples. This is due to the effectiveness of the ProGraML represen-

tation, the convolutional graph inductive bias, and the class separability of the dataset,

especially in the case of FFT, whose data-flow graph shows clearly distinguishable

patterns. Generally, we can see that neural embeddings are effective at detecting FFTs,

and also have applicability for similar acceleration-identification tasks in other domains.
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Figure 5.11: Cross-validation accuracy (mean and standard deviation) of our ProGraML-

based neural classifier in terms of the number examples per class when trained using a

reduced version of the OJClone dataset with FFT examples injected.
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Figure 5.12: How the number of patterns matched changes with the length of the IDL

pattern used. IDL patterns to match entire FFTs are thousands of lines long and do not

generalize. By 50 lines we have only a single remaining match and still only cover the

prologue of a single FFT function.
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Figure 5.13: Relative performance for different FFT implementations on GitHub, com-

paring original software and FACC’s generated accelerator call for FFTs of length 1024.

FFTA results from the ADSP board are compared to software running on the Arm

Cortex-A5. PowerQuad results from the NXP board are compared to software on an Arm

Cortex-M33. FFTW results are compared to software on an i9-10900X desktop CPU.

Geometric mean speedup is 9x for FFTW, 17x for the PowerQuad and 27x for the FFTA.

5.10.3 How Do FACC’s Adapters Perform?

Figure 5.10 shows the performance of FACC on the ADSP board compared with the

ProGraML Neural Classifier and IDL. FACC takes advantage of the algorithm-specific

accelerator, achieving geometric mean speedups of 27x. ProGraML cannot exploit the

accelerator since it is just a classifier, but achieves a 3.5x speedup by moving FFT code

to the DSP. Interestingly, in one case the DSP is actually faster than the FFTA due to

the small data size. IDL only detects one acceleration opportunity, achieving the same

performance as FACC on benchmark 0 only.

5.10.4 How Do FACC’s Adapters Perform on Different Platforms?

Figure 5.13 shows the performance improvement obtained by each implementation on

the ADSP board, the NXP board and the FFTW optimized software library. Relative

performance is dictated by the performance of the accelerator and the performance of

the compiler used to compile the original implementation.

These differences can be seen on benchmark 8, where the original implementation

is poorly optimized for the hardware on the Arm Cortex-M33, but runs much better

on the Arm Cortex-A5 and Intel i9-10900X. We can also see significant differences

between styles of implementations, with projects 16 and 17, which are DFTs yielding

particularly large speedups (10,000x on the PowerQuad). The geometric mean speedup
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Figure 5.14: Speedup for accelerating benchmarks 1–7 on different sizes of input.

Different accelerators and benchmarks have different overlap ranges, but in general, as

problem size increases relative speedup increases.

for each accelerator relative to their baseline is 9x for FFTW, 17x for the PowerQuad

and 27x for the FFTA.

Performance for varying sizes of input for projects 1–7 is shown in Figure 5.14.

Speedups increase with data size as expected for an offloading-based accelerator

model [48]. Speedups are possible using optimized software libraries, although the

opportunities are more limited and may require profiling to determine viability.

5.10.5 Compilation Time

Figure 5.15 shows the compilation time taken by FACC for each benchmark. Results

are gathered on a 6 core Intel i7-8700K CPU running at 3.70 GHz with 32 GB. We

anticipate a number of simple parallelism-based optimizations could significantly reduce

compilation time.

Figure 5.16 shows how the number of binding examples generated for each target.

FFTW exposes more functionality in its interface, so requires more examples to be

generated. FACC uses the same interface to access the ADSP board’s FFTA and the

NXP board’s PowerQuad, so the number of examples is identical. The difference in

compile time is due to different supported input lengths: the PowerQuad supports

smaller input sizes, which are faster to test. None of these programs result in excessively

large search spaces. If the search space were to grow, standard synthesis pruning

techniques could be applied [84].
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Figure 5.15: CDF of the compilation times taken by FACC for each benchmark. One

distribution per target.
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Figure 5.16: CDF of the number of candidates generated by FACC for each benchmark.

One distribution per target. FFTA and PowerQuad overlap due to similarity of restrictions

exposed via API from the hardware, unlike the software FFTW.
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5.11 Conclusion

This chapter describes FACC, a tool for compiling user-code to Fourier-transform

accelerators and optimized libraries. FACC uses IO matching and program synthesis to

address the problems of code, data, domain and behavioral mismatch, allowing for easy

accelerator integration into existing source code. Using FACC and real-world optimized

libraries and hardware accelerators, we are able to achieve speedups averaging 9x for

FFTW, 17x for the PowerQuad and 27x for the Analog Devices FFTA.

While FACC focusses on matching user code to acceleration APIs, it can also

be used to match optimized libraries to emerging hardware e.g matching FFTW to

FFTA. This would allow users, who have already restructured their application to use

libraries, to continue to benefit from hardware evolution, while automatically handling

the unusual constraints that fixed-function hardware poses.

Although, this chapter focusses on Fourier-transforms, this approach is readily

applicable to other fixed-function accelerators. Fixed-function need not be the enemy

of programmability and automatic targeting. Rather, we can automatically rearchitect

software to build adapters that bend the accelerator to the user’s will rather than vice

versa.

FACC demonstrates a solution to the acceleration equation introduced in Chapter 2,

using the generated adaptors to find solutions for g,h that enable the accelerator to be

used across a wide diversity of code and algorithms.





Chapter 6

Rewriting for Domain-Specific CGRAs

Coarse-grained reconfigurable arrays (CGRAs) are domain-specific devices promising

both the flexibility of FPGAs and the performance of ASICs. However, with restricted

domains comes a danger: designing chips that cannot accelerate enough current and

future software to justify the hardware cost.

We introduce FlexC, the first flexible CGRA compiler, which allows CGRAs to

be adapted to operations they do not natively support. FlexC uses dataflow rewriting,

replacing unsupported regions of code with equivalent operations that are supported

by the CGRA. We use equality saturation, a technique enabling efficient exploration

of a large space of rewrite rules, to effectively search through the program-space

for supported programs. FlexC sets the groundwork for future applications of the

acceleration equation to accelerators like CGRAs: rather than dealing with finding f

and g directly, this work focuses on getting a program rewritten so it can run.

We applied FlexC to over 2,000 loop kernels and demonstrate a 2.2× increase in

the number of loop kernels accelerated leading to 3× speedup on kernels that would

otherwise be unsupported.

6.1 Introduction

Specialized hardware has demonstrated truly significant performance gains over general-

purpose processors [184], yet despite its potential [29, 474], it faces real challenges to

wider adoption [143]. The fundamental reason is that programming such accelerators is

difficult [134], often requiring modification of the underlying algorithms [143]. It is user

reluctance to do this [434] that brings frequency-of-use [88, 208, 371] and cost [264]

concerns.

95



96 Chapter 6. Rewriting for Domain-Specific CGRAs

Heterogeneous CGRAs [314] (Coarse-Grained Reconfigurable Architectures) are

a class of architectures that promise to solve this problem [371]. CGRAs can achieve

near-ASIC level performance [306] and provide enough flexibility to run a wider class

of code [371]. These heterogeneous CGRAs use processing elements specialized to

various degrees [42]. While this makes them more efficient [66, 164, 486], specializing

hardware introduces limitations on the software being compiled to it [224, 530, 531].

So despite aiming at flexibility, such CGRAs are hard to use beyond the scope they

were designed for. They age poorly as software evolves [131] and falls out of the scope

of the narrowly designed hardware: the domain-restriction problem.

This problem is highlighted by existing state-of-the-art CGRA compilers such as

OpenCGRA [468] which frequently fail due to hardware specialization. If code contains

an operation that is unsupported by a particular hardware, existing techniques simply

cannot accelerate it, restricting CGRAs to a narrow software domain. This domain-

restriction poses a significant challenge and is not well understood [522]. What we need

is a new approach that automatically transforms user programs to fit heterogeneous

CGRAs expanding the domain of supported software without user effort.

We introduce FlexC, the first flexible CGRA compiler that addresses the domain-

restriction problem. FlexC uses a set of rewrite rules that translate operations that

are unsupported into those that are supported. This compilation strategy requires a

non-trivial application of rewrite rules in an attempt to find a valid transformation to

an expression the CGRA can support, leading to a large search space. To explore this

space efficiently, FlexC uses equality saturation [472,524]. While a powerful technique,

CGRA compilation presents a number of unique challenges to equality saturation

including, crucially, transformation encoding and cost modeling. Overcoming these

challenges allows us to simultaneously represent many equivalent programs, enabling

efficient large space exploration.

We extract over 2,000 loop kernels from projects in domains including multimedia

code and compression libraries and demonstrate that FlexC increases the code that

existing proposed accelerators can support by a factor of 2.2× over existing compilers.

We show that rewriting loops to run on CGRAs produces speedups averaging 3×, and

that FlexC is applicable to a wide range of possible CGRA designs.

In summary, we contribute:

• FlexC, the first flexible CGRA toolchain designed to support operationally-

specialized CGRAs.
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• Four sets of rewrite rules for the purpose of rewrite exploration, which enables

effective translation of code to run on CGRAs designed for different purposes.

• The first large-scale benchmark suite for CGRA compilers, with more than 2,000

loops from five different projects1.

• An evaluation of these tools, demonstrating the importance of non-linear ex-

ploration techniques like equality saturation in finding working compilation

sequences for real-world heterogeneous CGRAs.

6.1.1 Connection to the Accelerator Equation

This chapter sets the groundwork for more complete applications of the accelerator

application to reconfigurable accelerators. It does not focus on generating f and g, but

rather focuses on providing a rewriting system to find the best function A when there

are many configurations to choose from. With this groundwork completed, future work

can explore the generation of f and g in the cases of reconfigurable accelerators.

6.2 Motivation

CGRAs promise near-ASIC performance while retaining the reconfigurability of the

interconnect of a fixed set of processing elements [152]. In this chapter, we demonstrate

with FlexC that compiler technology can be used to overcome the domain-restriction

problem of CGRAs and dramatically increase the amount of software that can be

accelerated.

6.2.1 Coarse-Grained Reconfigurable Arrays

Coarse-Grained Reconfigurable Arrays (CGRAs) are a hardware architecture with a

fixed number of processing elements (PEs) and a reconfigurable interconnect between

those PEs. Traditional CGRAs have been homogeneous, with PEs supporting all op-

erations arranged in a grid [339]. More recently, heterogeneous CGRAs have been

a significant research topic, with specialized PEs and a runtime-reconfigurable inter-

connect [66]. Figure 6.1 shows some example CGRAs. CGRA architectures exploit

loop-level parallelism in two ways: within a loop by scheduling operations in parallel,

and between loop iterations via loop pipelining [339].
1Available at https://github.com/j-c-w/LoopBenchmarks

https://github.com/j-c-w/LoopBenchmarks
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While CGRAs are less flexible than more fine-grained reconfigurable architectures

such as FPGAs, they offer significant flexibility benefits over ASIC accelerators — and

can often run unmodified C code [468]. Compared to FPGAs, they offer significantly

faster reconfiguration times [181] and better power efficiency, but their specialized PEs

support a narrower set of software, often restricted to a specific domain.

6.2.1.1 Heterogeneous CGRAs

Heterogeneous CGRAs promise to achieve better power efficiency and lower area

utilization than their heterogeneous counterparts [66]. The innovations in these het-

erogeneous CGRAs have been critical in delivering the latest generation of low-power

CGRAs, such as Snafu [192]. However, introducing this heterogeneity introduces

significant compilation challenges.

6.2.2 The Software Domain-Restriction Problem

The nature of hardware specialization is that some programs are excluded. This can

greatly increase the performance of the accelerator, and decrease the resources required

— both to design it and to run it.

However, the cost of the specialized hardware has to be justified by frequent enough

use [371] and enough demand for software benefiting from the hardware accelera-

tion [264]. Software also evolves in various ways [324], and small changes to code

can render narrow and restrictive accelerators useless, as shown in Figure 6.2. Here,

the user has deleted the addition operator and replaced it with a subtract. If the CGRA

does not support subtraction, then the code can no longer be executed on the CGRA

accelerator shown in Figure 6.3.

We coin this the domain-restriction problem, where specialized hardware faces the

danger of supporting too narrow a domain, greatly restricting the supported software.

This results in a hesitation to adopt specialized hardware that could otherwise greatly

increase performance and efficiency [264].

6.2.3 Overcoming the Domain-Restriction Problem with FlexC

To overcome the domain-restriction problem, we need to broaden the software supported

by specialized hardware, by transforming software that uses operations not natively

supported by the hardware.
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Figure 6.1: Homogeneous CGRAs, such as ADRES [339], connect elements uniformly,

and have the same functional units within each element. Heterogeneous CGRAs, such

as REVAMP [66], specialize both the computation units and datapaths, to remove wiring

and logic when it is unneeded for a proposed target use case. This increases efficiency,

but limits applicability when use cases change.
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f o r ( . . . )

– x [ i ] = x [ i ] + y ;

+ x [ i ] = x [ i ] − y ;

Figure 6.2: An example bug-fix. If the accelerator does not support - operations, then

the post-bug-fix loop cannot be accelerated. (For example the toy CGRA shown in

Figure 6.3.)

+

+

*
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1 z

Figure 6.3: Example of a domain-specific CGRA supporting expressions like x + ((y

+ 1) * z) [66]. To support the expression a - b - 1, we can apply rewrite rules to

transform it to the equivalent a + ((b + 1) * -1).

As a simple example, Figure 6.3 shows a CGRA designed to accelerate the expres-

sion x + ((y + 1) * z). It is incapable of natively accelerating the expression a - b - 1,

as the - operation is not supported. By rewriting a - b - 1 as a + ((b + 1) * -1), the

CGRA can support this new expression. Despite replacing two operators with three, and

thus making it more complex, supporting this expression on a CGRA more than makes

up for this in terms of power and performance. This is because on general-purpose

processors, stages such as instruction fetch and decode typically require an order of

magnitude more power than compute [142].

FlexC automatically adapts the software, replacing unsupported operations via

dataflow rewriting. FlexC uses equality saturation, a recently popularized rewrite

technique, that overcomes challenges with traditional canonicalization and greedy

techniques. To motivate our choice of rewrite technique, we describe the limitations of

traditional compiler techniques used for rewriting, and we discuss the considerations

faced when applying equality saturation in this new domain.
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Figure 6.4: Applying rewrite rules with a greedy rewriter results in dead-ends that equality

saturation avoids.
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6.2.3.1 The Limits of Canonicalization

Compiler frameworks such as LLVM, GCC and MLIR, use canonicalization passes

to transform IRs into a predictable and efficient form that compiler transformations

can assume simplifying their development. Canonicalization is implemented with

a set of simple rewrite rules that are applied greedily. To make canonicalization

feasible, rules that would allow exploring more optimization opportunities such as

commutativity (flipping the order of operands) are prohibited: these do not work

towards the goal of transforming the IR into a canonical form. Further, in heterogeneous

CGRAs, canonicalizing does not solve the domain-restriction problem, as the rewritten

expressions may not be supported.

6.2.3.2 The Limits of Greedy Dataflow Rewriting

Greedy rewriting can also be used more broadly beyond canonicalization. Figure 6.4

highlights three problems that can cause greedy rewriters to get stuck. In Figure 6.4(a),

greedily applying the first available rule to expression e1 leads to the resulting expression

e10 which is less performant than the optimal expression e4. In Figure 6.4(b), greedy

rewriting leads to a cycle between e1 to e3, never reaching the solution e4. Finally, in

Figure 6.4(c), the greedy rewriter gets stuck in a local minimum due to the cost of

applying further local rewrites.

In summary, greedy rewriting works well for simple rewrite problems but quickly

faces limitations. We, therefore, explore the use of a more complex rewrite technique.

Our results confirm that equality saturation enables FlexC to compile more software to

the CGRA.

6.2.3.3 Benefits of Equality Saturation for CGRAs

Traditional rewrite techniques must decide on an order in which to apply the rules. In

contrast, equality saturation [472] can apply rewrite rules all at once using an e-graph

data structure.

This is important when compiling to domain-specific hardware, as the order in

which rules should be applied differs between hardware targets. Figure 6.5 shows an

example from the FFMpeg [7] library, part of our benchmark suite. Equality saturation

is used to rewrite the top program, which does not fit on the CCA-like accelerator

adapted from [516] because it contains multiplications and subtractions. Equality

saturation avoids the cost-trap problem by not committing to specific rewrites too early,
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for (i = 0; i < h + 5; i++)

    {

      tmp[0] = (src[0] + src[1]) * 20 - (src[-1] + src[2]) * 5 + (src[-2] + src[3]) + pad;

      tmp[1] = (src[1] + src[2]) * 20 -  (src[0] + src[3]) * 5 + (src[-1] + src[4]) + pad;

      tmp += tmpStride;

      src += srcStride;

    }

for (i = 0; i < h + 5; i++)

    {

      a = src[0] + src[1];

      b = src[-1] + src[2];

      c = src[1] + src[2];

      d = src[0] + src[3];

      tmp[0] = (a << 4 + a << 2) + -1 ^ (b << 2 + b) + 1 + (src[-2] + src[3]) + pad;

      tmp[1] = (c << 4 + c << 2) + -1 ^ (d << 2 + d) + 1 + (src[-1] + src[4]) + pad;

      tmp += tmpStride;

      src += srcStride;

    }

LU LU

(OpenCGRA Loop

  Nodes)

Rewrite

Original Code

Has: * and -

Unsupported by CGRA

FlexC Rewriter:

Has: Logic and +

Supported by CGRA

CCA-like Accelerator Adapted from DSAGen

LULULU

LU LULULULU

Cmp

Cmp

Cmp

+,br

(No Arithmetic: Logic Unit Only)

Figure 6.5: An example from the FFMpeg [7] library, which is part of our benchmark suite.

FlexC rewrites the loop to run within the context of the CCA-like accelerator adapted from

DSAGen [516]. Equality saturation is critical in this example to enable the conversion of

a - b into a + -1 ˆ b + 1, as the rewriter must traverse the a + (-b) state, which

is no better than a - b. This is an example of the cost-trap problem (Figure 6.4c).

and the looping problem because rewrites grow a set of equivalent programs instead of

transitioning between programs.

6.2.3.4 Challenges posed by CGRAs for Equality Saturation

Equality saturation is used in many compiler optimization problems [359,488,509,552].

However, it has not been studied in the context of CGRAs, which pose a number of key

challenges we tackle in this work. These include:

• What IR encoding to use? (Section 6.4)

• What cost model to use? (Section 6.4.1)

• When can we avoid the costs of equality saturation altogether? (Section 6.4.4)

• Which rewrite rules to use? (Section 6.5)

Effectively resolving these challenges determines the efficacy of any compiler solving

the domain-restriction problem. We evaluate our decisions in Section 6.7.

6.3 System Overview

FlexC is implemented in OpenCGRA [468], a CGRA compiler intended to target

heterogeneous CGRAs. Given an input DFG, FlexC explores sequences of rewrites that

enable the DFG to be compiled to a specialized architecture that does not support all

the operations within the code. After rewriting the DFG, FlexC uses OpenCGRA to
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Figure 6.6: FlexC system overview. A Data-Flow Graph (DFG), set of Rewrite Rules

and a CGRA specification are input. FlexC first applies a hybrid-rewrite strategy and

selects the most suitable candidate to pass to the CGRA compiler, which generates the

configuration.

target the hardware.

Figure 6.6 shows how FlexC compiles software for a CGRA. In a traditional CGRA

compiler, a Data-Flow Graph (DFG) is used to generate a CGRA configuration. If the

DFG does not match the target CGRA precisely, the code generation fails.

FlexC adds a rewrite system, using a set of rewrite rules dictated by the context and

a cost function based on the target CGRA. After selecting the optimal graph according

to the cost model (the most likely DFG to be compilable to the underlying CGRA),

FlexC uses a traditional CGRA compiler to generate the final mapping.

FlexC can be applied in conjunction with any CGRA compiler — provided that

appropriate rulesets using the right instructions can be supplied. We provide FlexC

under a liberal license to allow this2.

6.4 Graph Rewriting

FlexC translates programs to domain-specific CGRAs by generating a large set of

equivalent code loops, in the aim of finding a suitable match should one exist. We first

formally define our inputs: a data flow graph representing a loop, a set of rewrite rules

to transform the program, and a CGRA specification to target, before describing our

2Available at https://github.com/j-c-w/LoopBenchmarks

https://github.com/j-c-w/LoopBenchmarks
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rewriting strategy. We then define our rewrite algorithms in pseudocode. We start by

attempting greedy rewriting in the hope of generating a successful result quickly (we

will see in Section 6.7 that this succeeds about 40% of the time). If this fails to produce

a suitable match for the accelerator, when then use equality saturation to explore the

full space of rewrites.

Definition 1 A data flow graph D is a finite set of nodes N corresponding to operations

op(n1, ...,nm), where op is an operation symbol and ni ∈ N are children operands.

D must be a directed acyclic graph, meaning that a function id : N → |N| should

exist such that:

∀n = op(n1, ...,nm) ∈ N. ∀i. id(ni)< id(n)

While OpenCGRA uses Control Data Flow Graphs (CDFGs), and thus can handle

branches and loops, we do not attempt to rewrite across control-flow boundaries. Instead,

we break all control flow before rewriting, and restore control flow after rewriting.

Definition 2 A rewrite rule R is of the form l ⇒ r, where l and r are patterns. A pattern

P is a tuple (NP,OP), where NP is a data flow graph that may contain variable nodes

on top of operation nodes, and OP ⊆ NP is a list of output nodes.

R can be applied to D when l has a match (Ml,σ) in D, where Ml is a list of nodes

from D matching Ol , and σ maps variables to matching nodes from D. To produce the

list of nodes Mr that should replace the Ml nodes in D, the variables are substituted in

r, written as r[σ] = (N′
r,Mr).

A rewrite rule must be semantics-preserving, meaning that ∀(Ml,σ). Ml = Mr which

depends on the element-wise application of a given semantic equality. The meaning

of equality in this case depends on the rules provided. We will see in Section 6.5 that

this may be true equality, fuzzy equality (e.g. with floating-point manipulation rules) or

even weaker definitions of equality (e.g. with stochastic computing rules 6.5.4).

Definition 3 In a CGRA, we have an array of processing elements, PEs (PEi), each of

which supports a particular set of operations (op(n1, ...,nm)), Supportedi. We generate

this set from the CGRA’s specification.

Given a particular DFG D, with nodes N, there may be some subset of nodes

Unsupported(N) that have operations without hardware support anywhere on the

CGRA. We wish to find a sequences of rewrite rules that we can apply to the DFG

to produce D′ with nodes N′ such that Unsupported(N′) = {}, as otherwise it will be
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impossible to schedule that particular code onto the CGRA. We thus define the set of

operations a particular full CGRA can support as:

ops =
⋃

i

Supportedi

,

6.4.1 Rewriting Goal

The compiler takes a dataflow graph (DFG) D as input. Numerous existing techniques

attempt to find a valid mapping [329], but in heterogeneous CGRAs, the operations in

the DFG may not be in the supported set for any node.

The goal of a rewriting algorithm A(D,Rs,ops) is to return D′, obtained by rewriting

D using the set of rules Rs, such that D′ only uses operation symbols from ops.

We further define a cost function C(D,ops) to minimize:

∑
op(...)∈N

1 if op ∈ ops else 106

This incentivizes smaller programs by giving a cost of 1 to available operations, while

giving a huge penalty to unavailable operations by giving them a cost of 106. Our CGRA

specification and cost function aim to eliminate unavailable operations to successfully

map the program onto the CGRA, without trying to precisely model the execution

performance.

With the assumption that |N|< 106, rewriting successfully eliminates all unavailable

operations if C(D′,ops)< 106, and fails to do so if C(D′,ops)≥ 106.

6.4.2 Greedy Rewriting

Listing 6.1 shows our greedy rewriter. Greedy rewriting is the most straightforward

rewriting approach; it runs quickly but often gets stuck in local minima.

On each greedy iteration, we iterate over every rewrite rule to find matches (lines

6 to 8). If applying a rewrite for a given match leads to a cost reduction, we proceed

with the rewritten program and forget about the previous program (lines 9 to 11). The

local minima variable keeps track of whether a fixed point was reached, which is the

termination condition (line 3).
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Listing 6.1: Greedy rewriting algorithm

1 def g r e ed y ( d , r s , ops ) :

2 l o c a l m i n i m a = f a l s e

3 whi le not l o c a l m i n i m a :

4 l o c a l m i n i m a = t r u e

5

6 f o r r in r s :

7 matches = f i n d m a t c h e s ( d , r )

8 f o r m in matches :

9 d2 = a p p l y m a t c h ( d , m)

10 i f C( d2 , ops ) < C( d , ops ) :

11 d = d2

12 l o c a l m i n i m a = f a l s e

13 break
14

15 re turn d

6.4.3 Equality Saturation

Listing 6.2 shows our algorithm for rewriting via equality saturation. Equality satura-

tion [472] is a more sophisticated rewriting approach; it avoids getting stuck in local

minima but can be slow to execute. We leverage both the state-of-the-art Rust egg

library [524] and existing work extending equality saturation to graph rewriting [552].

First, we initialize an e-graph data structure that compactly represents a space of

equivalent programs by sharing equivalent sub-terms as much as possible (line 2).

Then, we run the explorative phase of equality saturation using our set of rewrite rules,

iteratively exploring possible rewrites in a breadth-first manner and growing the e-graph

(line 3).

As visible in line 10, the explorative phase terminates when all possible rewrites

have been explored (a fixed point, called saturation, is reached), or when another

stopping criteria is reached (e.g. a timeout). On each explorative iteration, all rewrite-

rule matches are collected (line 13) and applied in a non-destructive way, adding new

equalities into the e-graph (line 15).

Finally, we extract the best program from the e-graph according to our cost function
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Listing 6.2: Equality saturation algorithm

1 def e q s a t ( d , r s , ops ) :

2 e g r ap h = i n i t i a l i z e e g r a p h ( d )

3 e g g e x p l o r a t i o n ( egraph , r s )

4 re turn e g g l p e x t r a c t i o n (

5 egraph ,

6 c o s t f o r e g g ( ops ) )

7

8 def e g g e x p l o r a t i o n ( eg , r s ) :

9 . . .

10 whi le not s a t u r a t i o n o r t i m e o u t :

11 matches = [ ]

12 f o r r in r s :

13 matches += f i n d m a t c h e s ( eg , r )

14 f o r m in matches :

15 a p p l y m a t c h ( eg , m)

16 . . .

using Linear Programming (line 4). Despite our problem being amenable the bottom-up

extractor, this extractor is buggy and performs poorly on this problem.

6.4.4 Hybrid Rewriting

FlexC uses hybrid rewriting (listing 6.3), which takes the best from both strategies.

In hybrid rewriting, we first apply a fast greedy rewriter. If the greedy rewriter does not

find a suitable candidate, FlexC falls back to the more expensive, but more likely to

succeed, equality saturation.

6.5 Rewrite Rules

We explore several different rulesets in this work: some rules are always correct, while

other rulesets may only be useful in certain domains, such as the stochastic-computing

rewrite rules (section 6.5.4).

In a traditional application of rewrite rules, compilers look to perform strength
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Listing 6.3: Hybrid rewriting algorithm

1 def h y b r i d ( d , r s , ops ) :

2 d2 = g re e d y ( d , r s , ops )

3 i f c o s t ( d2 , ops ) < 106 :

4 re turn d2

5 e l s e :

6 e q s a t ( d , r s , ops )

reduction [133], by replacing more complex expressions with simpler expressions —

this is typically achieved by canonicalizing towards the simplest method of representing

an expression. In a traditional compiler, a rule is typically formatted as:

Complex Operation → Simpler Operation

A typical rewrite rule system produces a series of independent rewrites,

e1 =⇒
rule1

· · · =⇒
ruleN−1

eN

to generate the expression best suited to the architecture. In this case, the rules can be

written in such a way that they chain together, as they are in existing compilers. We

simply stop rewriting when there are no more rules to apply.

However, when compiling for a CGRA, replacing simpler operations with more

complex operations can be beneficial if they enable an entire region of code to be run on

faster, fixed-function hardware.

As a result, for some sequence of rules

e1 =⇒
rule1

· · · =⇒
rulei−1

ei =⇒
rulei

· · · =⇒
ruleN−1

eN

some intermediate ei may be the best choice of expression, and further, rule applica-

tion can occur bidirectionally. Rather than strength reduction, which implies a linear

sequence of operations that become strictly simpler, the process for compiling for a

CGRA is instead rewrite exploration.

6.5.1 Integer Rules

We use a set of strength-reduction and canonicalization rules representative of those in

a typical compiler. An example is:
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x - y <=> x + (-y)

x >> y <=> x / (1 << y)

x and y <=> not ((not x) or (not y))

Table 6.1: Some example rewrite rules that can be used to change the operations an

expression requires.

x * y <=> x / (1.0 / y)

-1.0 * x <=> -x

Table 6.2: Rewrite rules enabled by reducing requirements on floating-point equality.

x * −1 => −x

On the left-hand side of this rule, we require a multiplication operation, and on the

right-hand side of this rule, we require a negation operation. For most compilers, the

right-hand side is (almost) always the better choice, so most rewriters only apply these

rules forward.

FlexC applies this rule in both directions, as some CGRAs may have multiplication-

supporting PEs and other CGRAs may have negation-supporting PEs. We refer to this

universally applicable ruleset as the integer ruleset. Some examples from the set are

shown in Table 6.1.

6.5.2 Floating-Point Rules

Floating-point rewrite rules are rarely bit-for-bit correct. Compilers typically use various

flags to allow for different levels of correctness guarantees, enabling floating-point

transformations only when the programmer is willing to forgo accuracy.

When compiling floating-point operations to CGRAs, FlexC uses these rules by

default (they can be turned off). This enables more rewrites at the cost of losing

bit-correctness. An example of rules enabled by this assumption are shown in Table 6.2.

6.5.3 Boolean Logical Operations

Logical operations such as AND (&) and OR (|) can take two different meanings within

programs: sometimes they are used to specify bitwise operations on entire words at a

time, and sometimes they are used as boolean operators (where any result other than
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x AND y => x * y

x OR y => (x + y) > 0

x XOR y => x != y

Table 6.3: Rewrite rules under the assumption that binary logical operators are boolean

operators.

x * y => x AND y

Table 6.4: Example rewrite rule for stochastic computing. The SC-CGRA only provides a

stochastic multiplier, so the stochastic adder rule is not used.

a 0 is true). With a compiler flag provided by a programmer to indicate these are

equivalent, we can add more rewrite rules.

For example, as boolean operations, AND can be rewritten using multiplication nodes,

increasing the space of programs that a CGRA without logical operator support can

be used for. We supply a set of rewrite operations that assume logical operations are

equivalent to boolean operations. Some examples of rewrite rules in this set are shown

in Table 6.3.

6.5.4 Stochastic Computing

Stochastic computing is a computing paradigm aimed at achieving better energy effi-

ciency than traditional computing by trading off accuracy [41]. In particular, stochastic

computing allows multipliers to be replaced by logical and operators, and add opera-

tions to be replaced by muxes [63]. Table 6.4 shows an example of these rules.

These rules are used as an example of rules for specific architectures that can be

combined with existing rewrite rules. In this particular case, many of the rewritten

kernels must be checked by the programmer to ensure that the operations that are

stochastic are suitable.

6.6 Results

We implement FlexC above OpenCGRA, which is written in C++. We use the egg Rust

library [524] to implement our rewriters. For equality saturation, we use an iteration

limit of 10 with a node limit of 100,000 to prevent the e-graphs from growing too large.
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Domain Project Samples

Compression Bzip2 [4] 13

Multimedia FFmpeg [7] 1852

FreeImage [8] 223

Scientific Computing DarkNet [6] 77

LivermoreC [9] 26

Sum 2188

Table 6.5: Quantities of unique loops in benchmark suite.

FlexC is integrated into the LLVM framework and is invoked using the opt tool using

LLVM IR as input.

FlexC relies on OpenCGRA to find the loop to accelerate. OpenCGRA looks for

the first loop in each provided function. We implement the architecture specification

in JSON, adding a mapping from each PE to the sets of operations it will be able to

support.

6.6.1 Benchmarks

We have collected a benchmark suite of real-world open-source code loops. As shown in

Table 6.5, we compose it of projects from the domains of multimedia, compression, and

simulation and extract a total of 2188 loops. Typically, CGRA compilers are evaluated

on benchmark suites of a few tens of loops. However, such small benchmark suites

do not capture the wide spectrum of loops that programmers write, and are easy to

hand optimize [11]. Our benchmark suite captures a wide range of loops, without the

overheads of running whole programs [27]. These loops allow us demonstrate FlexC

works on a wide range of architectures and programs.

We extract loops suitable for CGRA scheduling from the projects shown in Table 6.5.

Each extracted loop is:

• The innermost loop

• Has no internal branches or function calls (unless inlined)

• Contains at least one array access

These properties have been selected to make our benchmarks applicable to many

different CGRAs (with or without heterogeneous restriction) and different compilation
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techniques.

We build a custom Clang-based tool that identifies loop structures and detects

required type definitions. Clang is run using the build-system rules for each project.

Each loop is placed into a function skeleton so that it can be compiled by CGRA

compilers.

6.6.2 Alternative approaches

We compare FlexC against three alternative approaches: OpenCGRA [468], the LLVM [292]

Rewriter and our own Greedy Rewriter. OpenCGRA is the default scheme that simply

maps operations to function units without any rewriting. The LLVM rewriter employs

the rewrite rules within the LLVM compiler infrastructure (using the -inst-combine

and -aggressive-instcombine passes) to search through a space of equivalent pro-

grams. The greedy rewriter is FlexC without the equality saturation fallback: greedy

search over the FlexC rewrite ruleset using hardware-aware rule selection.

6.6.3 Existing Domain-Specific Accelerators

We evaluate domain-specific architectures from three prior works. We consider one

domain-specific CGRA work (REVAMP [66]), one more general domain-specific accel-

erator work (DSAGen [516]), and one stochastic computing CGRA (SC-CGRA [508]).

6.6.3.1 DSAGen

DSAGen [516] is a framework for generating domain-specific architectures. These

architectures share many properties with CGRAs in that they expose architectural

details to the compiler and present coarse-grained reconfigurable blocks. We make

minor modifications3 to the architectures shown in Figure 4(b) and 4(c) in [516] so

they can be represented within OpenCGRA. The architectures we use are shown in

figure 6.3 and figure 6.7a.

3OpenCGRA requires more routing to be present between compute elements, so the architectures we
use are more flexible than those presented in DSAGen. OpenCGRA also does not support architectural
features like distribution trees, which we have omitted. We further add the nodes required by OpenCGRA
to support loop pipelining (an add and an integer compare) to enable it to compile to these architectures.
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(b) Architecture used for REVAMP CGRA.
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(c) Architecture used for SC-CGRA. One traditional adder is

added for loop-index variables.

Figure 6.7: Diagrams of the case study accelerators. The CCA-like accelerator is shown

in Figure 6.3.
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6.6.3.2 REVAMP

REVAMP [66], a framework for generating domain-specific CGRAs provides an ex-

ample of a CGRA for heterogeneous compute optimization, with nodes for addition,

subtraction, multiplication and some logic operations implemented within a 6x6 CGRA.

A diagram of this CGRA is shown in figure 6.7b.

6.6.3.3 SC-CGRA

SC-CGRA [508] is a stochastic-computing-based CGRA. Typical exact multipliers are

replaced with approximate multipliers, and similarly for adders within a 4x4 CGRA.

We implement this in OpenCGRA, providing approximate adders/multiplers instead of

exact ones4. The architecture we use is shown in figure 6.7c.

6.7 Results

We evaluate FlexC against traditional heterogeneous-CGRA compilers, improving the

number of benchmarks that can be compiled to heterogeneous CGRAs by 2.2×, and

demonstrate that despite making the computation more complex, the rewrite rules do

not introduce slow-downs, showing geomean speedups of 3×.

6.7.1 Existing Domain-Specific Accelerators: Compilation Rate

We apply FlexC to the four accelerators presented in Section 6.6.3, comparing to three

other rewriting strategies. Figure 6.8 shows that FlexC increases the number of loops

that these CGRAs can support by a factor of 2.2×. Figure 6.9 gives details split by

benchmark suite for each accelerator.

6.7.1.1 DSAGen

Figure 6.8 shows that using FlexC increases the number of loops that can be supported

on the CCA and Maeri architectures by a factor of 2.2× and 1.6× respectively. Maeri

does particularly well on LivermoreC (figure 6.9), especially once equality saturation is

4The authors discuss different accuracies of adder/multiplier, but do not state the number of each
used, so we use a simple assignment of one multiplier and one adder per node. We also omit node-fusing,
as we use OpenCGRA to target this accelerator. The operators other than the multipliers and adders are
not specified completely. For this evaluation, we assume each node has logical operations, and arithmetic
operations simpler than multiplication. To enable OpenCGRA to compile some things on it’s own, we
add one exact adder, which is required for induction variables in almost all loops.



6.7. Results 117

CCA Maeri REVAMP SC-CGRA
Architecture

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac
tio

n 
of
 L
oo
ps
 C
om

pi
le
d 
to
 A
cc
el
er
at
or

Stochastic
  RulesetOpenCGRA

LLVM Rewriter
Greedy Rewriter
FlexC

Figure 6.8: We consider four different architectures, adapted from DSAGen [516] (CCA

and Maeri), REVAMP [66] and SC-CGRA [508]. All archtectures use the integer and

floating-point rulesets, and SC-CGRA uses the stochastic ruleset. These architectures

are specialized to different degrees: the more specialized architectures, CCA and Maeri,

benefit from FlexC more than the more generic architecture from REVAMP.
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Figure 6.9: Results for each accelerator pairing by benchmark suite. Equality saturation

often dramatically improves coverage for particular workload-accelerator combinations

(e.g. bzip2 on CCA and SC-CGRA, and LivermoreC on Maeri), where otherwise the

accelerator would appear entirely unsuitable. In these cases, the accelerator has the

right class of operator for the tasks required (logical operators for bzip2 and floating-point

operators for LivermoreC) but the code still requires transformation to fit the individual

available operations.
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used, because of the workload’s heavy use of floating-point operations, though it is less

suited to Bzip2 than CCA because of Maeri’s lack of boolean arithmetic.

LLVM performs well on the CCA architecture as it has a more comprehensive set

of rewrite rules than have been implemented in FlexC, and on the CCA architecture,

the canonicalization rules it uses are appropriately targeted. Nevertheless, FlexC

outperforms it due to more comprehensive exploration of the rewrite space.

This case study, on non-CGRA architectures, reveals the generality of FlexC: while

we do not claim that this comprehensively demonstrates that our rewriter can compile

to different architectures (as we still rely on the OpenCGRA backend in this example),

it does demonstrate that FlexC may be applicable to more diverse computation models

than CGRAs.

6.7.1.2 REVAMP

We implement REVAMP in the OpenCGRA framework and compile each of our

benchmarks to it (fig. 6.8). FlexC increases the number of loops that can be supported

on this CGRA by 15%, consistently across different workloads (fig. 6.9).

This increase is small because REVAMP’s example already supports almost all the

required operations for non-floating point code. We will see in other examples that

FlexC becomes more important as the domain becomes more restricted.

6.7.1.3 SC-CGRA

Figure 6.8 shows FlexC increases the number of loops that can be supported by a factor

of 5.2×.

This case study demonstrates FlexC is not only relevant within heterogeneous

fabrics: if a homogeneous CGRA lacks operations that compilers typically assume to

be available, FlexC’s methods may still be necessary to generate working code. Bzip2

in particular (fig. 6.9) more than doubles the amount of targeted code once FlexC’s

equality saturation is used, compared to greedy-only, because otherwise it gets stuck in

local minima and fails to explore the space enough to find a match.

6.7.2 Compilation Rate: Architectures Specialized for Loops

We demonstrate that the rewriting technique used by FlexC is applicable to many

different specialized CGRAs within a varied design space.
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Using 300 randomly selected loops in our benchmark suite, we first build a het-

erogeneous CGRA designed for that loop in particular. We run FlexC across the other

loops in the benchmark suite and measure which loops can and cannot be compiled.

Figure 6.10 shows what fraction of loops can be compiled, making a distinction between

loops that are in the same suite (and so are often more likely to share the same class of

operation) and loops from different domains.

FlexC improves the applicability of the accelerators, both within the domain they

were designed for by a factor of 2.3×, and between domains by a factor of 2.9×,

demonstrating the applicability of FlexC to many different types of heterogeneous

CGRA. In some cases, a typical accelerator for a loop in one benchmark will actually

do better on the other workloads (e,g, for freeimage and ffmpeg). This is because

freeimage and ffmpeg are highly diverse, and so an accelerator designed for one loop is

less likely to match others in the same diverse benchmark.

Figure 6.11 shows FlexC is able to support CGRAs across a wide range of special-

izations, from very specialized CGRAs with only a few operators available to more

complex heterogeneous CGRAs with many operators. In this figure, we take each of the

300 generated architectures, and count the number of operations they support. We can

see that for architectures with fewer operations, equality saturation is more important,

as there are fewer paths to a valid rewrite.

6.7.2.1 Speedups

This section demonstrates that rewriting code in ways that at first-glance are inefficient

can result in speedup by enabling accelerator utilization. Compiling to CGRA imple-

mentations typically improves performance and reduces power usage. We consider

speedup in this evaluation. In line with other CGRA work, we consider speedup in the

case that loops are executing large numbers of iterations, so one-time overheads like

offloading costs for loosely coupled accelerators are ignored.

We compare two systems with similar specifications. For a CGRA system, we take

architectural parameters for ADRES [339], a 6x6 CGRA which we clock at 200 MHz.

We use the initialization interval generated by OpenCGRA to obtain performance es-

timates for the CGRA. To obtain a realistic CPU baseline, we execute the loops on

an Arm A5 running at 500 MHz using an Analog Devices SC-589EZKit development

board [17] and methodology for generating inputs from Exebench [57]. Speedups are

shown in figure 6.12, showing a geomean performance improvement of 3×, demon-

stratng that FlexC’s rewrite rules are not only effective in enabling targeting of CGRAs,
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Figure 6.10: Using accelerators designed for individual loops in each benchmark suite,

how much code in the same suite (red) and other suites (blue) can be compiled to these

accelerators. FlexC increase the compilation rate by a factor of 2.3× in the same suite

and 2.9× between suites.
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Figure 6.11: How the number of different operations in a CGRA influences compilation

rate. We can see that FlexC performs consistently across many levels of generality,

from very specialized accelerators with only a few operators to much more generic

accelerators with many different operators, and that equality saturation is more important

for more specialized architectures.
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Figure 6.12: Speedup achieved by rewriting applications to run on a low-power CGRA

vs running on a comparable low-power CPU. The geomean speedup is 3× over running

on a CPU.

but also in achieving speedup on them.

6.7.3 Existing Domain-Specific Accelerators: End-to-End Evalua-

tion

We demonstrate that FlexC also performs well on well-known and computationally

important kernels. To do this, we take the OpenCGRA benchmark suite [468], along

with the LivermoreC benchmark suite previously explored. We use the same setup as in

Section 6.7.2.1.

The results are shown in Figure 6.13. Compared to running on an Arm Cortex-A5,

FlexC achieves a speedup on 2.0× across all applications. This compares to the LLVM

rewriter, which is only able to extract 1.5× performance increase across all applications.

5We have omitted ADPCM Encoder/Decoder as OpenCGRA is unable to compile it to any accelerators
due to size, and Conv, FFT, MVT and Relu due to presence of divide operations that cannot be eliminated
as none of our case-study accelerators support divide operations.



124 Chapter 6. Rewriting for Domain-Specific CGRAs

bi
cg

bl
ow

fis
h

dt
w fir

ge
m

m

hi
st

og
ra

m

la
tn

rm

liv
er

m
or

ec

sp
m

v

Ge
om

ea
n

0

2

4

6

8

Sp
ee

du
p

LLVM
CCA
Maeri

REVAMP
SC-CGRA

bi
cg

bl
ow

fis
h

dt
w fir

ge
m

m

hi
st

og
ra

m

la
tn

rm

liv
er

m
or

ec

sp
m

v

Ge
om

ea
n

0

2

4

6

8

Sp
ee

du
p

FlexC
CCA
Maeri

REVAMP
SC-CGRA

Figure 6.13: Speedups using the OpenCGRA benchmark suite and the Livermore C

benchmark suite, comparing various CGRA architectures to an Arm Cortex-A5. Bench-

marks that were unsupported by any architecture/compiler pairs have been omitted5.

The top figure shows the speedup achieved using the LLVM rewriter to target each

CGRA, and the bottom figure shows the speedup achieved using FlexC to target each

CGRA.
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6.7.4 Using Different Rulesets

FlexC provides a generic rewriting framework that can be applied to many different

rulesets. These rulesets may be flagged by the programmer as valid for particular loops,

or valid for a particular program.

We inspect four different rulesets here (covered in more detail in Section 6.5.1), an

integer ruleset, derived of rules that may always be applied, a floating-point ruleset,

derived of rules that may be applied under assumptions such as -ffast-math, a logical

operations-as-binary operations ruleset that can be used to provide greater flexibility

of rewrites involving logical operators and a stochastic computing ruleset that enables

typical stochastic computing transformations. These secondary rulesets can be activated

by the programmer using a flag. Figure 6.14 shows how these different rulesets provide

different compilation performance. Rulesets are run in combination with the int ruleset

as it contains many enabling rewrites for the specialized rewrites in the other rulesets.

We can see that determining which rulesets are useful is architecture-specific. For

example, Maeri benefits a lot from the logic-as-boolean ruleset, as it does not have logic

operators, while CCA benefits from the stochastic rules as it does not have multipliers.

6.7.5 Most Frequently Applied Rewrite Rules

Part of the power of FlexC is that the rewrite rules that need to be applied vary by

architecture. By using equality saturation, FlexC is able to use one standard set of rules

for all architectures and apply the relevant rules in each case. Table 6.6 shows the most

frequently applied rules for the CCA and Maeri architectures (when compilied using

the integer and floating point rulesets): two architectures with nearly disjoint sets of

operators.

6.7.6 Compile Time

A challenge with Equality Saturation is in keeping the search-space manageably sized,

as e-graphs can grow rapidly, causing excessive compile times and resource usage [272,

279]. We avoid these issues in FlexC by limiting the number of explorative iterations,

still finding good solutions in many cases.

Figure 6.15 shows the time taken by FlexC to rewrite and schedule the DFG. We

use a cutoff time of 300 s to avoid exploring the rewrite space fruitlessly — we can

see that the rate of successful compilations drops off rapidly after 60 s, followed first
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Figure 6.14: Comparing how different sets of rewrite rules improve the code coverage of

an accelerator. All rulesets are run with the int ruleset. The stochastic computing rules

are only applied to SC-CGRA as they require specialized hardware support not available

in other accelerators.
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CCA

1 x * 2 => x << 1

2 x * 4 => x << 2

3 x * 1 => x

4 -x (Floating Point) => x + 2ˆ32 (Int)

Maeri

1 x * 1 => x

2 x << 1 => x * 2

3 x << y => mul(x, load(csel(y > 32, 33, y)))

4 x - y => x + -y

REVAMP

1 x * 1 => x

2 -x (Floating Point) => x + 2ˆ32 (Int)

3 x / 2 => x >> 1

4 x / 8 => x >> 3

SC-CGRA

1 x * y => x & y

2 x * y => ISC(x, y)

3 x * 1 => x

4 -x (Floating Point) => x + 2ˆ32 (Int)

Table 6.6: The most commonly applied rules for each architecture. We omit LLVM-

specific rewrites for SC-CGRA. As the CCA and Maeri provide nearly disjoint operators,

they are excellent examples of the need for rewrite rules to apply both forward and

backward.
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Figure 6.15: Time taken to schedule code on a CGRA using FlexC and OpenCGRA. We

cut-off rewriting at 300 s to avoid excessive exploration. After 60 s, the compilation rate

is very low, so FlexC is not missing many compilations at longer timeouts.

by a large number of early terminations without successful scheduling (most likely

due to reaching saturation, iteration or node limit), then by stagnation in progress for

infeasibly large search spaces. These compile times are fast enough that more exhaustive

CGRA schedulers will be able to incorporate this strategy within the existing order of

magnitude of compilation time. For example Beidas and Anderson report ILP compile

times with a geomean of 60 s [72].

We can also see the effect of using a greedy rewriter as a preliminary step here.

In 10% of cases, FlexC is able to rely on the greedy rewriter and find a compiling

loop rapidly. We can further see that when FlexC uses equality saturation, it is more

successful early on in the exploration.

6.8 Conclusion

We introduce FlexC, a compiler for domain-specific CGRAs that addresses the domain-

restriction problem: where CGRAs that have been designed for a particular domain are

hard to apply to software outside that domain. FlexC uses equality-saturation to rewrite

software from different domains so it can run on hardware not designed for it. FlexC

increases the number loops that can be supported by a factor of 2.2× over existing

CGRA compilers and enables acceleration of loops leading to geomean speedup of 3×.

FlexC demonstrates the potential that rewriting software to match novel hardware
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has: the techniques developed here are applicable to other kinds of accelerators with

programmable networks. We present the first study that characterizes how different

decisions surrounding heterogeneity effect the fraction of code supported by an accel-

erator, showing that the more specialized an accelerator is, the more important FlexC

is. FlexC opens up new development possibilities by promising that even if software

requirements change in a heartbeat, accelerators with a large sunk-cost can still be

applied.

FlexC demonstrates a strategy to search for accelerator configurations in reconfig-

urable accelerators. This lays the groundwork for application to the accelerator equation

(Chapter 2), leaving the finding of suitable f and g to further broaden the applicability

of domain-specific CGRAs to future work.





Chapter 7

Conclusions

This thesis has identified a key challenge in programming the heterogeneous accel-

erators that enable the next generation of computing performance. We introduce a

generic framework to overcome limitations of fixed-function hardware accelerators

and reconfigurable hardware accelerators in the form of the acceleration equation in

Chapter 2, and we demonstrate three real-world solutions to these equations.

We demonstrate large increases in the volume of software that can be supported

by these domain-specific accelerators, showing reductions of processing power by a

factor of ten for 84% of expressions using RXPSC. Finally, using FACC, we compile 18

high-level code implementations to an API-programmable FFT accelerator that would

not have been directly supported. Using FlexC, we enable 2.2x more software to be

supported on CGRAs than with traditional compilers. For each of these examples, we

show speedups.

Although this thesis’s case studies focus on three examples, the equations we

introduce are more widely applicable and practical solutions exist for many hardware

accelerators.

7.1 Contributions

This section gives a brief overview of the contributions of this thesis.

7.1.1 Large-Scale Benchmarks

This thesis diverges from traditional compilers research in its benchmarking strategy.

Designing compilers for hardware accelerators that work across the variety of code that

131
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programmers write means that traditional monolithic benchmark suites do not work.

These traditional benchmark suites typically scrutinize the performance of a benchmark

across a narrow range of programs, rather than the compiler across a broad range of

programs.

The approach taken in this thesis is to benchmark broadly, across as wide a range

of code as is possible. In Chapter 5, we introduce a benchmark suite of 24 different

implementations of the FFT, to demonstrate that FACC works across a variety of

different implementations. Similarly, in Chapter 6, we introduce a benchmark suite of

more than 2,000 loops taken from large projects. This approach is extremely relevant

when benchmarking compilers in an effort to make it more likely that compilers will

actually work in the face of unseen code, rather than compilers that are simply fine-tuned

to make individual benchmarks run as fast as possible.

7.1.2 The Acceleration Equations

The key contribution of this thesis is the acceleration equation:

U = g◦A◦h

Solutions to this equation enable the use of hardware accelerators for a much wider

variety of code than the accelerators are designed to run.

This thesis explores solutions to this equation on two different types of accelerators,

regular expression accelerator, Fourier transform accelerators. It further explores the

background required to find solutions to the accelerator equation for domain-specific

CGRAs.

7.1.3 Regular Expression Accelerators

The work in Chapter 4 introduces RXPSC, a compiler that solves the acceleration

equation for regular expression accelerators. This compiler compiles new regular

expressions to old accelerators, enabling fast updates to FPGA-based accelerators.

RXPSC is built using a novel intermediate representation that models the structure of

a regular expression, and novel analysis algorithms that enable deduction of g and h

using stateless translators.
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7.1.4 Fourier Transform Accelerators

The work in Chapter 5 introduces FACC, a compiler that solves the acceleration equation

for Fourier transform accelerators. This compiler uses a novel program-synthesis

approach to generate the adaptor functions g and h.

This chapter analyzes the concept of mismatch in traditional programming languages,

categorizing it in four ways: code mismatch, data mismatch, domain mismatch and

behaviour mismatch. These mismatch classifications will drastically simplify the design

of similar program-synthesis tools for different domains.

7.1.5 Domain-Specific CGRAs

Finally, the work in Chapter 6 introduces FlexC, which solves the reconfigurable

acceleration equation. FlexC uses equality saturation to explore the space of program

rewrites. This is a novel approach for CGRAs, which have traditionally relied on the

same rewriting approaches that are used for CPUs — even though these rewriting

approaches are totally unsuitable for these domain-specific bits of hardware.

7.2 Critical Evaluation

This section discusses the threats to validity of the research in this thesis.

7.2.1 Compilation Time

The techniques developed in this thesis are far more compute intensive than traditional

compiler passes. For example, the passes developed for RXPSC can be exponential

in the worst case, the extractor for FlexC relies on the NP-Complete ILP task, and the

program synthesis in FACC relies on running the underlying program.

These compile times limit the applicability of these techniques within traditional

compilers, but do not defeat the purpose of these tools, as they can be run in the

background and provide their compilation results when available without impacting the

behaviour of the program.

7.2.2 Changing Accelerator Landscapes

A key challenge of developing tools for hardware accelerators is that the hardware

accelerators often change. For example, in many modern FPGAs, partial reconfiguration
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can replace the fast reconfigurability that RXPSC provides. However, there are still

smaller FPGAs without this feature, and, more generally, the compilation strategies

developed for RXPSC are more broadly applicable (and have been applied to different

types of regular-expression accelerator [529]).

Although accelerators may come and go, the techniques developed in this thesis

have broader conceptual applicability. For example, they apply in the case of FlexC to

any operation-restricted accelerators and in the case of FACC to any API-programmable

accelerators.

7.2.3 Overheads

All three tools discussed in this thesis introduce overheads: RXPSC in the form of extra

hardware requirements for the stateless translators, FACC in the form of the adaptor

functions, and FlexC in the form of less optimal code.

In all these cases, the overheads are low compared to the potential speedup. For

RXPSC, we estimate 10% overhead. For FACC, we have shown that there are significant

speedups available even with modest accelerator speeds and with huge overheads in

Section 2.1.1. For FlexC, we have included an evaluation of program speed after

rewriting to enable the use of an accelerator, although a more thorough theoretical

analysis of the potential overheads from rewriting is left to future work.

7.2.4 Correctness Challenges

With the advanced analyses that this thesis has developed come correctness challenges.

In the case of RXPSC, we are able to address these with a post-compute correctness

check. However, in the case of FACC, proving correctness of the transformations

is infeasible with existing theorem provers, as the FFTs it accelerates rely on large

floating-point arrays. Beyond this tough technical challenge, there are further questions

on what it means for two algorithms to be equivalent. Finally, although FlexC provides

correct-by-construction compilation, simple extensions with incorrect rules (such as

the stochastic computing ruleset we explore) raise quesitons about how to measure

correctness.

In all these cases, we rely on the programmer to verify that the accelerated code

behaves appropriately. Developement of truly automated techniques is left to future

work, but in many cases, the speedups enabled by accelerators are significant enough

that the programmer overhead is acceptable.
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7.3 Future Work

The work in this thesis opens numerous avenues for future work.

7.3.1 More General Solutions to the Acceleration Equation

This thesis has explored three different solutions to the accelerator equation for three

specific accelerators. To further develop this work, we are exploring a wider range

of accelerators. The techniques developed for FACC have already been applied to

matrix multiplications [331] and the techniques developed for RXPSC have already

been applied to symbol-only-reconfigurable regex accelerators [529].

Anticipating that new domains will tax the analyses that we have developed, we

intend to develop solutions to the synthesis problems that the acceleration equation

poses across a much wider range of hardware accelerators.

7.3.2 Overcoming Correctness Challenges

The correctness challenges that these new compilation strategies bring also raise new

opportunities. The first opportunity is for the development of better theorem-proving

techniques that can handle that diversity of code that tools like FACC are able to

generate.

More generally, many accelerators make assumptions about code that are often not

valid in the context the programmer has written the code. We propose the development

of compilers that are able to communicate these assumptions in a tractable manner to the

programmer so the programmer can guide the compiler to overcome these correctness

issues.

7.3.3 Co-design

The development of better compilers for hardware accelerators opens the question of

whether better hardware accelerators can be designed in the first place. For example,

could the overheads that running g and h in the acceleration equation be eliminated by

introducing more accelerator flexibility? We are actively exploring codesign opportuni-

ties with the FlexC compiler, using it to enhance existing design-space opportunties in

the CGRA space.
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7.4 Summary

This dissertation has introduced the acceleration equation, and three tools that ad-

dress this equation in different contexts, addressing compilation challenges in regular

expression accelerators, Fourier transform accelerators and CGRAs.

This dissertation has demonstrated the potential that advances in compilation tech-

niques have to make hardware accelerators usable by the many, not the few.
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Appendix

8.1 Derivation of the complexity of the (plus) case (Chap-

ter 4)

This is a dual partitioning problem. In the dual partitioning problem, we consider two

strings of length m and k and consider how many different ways they can be partitioned

into different substrings with the following properties:

1. The substrings may be any length greater than zero

2. The substrings must represent the entire string

3. Both strings must have the same number of substrings.

We begin by considering the single partitioning problem, which considers a single

string and excludes property 3. We show that the number of partitions is exponential in

the length of the string. We first attempt to find the number of ways a string of length m

can partitioned n times such that each partition is non-empty, where n is a most m.

We can envision this as a problem where there are m − 1 “gaps” between the

characters of the string. Each gap may either contain a partition between substrings, or

no partitions. This leaves us with 2m−1 possible partitions.

8.1.1 Application to the Dual Partitioning Problem

As this is a dual partitioning problem, a second string of length k has 2k−1 partitions.

However, the two partitions are only compatible if they have the same number of

substrings. Notice that we may also write this result as the number of partitions possible

for each number of substrings:

137
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Without loss of generality, assume that m ≤ k. And that the dual partition, where

we require the same number of partitions in each string is:

DualPartitions(k,m) =(
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)(
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≥ 2k−1 ≥ 2m−1

Where the greater than property holds as a consequence of each choose function

being strictly greater than zero. From this, we can conclude that DualPartitions(k,m)≥
2min(k,m) and that the dual partitioning discussed is indeed exponential in the lengths of

the inputs.

8.1.2 Resolution of other Discrepancies

It should be noted that the assumption that “each partition is non-empty” is not true —

partitions may be empty, for example disabling terms such as loops. The above bound

still holds, as the proof may simply be amended to allow for k partitions between every

string character resulting in a strictly greater number of partitions.

8.2 Correctness Guarantees in FACC (Chapter 5)

Proving equivalence of two arbitrary pieces of code is infeasible. However, in this

section we show that FACC can provide high quality matches, with arbitrarily high

probability of being correct. This can allow for programmer-verification on replace-

ments that are nearly guaranteed to work, or automatic replacement where a tolerance

for such optimizations exists. Further, achieving these high accuracies is feasible using

a relatively small number of examples.
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8.2.1 Algorithm

At a high level, for user code function U and accelerator A, FACC finds functions g,h

such that ∀x.U(x) = g(A(h(x))).

To achieve this, FACC comes up with a number of candidate bindings, where each

binding binds variables to each other and makes assumptions about the length of arrays

to allow for appropriate copying to avoid issues with differences between in-place

vs out-of-place Fourier transforms. Testing is random, and requires the following

properties:

Random-Inputs Input values are chosen randomly.

Different-Inputs There will always be at least one input example where two parameters

have different values.

Whole-Input Inputs must be chosen so that the entire input must be read to determine

the correct output.

8.2.2 Equivalence Under Ideal Circumstances

We show that the bindings, the solution to the data mismatch problem, are correct

under the assumption that the user code and the accelerator are otherwise bit-for-bit

equivalent and that they are injective functions. The intuition here is that if the functions

are injective, then a single input/output example can be used to show that a particular

binding is correct; any different binding would have a guaranteed different input and

therefore guaranteed different output. Handling domain mismatches does not affect this

proof, but handling behavioral mismatches does, and is discussed in Section 8.2.4.

8.2.3 Potential Sources of Incorrectness

The binding problem aims to achieve two concepts:

Array Dimensions Each array has the correct dimension specified.

Correct Mappings All data is mapped to the correct accelerator parameter.

From these properties, it is easy to infer a number of further important properties

about the generated binding, e.g. that the data alignment is correct and that the input-

ranges have been checked appropriately.



140 Chapter 8. Appendix

8.2.3.1 Proof of Array Dimensions

We first consider the array dimension problem. Suppose that an array that actually has a

length n is spuriously assigned a length of m and proceed by cases:

m = n By the different-input condition, this can only occur if the binding is correct,

provided at least one input is the size of the array. Otherwise, the incorrect binding

would need to have the same value as the correct one, which is disallowed in the

test set.

m < n In this case, the array passed to the accelerator will be shorter than the corre-

sponding array in user code.

In this case, when FACC generates inputs and passes them to the user code, the

user code will access out-of-bounds (because the variable specifying the length

of the array is larger than the array). By the whole-input property, we know

either that this access will happen, or that the answer will be incorrect. We use

AddressSanitizer [427] to ensure this undefined behavior is detected.

m < n In this case, the programmer’s code will produce a valid output, but only for a

part of the problem. By the injectivity assumption, we know that the two sets of

results will be distinct between the program with the correctly-set array length

and this program — therefore we will be able to tell by the IO examples that this

is the incorrect array length assignment.

8.2.3.2 Proof of Correct Mappings

If parameters are incorrectly mapped, by the different-input property they will produce

output differences which can be detected by the injectivity property. To see this, suppose

we map some user parameters x to some accelerator parameters y, but that the correct

assignment of parameters is to some y′. That is; U(x) = A(y′). Then, by injectivity

of the accelerator, and different-input property, we know that A(y) ̸= A(y′) and so we

cannot find a false-positive.

8.2.4 Probabilistic Correctness in Practice

The assumptions of bit-for-bit equivalence and injectivity of real implementations are

not likely to hold in practice. Both of these concepts can be modelled with a concept of

near-injectivity, which allows compilation with arbitrarily-high probability.
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8.2.4.1 Near-Injectivity

True injectivity in code is rare even if the code is attempting to model some injective

mathematical function due to issues such as error codes and floating-point limitations.

In reality, we expect near-injectivity, which accounts for a portion of the uncertainty

(and need for programmer sign-off). We say that a function f is ε−injective if for

any two random distinct input vectors x,y P( f (x) ̸= f (y)) ≥ ε. Handling floating-

point inequalities (discussed below) reduces ε further. Excluding error conditions, the

ε−injectivity of FFT implementations is very close to 1, meaning that code is very

easy to distinguish with near certainty using a moderate number of examples. That is,

if we use n examples, our probability of finding at least one set of inputs that do not

spuriously share an output is (1− ε)n.

Intuition here can be taken by considering functions with that are very far from

being injective. An example is the iseven function, which has an ε-injectivity of

approximately 0.5. Even in this case, showing the bindings to be correct could achieve

very high accuracy with only a few examples.

8.2.4.2 Post-Synthesis

Post-synthesis, such as inferring normalization code, is important in extending the

coverage of FACC to more varied user code. However, it has a marginal effect on the

ε-injectivity of the code.

Individual inputs may incorrectly report the same results under post synthesis. For

example, an accelerator that normalizes the result and user code that does not could

be provided with input so that incorrect bindings produce identical outputs, but this

situation is extremely rare. The chances of false positives increase due to testing more

functions, but this is easily accounted for by increasing the number of examples, since

each additional example exponentially increases the probability of correctness.

8.2.4.3 Incorrect Algorithm Identification

The potential for the identification pass to identify code that does not perform the same

algorithm as the accelerator is harder to quantify. While any significantly different

algorithms are unlikely to generate probable bindings, and vanishingly unlikely to

match on even a single IO example (much less many IO examples), examples where

partial matching is possible are easy to construct, if unlikely in real code for Fourier

transforms. In these cases, FACC cannot guarantee correctness, and the programmer
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must give assent that the algorithm they have implemented is the same as the one the

accelerator accelerates. They are assisted in this verification by being given the FACC

bindings in their source language (figure 5.7), which directly show the assumptions and

constraints the technique has generated.

8.2.4.4 Compiling Unidentical Implementations

In reality, accelerators will not match bit-for-bit the results of real code. Attempting

to preserve bit-for-bit equivalence of floating-point implementations is fruitless, as

floating-point semantics are not intended to capture the wider semantics of functions but

rather single operations. Fortunately, as long as both code and accelerator implement

Fourier transforms, the result is likely to be acceptable to the programmer.

We can capture this using a probability analysis. Above, we have assumed bit-for-bit

equivalence to enable equivalence checking. That is, for some randomly selected x,

f (x) = g(x) =⇒ P( f = g > 1− ε). In floating-point computations, we often have an

error tolerance. We can model this with a tolerance function T which captures an idea

of closeness if g(x) ∈ T ( f (x)).

Supposing that the average cardinality of T ( f (x)) is K1, and that an incorrect

binding produces a random result, the probability that a single example induces equality

is:

g(x) ∈ T ( f (x)) =⇒ P
(

f = g > (1− ε)

(
K

#range(g)

))
(8.1)

8.2.4.4.1 Floating-Point Equality Despite the portability of the IEEE 754 floating-

point standard [20], it is designed around small-step operations. Ultimately, requiring

such a precise definition of equality for big operations such as FFTs is akin to specifying

the implementation step-by-step. Although definitions of floating-point equality at a

function-level exist [285], these focus on introducing concrete constraints surrounding

edge cases rather than focusing on the crux of the issue. Allowing replacements

regardless of accuracy is likely to be unproductive, as mathematical functions exist on a

spectrum of accuracy/performance [86, 448], with FFTs no exception [317, 342]. As a

result, replacements must have defined error properties that the programmer is aware

of — a common analysis on FFT algorithms [107, 355, 420] to enable the programmer

to make informed decisions about whether the replacement accelerators provide high

enough accuracy.

1That is, K = (∑x∈X #T ( f (x)))/#X
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8.2.5 So What Does This Mean for the User?

The correctness guarantees here are understandably nuanced; complete proofs of equal-

ity would be paradoxical. However, the correctness guarantees mean that the program-

mer must only check one thing: “does the API compiled to perform the same function

as the code they wrote on the inputs for which it is valid?”

Supposing the answer to this is yes, and near-injectivity holds for the function in

question, the user can be assured with arbitrarily-high probability that the mapping is

correct.





Bibliography

[1]

[2] Available at bluespec.com.

[3] B4860 QorIQ Qonverge Multi-Accelerator Platform Engine Baseband 4

(MAPLE-B3) reference manual. Available at https://www.nxp.com/

files-static/training_pdf/vFTF09_AN149.pdf.

[4] bzip2. Available from git://sourceware.org/git/bzip2.git.

[5] Chisel/FIRRTL hardware compiler framework. Available at chisel-lang.org.

[6] Darknet. Available from git://github.com/pjreddie/darknet.

[7] Ffmpeg. Available from git://git.ffmpeg.org/ffmpeg.git.

[8] Freeimage. Available from http://downloads/sourceforge.net/

freeimage/FreeImage3180.zip.

[9] Livermore loops. Available from https://netlib.org/benchmark/

livermorec.

[10] Opencl. Available at opencl.org.

[11] Processor benchmark limitations.

[12] Defense science board task force on high performance microchip supply. 2005.

[13] ADSP-214xx SHARC processor hardware reference. Technical Re-

port 82-000469-01, Analog Devices, 2010. Available at https:

//www.analog.com/media/en/dsp-documentation/processor-manuals/

ADSP-214xx_HRM_rev0.3.pdf.

145

bluespec.com
https://www.nxp.com/files-static/training_pdf/vFTF09_AN149.pdf
https://www.nxp.com/files-static/training_pdf/vFTF09_AN149.pdf
git://sourceware.org/git/bzip2.git
chisel-lang.org
git://github.com/pjreddie/darknet
git://git.ffmpeg.org/ffmpeg.git
http://downloads/sourceforge.net/freeimage/FreeImage3180.zip
http://downloads/sourceforge.net/freeimage/FreeImage3180.zip
https://netlib.org/benchmark/livermorec
https://netlib.org/benchmark/livermorec
opencl.org
https://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-214xx_HRM_rev0.3.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-214xx_HRM_rev0.3.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-214xx_HRM_rev0.3.pdf


146 Bibliography

[14] KeyStone architecture fast Fourier transform coprocessor (FFTC). Technical

Report SPRUGS2C, Texas Instruments, 2011. Available at https://www.ti.

com/lit/ug/sprugs2c/sprugs2c.pdf.

[15] SHARC processor: ADSP-21467/ADSP-21469. 2013.

[16] Keystone II architecture fast Fourier transform coprocessor (FFTC). Technical

Report SPRUHE0A, Texas Instruments, 2015. Available at https://www.ti.

com/lit/ug/spruhe0a/spruhe0a.pdf.

[17] Analog devices SHARC+ dual-core DSP with Arm Cortex-A5: ADSP-

SC582/SC583/SC584/SC589/ADSP21583/21584/21587. 2018. Avail-

able at https://www.analog.com/media/en/technical-documentation/

data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf.

[18] AN12282: Digital signal processing for NXP LPC5500 using PowerQuad.

(AN12282), January 2019. Available at https://www.nxp.com/docs/en/

application-note/AN12282.pdf.

[19] CrossCore embedded studio 2.9.0: C/C++ library manual for SHARC processors.

(82-100118-01), 2019. Avalable at https://www.analog.com/media/en/

dsp-documentation/software-manuals/cces-sharclibrary-manual.

pdf.

[20] IEEE standard for floating-point arithmetic. Technical Report 754-2019, Micro-

processor Standards Committee, 2019.

[21] Intel oneAPI math kernel library — data parallel C++ developer reference. Tech-

nical report, Intel, 2020. Available at https://docs.oneapi.com/versions/

latest/onemkl/index.html.

[22] Accelerated computing with a reconfigurable dataflow architecture. 2021.

Available at https://sambanova.ai/wp-content/uploads/2021/06/

SambaNova_RDA_Whitepaper_English.pdf.

[23] ADSP-SC58x FFTA benchmarks. Technical report, Analog Devices, 2021. Avail-

able at https://ez.analog.com/dsp/sharc-processors/w/documents/

5017/adsp-sc58x-ffta-benchmarks.

https://www.ti.com/lit/ug/sprugs2c/sprugs2c.pdf
https://www.ti.com/lit/ug/sprugs2c/sprugs2c.pdf
https://www.ti.com/lit/ug/spruhe0a/spruhe0a.pdf
https://www.ti.com/lit/ug/spruhe0a/spruhe0a.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf
https://www.nxp.com/docs/en/application-note/AN12282.pdf
https://www.nxp.com/docs/en/application-note/AN12282.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharclibrary-manual.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharclibrary-manual.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharclibrary-manual.pdf
https://docs.oneapi.com/versions/latest/onemkl/index.html
https://docs.oneapi.com/versions/latest/onemkl/index.html
https://sambanova.ai/wp-content/uploads/2021/06/SambaNova_RDA_Whitepaper_English.pdf
https://sambanova.ai/wp-content/uploads/2021/06/SambaNova_RDA_Whitepaper_English.pdf
https://ez.analog.com/dsp/sharc-processors/w/documents/5017/adsp-sc58x-ffta-benchmarks
https://ez.analog.com/dsp/sharc-processors/w/documents/5017/adsp-sc58x-ffta-benchmarks


Bibliography 147

[24] FACC souce code (blinded), 2021. Available at https://github.com/

FourierACceleratorCompiler/FACC.

[25] FFT classification environment, 2021. Available at https://github.com/

FourierACceleratorCompiler/FFTClassification.

[26] FFTA evaluation environment (blinded), 2021. Available at https://github.

com/FourierACceleratorCompiler/FFTAEnvironment.

[27] An introduction to CPU performance benchmarks and how this applies to the

home market. November 2021.

[28] NXP PowerQuad evaluatoin environment (blinded), 2021. Available at https:

//github.com/FourierACceleratorCompiler/NXPEnvironment.

[29] International roadmap for devices and systems 2022 update: More moore. Tech-

nical report, IEEE, 2022.

[30] Xtensa instruction set architecture (ISA) summary. 2022. Avail-

able at https://www.cadence.com/content/dam/cadence-www/global/

en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf.

[31] Mohamed S. Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee, Hyeji

Kim, and Nicholas D. Lane. Best of both worlds: Automl codesign of a cnn and

its hardware accelerator. 2020 57th ACM/IEEE Design Automation Conference

(DAC), 7 2020.

[32] Riadh Ben Abdelhamid, Yoshiki Yamguchi, and Taisuke Boku. Condensing

an overload of aprallel computing ingredients into a single architecture recipe.

ASAP 2020, 2020.

[33] Mithun Acharya and Tao Xie. Mining API Error-Handling Specifications from

Source Code, pages 370–384. Springer Berlin Heidelberg, 2009.

[34] Stefan Ackermann, Vojin Jovanovic, Tiark Rompf, and Martin Odersky. Jet: An

embedded DSL for high performance big data processing. Big Data 2012, 2012.

[35] Boma Adhi, Carlos Cortes, Tomohiro Ueno, Yiyu Tan, Takuya Kojima, Artur

Podobas, and Kentaro Sano. Exploring inter-tile connectivity for HPC-oriented

CGRA with lower resource usage. FPT, 2022.

https://github.com/FourierACceleratorCompiler/FACC
https://github.com/FourierACceleratorCompiler/FACC
https://github.com/FourierACceleratorCompiler/FFTClassification
https://github.com/FourierACceleratorCompiler/FFTClassification
https://github.com/FourierACceleratorCompiler/FFTAEnvironment
https://github.com/FourierACceleratorCompiler/FFTAEnvironment
https://github.com/FourierACceleratorCompiler/NXPEnvironment
https://github.com/FourierACceleratorCompiler/NXPEnvironment
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf


148 Bibliography

[36] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib

Kamil. Automatically translating image processing libraries to halide. ACM

Transactions on Graphics, 38:1–13, 11 2019.

[37] Hameeza Ahmed, Paulo C Santos, Joao P C Lima, Rafael F Moura, Marco A Z

Alves, Antonio C S Beck, and Luigi Carro. A compiler for automatic selection

of suitable processing-in-memory instructions. DATE, 2019.

[38] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled

instructions: A low-overhead, locality-aware processing-in-memory architecture.

ISCA, 2015.

[39] Omid Akbari, Mehdi Kamal, Ali Kusha-Afzali, Massoud Pedram, and Muham-

mad Shafique. PX-CGRA: Polymorphic approximate coarse-grained reconfig-

urable architecture. DATE, 2018.

[40] Berkin Akin, Franz Franchetti, and James C. Hoe. Understanding the design

space of DRAM-optimized hardware FFT accelerators. ASAP, 6 2014.

[41] Armin Alaghi and John P Hayes. Survey of stochastic computing. Transactions

on Embedded Computing Systems, 12(2), 2013.

[42] Enseih Aliagha and Diana Gohringer. Energy efficient design of coarse-grained

reconfigurable architectures: Insights, trends and challenges. FPT, 2022.

[43] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting

accurate method and class names. Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, 8 2015.

[44] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to

represent programs with graphs. CoRR, abs/1711.00740, 2017.

[45] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code.

International Symposium on Foundations for Software Engineering, 2014.

[46] Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from

structured representations of code. ICLR, 08 2018.

[47] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning

distributed representations of code. Proceedings of the ACM on Programming

Languages, 3:1–29, 1 2019.



Bibliography 149

[48] Muhammad Shoaib Bin Altaf and David A Wood. LogCA: A high-level perfor-

mance model for hardware accelrators. ICSA, 2017.

[49] Amazon. Amazon ec2 f1 instances. 2020. Available at https://aws.amazon.

com/ec2/instance-types/f1/.

[50] Shaahin Angizi and Deliang Fan. ReDRAM: A reconfigurable processing-in-

DRAM platform for accelerating bulk bit-wise operations. ICCAD, 2019.

[51] Shaahin Angizi, Zhezhi He, Amro Awad, and Deliang Fan. MRIMA: An MRAM-

based in-memory accelerator. CADICS, 2020.

[52] Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer. Accelerating legacy

string kernels via bounded automata learning. ASPLOS, 3 2020.

[53] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin

Skadron, Westley Weimer, and Reetuparna Das. ASPEN: A scalable in-SRAM

architecture for pushdown automata. 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 10 2018.

[54] Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. Portable

programming with RAPID. IEEE Transactions on Parallel and Distributed

Systems, 30:939–952, 4 2019.

[55] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. EGRA: A coarse grained

reconfigurable architectural template. VLSI, 2011.

[56] Hassan Anwar, Syed M A H Jafri, Sergei Dytckov, Masoud Daneshtalab, Ma-

soumeh Ebrahimi, and Ahmed Hemani. Exploring spiking neural network on

coarse-grain reconfigurable architectures. Mes, 2014.
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