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ABSTRACT 
Tilapias show a variety of physiological adaptations that allow them to live in different 

environmental conditions, disturbing local ecosystems where they are introduced by human 

hand, where they reproduce at faster rates as their cycles are short and constant. They have 

complex behaviours, with species in the Oreochromis and Sarotherodon genus exhibiting 

parental care. Thus, they have become a preferred research species. Knowledge on their 

physiology might benefit the medical sciences, the fisheries industry, environmentsl sciences 

and aquaculture, which is still the major player in sex genes research, as tilapias fish are the 

second most cultured species worldwide and there are problems with their high spawning rates 

as these originate high density stocks in tanks. There is considerable information concerning 

the hypothalamus-pituitary-gonadal axis in vertebrates, with gonadotrophins (FSH and LH) 

playing stimulating roles in development of the ovary and maturation of oocytes. Other 

hormones and factors are involved, mediating the actions of these or as products of their 

induction. The early stages of development of the ovarian follicle and the enveloped oocytes 

are still poorly described, with FSH being considered the first inducer for decades. This implies 

a role for local factors that are regulating the early stages of growth. Recently, TGF-β family 

member activin has been shown to induce FSH incorporation by the follicles and other 

members of this family also seem to have an important role in the ovary, such as BMPs and 

GDFs. Some other factors were studied in this thesis for expression patterns throughout oocyte 

development. With this objective, ovaries from 8 females were extracted and dissected under a 

binocular amplifier with groups of oocytes in 4 different stages being collected for each. RNA 

was extracted and purified and turned into cDNA by reverse transcription. Genes with 

preferential expression in ovary (determined by subtractive hybridization and then with semi-

quantitative RT-PCR) were tested by RT-PCR in oocytes and band intensity was quantified 

using Quantity One from Biorad, using as reference 18S rRNA. These genes include FoxL2, 

CYP19a, Vasa, RBMX, BMP-R IB, CPI-17, Aly and other unidentified fragments: SART, 

PPMP (homolog sequences but not confirmed) and XP2 (putative new protein) and clone 26 

(no homolog sequence known). Results show significant differences among the 4 oocyte stages 

for practically every gene tested, except for Aly and SART. Correlations among some of the 

genes also show they might have related functions in the process.  

 

KEY-WORDS: Molecular endocrinology, oocyte, oogenesis, semi-quantitative RT-PCR, tilapia. 
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RESUMO 
As tilápias possuem uma grande variedade de adaptações fisiológicas que lhes permitem resistir a 

diferentes condições ambientais, tendo-se tornado invasoras por introdução pelo Homem, como 

consequência dos seus ciclos reprodutivos mais rápidos e constantes, que perturbam os ecossistemas 

locais. Estes factores e os seus hábitos comportamentais como o cuidar dos ovos e juvenis até estes 

estarem mais aptos à sobrevivência tornam-nas alvos de estudo intensivo. Este tipo de pesquisa pode 

beneficiar a medicina, as ciências ambientais, a indústria pesqueira e a aquacultura, sendo esta última a 

área que actualmente mais se dedica à investigação de genes envolvidos em processos fisiológicos 

reprodutivos em teleósteos. Dos problemas que se encontram na cultura de tilápias salientam-se as 

elevadas taxas de reprodução que criam stocks demasiado densos nos tanques, e os maiores problemas 

surgem com as fêmeas, pois para além de crescerem menos, a fisiologia e regulação do ovário ainda tem 

muito por descobrir. Sabe-se que a nível endócrino o eixo hipotálamo-pituitária-gónada regula o 

desenvolvimento através de gonadotropinas (FSH e LH), que têm papéis chave na formação do folículo 

que envolve os óocitos e na maturação destes. Outras hormonas têm já efeitos conhecidos, mas 

examinando o início do processo percebe-se que tem de haver factores locais a controlar o 

desenvolvimento. A activina, um membro da família TGF-β mostrou ser responsável pela indução da 

incorporação de FSH no folículo, e outros membros desta família parecem desempenhar um papel de 

relevo na regulação do ovário, como BMPs e GDFs. Nesta tese pretendeu-se identificar a actividade 

destes factores putativos ao longo da oogénese. Para isso foram extraídos ovários a 8 fêmeas, sendo estes 

dissecados de modo a separar 4 estádios de desenvolvimento dos oócitos. O RNA foi extraído, purificado 

e construiu-se o cDNA para cada 4 dos tecidos de cada fêmea. Por hibridização subtractiva e 

posteriormente por RT-PCR semi-quantitativo determinaram-se que genes testar, escolhendo-se os que 

tinham expressão preferencial no ovário. Esses genes foram então testados por sua vez com RT-PCR aos 

oócitos das várias fêmeas, e a sua expressão quantificada com o software Quantity One da Biorad, usando 

o RNA ribossomal 18S como referência. Genes testados incluem: FoxL2, CYP19a, Vasa, RBMX, BMP-R 

IB, CPI-17, Aly e outros fragmentos não identificados: SART, PPMP (sequência homóloga mas não 

comprovada), XP2 (uma possível nova proteína) e o clone 26, este último sem homologia com nenhuma 

outra sequência conhecida. Os resultados obtidos sugerem uma expressão distinta ao longo dos diferentes 

estados de crescimento dos oócitos para praticamente todos os genes, excepto o Aly e o SART. 

Correlações entre genes mostram que alguns deles podem ter funções relacionadas.    

 

PALAVRAS-CHAVE: Endocrinologia molecular, oócitos, oogénese, RT-PCR semi-quantitativo, tilápia. 
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1. INTRODUCTION    

The processes regulating ovarian development are still largely unknown, particularly for 

teleosts. The majority of the data concerns mammals, with emphasis on the human ovary. During 

the last decade however, teleosts fish, which represent 95% of all vertebrate species (Redding and 

Patiño 2000a), have become important research subjects in the field of endocrinology 

(particularly salmonids), as they have a diversity of physiological adaptations to various habitats, 

offering virtually every conceivable type of ovarian physiology and providing exploitable 

material for the understanding of mechanisms regulating ovarian recrudescence (Wallace and 

Selman 1981). Reproduction strategies include oviparity, ovoviviparity and viparity, with some 

of the species exhibiting parental care, as is the case of tilapias. Studies tend to focus on species 

of economic value, as is the case of some species of tilapia. Tilapiine fish have become the 

second most cultivated species worldwide, as a result of their ease of culture, tolerance to poor 

water quality and extreme conditions. Females receive extra attention from researchers because it 

is harder to maintain captive females. The problems involving the culture of tilapias consist in 

some intolerance to some physical properties of water and reproduction difficulties of females, 

with ovarian cycles restarting immediately after the last ovulation and lasting for different periods 

of time. To overcome these problems of female reproduction cycles it is necessary a deeper 

understanding of the functioning of the ovary and how its developmental processes are being 

regulated. On a general basis this type of research is contributing for the increased knowledge of 

the vertebrate ovary and that of teleosts. With molecular and cellular biology it is now possible to 

study physiology at the transcription level, a fact that led to an explosive growth in the discipline 

of endocrinology, with several more messenger molecules being identified through mRNA 

analysis of transcribed genes in the various tissues. The present thesis is aimed at identifying the 

factors that may be involved in regulatory processes during ovarian recrudescence of a tilapiine 

fish, the Mozambique tilapia (Oreochromis mossambicus, fig. 1).   
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1.1.  TILAPIA BIOLOGY AND VALUE 

         Cichlid fishes have received wide 

attention from evolutionary biologists for 

more than 100 years because of their 

extremely diverse morphology, behaviour, 

and ecology (Klett and Meyer 2002). This 

perciform fish family is one of the most 

species-rich families of vertebrates with at 

least 1,300 and perhaps as many as 1,870 

species (Katagiri, et al. 2005; Klett and 

Meyer 2002).  Of  these,   more  than  70  are 

 

 
Fig.1 – A female Mozambique tilapia (Oreochromis 
mossambicus) was the species used for this study. 
Illustration by Gunther Schmida in Mackenzie, et al. 
2001.   

referred to as tilapia, a   generic    term   used    to   designate   a   group   of  commercially 

important   food  fish  that  exhibit  a  wide  spectrum  of ecological adaptations and tolerances 

(pH, temperature, salinity, oxygen tension, overcrowding) (De Silva, et al. 2004). They are multi-

spawning fish, with reproductive cycles in average 15-20 days (Coward and Bromage 2000). 

Their enormous adaptability to the most diverse environments reveals their potential as a cultured 

species, as well as explaining why they have become invaders of so many other habitats where 

they didn’t belong, by human introduction (Bwanika, et al. 2004). The Mozambique tilapia 

(Oreochromis mossambicus) was the first to be dispersed, but its precocious maturity and 

tendency to overpopulate make them not as suitable for culture as other tilapia species (Lim and 

Webster 2006). O. mossambicus breeds throughout the year in equatorial waters, with peaks 

usually in the rain season. They are maternal mouthbrooders, like all fishes in the Oreochromis 

genus. The males construct nests in firm sand, where the females leave their gametes to be 

fertilized by male sperm, and after females collect the eggs into their mouth where they will 

remain even after hatching, until the fry don’t need their care. Females have asynchronous 

ovaries, being multiple spawners with variable interspawning intervals (Coward and Bromage 

2000), the ovary regenerates quickly but not at constant rates and egg size may vary between 

populations of the same species (Tyler and Sumpter 2004). Their fecundities vary with size and 

they grow 20 to 60% less than males. Tilapias are therefore fascinating creatures to study 

physiological adaptations. 
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1.1.1. IMPORTANCE 

Knowledge of ovarian follicle growth in teleosts may provide information not only for 

basic research, but also in biomedical sciences, fisheries management, environmental science and 

aquaculture.  In the environmental sciences knowledge on the effects of endocrine disruptors on 

ovary function may provide a way to detect pollutants in waters. Endocrine disruptors disturb 

hormone actions, having effects on a variety of organisms sensitive to the disruptor. For 

medicine, discovery of new functions of genes like FoxL2, a gene from the forkhead family of 

transcription factors, may provide insights into diseases like premature ovarian failure (POF) 

(Pisarska, et al. 2004; Wang, et al. 2004), blepharophimosis/ptosis/epicanthus inversus syndrome 

or BPES (Baron, et al. 2004; Ottolenghi, et al. 2005; Pannetier, et al. 2006; Uhlenhaut and Treier 

2006) and pooled intersex syndrome in goat (PIS) (Ottolenghi et al. 2005; Uhlenhaut and Treier 

2006; Wang, et al. 2007), which are caused by mutations in this gene. It may also help on the 

fertility control area (Lerch, et al. 2007). In fisheries, information on ovary and reproduction may 

one day provide solutions for reproduction alternatives for increasing the declining fish stocks 

around the world. But the main area of interest in sex related genes comes from aquaculture. 

Manipulation of sexual phenotypes and selection of desired sex-linked traits like size, growth rate 

or egg production, are already well underway (Bwanika et al. 2004; Charo-Karisa, et al. 2006; 

Hassanien and Gilbey 2005; Hulata 2001; Katagiri et al. 2005; Pechsiri and Yakupitiyage 2005; 

Shirak, et al. 2006), but solutions to the problems involving sexual cycles of tilapias are still 

lacking. This is a species whose culture will continue to grow, and they are already among the 

most cultivated fish worldwide. They are second only to Carp which account for 75% of total 

global aquaculture (De Silva et al. 2004; Lim and Webster 2006; Muir and Young 1998), 

particularly the genus Oreochromis spp.. Native to African rivers, several species have been 

introduced to tropical areas of Asia and the Americas to increase supplies of animal protein (Lee, 

et al. 2005). World aquaculture production of tilapia now exceeds 1.5 million tons per year as 

shown in figure 2 (De Silva et al. 2004; Katagiri et al. 2005; Lee et al. 2005) (Fig. 2). 
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Fig. 2 – Aquaculture production of tilapias worldwide. The majority of aquaculture production comes from Asia and 

the major importer the USA; Europe is not a strong competitor with main importers being the United Kingdom, 

France, Belgium, Germany and the Netherlands, around big cities with large African and Asian communities (De 

Silva et al. 2004). 

 

Tilapias have been successful as a cultured species group in the tropical countries due to: 

ease of culture (and thus relatively less limited by the economic status of the farmer), relevant 

species exhibiting many of the desirable traits expected of a species suitable for culture, like high 

growth rate, wide range of tolerance to physical-chemical characteristics (Hulata 2001; Pechsiri 

and Yakupitiyage 2005), exhibiting ecological adaptations and high tolerances (Hassanien and 

Gilbey 2005; Klett and Meyer 2002). They are also disease resistant, of easy propagation, having 

long shelf-life and lending themselves to industrial preparations better than most other white fish 

(De Silva et al. 2004; Pechsiri and Yakupitiyage 2005). In addition, most of the commonly 

cultured tilapias are easily weaned on to artificial feeds. Of them the most important cultured fish 

species is Oreochromis niloticus, known as the Nile tilapia, its hybrids (Charo-Karisa et al. 

2006), the Mozambique tilapia and the blue tilapia (O. aureus) (Coward and Bromage 2000; De 

Silva et al. 2004). The ability to easily adapt to a variety of different environments makes tilapia a 

good model to study physiological adaptations (Lee et al. 2005), besides the prominent role in 

aquaculture. All said, research on physiology of tilapia is focused on defining the developmental 

organization and mechanisms of the female gonad (Redding and Patiño 2000a). Although the 

majority of these studies focus on the Nile tilapia, the Mozambique tilapia is quite similar in most 

aspects and is also a good model.  
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1.2. OVARIAN RECRUDESCENCE IN TELEOSTS 

Ovarian recrudescence can be described as a gathering of all the following processes, and 

although they normally occur somewhat in this order, it is not a rule: oogonial proliferation, 

oogenesis, folliculogenesis (formation of the ovarian follicle), cortical alveolar formation, 

vitellogenesis, final maturation of oocytes and ovulation (Coward and Bromage 2000; Patiño and 

Sullivan 2002; Tyler and Sumpter 2004; Wallace and Selman 1990). These processes will likely 

not happen in this specific order, particularly in fish like tilapia. Instead, some of these phases 

will overlap at the ovary but also oocyte level (Coward and Bromage 2000). In tilapia, the ovaries 

contain always every stage of oocyte growth, and as soon as they ovulate, there will be oogonia 

ready to start meiosis, as well as other stages of oocytes that will be included in the ovarian cycle 

at a later time. Oogenesis is complemented with folliculogenesis, as the basic structure of the 

ovarian follicle is established when granulosa cells and the membrane adjacent to them (theca) 

envelop oocytes at its late pachytene or early diplotene stages during their first meiotic step. So 

the two processes should actually be seen as one, as there will be exchanges between the follicle 

and oocytes that will be regulating the growth of the latter (Ravaglia and Maggese 2003). 

However, this study was done at the oocyte level, so we will focus on oogenesis, but not 

discarding the important role of the follicle. 

 

1.2.1. OOGENESIS 

Oogenesis (fig. 3) is the process by which primordial germ cells (PGC) develop into ready 

to be fertilized oocytes during two meiotic divisions with meiotic arrests in between (Patiño and 

Sullivan 2002). Others tend to designate oogenesis only as the early development of primary 

oocytes (Wallace and Selman 1990), after which the follicle envelopes the oocytes. This shows 

the tremendous ambiguity in the designation of the several stages of this process and of the whole 

process of recrudescence of the ovary in teleosts. This division is sometimes based on 

developmental stages, but in others is more complex, when used to study physiological and 

cellular processes, and to show the inconsistency of such classifications, these can be even taxon-

specific. So, depending on the area the researcher is working, there will be differently limited 

steps describing the whole ovarian development and the majority of literature these days takes 

into account the ovarian development from a follicle point of view, as the oocyte starts to grow 

significantly with the onset of folliculogenesis. Crudely, we can identify a pre-vitellogenic stage 
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that precedes a vitellogenic phase when vitellogenins (VTGs) start to be incorporated by the 

oocytes, and a final oocyte maturation stage in a post-vitellogenic phase, after which the mature 

oocytes are ready to be released and fertilized.  

 
Fig. 3 – Oogenesis and follicle envelopment of oocytes. Primordial germ cells (PGC) migrate to germinal ridge and 

go through mitotic divisions differentiating into oogonia. Oogonia stay in interphase until beginning of meiosis 

(primary oocytes). The oocytes start to be enveloped by follicular cells until the latter is completely differentiated 

and at the end of pachytene phase, early diplotene, meiosis is arrested. During this arrest VTGs are incorporated by 

the oocytes which grow considerably. At this time there is also much mRNA being produced and proteins being 

formed. Finally meiosis is resumed when the nucleus matures and finally the cytoplasm matures with yolk globules 

fusing and germinal vesicle breakdown (GVBD) (Adapted from Abascal and Medina 2005; Coward and Bromage 

2000; Goetz and Garczynski 1997; Patiño and Sullivan 2002; Wallace and Selman 1981 and Wallace and Selman 

1990). 

 

 

1.2.1.1. PRE-VITELLOGENIC GROWTH AND ONSET OF FOLLICULOGENESIS 

Little is known about the mechanisms that control pre-vitellogenic stages of oocyte 

growth, not only in teleosts but in vertebrates in general. This phase is characterized by the 

formation of PGC (primordial germ cells) and after occurs the sex differentiation and they 

become oogonia instead of spermatozoids, determined by the maternal genome (Patiño and 

Sullivan 2002). There are some putative genes responsible for this differentiation, but a sex 
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determining gene is not yet known, the process being probably a product of the action of various 

genes. The next step is the transformation of oogonia into oocytes and the meiotic division starts 

(Patiño and Sullivan 2002). Primary oocyte growth features intense transcriptional activity and 

the formation of yolk vesicles (Abascal and Medina 2005; Wallace and Selman 1981), being this 

the first gonadotropin-dependent stage. These vesicles are precursors to the cortical alveoli and 

will be filled only in the vitellogenic phase with VTGs. Cortical alveoli will be filled with 

glycoproteins in mid to late vitellogenic growth (Patiño and Sullivan 2002). It’s also at this point, 

at its late pachytene, early diplotene (Prophase I) that the ovarian follicle restarts to develop 

(Abascal and Medina 2005). At the end of diplotene phase meiosis is arrested until final 

maturation of the oocyte (Hammes 2004; Huertas 2006).  

 

Folliculogenesis is considered to be a continuous process (Findlay, et al. 2002), starting 

when granulosa cells envelope the oocytes, which in turn are enveloped by theca cells. These 

suffer a number of modifications along the process, as they first become cuboidal then cylindrical 

(Francolini, et al. 2003) and oocyte cytoplasm organelles and volume increase (Patiño and 

Sullivan 2002) by around one order of magnitude. Following oocyte envelopment, the cortical 

alveoli appear, with the Golgi apparatus of oocytes having an important role during their 

formation (Abascal and Medina 2005). Microvilli start to form in the middle of this phase at the 

oocyte surface directed to the granulosa cells, and a vitelline envelope is formed from the oocyte 

end of the microvillar structures, and as the follicle grows, oocytes and follicle become 

connected, allowing communication between them. Granulosa cells are responsible for 

mechanical support of the oocyte, besides mediating signals between the oocyte and the outer 

theca cells. The follicle will be working together with the oocytes until release of the mature 

oocytes (Lerch et al. 2007).  

 

During previtellogenic growth large quantities of ribosomal and heterogeneous RNA are 

produced by nucleoli located at the periphery of the nucleus, being much of the mRNA produced 

done so during this stage (like VTG receptor and VTG processing enzyme), declining during 

vitellogenesis as they are translated into proteins that will incorporate VTG from the blood 

stream (Wallace and Selman 1981), passing to another phase of the development.  
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1.2.1.2. VITELLOGENIC GROWTH 

Vitellogenic growth happens when VTGs (yolk proteins) start to be incorporated by the 

oocytes, being this the phase when the significant growth of the oocyte occurs. These VTGs are 

synthesized in the liver, being stimulated by hormones like 17-β estradiol and others (endocrines 

described in next section), by receptor mediated endocytosis (Coward and Bromage 2000). Their 

hepatic production starts with signalling from the hypothalamus-pituitary-gonad neuroendocrine 

axis stimulated by both endogenous and exogenous cues. When VTGs reach the ovary they enter 

the follicle through the capillaries located in the thecal cells membrane, then through the 

membrane separating theca and granulosa cells and finally through pore canals of the vitelline 

envelope that surround the microvillar structures until it reaches the oocytes and binds to VTG 

receptors (VTG-R), being finally incorporated by the oocytes. Inside they are still cleaved into 

yolk proteins in the vesicles formed during the previtellogenic stage, in the periphery of the inner 

oocyte membrane, where they will remain stored for feeding the embryo once the oocyte is 

fertilized. VTG-R mRNA hits a peak at the end of the previtellogenic stage and declines during 

vitellogenesis, suggesting the receptors are taken back to the surface for incorporation of more 

VTGs. 

 

1.2.1.3. POST-VITELLOGENIC GROWTH (FINAL OOCYTE MATURATION, 

FOLLICLE RUPTURE AND OVULATION) 

The process of ovulation is described as the release of a mature oocyte from the follicle 

and maturation represents the final stage in the oocyte development (Wallace and Selman 1981). 

However, several preparatory steps take place before the oocyte release (Goetz and Garczynski 

1997), including the resumption of the first meiotic step (Cardinali, et al. 2004), fusing of yolk 

globules, disruption of the microvillar structures that connect the oocyte to the follicle (rupture of 

the follicle by proteases). At this time the nucleus is mature (as meiosis first step is resumed) and 

finally the cytoplasm, occurring water uptake in many teleosts (Huertas 2006; Nagahama, et al. 

1993) for oocyte hydration and the volume of the oocyte grows even more. Before ovulation 

there is a new meiotic arrest in metaphase II (Hammes 2004). In tilapia, when the oocyte is 

finally released is covered by a thin acellular envelope that is formed during the follicle 

development (Francolini et al. 2003), the vitelline envelope (VE), constituted by a thin outer layer 

and a thick inner layer. The inner layer is fibrous, striated and primarily composed of 3-4 

subunits derived from VE precursor proteins, the ‘choriogenins’. The outer layer is rich in 
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polysaccharides (Patiño and Sullivan 2002). The VE acts as a mediator between the embryo and 

the environment and may have a role in fertilization (Ravaglia and Maggese 2003). When the egg 

is fertilized, it induces completion of the second meiotic division and expulsion of the second 

polar body (Patiño and Sullivan 2002). The endocrine regulation of this and the previous stages 

will be described in the following section.  

 

 

1.3. ENDOCRINE MECHANISMS OF REGULATION  

The endocrine system is mainly responsible for chemical communication between cells via 

a chemical messenger (Janz 2000), coordinating several physiological processes such as 

development, growth, homeostasis, energy availability, behaviour and reproduction. It works side 

by side with the nervous system, even sharing intracellular signalling pathways, the involvement 

of the immune system and neuroendocrine mechanisms. These systems are responsible for the 

regulation of all physiological phenomena, and knowledge on it may provide solutions for 

problems in the most diverse areas. There are four major categories of messenger molecules: 

amines, steroids, lipids and peptides. Here we will focus on peptide hormones. Exploring the 

tissues where hormones are expressed or released and their function reveals where and why these 

mechanisms are taking place. Hormones work by connecting to receptors in the target tissues, 

existing four mechanisms by which hormones signal the consequent molecules of a pathway. In 

one of these the receptor is inserted in the plasma membrane and requires coupling to enzymes 

via the G proteins (guanine nucleotide binding proteins) and a second messenger is catalyzed, 

like with TGF-β members. Another type sees the receptor itself possessing enzymatic activity, 

from the moment of hormone binding. Others form ion channels that open or close upon binding 

of hormone and a final type of receptor binds directly to the DNA, working as a transcription 

factor once the hormone binds (nuclear receptors), used by most steroid hormones.  

  

1.3.1. THE HYPOTHALAMUS-PITUITARY-GONADAL AXIS 

There is more than one type of GnRH (gonadotopin-releasing hormone) among fish, with 

these exhibiting several patterns of distribution. However, it is generally accepted that the 

neurosecretory nuclei of the hypothalamus segregates GnRH at the preoptic and anterior part of 

the brain, having an important role in reproduction (Bentley 1998; Redding and Patiño 2000b), as 
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these will stimulate the release of gonadotropins by the pituitary. The latter is composed of two 

parts, the adenohypophysis and the neurohypophysis. Unlike the majority of vertebrates vascular 

communication among these two is practically non-existent (Redding and Patiño 2000b). In the 

adenohypophysis specialized cells (gonadotrops) produce the two gonadotropins, but a single 

GTH may occur in some species. These cells’ activity is regulated by stimulating and inhibiting 

factors, being the major stimulus by the hypothalamus synthesized GnRH. FHS and LH will be 

transported in the blood stream until it reaches the gonad, at different periods of its development. 

FSH seems to be mainly responsible for early gonadal development and vitellogenesis in females. 

LH levels are low until the period of final oocyte maturation (Feist and Schreck 1996). The 

adenohypophysis also produces thyroid-stimulating hormones, prolactin family (includes 

prolactin, growth hormone and somatolactin), adrenocorticotropin and melanotropin. Prolactins 

have been shown to have effects in reproduction in some species, and thyroid hormones (T3 and 

T4 segregated from thyroid by thyroid-stimulating hormone) have been shown to be incorporated 

by tilapia oocytes (Tagawa and Brown 2001; Tagawa, et al. 2000). 

 

 
Fig. 4 - Schematics of pathways of the hypothalamus-pituitary-gonadal axis in teleosts described through section 

1.3.2.. 
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1.3.1.1. HYPOTHALAMUS AND PITUITARY HORMONES 

At the hypothalamus level, 3 types of hormones are probably involved in reproduction 

control: the already mentioned GnRH, GHRH (growth hormone-releasing hormone or 

somatocrinin) and PACAP (pituitary adenylate cyclase activating polypeptide). The first has as 

target the pituitary and the latter two have been shown to be expressed in several tissues like 

brain, stomach, heart, testes and ovary, but are differently expressed along tissues of different 

species. PACAP has been found also at the pituitary and heart of gold fish (Carassius auratus). 

GHRH acts at the anterior pituitary cells to release GH. GnRH can be found usually in two or 

more forms in each species. Its gene codes also for an associated peptide (GAP) and a signal for 

processing the preprohormone peptide. GAP function remains unknown.   

In the pituitary, the GH can be stimulated or inhibited. Stimulus is caused by GHRH, 

GnRH, dopamine, thyrotropin-releasin hormone, neuropeptide Y (NPY) and cholecystokinin. 

Inhibition happens with somatostatin (somatotropin-release inhibiting factor or SRIF), IGFs 

(insulin-like growth factors), GH, glutamate, norepinephrine and serotonin. GH promotes somatic 

growth in fish. When GH is released it promotes transcription and release of insulin-like growth 

factors (IGF I and IGF II) in several tissues (Kajimura 2004). FSH and LH are released from the 

pituitary when GnRH binds to the respective receptors on the gonadotrops outer membrane and 

they will act mainly at the gonads level. In females GTHs target is the follicle, acting on the 

granulosa and the thecal cells that surround the oocyte, but not the oocyte itself. FSH-R binds 

both GTHs (but mainly FSH) and LH-R binds specifically LH. The first is found in both types of 

follicle cells but the second only in granulosa cells. These receptors are G-protein-coupled, 

stimulating adenylyl cyclase and cAMP in both gonads (Gill and Hammes 2007). But other 

signalling mechanisms are necessary in this signalling process, including IP3 production, 

increases in intracellular calcium, protein kinase C activity and arachidonic acid metabolites (Pati 

and Habibi 2002).  

 

 

1.3.1.2. OVARY HORMONES 

Action of GTHs is not straightforward, being mediated by steroids (Nagahama et al. 

1993) produced at the follicle cells (Redding and Patiño 2000a; Rocha and Reis-Henriques 1998). 

In response to FSH that enters these cells mediated by receptors, follicle thecal cells produce and 

release testosterone (T), one of the main sex steroids working in fish reproduction cycles. T 
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diffuses to the granulosa cells and is converted into 17β-estradiol (E2) by aromatase from the 

cytochrome P450 family of enzymes. This family is the main responsible for the biosynthetic 

pathways in fish, regulating production of sex steroids. These latter are fused ring structures 

derived from cholesterol by the ‘side chain cleavage’ of cholesterol by enzyme P450scc. 

Progesterones also have an important role, with 17α,20β-DP being the most well known oocyte 

maturation inducer, responsible for further follicle rupture with ready to be fertilized oocytes’ 

release. IGF-I expression has been found in ovaries among other tissues, and IGF-II is expressed 

during vitellogenesis. Its main role is to mediate GH effects, but gonadal IGFs found in granulosa 

and thecal cells (Kajimura, et al. 2003; Schmid, et al. 1999; Zhou, et al. 2005) also stimulate 

steroidogenesis and may have some role in ovary growth prior to maturation (Zhou et al. 2005). 

Regulation of the whole ovarian recrudescence process will be described in the next section. 

Other identified regulators that not yet have a defined function include, epidermal growth factor 

(EGF) receptors in the follicles, probably involved in the production of steroids and 

prostaglandins and other peptides like insulin, prolactin and GH. 

 

 

1.3.2. MOLECULAR ENDOCRINOLOGY OF THE OVARY 

Regulation of previtellogenic growth of the ovary remains largely unknown. The basis of 

endocrine mechanisms in the female gonad is described from the point when the follicle starts to 

grow significantly and to produce FSH-induced testosterone and the ovarian regulation by the 

hypothalamus and pituitary (Juengel and McNatty 2005). In the oocytes, FSH stimulates the 

synthesis of the yolk vesicles (Wallace and Selman 1981). Testosterone will be catalyzed into 

17β-estradiol (E2) by aromatase P450 at the follicle. E2 will be transported to the liver where it 

will stimulate hepatic segregation of VTGs (refs) and also of oocyte membrane proteins 

(Nagahama et al, 1993). These will be transported back to the ovary where it is selectively 

incorporated in the oocytes in a process mediated by receptors. Prior to maturation, E2 levels 

decline and maturation-inducing hormone (MIH) levels rise, due to possible dramatic changes in 

expression of their genes (Nagahama et al. 1993). It is unclear how this sudden change in the 

steroidogenic pathway occurs, but it may be that GTHs downregulates aromatase activity and 

upregulates the enzyme that will catalyze the specific MIH, 20β-hydroxysteroid dehydrogenase 

or 20β-HSD (Senthilkumaran, et al. 2002; Zhou et al. 2005). MIH is progesterone in all 

vertebrates, but not in fish where it is 17α-20β-dihydroxy 4-pregnen-3-one (Nagahama et al. 
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1993), or 17α,20β,21-trihydroxy-4-pregnen-3-one (Rocha and Reis-Henriques 1998). The 17α-

20β-DP MIH is formed from 17α-P (synthesized by 20β-HSD) in theca cells by LH stimulation 

(Senthilkumaran et al. 2002), and then diffuses to the granulosa cells, where is in contact with the 

oocyte surface. Early studies in tilapia suggest deoxycortisone to be their MIH (Coward and 

Bromage 2000). MIH binds to receptors at the surface of the oocyte membrane and a maturation 

promoting factor (MPF) is formed, which will mediate MIH (Bentley 1998). This is achieved by 

the stimulating action of MIH on cell division cycle (Cdc25) phosphatase, an enzyme that 

dephosphorylates some of the aminoacid residues of MPF, activating it (Bhattacharya, et al. 

2007). In carp it has been isolated a MPF consisting of two components, a homolog of the cdc2+ 

gene of yeast (p34cdc2) and cyclin B. A cdc2 kinase protein is the catalytic component, present in 

both mature and immature oocytes and cyclin B (the regulatory component) only found in mature 

ones. Cyclin B has been shown to possess a crucial role in 17α-20β-DP-induced oocyte 

maturation (Bhattacharya et al. 2007; Nagahama et al. 1993; Rocha and Reis-Henriques 1998), 

being the regulatory component of the dimeric protein kinase complex MPF. MIH also releases 

oocytes from the meiotic arrest that happens at the end of Prophase I. GVBD is a final marker of 

oocyte maturation which is catalyzed by MIH (Bhattacharya et al. 2007; Goetz and Garczynski 

1997) or GnRH (Cardinali et al. 2004) and thus affected by MPF (Bhattacharya et al. 2007). 

Finally, ovulation is considered to be some kind of inflammatory reaction, with possible 

regulators being eicosanoids, catecholamines, kinins, angiotensin, histamine (Goetz and 

Garczynski 1997), proteases and their inhibitors (Coward and Bromage 2000). Prostaglandins 

and progestational steroids may be necessary, as shown in some species like brook trout 

(Salvelinus fontinalis) and yellow perch (Perca flavescens), being synthesized by steroids and 

possibly involving follicle and extra-follicular tissue. Hormone-dependent ovulation requires 

protein kinase C (PKC) activation of MIH that will in turn bind to nuclear receptors (nMIH-R) 

and initiate transcription of ovulation inducers (fig.4). 

Prior to folliculogenesis and during its early stages, there are not necessarily GTH 

dependent development processes. In these cases there are local factors being expressed 

(Drummond 2005; Pangas and Rajkovic 2006). In fact, for the follicle to respond to GTHs, it first 

needs to gain the capacity to incorporate them, meaning, a receptor and the postreceptor signal 

transduction systems. These factors and others have now a bigger chance of being discovered and 

what their function is with genetics and molecular and cellular biology techniques. One area of 

interest is the sex determining/differentiation genes like FoxL2 and others (Shirak et al. 2006). 

The other revolves around follicle growth and its regulations by various signalling factors. One of 
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the major families known is the TGF-β superfamily (Drummond 2005; Lerch et al. 2007), being 

one of its key members activin, responsible for early formation of the follicles (Jaatinen, et al. 

2002). Activin (fig. 5) regulates FSH synthesis, potentiates its actions by increasing receptor 

expression in granulosa cells, is thus responsible for the formation of early follicles and is a 

model for a receptor system for other members of this family, like Growth Differentiation Factors 

(GDFs) (Juengel, et al. 2004; Knight and Glister 2003) and the Bone Morphogenetic Proteins 

(BMPs) (Drummond 2005; Findlay et al. 2002; Lerch et al. 2007). 

 

 
 

Fig. 5 – Regulation of activin signalling (Source: Lerch et al. 2007). Activin signal via type I and II receptors, 

propagating the signal in the pituitary intracellularly via Smads, which interacting with transcription factor Pitx2 (co-

activator) stimulate FSH. The latter travels in the blood stream to the ovary and interacts with the granulosa cells of 

the follicle, binding to its receptor. FSH will then induce inhibin and follistatin, the later inhibiting locally activin, 

decreasing its activity. The dominant hormone becomes inhibin, which is sent in the blood stream to the pituitary, 

where it inhibits activin signalling.   

 

 

 For this thesis, the gene expression of some other putative factors obtained from a 

suppression subtractive hybridization was to be analysed. With that aim, some genes were tested 
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for mRNA expression throughout oogenesis: Vasa, FoxL2 and CYP19a as controls, BMP-R IB, 

RBMX, CPI-17, Aly protein and some others with unconfirmed identity (SART, PPMP protein, 

XP2 and clone 26).  

 

 

1.4. OBJECTIVES 

The main objectives of this work were to analyse expression of factors participating on the 

regulation of the ovary of Oreochromis mossambicus, by mRNA expression analysis of 

several genes encoding for known molecules, some with a known function (at least partially) 

and others with possible roles in ovary maintenance, or for some obtained sequences that 

might represent new genes or alternative transcripts of the known ones, but not with any 

known function. The genes tested were obtained by suppressive subtractive hybridization. The 

expression patterns represent each gene’s expression throughout oocyte growth, revealing 

when they are most important in the process and suggesting an inference on which function 

they might execute. As further work the full sequences of these genes would be obtained by 

means of RACE-PCR.  
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2. MATERIAL AND METHODS 

For the characterization of the expression patterns of the various genes studied, several 

methods of molecular biology were used, with bioinformatics being employed when necessary. 

These were employed in order to obtain RNA transcripts of each stage of oocyte development, to 

construct the respective cDNA for these tissues and quantify the expression of each of the genes 

in each stage for a total of 8 females used as replicates. Reagents used are described in annex I 

and cloning procedures for sequencing are detailed in annex V.  

 

2.1. BIOLOGICAL MATERIAL AND SAMPLING 

Females were selected from families maintained in 200 L fresh water aquariums at 27ºC, 

12 hour photoperiod, constant oxygenation and sand on the bottom. There were 4 females and 

one male for each aquarium, which were fed daily with commercial cichlid ration. The eggs were 

collected from the female’s mouths and accounted for viable or unviable, to infer on each 

female’s fertility status. Inter-ovulation periods were monitored like this, becoming possible to 

infer on the relative time of the ovarian cycle at which the female would be at, and collect an 

ovary at a specific time of ovarian recrudescence. 8 females were killed and their ovary retrieved 

with lengths and weights registered, both for the fish and gonad, with gonadosomatic index (GSI) 

determined as in table 1 to give an idea on the healthiness of the ovary. The ovary was put into 

0,9% NaCl until the end of dissection and oocyte separation. The oocytes were separated under a 

binocular microscope, into 4 different stages of oocyte growth: oogonia (OO), primary oocytes 

(PO), early vitellogenic oocytes (EV) and late vitellogenic oocytes or mature oocytes (LV/M), 

depending on the state of development of the follicles containing oocytes for each female. Each 

sample consisted in 80 to 100 cells, or more when cell size was too small like with oogonia, to 

ensure enough mRNA. Every oocyte collected was measured for smaller and larger diameter (fig. 

6). The tissues were frozen in liquid nitrogen and put at -80ºC. Samples were also collected for 

histology, being kept in Bouin. 
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Table 1 – Lengths and weights for the 8 females used for RT-PCR, with condition factor GSI. 

Female TL* (cm) SL** (cm)
Weight 

(g) 
Ovary weight 

(g) 
GSI*** 

(%) 
            
6 16.6 13.9 75.8 2.72 3.588 
8 16.6 13 62.4 0.132 0.212 

10 16.7 4.6 60.8 0.8 1.316 
11 16 12.5 72.8 4.3 5.907 
12 17.1 13.5 75 0.93 1.240 
13 16.6 13 62.4 0.132 0.212 
14 16.5 13.1 68.8 0.53 0.770 

15 15.2 12.1 65.6 3.958 6.034 
   *Total length; **Standard length; ***GSI = Ovary weight / Total weight. 

 

 

 
 

Fig. 6 – a) Oocytes in 0,9%NaCl solution, during the oocyte collection under a binocular magnifier, with 1) oogonia, 

2) primary oocytes, 3) early vitellogenic and 4) late vitellogenic or mature oocytes and  b) diameters of oocytes for 

all females dissected (average for all oocytes in each group per female). F5, F6 and F7 were at the beginning of the 

reproductive cycle; F9, F10, F11 and F3 were at the middle of it and F1, F2, F4 and F8 were at end of the cycle. 

Kruskal-Wallis One Way ANOVA on ranks reveals a significant difference among stages (P ≤ 0,001) and Tukey’s 

test for comparison between groups show no significant differences for pairs SS-S; S-M and M-L for P < 0,05. The 

stages can therefore be considered significantly different from each others. 

4 

3 

2 

1 

a) 

b) 
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2.2. HISTOLOGY 

To identify and verify the stages of oocyte growth, the tissues were stained with 

haematoxilin-eosin coloration. The follicles were kept in Bouin for 10 days, processed in a Leica 

TP1020 overnight and they were then put into paraffin. The cuts performed were of 0,5 µm. The 

sections were first hydrated by immersion in xilol 2x during 15 minutes, then 5 minutes through 

graded ethanols (100%, 95% and 70%) and finally in distilled water. These sections were placed 

30 seconds in haematoxylin before passing them on running water and then again in distilled 

water. Next they were immersed in Eosin for 30 seconds, followed by distilled water with a few 

drops of acetic acid. Finally the tissues were again dehydrated through graded ethanols (70, 95 

and 100%) during 5 minutes each and then 2x 15 minutes in xilol. The preparations were 

mounted with DPX.  

 

2.3. RNA EXTRACTION AND CDNA SYNTHESIS 

RNAs are sensitive molecules that are easily degraded. To study tissue expression the 

RNA needs to be reverse-transcribed into the more stable molecule of cDNA by a specific 

enzyme that synthesizes double-stranded DNA, a reverse transcriptase. The RNA was extracted 

from the pools of 80-100 oocytes using Sigma’s TRI Reagent. The tissues were homogenised in 1 

ml of TRI Reagent for a weight inferior to 100 mg. Samples were centrifuged at 13,400 rpm for 

10 minutes at 4ºC. After they were left at room temperature for 5 minutes and 0,2 ml of 

chloroform were added to each tube, being then shaken vigorously for 15 seconds. Samples were 

left at room temperature for 15 minutes and then centrifuged at 13,400 rpm during 15 minutes at 

4ºC. The colourless upper aqueous phase was transferred to a fresh tube and 0,5 ml of 

isopropanol was put into each one. Samples were left at -20ºC overnight to allow a more efficient 

RNA precipitation. Following this, the samples were centrifuged for 10 minutes at 13,400 rpm, 

4ºC. The supernatant was then removed and the pellet formed washed with 1 ml of 75% ethanol. 

Samples were shaken and centrifuged at 7,600 rpm for 5 minutes at 4ºC. Finally the pellets were 

left to dry on ice and suspended on diethylpyrocarbonate-treated water (30 µl for less 

concentrated samples and 50 µl for more concentrated ones). Prior to cDNA synthesis the 

suspended RNA was treated with rDNAse I using Ambion’s DNA-free Kit, to ensure no genomic 

DNA contamination (annex IV). Taking into account a certain amount of RNA with 

concentration determined by directly observation of intensity in the agarose gel for each sample, 
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the quantities to be used in the reaction were chosen. To the volume of RNA used, up to 44 µl of 

DEPC-treated water were added, and then the final 6 µL for the total of 50 µl per sample 

consisted of 5 µl of rDNAse I Buffer and 1 µl of the enzyme rDNAse I. The samples remained 30 

minutes at 37ºC, after which the DNAse was inhibited with 5 µl of the inactivator. After 

centrifuging the inactivator was discarded to retrieve the purified RNA. 3 µg of this purified 

RNA was used for the cDNA synthesis. For each sample, in a total volume of 40 µl, up to 29,6 µl 

were of suspended RNA in DEPC water and 10,4 µl of reagents mix, with volumes of RNA 

being chosen by determining the relative quantity (ng) in 1 µl of RNA by observation of  the 

electrophoresis gel. The RNA would be put at 65ºC for 10 minutes to denaturate. The reagents 

mix prepared contained the final 10,4 µl of volume left to complete the reaction. These consisted 

of 8 µl of 5x RT Buffer, 1 µl of dNTPs at 10 mM each, 1 µl of random hexamers (pdN6) at 1 

µg/µl, 0,2 µl of RNAse guard and finally 0,2 µl of the reverse trancriptase M-MLV from 

Promega (200 µg/µl). Before adding the reagents mix, the tubes were put into ice for 5 minutes 

and then briefly centrifuged. The reaction worked for 2 hours at 37ºC and the oocytes’ cDNAs 

were finally synthesized. 

 

 

2.4. SEMI-QUANTITATIVE RT-PCR 

PCR (Polymerase Chain Reaction) allows the amplification of a gene fragment 

exponentially, using a pair of specific primers for the fragment to be amplified and a DNA 

polymerase enzyme. These primers need to be designed from a known sequence, and one of them 

corresponds to the beginning of the sequence to be amplified, called the forward or sense primer, 

and the other one from the end of the sequence, that anneals with the complementary DNA strand 

(called the reverse or anti-sense primer). The PCR consists of a first step of denaturation, in 

which the two chains are split and the DNA becomes single stranded and the primers can now 

anneal to the complementary sequences. The step of annealing depends on the cDNA being used 

and the specificity of the primer, so the majority of the times it is needed an optimization of the 

PCR conditions to be employed. For this optimization there are essentially two factors that need 

to be played with. One is the annealing temperature, that although is indicated in the primer 

description of the manufacturer, it is not necessarily the right temperature to be used with our 

sample. The second factor is the concentration of magnesium (used here in the form of MgCl2 at 

50 mM) that is used in the reaction. Magnesium helps the DNA polymerase to synthesize the 
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strands, so in principle if more Mg is added, the polymerase will bind the substrate more easily, 

and with the lost in specificity there may be more unwanted fragments amplified. If Mg 

quantities used are lower, the polymerase specificity to the DNA is higher, it becomes more 

sensitive, and there is a greater chance of obtaining the pretended fragment. This optimization 

step is mostly required when quantifying gene expression, as more than one fragment as the PCR 

product means a loss of primers that are binding to unwanted fragments. If this happens 

quantification will be biased. The third step is elongation, in which the polymerase synthesizes 

the new complementary strand for each of the obtained denatured strands. This three steps are 

then repeated the necessary amount of times for the product at least be visible on an agarose gel 

by electrophoresis. For this study it was also necessary to quantify the expression at the several 

stages of oocyte growth (by semi-quantitative PCR, as the quantification was done relatively, 

comparing the intensity of the products with a reference gene that should be expressed in all 

tissues equally for normalization – rRNA 18S).    

 

       Table 2 – List of primers used for RT-PCR and RACE-PCR, with conditions employed for each set. 

 
*BMP-R IB, RBMX, CPI-17, and Aly protein primers were at a concentration of 20 pmol / ml. All others were at 10 pmol / ml. 

Gene     Primer sequences Melting  MgCl2 
                temperature (ºC) (mM) 

Nr of cycles

 RT-PCR*          
Vasa  Fw 5'- GAT TTG GCA GAA CGG ATC ACA GTA -3' 
  Rv 5'- GTG GTT CTA GAG TAG CAT GAA CAG -3' 

58 3 30 

FoxL2  Fw 5'- GTT CCC AGT ATG AGC AGT GCA -3' 
  Rv 5'-  GTG GGT GAG GCT ACA GGA TGT GTA -3' 

59 3 28 

CYP19a  Fw 5’ - GGC ATA GGC ACA GCC AGC AA - 3’  
  Rv 5’- GGT CCA CTC GGA CAT ACC TCC T  - 3’ 

60 3 32 

BMP-R IB  Fw 5’- CTT GTT GAT TTC AGT CAC TGT ATG CA -3’ 
  Rv 5’- CTC TCA GAT AAG TGC AGA GCC A -3’ 

60 1,5 39 

RBMX  Fw 5’- GAG ACT ACT ATG ATT CAG GAA GTG TA -3’
  Rv 5’- ATA ATC ATC CCT TCT GGA CAT CAT CG -3’ 

57 3 32 

SART  Fw 5'- TCT GCA CAC TCA GAG ATG TTT CTA C -3' 
  Rv 5'- TTA TGA CAG GAG TAA GGC CAC TGT T -3' 

58 3 30 

PPMP protein  Fw 5'- GTG GTA TTT TTT AGG TAT GGA TCT CAT -3' 
  Rv 5'- ACA CCT ACC TCT CTT ACC TCA AAC AC -3' 

58 3 31 

CPI-17  Fw 5’- ACA TTG ATG ATT TGC TCG ACC T -3’ 

  Rv 5’- CTG ATT TTG CTC TTG GGT GTG GTG A -3’ 57 3 26 

XP2  Fw 5'- GGC GCT ACG GAC ACT TCA AGC A -3' 
  Rv 5'- TGA TGT CAG AGC TTC GTG CTC TGT -3' 

60 1,5 32 

Clone 26  Fw 5'- AAG AGA ACC TAA CAC ACT CAT CCT AC -3' 
  Rv 5'- GTC TGA CTG CTG TCC TGT GTA TTC -3' 

58 1,5 31 

Aly protein  Fw 5’- AGG AGG AAA CAG ACC CCA GC -3’ 

  Rv 5’- GAG CGT CAT CCC ATC AGA GTC CT -3’ 
58 3 29 

 RACE-PCR          

CPI-17  Rv1 5'- TCA TCA ATG TTA ACC TCC TCT GGC AT -3'   
    Rv2 5'- GGC TGG ACG TGG AGA AGT GGA TCG -3'  

57 3 35 
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Genes studied were obtained by suppression subtractive hybridization (SSH), comparing 

the relative difference in concentration of mRNA transcripts of genes tested in ovary and testes, 

with primers for these genes being done after sequencing of products of the SSH. The primers for 

the control genes Vasa, FoxL2 and CYP19a were designed from published sequences (GenBank) 

from Oreochromis mossambicus, or when not available, from Oreochromis niloticus. They were 

constructed using an online oligonucleotide properties calculator 

(http://www.basic.northwestern.edu/biotools/oligocalc.html) having in consideration that they 

should have a GC content of around 50% and an annealing temperature between 50º and 60ºC, 

with annealing temperatures for forward and reverse primers differing no more than 5ºC. The 

fragments to be amplified should have from 100 to 450 base pairs. These primers were tested for 

preferential expression in ovary rather than testis by RT-PCR, and when positive they were 

chosen as good candidates for having some particular role in oocyte growth. RT-PCR for each set 

of primers in oocytes was done using always the same quantities in a total of 10µl per tube using 

EuroTaq DNA polymerase. Taq DNA polymerase is a thermostable enzyme isolated from the 

bacteria Thermophilus aquaticus, with a molecular weight of 94 kDa. This enzyme synthesizes 

double-stranded DNA in the direction 5’-3’ in the presence of magnesium. Reagents and 

quantities used are described on fig. 7 and annex I. PCR optimization for some genes where more 

than one band could be detected was done by changing MgCl2 concentrations (1µl of MgCl2 is 

3mM in total reaction volume of 25 µl) and annealing temperatures. These and the number of 

cycles used for amplification of each gene fragment can be seen on table 2. The optimization 

procedures also involved the determination of the adequate amount of cycles to be used in the 

PCR. Details of all these optimization procedures are described in annex II.  

 
Fig. 7 – PCR mixture of reagents used for each set of primers. After the optimization procedures, the same PCR 

procedure was used for all primers, only changing MgCl2 volumes in the mixture and the primers. The mix was done 

in an eppendorf tube of 1,5 ml and concentrations were in a total of  25 µl: 1x Taq buffer, 1 to 3 mM MgCl2, dNTPs 

at 0,2 µl each, primers at 0,4 to 0,8 pmol/µl, cDNA and water (sigma). 
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The PCRs were all run in Biorad’s myCycler thermocycler and consisted of 4 minutes of 

initial denaturation at 94ºC, followed by cycles of 25 seconds of denaturation again at 94ºC, 25 s 

of annealing with temperatures depending of primers and 35 s of 72ºC elongation step. Products 

were stored at 4ºC until run on a 3% agarose gel by electrophoresis (electrophoresis procedure is 

described in annex III). The bands were quantified using Biorad’s Quantity One software, to 

obtain the expression patterns for each gene throughout oogenesis. For the quantification, the 

bands obtained couldn’t be saturated, hence the reason why the number of cycles had to be 

optimized, to obtain the exponential phase of a PCR, and not when it is saturated and 

immeasurable. 

 

 

2.4.1. STATISTICAL ANALYSIS 

Results are presented as the mean of all 8 female’s intensities of gene expression during 

each stage of follicle development ± standard error of the mean (se). To test whether the means 

among the different groups (OO, PO, EV and LV/M) were significantly different, it was used a 

One-Way Analysis of Variance (ANOVA) followed by multiple comparison procedures among 

groups, using Tukey’s Honestly Significant Difference test or Dunn’s method. When the test for 

normality of the distributions failed, or the test for equality of variance, it was used Kruskal-

Wallis One-Way ANOVA on ranks followed by either Tukey’s or Dunn’ method for isolating the 

groups that differ from the others. Graphics were done using SigmaPlot and statistics using 

SigmaStat. Correlation between the expressions of the different genes was assessed using the 

Pearson Product Moment Correlation. Statistical significance was considered at the 5% level (P < 

0,05).  
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3. RESULTS  

Results are presented starting by a histological dye of haematoxylin-eosin to a tilapia ovary at 

mid of the reproductive cycle to show a representative view of the stages of development of each 

of the stages collected. Following this come RT-PCR results, both for the testing of sexual 

dimorphic expression of the genes analysed, and the semi-quantitative analysis in oocytes of 8 

females. Finally the Pearson Product Moment Correlation matrix shows which genes display 

correlated levels of expression. 

 

3.1. HISTOLOGY 

Haematoxylin is a base that colours acidic components of the cell (basophilic structures), 

with purple hue and alcohol-based acidic eosin, colours acidophilic (or basic) structures found in 

the cytoplasm bright pink. The basophilic structures are usually the ones containing nucleic acids 

(most abundant acidic components), such as the ribosomes, the cell nucleus, and the 

cytoplasmatic regions rich in RNA (Timm 2005). 

  
Fig. 8 – O. mossambicus ovary tissue dyed with haematoxylin-eosin. In the picture the numbers indicate the four 

stages used for analysis of expression of the genes considered: oogonia (1), primary oocytes (2), early-vitellogenic 

oocytes (3) and late-vitellogenic or already mature oocytes (4). Mature oocytes are already free of the follicle 

envelope (5), being ready to be ovulated.   

 

 From the previous description, oogonia and primary oocytes (1 and 2 respectively) 

cytoplasm seems enriched with nucleic acids and the later stages (3 and 4) seem to have more 

basic structures. So the stages used according to histology present the following stage of 

development: 

1

2

3

4 

5 

      1 mm 
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(1) Oogonia, stage prior to meiosis, differentiated from primordial germ cells where a great 

amount of RNA seems to be distributed through the cytoplasm; 

(2) Primary oocytes, with the onset of the first meiotic step also rich in mRNA already bigger 

in size; 

(3) Early vitellogenic oocytes, with follicle layer (theca and granulosa cells) clearly 

surrounding the oocyte; the oocyte is bigger with vitellogenin being gathered and mRNA 

difunded through the cytoplasm. VTGs are still accumulating in vesicles; rich in 

organelles; 

(4) Late-vitellogenic oocyte, with yolk globules already formed and fusing (maturation). No 

follicle layer is seen around the oocyte, so it is probably already mature and ready to be 

ovulated.  

(5) Ovarian follicle, with outer theca cells and inner granulosa cells next to the oocyte. 

 

3.2. SEXUAL DIMORPHIC EXPRESSION  

These results show the prior determination of differential expression by RT-PCR of 

selected genes in ovary and testes (fig. 9). The reference used was 18S. Those genes with relative 

concentration was higher in ovary were selected for analysis of differential expression throughout 

oogenesis. 

 

 
 

Fig. 9 – Each gene was tested for sexual dimorphism, using cDNA from testes and ovary, in 2 different RT-PCRs (a) 

and (b). By looking at the bands’ intensities relatively to ribosomal 18S RNA we can determine the relative 

expression for each gene. Other genes Twist-Neighbour (TN), XP1 and clones seen show sexual dimorphism but 

were not tested through oocyte growth, except for TN, XP1 and clones 15 and 30 in a prior test to the actual 

experiment, which is described in annex VI. 
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 The designation ‘clone’ indicates sequences with no homologs found. So they could be a 

new gene or an untranslated region (UTR). XP1 and 2 are hypothetical new proteins with 

unknown functions. PPMP22 and SART have a partial sequence homolog to these genes but 

aren’t necessarily so. The genes analysed revealed differential expression in ovary and testes. In 

addition FoxL2, Vasa and CYP19a were analysed to answer doubts concerning the use of rRNA 

18S as the reference and to consolidate the reliability of the technique in use.  

 

3.3. PATTERNS OF EXPRESSION THROUGHOUT OOCYTE GROWTH 

Highly expressed genes in ovary include BMP-R IB, CPI-17, Aly, XP2, PPMP22, SART 

and RBMX. Vasa served as a control gene, being a marker of germ cells and a probable good 

indicator of oocyte quantity, but literature seems to show also that it’s not expressed always in 

same quantities in all germ line cells, particularly in oocytes. Results using the 18S gene as the 

reference seem to be in accordance with patterns observed in previous works. Figure 10 shows an 

example of the gel electrophoresis where the PCR products were run for each gene. These bands 

were quantified; in this case the intensity obtained for the Vasa gene was divided by the intensity 

of the corresponding band for 18S. Electrophoresis migrations for the other genes tested can be 

seen in annex VII.  

 
Fig. 10 - Bands obtained with the DNA electrophoresis to the PCR products of the RT-PCR for reference gene 18S 

and one of the genes tested, Vasa. Each band corresponds to the intensity of expression in each stage of oocyte 

growth for the 8 females. These bands were quantified for intensity (INT), all in one same area. Quantification was 

made with Quantity-One and the intensity of the gene tested was divided by the one from 18S (Gene/18S), with 

intensities expressed in INT*mm2 and in the same areas that were only different for each gene, but the same for all 

females and stages. For similar images on the remaining tested genes see annex VII.  
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3.3.1. Vasa 

Vasa is expressed only in germ line cells, thus it was considered using it as reference 

instead of 18S. However, literature seems to suggest a difference in vasa mRNA in different 

stages of oocytes. Its expression pattern shows a higher degree of expression during both 

previtellogenic stages tested. 

  
Fig. 11 – Vasa expression pattern during oocyte growth. The quantities are expressed in arbitrary units, being 

obtained using 18S as a reference (Gene/18S), with each being measured as INT*mm2. The results represent 

averages of each stage for all 8 females with standard errors (mean ± se). Statistical analysis was done with One Way 

ANOVA, showing a significant difference that the mean values among the treatment groups are greater than would 

be expected by chance (P <0.001). Tukey method of All Pairwise Multiple Comparison Procedures revealed 

similarities and differences among particular stages (P < 0,05). The characters on top of the bars, if identical, mean 

there is no significant difference among those stages. 

 
 

 Oogonia and primary oocytes revealed greater quantities of Vasa mRNA, showing no 

significant statistical difference (a). Early and late vitellogenic oocytes show a decrease in 

expression, and difference among these is not significant either (b).  
 
 

3.3.2. FoxL2  

The putative transcription factor FoxL2 has never been detected in the oocytes, only in 

granulosa cells of the follicle. FoxL2 is the earliest known sexual dimorphic marker (Cocquet, et 

al. 2002; Pannetier et al. 2006). Here, expression was found in all stages of oocytes tested, with 

an increase towards the later stages. 
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Fig. 12 – FoxL2 expression increased throughout growth of the oocytes. Kruskal-Wallis One Way ANOVA on ranks 

was carried, as the distributions failed the normality test. The groups showed a statistically significant difference (P = 

0,005). Multiple comparisons were made with Dunn’s test, and differences between groups are indicated as above (P 

< 0,05). When 2 groups, like oogonia and primary oocytes in this case, don’t have any significant difference between 

means, they can’t be compared and thus aren’t tested. However, in these cases, expression is clear to be similar and 

thus doesn’t need to be made a comparison. In the following results the same can be apllied. 

 

 FoxL2 expression is clearly higher in later oocytes. If some kind of relationship could be 

established between this and the aromatase gene, and those results were in accordance with 

previous publications, it would be reinforced the use of 18S as the reference gene. 

 

3.3.3. CYP19a 

The gene that codes the last enzyme in the conversion of testosterone to 17β-estradiol is 

CYP19a. This gene is usually denominated tCYP19a, t for tilapia, a for designating the ovarian 

type of aromatase P450. 

 
Fig. 13 – The coding gene for the aromatase enzyme, CYP19a (ovarian type) shows a rise in expression through the 

process. Kruskal-Wallis One Way analysis of variance shows there is difference among the stages (P < 0,001). 

Dunn’s method for differences among group means is shown as previously (P < 0,05).  
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 CYP19a expression is similar to the expression pattern for FoxL2, and previous works on 

these genes shows the latter to regulate transcription of aromP450. While this isn’t entirely new 

data, it may be a way of showing 18S might be used as the reference gene with a less significant 

error, as the results obtained here are similar to those obtained by others, with different and 

similar techniques. 

 

 

 

 

3.3.4. RBMX 

RBMX stands for RNA-binding motif on the X chromosome and is involved in splicing 

(it can also be called hnRNPG for heterogenous nuclear ribonucleoprotein). RBMX is also 

expressed in testes, but much more expressed in ovary. These results show a decrease in 

expression towards the end of oogenesis, in the vitellogenic stages of oocyte development. 

 
Fig. 14 – RBMX showed a decrease in expression. Groups are significantly different (One Way ANOVA), P = 

0,005. Tukey method shows some similarity among early and late vitellogenic oocytes, and also between the first 

and previtellogenic oocytes (P < 0,05).  

 

 

3.3.5.  ALY PROTEIN 

This protein has a domain common to the Aly family (metazoans’ equivalent of the REF 

family in yeast), and shows a slightly higher expression in ovary than testes. 
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Fig. 15 – The Aly family protein didn’t show strong variation, but there is room for a putative role in the cell 

machinery. Kruskal-Wallis One Way ANOVA showed no significant difference in means (P = 0,381). 

  

The gene didn’t show a significant difference among group means and there is one Aly 

protein that has recently been attributed function as mRNA exporter from the nucleus.  

 

3.3.6. BMP-R IB 

The bone morphogenetic proteins receptor IB was tested, as it has a possible prominent 

role as shown by other TGF-β superfamily members. 

 
Fig. 16 – Bone morphogenetic protein receptor, type IB expression. There was a significant difference among means, 

revealed by Kruskal-Wallis One Way ANOVA (P < 0,001). Comparison’s between stages by Dunn’s method (P < 

0,05) reveals similarity in both previtellogenic stages, and between primary oocytes and late vitellogenic oocytes. 

 

 Pattern shows an increasing expression in vitellogenic stages.  
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3.3.7. CPI-17 

CPI-17 is a 147 residue inhibitory protein of protein phosphatases 1 (PP1), with 17 kDa, 

potentiated by PKC (Walsh, et al. 2007). Expression was detected in the ovary, and after sexual 

dimorphic expression was confirmed, it was tested on the growing oocytes. 

 
Fig. 17 – CPI-17 quantification shows CPI-17’s inhibitory action to decrease through the cycle. One Way ANOVA 

failed normality so it was conducted a Kruskal-Wallis test that showed a significant difference (P < 0,001). The 

following Tukey test for comparisons between groups shows a clear distinction along oogenesis in expression, with 

primary oocytes and early vitellogenic still exhibiting a relative similarity (b) (P < 0,05).  

 

 The results suggest a particular importance of this in the earlier stages or at least a higher 

expression of the gene. RACE-PCR was to be done for full sequencing and confirmation of its 

identity as a CPI-17 homolog (annex IX).  
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3.3.8. SART and PPMP protein 

This sequence needs full sequencing for confirmation of a SART homolog, as well as the 

protein with the PPMP motif. 

  
Fig. 18 – i) Expression pattern for the homologue sequence to the SART gene, not showing a significant difference 

(P = 0,586) and ii) Expression of the homolog sequence to the motif PPMP. One Way analysis of variance (P 

<0,001) reveals significant difference among groups. Tukey’s test shows similarity between both previtellogenic 

stages (a) and the two vitellogenic stages (b) tested (P < 0,05). 

3.3.9. XP2 and clone 26 

XP2 sequence doesn’t correspond to any known sequence, and so it has been identified as 

a putative protein XP2. In differential analysis between ovary and testes, it was found a much 

higher expression in the ovary, thus it was tested in the oocytes.   

          
Fig. 19 – i) Expression of the hypothetical protein denominated XP2, shows an interesting result, with One Way 

ANOVA revealing significant difference between means (P < 0,001). Tukey test (P < 0,05) reveals more similarity 

among pre-vitellogenic stages (a) and then between the vitellogenic ones (b). ii) Clone 26 showed a decrease in 

expression, indicating a possible decisive regulating molecule during oocyte growth. One Way ANOVA indicates 

significant difference among groups, with P = 0,001. Tukey’s method for multiple comparisons between each of the 

groups suggests a dissipating action along the cycle, showing stronger expression in the early stages (P < 0,05).   

ii) 
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 While it is obvious that there is a decrease in expression in vitellogenic stages, the 

unidentified protein cannot be attributed a role without further studies on its structure, actions and 

expression along other tissues. But it may be a good subject to study not only in oocyte 

expression through oogenesis. There is no homolog sequence in archives that resembles the 

fragment for clone 26, but it was tested nonetheless. It can be an alternative transcript of some 

other genes in the subtractive hybridization, or it can be a whole new protein or just UTR. To 

address its identity further work is required, to know the full sequence of a putative gene.  

  

 

Finally, statistics of correlations among genes are presented in table 3. 
 

 

Table 3 – Pearson Product Moment Correlation for comparison of expression patterns between genes (P < 0,05). The 

empty cases are for a pair of genes which didn’t show correlation as P > 0,05. When there is a significant correlation: 

+ indicates pairs of values that tend to increase together and; - indicates a correlation, but while one’s values 

decrease, the other gene values increase. 

 

Correlation    BMP-R IB FoxL2 CPI-17 RBMX Vasa XP2 Aly SART PPMP Clone 26 
Coefficient for:                       
            
CYP19a  + + - - - -   - - 
            
BMP-R IB   +       -  
            
FoxL2      -    -  
            
CPI-17      + +   + + 
            
RBMX      + + + + + + 
            
Vasa       + + + + + 
            
XP2        + + + + 
            
Aly         + + + 
            
SART          + + 
            
PPMP           + 
                        
 

For details on correlation coefficients, P-values and n values see annex VIII. A summary 

of the results can be seen in figure 20. 
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Fig. 20 – Summary of possibilities for the various genes tested along oocyte development. Areas represent intensities 

in expression throughout the process. In (1) Vasa is highly expressed and decreases towards the later stages. FoxL2, 

CYP-19 and BMP-R IB are all more expressed in 3 and 4 and are positively correlated. CPI-17 and RBMX seem to 

have a more distinctive role in pre-vitellogenesis (1 and 2) processes. Aly protein expression seems to be constant 

from 1 to 4. Of the other genes tested, SART remained constant and XP2, clone 26 and PPMP also decreased from 1 

to 4. Genes with decreasing patterns must act mainly in cellular differentiation processes, genes with increasing 

expression probably act mainly at maturation processes, while a constant expression suggests a basic essential 

cellular function or control mechanism. 
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4. DISCUSSION 

The use of rRNA 18S as a reference was questioned, as there are reasons to believe they 

might accumulate in the growing oocytes (Kaplan, et al. 1982; Malewska and Olszanska 1999; 

Van den Eynde, et al. 1989). This uncertainty was considered, as prior to the actual experiment, a 

test was conducted to a female 0, with 3 sizes of oocytes collected and all of the tested genes 

expression was decreasing (annex VI). For this reason expression of genes Vasa, FoxL2 and 

CYP19a was also analysed as they have been previously studied and results, if similar, could 

prove the reliability of using rRNA 18S as the reference gene. Another possible candidate for 

reference gene would be elongation factor 1α (Bobe et al. 2006).  

The vasa-like gene encodes an ATP-dependent RNA helicase protein which belongs to 

the DEAD-box family and plays key roles in germ-cell formation in higher metazoans (Braat, et 

al. 1999a; Braat, et al. 2000; Cardinali et al. 2004; Knaut, et al. 2000; Raz 2000; Ye, et al. 2007). 

In ovary it’s limited to germ cells and is expressed throughout oogenesis, but intensity and sub 

cellular distribution differs greatly at each of the different stages according to Wolke, et al. 2002; 

Xu, et al. 2005 and Ye et al. 2007. It’s essential for PGC formation and their migration to the 

germinal ridge (Ye et al. 2007). Vasa is a germ cell marker in animals (proved with zebrafish) 

(Wolke et al. 2002; Ye et al. 2007). The expression pattern with RT-PCR shows a high level of 

expression in oogonia and primary oocytes (fig. 11). Vasa expression in oogonia was the highest 

with primary oocytes following close by, showing no significant difference with Tukey test. This 

information is consistent with what was observed by Ye et al. 2007), who detected Vasa 

expression in rice field eel (Monopterus albus), in zebrafish or Danio rerio (Braat, et al. 1999b) 

and in the Nile tilapia by Kobayashi, et al. 2000), with great intensity at the oogonia and early 

oocyte stages, throughout the cytoplasm. As oocytes grew the signal became weaker in 

vitellogenic oocytes and even more in post-vitellogenic ones. This was also observed in the 

present work; a decrease in early vitellogenesis and low expression in late vitellogenic/mature 

oocytes. In early vitellogenesis, vasa expression decreases, indicating a possible decrease in 

function during this stage and until maturation, where expression is even lower. In mid-

vitellogenesis vasa signal moves to the perinuclear cytoplasm according to (Cardinali et al. 2004; 

Xu et al. 2005), and further on the signal gets weak, possibly due to decreased expression or 

dispersion through the larger volume and moving between yolk vesicles (Xu et al. 2005). It has 

been detected a peak at the beginning of vitellogenesis by (Knaut et al. 2000) although in this 

work, no peak was found at this stage. If the results by (Knaut et al. 2000; Xu et al. 2005) are 
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right, maybe it’s indicative of the oocytes collected in our work to be already deeper into the 

process rather than the early-vitellogenic status given to them.  

The Forkhead family of transcription factors is involved in cellular differentiation and 

proliferation. FoxL2 is a putative transcription factor of this family exhibiting tissue specific 

distribution, being also involved in ovarian development and function thus essential for proper 

female reproductive function (Baron et al. 2004; Cocquet et al. 2002; Ottolenghi et al. 2005; 

Ottolenghi, et al. 2007; Pannetier et al. 2006; Pisarska et al. 2004; Uhlenhaut and Treier 2006; 

Wang et al. 2004). It can interact with GnRH receptor in the pituitary to regulate its expression 

and it’s expressed also in brain, pituitary, gill of tilapia (Wang et al. 2004) and in the granulosa 

cells surrounding the oocytes (Baron et al. 2004). Other known target genes besides GnRHR are 

the steroidogenic acute regulatory gene (StAR) in adult ovary (Pannetier et al. 2006; Uhlenhaut 

and Treier 2006) and CYP19a in the follicle, one of the genes tested. Expression has never been 

detected in oocytes according to literature (Baron et al. 2004). In this work, expression was 

detected in all stages of follicle collected (fig. 12). In oogonia and primary oocytes expression is 

lower (around half), with no significant difference among their means. FoxL2 has been 

referenced as a sex differentiation gene, so maybe there is still some mRNA from after PGC 

differentiation into oogonia. FoxL2 also has basic cellular functions so they may have some 

function in regulation of oocyte growth. In early vitellogenesis FoxL2 mRNA starts rising, with 

its peak happening at the late vitellogenic/mature oocytes. This surge may be related to CYP19a 

transcription, which has been shown in several animals as correlations were made for chicken and 

rainbow trout aromatase (Pannetier et al., 2006), and also the Nile tilapia (Wang et al. 2007). This 

author suggests that FoxL2 binds to the sequence ACAAATA in the promoter region of CYP19a 

(in vitro) through its forkhead domain and activates CYP19a transcription with its C terminus. 

Furthermore its expression positively correlated with CYP19a expression. That positive 

correlation was also observed in our results, with correlation coefficient being positive, thus 

showing a relationship where they tend to increase together along oogenesis (table 3). CYP19a 

encodes the aromatase P450 that catalyzes estrogen production from androgen (Kazeto and Trant 

2005; van Nes, et al. 2005; Wang et al. 2007), particularly the synthesis of 17β-estradiol from 

testosterone in the theca cells of the follicle, stimulated by FSH or LH in some species (Yoshiura, 

et al. 2003). Two aromatase genes have been identified in fish: CYP19a and CYP19b, the first for 

the ovarian type (due to high expression in vitellogenic ovaries, Tchoudakova, et al. 2001) and 

the latter for brain aromatase. FoxL2 might be interacting aromatase transcription, maybe 

activating it. CYP19a promoter region contains AdBP/SF-1 ligand-binding domain (member of 
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the orphan nuclear receptor protein) (Yoshiura et al. 2003) showing this may be a transcriptional 

regulator, although there are no differences in males and females during early sex differentiation. 

Ad4BP/SF-1 can interact with the forkhead domain of FoxL2, forming a heterodimer and 

enhance CYP19a transcription (Wang et al. 2007). Pannetier et al. 2006 also refers a possible role 

for activin-βa as the co-factor. Expression obtained for aromatase shows, as in FoxL2, a great 

increase at the two later stages (fig. 13). During vitellogenesis it’s being more expressed to 

synthesize T into E2, which will travel in the bloodstream to the liver where it will induce VTG 

synthesis that will be incorporated by oocytes. In later vitellogenesis these values get even higher. 

Some of these oocytes were still at a late vitellogenic stage, and some were mature, depending on 

the females dissected and their stage in the cycle. Thus, at this stage, besides E2 synthesis, 

aromatase may be catalyzing MIH synthesis, as it will be required for oocyte maturation 

(Yoshiura et al. 2003).  

 

 

RBMX 

RBMX stands for RNA-binding motif on the X chromosome (it can also be called 

hnRNPG or heterogenous nuclear ribonucleoprotein G) involved in splicing (Martinez-Arribas, et 

al. 2006; Takemoto, et al. 2007). In contrast to RBMY, the Y chromosome homolog with specific 

expression in testes, RBMX has a widespread expression pattern, suggesting its expression on 

general developmental processes (Elliott 2004), with particular importance in the brain and liver 

(Takemoto et al. 2007; Tsend-Ayush, et al. 2005). RBMX also can be found in the way of 

retrotransposed copies in the genome, which lack introns and are thought to be a result of the 

insertion of processed cDNA, denominated RBMXLs (Elliott 2004; Lingenfelter, et al. 2001; 

Takemoto et al. 2007). These retrogenes are derived from the X chromosome transcripts and 

might be particularly important when transcription is inactivated due to chromosome 

condensation for example. Sequences for RBMX and RBMXLs are remarkably conserved, 

suggesting they arose before primate divergence. As they are nuclear proteins, it is thought that 

they regulate RNA processing or splicing, which happens at the spliceosome, a complex of 

ribonucleoproteins (Elliott 2004). RBMX has been detected in zebrafish with a 77% identity to 

human RBMX (Tsend-Ayush et al. 2005), and now in tilapia. Expression in oogonia was highest, 

decreasing towards mature oocytes (fig. 14). The higher levels of mRNA transcripted in earlier 

steps of oogenesis might be indicative of its involvement in splicing. In the oogonia and primary 

oocytes, the cytoplasm is rich in RNA (see fig.8), thus RBMX might be necessary for splicing of 
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a higher quantity of RNA and therefore be more expressed. In vitellogenic stages the oocyte 

grows, and it seems gene transcription is not so abundant. This and the basic organelles in the 

oocyte turn the latter bright pink in haematoxylin-eosin dye. RBMX revealed to be positively 

correlated to Aly, a putative mRNA exporter.   

 

 

Aly 

Aly proteins also belong to the superfamily of RNA binding proteins with 

ribonucleoprotein-type RNA binding domains, being the counterpart in metazoans of a known 

nuclear export factor in yeast (REF), which is probably conserved even in mammals (Longman, 

et al. 2003; Luo and Reed 1999; Suganuma, et al. 2005; Zhou, et al. 2000). The difference with 

other hnRNPs like RBMX consists in the presence of two highly conserved motifs at the N and C 

termini (Rodrigues, et al. 2001). Aly connects the splicing of pre-messenger RNA in the cell 

nucleus with the export of spliced messenger RNA to the cytoplasm (fig. 21).  

 

Fig. 21 – Mechanism of Aly exportation of RNA from nucleus to cytoplasm (Source: Zhou et al. 2000). Aly is 

recruited to the spliceosome, a dynamic complex of proteins in the nucleus that splices pre-messenger RNA. The 

spliceosome splices together the exons into a messenger RNA protein complex called the mRNP. Aly tightly 

associates with this mRNP and probably only exports the rightly synthesized mRNA molecules. The Aly-mRNP 

complex is then exported to the cytoplasm, the mRNA is translated into a protein, and Aly is redirected to the 

nucleus (Kim and Dreyfuss 2001; Zhou et al. 2000).  
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The results obtained show no significant variation among the four stages of oocyte growth 

(fig. 15), revealing that the RT-PCR fragment is from an Aly protein with this same function and 

perhaps because of its recycling to the nucleus (Zhou et al. 2000), expression along oogenesis 

proved always similar, with no significant differences among stages. Suganuma et al. 2005 also 

refers that they may act as a transcriptional coactivator. Pearson correlation is positive for RBMX 

and Aly. This suggests involvement of RBMX in the actions of Aly. The differences in a more 

stable pattern for Aly, reside in the difference that the this factor seems to be recycled to the 

nucleus, therefore, its expression might occur always at the same rate.  

 

 

BMP-R IB 

BMPs (Bone Morphogenetic Proteins) are members of the transforming growth factor β 

(TGF- β) family of growth factors. This family has gained special relevance recently, due to its 

possible major implication in ovarian related processes. Activin has been described as the 

responsible for cell reconnaissance to FSH (GTH I) in the follicle (Knight 1996; Welt, et al. 

2002). Other members such as BMPs, have been also identified in ovary, even though they were 

first described by Urist in 1965 as an inducer of osteogenic cells capable of producing bone. Non-

osteogenic processes include signalling of epidermal induction and developmental processes 

including cell differentiation, morphogenesis and apoptosis. They execute their actions by 

binding to 2 types of activin like receptor kinases (ALK), type I (A or B, ALK-3 or ALK-6 

respectively) and type II. Both types possess intrinsic serine/threonine kinase activity. BMP 

receptor IB is phosphorylated by BMP-R II, and these form a complex which phosphorylates 

mediator Smad proteins for the signal to be transducted (Chen, et al. 2004; Juengel and McNatty 

2005; Shimasaki, et al. 1999). Many of the TGF-β family members share chemical signalling 

pathways, and the mechanisms seem to be similar among each other, at least for the most studied 

of them. This mediation can be typified by the activin signalling mechanism, as the BMP 

receptors show. 
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Fig. 22 – BMP signalling and its regulation (Source: Granjeiro, et al. 2005). R-Smads or receptor regulated Smads 

are a class of proteins that act in response to signals by the TGF-β superfamily of ligands, associating with receptor 

kinases and being phosphorylated at an SSxS motif at their extreme C-terminus. These proteins then typically bind to 

the common mediator Smad or co-Smad or Smad4 (Chen et al. 2004; Findlay et al. 2002). Smad complexes 

accumulate in the cell nucleus where they regulate transcription of specific target genes (Welt et al. 2002). Smad6 or 

7 bind type I receptors and prevent Smad 1, 5 or 8 activation. (Chen et al. 2004; Granjeiro et al. 2005). 

 

 

In fig.16 of the results we see that in primary oocytes the signal gets stronger compared to 

oogonia, but it’s still considerably low when compared to its expression in vitellogenic phases. 

Both early and late vitellogenic show high expression of this receptor. Two BMPs, BMP-4 and 

BMP-7, and receptor IB were shown to be expressed in rat ovaries, with BMP-4 and -7 

expression higher in thecal cells and receptor expression higher in granulosa cells. Their 

physiological concentrations cause either stimulating or inhibitory effects on steroidogenesis 

induced by FSH (Drummond 2005; Findlay et al. 2002; Nilsson and Skinner 2003). So granulosa 

cells are probable targets for BMPs. A BMP system for regulating FSH activity and sensitivity in 

granulosa cells during follicle growth has been proposed for mammals: FSH stimulates estrogens 

and progesterone production by signalling expression of steroid enzymes (Shimasaki et al. 1999). 
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Smad proteins (fig. 22) and cyclic AMPs mediate BMPs and FSH signalling, respectively, thus 

differential regulation might occur with interaction of these 2 pathways. BMP might enhance 

estrogen production by increasing FSH signalling by the Smads cascade, which results in an 

increased activity of aromatase P450 (Findlay et al. 2002; Shimasaki et al. 1999). The results of 

the RT-PCR to BMP-R IB seen in figure 16 show an increased expression in both vitellogenic 

stage and mature oocytes, suggesting a possible similar system as to the mammalian FSH-BMP 

signalling with Smads. Receptor expression rises and so does aromatase (CYP19a) in these 2 

later stages. Furthermore it was also showed that BMP-R IB, FoxL2 and CYP19a expressions are 

positively correlated (table 3). Thus, it is possible that this effect of amplification of FSH by the 

Smad signalling cascade is being observed in the studied teleost. A mutation in BMPR-IB has 

been associated with abnormal ovulation rate (Nilsson and Skinner 2003) and its total absence 

leads to infertility (Findlay et al. 2002), indicating a possible role in its regulation, something 

supported by the higher expression found at late vitellogenic and mature oocytes. In the oocytes 

expression of BMP-6 and BMP-15 has been detected (Findlay et al. 2002; Nilsson and Skinner 

2003), indicating paracrine BMP-ligand interactions in the follicle and possibly an autocrine 

action of BMP-15 in regulating maturation (Juengel and McNatty 2005). These factors produced 

at the oocytes are substrates for BMP-R IB (Juengel and McNatty 2005) and may suppress 

granulosa cell expression of LH receptor and thus of MIH, indicating a role in granulosa cell 

differentiation and maybe in inhibition/delaying of luteinization (Findlay et al. 2002; Juengel and 

McNatty 2005; Knight and Glister 2003; Nilsson and Skinner 2003; Shimasaki et al. 1999). 

However, receptors in oocytes are interacting with BMPs synthesized in other tissues, like BMP-

4 and -7, which in the possibility of having the effects described above, could be also playing 

some role in oocyte maturation. These cells are under the influence of several hormones and 

growth factors, the most important of which are gonadotropins and IGF-I. It is definitely possible 

that BMPs act differently at each cells’ level (Khamsi and Roberge 2001). 

 

 

 

CPI-17 

 CPI-17 (cysteine protease inhibitor) is a 147 residue cytosolic protein (17 kDa) that 

inhibits type 1 protein serine/threonine phosphatases (PP1) (Matsuzawa, et al. 2005; Mueed, et al. 

2005; Woodsome, et al. 2001). It can be activated by phosphorylation by protein kinases, but the 

only evidence until now resides with protein kinase C, a Ca2+/phospholipid-dependent protein 
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kinase (Walsh et al. 2007). CPI-17 is phosphorylated by PKC at Thr38 which potentiates CPI-17 

activity as an inhibitor of phosphatases and elevating Ca2+ sensitivity in muscle (Takizawa, et al. 

2002; Walsh et al. 2007). PP1 control cellular functions like muscle contraction, cell division, 

transcription and metabolisms by desphosphorylation (Eto, et al. 1997). Major knowledge reflects 

CPI-17 action on myosin light chain phosphatase inhibition in mammals (Woodsome et al. 2001). 

Actin and myosin are present since the previtellogenic stages in connection with the oolema and 

may be involved in oocyte expulsion by contractile movements (Ryabova, et al. 1994); CPI-17 

(fig.17) decreasing expression in vitellogenic stages suggests it. PKC-induced maturation seems 

to involve some kind of action by the CPI-17 gene which would inhibit the myosin light chain. In 

Xenopus laevis myosin is also expressed during cortical granule exocytosis interacting with 

cysteine string proteins (Schietroma, et al. 2007). Furthermore, PP1, along with PP2 might be 

important in regulating stimulation of steroidogenic activity, by cAMPs which are the signalling 

molecules for FSH (Gonzalez Reyes, et al. 1997). So, CPI-17 lower expression seen in fig. 17 

might represent a decrease in PP1 inhibition by the CPI-17, which seems to cause an increase of 

FSH induced steroidogenesis. A higher level of expression in oogonia and primary oocytes 

indicates a possible great importance in some early oocyte development process, inhibiting some 

PP1 that otherwise would desphosphorylate some other component, activating or inactivating it 

and creating an abnormal effect. In conclusion, CPI-17 is probably involved in the regulation of 

cellular differentiation, and then at the later vitellogenic stages, its decrease will augment 

stimulation of steroidogenesis as well as allow contractile movements of myosin which will be 

necessary for ovulation. To know more of the CPI-17 gene sequence for the Mozambique tilapia, 

RACE-PCR was to be conducted and will be, in order to have the full sequence (see annex IX).   
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SART, PPMP, XP2 and Clone 26 

Figure 18 and 19 show expression patterns for other sequences. SART is an equivalent of 

dermatan sulfate epimerase standing for squamous cell carcinoma-associated reactive antigen for 

cytotoxic T cells (specifically SART-1). This gene has been strongly related to atopy, an allergic 

hypersensitivity caused by indirect contact with an allergen (Wheatley, et al. 2002). What could 

be its function in the ovary? Maybe there is some kind of link with abnormal ovary development. 

Constant expression suggests this gene to be essential throughout folliculogenesis. The protein 

with the PPMP motif seems to be essential in previtellogenic stages. Hypothetical protein XP2 

has also been detected in zebrafish ovary and expression pattern suggests some type of 

commitment in ovary recrudescence also with a possible primary role in cellular differentiation. 

Clone 26 too, but the sequence doesn’t have any homology with others; might be alternative 

transcript, a new gene or an UTR. 

 

 Table 3 and annex VIII show correlation coefficients for expression of each pair of genes 

tested. The most interesting correlation occurs for FoxL2, CYP19a and BMP-R IB, with 

possibilities for these patterns described above. Significant correlations can also be found 

between CPI-17 and Vasa, although no relation can be made between them at the moment. 

RBMX and Aly are positively correlated too. All the other genes that showed correlation can’t be 

related as for some their identity isn’t established.  
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5. CONCLUSIONS AND FINAL CONSIDERATIONS 

This thesis presented a view on the development of the ovary, its regulation, what there is 

left to know and what could benefit from the pursuit of knowledge in this area. The ovary 

can’t be only seen as the female gonad, it is as well a complex endocrine gland. The 

hypothalamus-pituitary-gonadal axis controls its development and maintenance, but the only 

factors or hormones well known to control these processes are described from the axis point of 

view. Factors involved in the recognising, signalling, and other decisive steps are still lagging, 

but they are there and should provide info on what and how the developing tissues change 

their morphological and biochemical characteristics or how the physiological processes work 

in their totality. It was mentioned the supposed relevance of TGF-β family in ovary 

development, with activin being the responsible for FSH incorporation in follicles. BMPs also 

showed to have a possible role, as they might enhance estrogen production by rising FSH 

signalling by the Smads cascade, which results in an increased activity of aromatase P450 

Receptor IB expression was equally more expressed in later stages and correlates with 

CYP19a expression and also FoxL2. RBMX and Aly can be the hnRNPGs that might involved 

in splicing and RNA export, respectively. Genes with decreasing expression probably have a 

major role in cellular differentiation, genes with increasing expression might have major role 

in maturation and genes which presented no statistically difference among groups are probably 

involved in basic cell functioning and are essential to proper development of the ovary. There 

is sense to this data, which should definitely bring ideas for more work to follow. Further 

studies on genes like FoxL2 or RBMX may actually provide solutions for genetic diseases. 

However, the problem with 18S as reference gene has not been fully resolved, although the 

results seem to suggest that the accumulation effect is not being observed. The best thing to be 

done would be to repeat the methodology and keep genomic DNA for proper quantification, or 

maybe just find some other reference gene like it was tried with Vasa, for instance elongation 

factor 1α. It would also be interesting to compare this data with hormone levels in the blood 

and apply some more techniques that would reveal more reliable information. As for each 

gene’s study, the full sequences need to be obtained, and then a functional analysis must be 

carried out, along with studies on the promoter, and in situ determination of expression to 

distinguish expression in follicle cells from expression in oocytes. 
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7.1. ANNEX I 

REAGENTS DESCRIPTION 

 

0,5x TBE (Tris - Borate - EDTA) Buffer – 5 Primer 

- 200 ml 5x TBE  

- 800 ml Sterile H2O 

  

1Kb+ ladder (1:20) - Invitrogen 

- Water (sigma) 380 µl 

- Ladder 20 µl 

- Loading buffer before use (10 µl) 

 

5x RT Buffer 

- 250 mM Tris-HCl pH 8,3 

- 375 mM KCl 

- 15 mM MgCl2 

- 50 mM DTT 

 

Bouin 

- 75 ml saturated aqueous solution of picric acid   

- 25 ml formaldehyde 

- 5 ml acetic acid 

 

DEPC-treated water  

- 200 µl of diethylpyrocarbonate (100 µl DEPC / L of water) 

- Water (sigma) to 2 L 

- Agitate and wait 24 hours 

- Autoclave at 121ºC for at least 40 minutes 
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dNTPs 

Dilutions of each nucleotide 1:10 (10 mM each from 100 mM stocks) 

For 1 ml: 

- 100 µl dATP 

- 100 µl dTTP 

- 100 µl dCTP 

- 100 µl dGTP 

- 600 µl sigma water 

 

EtBr (500 mg/mL) 

- EtBr 1% 250 µl  

- Sterille distilled H2O 4750 µl 

 

LB 

- 1 pellet of LB agar (Sigma-Aldrich) / 50 ml de dH2O  

- Autoclave. 

 

Loading buffer  

- 40% glucose (40g in 100 ml) 

- Bromophenol blue (just a few grains) 

- Sterilize with seringe coupled to an adapter filter (0,2 µl) 

 

 SOC medium 

Formulation per one liter: 

- 10 mM magnesium chloride 

- 10 mM magnesium sulfate 

- 20 mM glucose 
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7.2. ANNEX II 

 

OPTIMIZATION PROCEDURES 

 

Testing primers 

 Primers were tested with a normal PCR reaction using the basic protocol, using tilapia 

ovary cDNA. If working correctly (amplifying only one band), they would then be tested with a 

certain oocyte cDNA so cDNA wasn’t wasted. If they amplified more than one band, it was 

necessary to previously play with MgCl2 quantities and annealing temperatures. The right amount 

of cycles was tested as described next, if it wasn’t possible to infer from previous results. 

 

 
Fig. 1 – Testing primers a) XP2, -) negative control, b) clone 9, c) clone 21, d) clone 21 .2 (different pair of primers); 

e) clone 26, f) vasa .1, g) vasa .2, h) vasa .3, i) PPMP22, j) SART .1 and k) SART .2. 

   

 Optimization procedures were required for some pairs of primers. The protocol used had 

1,5 µl of MgCl2 in the reaction, but when with this quantity it was obtained more than one band, 

it was necessary to determine the right amount of MgCl2 to be used for each set of primers. For 

this, it was done PCR using different amounts of it, varying from 0,5 µl to 1,25 µl (rest of volume 

compensated with SIGMA water). 

 
Fig. 2 – Expression of XP2 in ovary and testes shows different bands being produced for each. These bands were 

purified and sent to sequence. 

  a        -      Kb      b        c        d        e       f        g        h        i         j        k 
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For determining the best temperature for the annealing step, the PCRs were done on a 

iCycler from Biorad. This thermocycler allows for different temperatures to be applied in the 

different rows of the machine plate. The number of cycles to be used for a proper quantification 

was determined by having around 8 tubes or more, depending on previous knowledge on 

amplification, and then the tubes were taken out one by one, at a certain amount of cycles, and 

from there on after each 3 cycles (18x, 21x, 24x, 27x, 28x, 31x, 34x, 37x, 40x and more if 

necessary). 

 

  

            

 
Fig. 3 – Optimization of number of cycles to be used in RT-PCR for some of the genes. a) Clone 30, b) RBMX, c) 

CPI-17, d) clone 15, e) Aly, f) XP1, g) CYP19a, h) Twist-Neighbour. Number of cycles: 18, 23, 27, 30, 33, 36, 39, 

42 and 45x. i) 18S number of cycles optimization for some of the cDNAs to be used. By knowing the expression in 

these and comparing to previous tests and cDNA quantities it would be possible to infer about the most adequate 

number of cycles to be used for all cDNAs. 

 

 

 

 

 

a) b) c) d)

e) f ) g) h) 

i) 
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7.3. ANNEX III 

 

DNA ELECTROPHORESIS 

 

- Preparation of an agarose gel (1,5%, 2% or 3%) 

Four grams of agarose were dissolved in 200 ml of 0,5x TBE (Tris-Borate-EDTA) Buffer 

(for a 2% gel). With more agarose put into a fixed volume of Buffer, the pores will get smaller, 

something convenient for smaller fragments. This buffer is used to separate the DNA in both 

agarose and polyacrylamide gels, and it was prepared from a stock at 5x, being diluted in Elix 

water. The agarose was dissolved in the TBE by heating (microwave oven at mid-high 

temperature) and when it was completely dissolved, it remained at room temperature until 

cooling to around 50ºC. Then 200 µl of EtBr (500 ng/ml) were put into the still liquid gel. The 

liquid was then put into the electrophoresis mould previously prepared with tape on the ends and 

with combs, to solidify.  

 

- Electrophoresis 

Electrophoresis separates DNA fragments by size, applying an electric current with an 

energy source. The DNA is put near the negative electrode (anode), and as it is negatively 

charged because of the presence of phosphate groups, it will migrate in the direction of the 

positive electrode (cathode). A DNA ladder is always put into one of the wells for determination 

of band size. To the PCR products it was added loading buffer (composition) and the samples 

were put into the wells and run at 120 V and 200 mA. The gel was then transilluminated with UV 

radiation on a ImageMaster VDS from Pharmacia Biotech or a Biorad Gel Doc 2000 when 

quantification was required.    
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7.4. ANNEX IV 

 

RNA MIGRATION AND THE ABSENCE OF GENOMIC DNA CONTAMINATION 

 

 

Fig. 1 –RNA extracted from oocytes from the 8 females to oogonia, primary oocytes, early and late vitellogenic 

oocytes (1 µl). a) and b) F15 total ovary RNA. 

 

 

 
Fig. 2 – PCR (18S) to RNA samples treated with rDNAse I for purity confirmation. (*) Positive control. 

 

 

 

 

 

 

 

 

 

 

 

 

  F6                 F8               F10               F11                F12               F13              F14         a            F15            b    F10SS      F13SS      F12M 

**
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7.5. ANNEX V 

 

BAND PURIFICATION FROM AGAROSE GEL, CLONING AND SEQUENCING 

 

Cloning is the process of insertion of a DNA fragment to a DNA vector (plasmid) to be 

replicated to obtain various copies of the fragment. This plasmid with the pretended sequence is 

put into a host, usually bacteria, and its replication apparatus will replicate the DNA plasmid. The 

vector used was pGEM-T Easy (Promega), which is sold already open, not circular, and its 3’T 

extremities allow for the direct ligation of the PCR products, when these are synthesized with 

certain DNA polymerases, like Taq, that add a final adenine residue to the 3’end. This vector 

confers resistence to ampicillin, which will allow distinction between transformed and non 

transformed bacteria that will not grow in culture medium with ampicillin. Moreover it will allow 

the selection of the transformed bacteria by white-blue selection. This method consists in that the 

DNA is inserted in the middle of the gene coding for the enzyme β-galactosydase, thus if the 

DNA wasn’t inserted in the gene, it will continue to produce the protein that will keep on 

degrading the X-Gal inserted in the medium, producing the blue coloration. If the plasmid was 

inserted the gene won’t be transcripted and the bacteria will present a white coloration. These 

will be the selected bacteria for further replication and isolation of the plasmids containing the 

fragment desired. To verify the presence of the fragment on the host, a PCR to colonies can be 

made. The obtained replicated plasmid can then be isolated from the cells, by disrupting these 

with a mini-prep that will contain only the plasmid for various uses, including for sequencing.  

  

Band purification from an agarose gel 

 The bands were excised with the help of UVs and put in 1,5 ml eppendorfs and were 

purified using the GFX DNA purification kit from GE Healthcare. 300 µl of Capture Buffer (or 

10 µl for each 10 mg of gel) were put in the tube with the excised bands and put at 60ºC for 15 

minutes. A GFX column was put into a collection tube for each band to be purified. The 

dissolved agarose was put into the column, samples stayed at room temperature for 1 minute and 

then the tubes were centrifuged for 30 seconds. The collection tubes were emptied and 500 µl of 

Wash Buffer was added to the column. These were again centrifuged for 30 seconds. The column 

was discarded and the columns were put into a fresh and sterile 1,5 ml eppendorf tube. Finally it 

was added SIGMA water directly on top of the fibre matrix to suspend the DNA and left 1 
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minute at room temperature. Volumes depended on the quantity of DNA presumably found on 

the gel for each band, varying between 30 µl for weaker concentrations of DNA, to 50 µl for 

more intense bands. Samples were centrifuged one last time for 60 seconds and the retrieved 

purified DNA was kept on a new tube and stored at -20ºC.  

 

Ligation  

Ligation was done to the vector pGEM-T Easy (0,3 µl). The vector was kept at -20ºC and 

when removed from the fridge was briefly centrifuged to collect the vector at the bottom of the 

tube. Reaction would take place in a total of 10 µl, being 1 µl of 2x Rapid Ligation Buffer, 0,5 µl 

of T4 DNA Ligase, a designated volume of the PCR product and completed with SIGMA water. 

Reactions were mixed with repeated pipetting and left at 4ºC overnight for a maximum number 

of transformants.  

 

 

Transformation of competent bacteria 

  

The entrance of the plasmid DNA through the bacteria cell membrane requires special 

physiological conditions, a state known as competence, meaning the bacteria are able to 

incorporate exogenous DNA. This can be a natural occurring property of the bacteria, or can be 

induced with CaCl2 or sudden changes in temperature. These change the permeability of the 

membrane allowing the entrance of the plasmid. The quantity of DNA used is between 5 to 100 

ng, as too much DNA can inhibit the transformation. 

 

 Preparation of LB/ampicilin/IPTG/X-Gal plates 

LB was liquefied until boiling in the microwave oven and put in a 55ºC bath for 

approximately 1 hour. For 200 ml of LB were added 200 µl of ampicillin (80-100 µg/ml), 100 µl 

IPTG (0,5 mM) and 320 µl X-Gal (80 µg/ml) in a laminar flux chamber. 200 ml are enough to fill 

10 plates. These would stay in the chamber solidifying and then put at 4ºC until used. 

 

Transformation 

 The bacteria (XL1B) were removed from -80ºC and left unfreezing on ice. Ligation 

reactions were centrifuged briefly and 2 µl of it were added to 50 µl aliquot of the bacteria 

previously mixed by gently flicking the tube. The contents were gently mixed and put on ice for 
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20 minutes. Cells were then heat-shocked at exactly 42ºC so the vector would be incorporated by 

the bacteria, and put immediately on ice for 2 minutes or until the plates were ready. The bacteria 

were then prepared to be plated on the LB/ampicilin/IPTG/X-Gal plates. Plates were incubated 

overnight at 37ºC.  

 On the next day there would be both white and blue colonies. The blue colonies represent 

bacteria that don’t have the vector incorporated and thus continue to produce the antibiotic. The 

white colonies on the other hand contain the vectors and were selected and put at 37ºC on a SOC 

medium with shaking overnight for the bacteria to reproduce. Then mini-preps are made with the 

grown bacteria. 

  

 Mini-Prep 

 1,5 ml of the grown culture were put into an eppendorf tube. Then it was centrifuged 1 

minute at 13,400 rpm and the supernatant was discarded. To the pellet of bacteria were added 100 

µl of P1 solution with RNAse (10 µl / 1 ml of DEPC water). Tube was shaken in the vortex and 

solution P2 was added for lysis of bacteria. It was then incubated 5 minutes at room temperature. 

Finally P3 was put into the mix for precipitation of the larger bacteria DNA. It was shaken by 

inversion and left for 10 minutes on ice. After the tube is centrifuged 5 minutes at 13,400 rpm 

and the supernatant with the plasmid is retrieved. Then 2 x volume in tube of ethanol 100% and 

these were mixed by inversion and centrifuged 2 minutes at 13,400 rpm. Repeat wash with 70% 

ethanol 2x volume. Centrifuge 1 minute, discard ethanol and suspend plasmid in 40 µl of Sigma 

water.  

  

Colony PCR 

One of the white colonies was transferred to 75 µl of LB ampicillin and incubated at 37ºC 

during 3 hours. Then 1 µl of this culture was used as the template for the PCR with an initial 

denaturation during 10 minutes at 94ºC. 
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7.6. ANNEX VI 

 

PRELIMINARY EXPERIMENT 

Prior to the actual experiment, a test was made in order to detect differential expression of 

some genes in 3 different stages of oocyte growth. These were collected from one female (F0) at 

the middle of the cycle. Oocyte size was based morphological differences, being collected 

smaller oocytes (< 0,5 mm), medium sized oocytes (0,5-1,5 mm) and larger oocytes with more 

than 2 mm. These were compared with total ovary cDNA expression. Genes tested were 18S to 

use as reference, TN (Twist Neighbour), XP1 (hypothetical protein), BMP-R IB, Clones 15 and 

30, CPI-17, FoxL2 and the unidentified protein from the Aly/Ref family. The PCR reactions were 

previously optimized for MgCl2 quantities, annealing temperatures and number of cycles to be 

used.  

 
Fig. 1 – a) RT-PCR to female 0 cDNAs for total ovary RNA and small (S), medium (M) and large (L) oocytes and  

b) quantification of expression with 18S rRNA as reference. 

 

 The rest of the experiment was based on these results, even though some of these genes 

don’t appear on the final results, being replaced with others. They should be tested anyway, as 

they show differential sexual expression and also along oogenesis. All decreasing patterns created 

doubts on the use of 18S rRNA as the reference gene for quantification.   
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7.7. ANNEX VII 

 

PCR PRODUCTS OF RT-PCR TO ALL TISSUES 

 
Fig. 1 – Results for all genes of RT-PCR for all 8 females and stages of follicle development. 
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7.8. ANNEX VIII 

PEARSON PRODUCT MOMENT CORRELATION  

 

This statistical test shows indicates if there is a similar behaviour in the pattern of 

expression between each pair of genes. 

 
Table 1 – Pearson Product Moment Correlation for n = 30, with significant correlations between each pair of genes 

revealed in squared values. Significance was considered for P < 0,05, with positive correlation coefficient (CC) 

between pairs indicating they tend to increase together and negative CC values revealing an inverse behaviour by 

each gene. 

    BMP-R IB 
FoxL

2 CPI-17 RBMX Vasa XP2 Aly SART PPMP Clone 26
                        
            
CYP19a CC 0,565 0,697 -0,492 -0,581 -0,721 -0,605 -0,243 -0,269 -0,785 -0,581 

 P 0,00113 1,9E-05 0,00571 0,000751 7E-06 0,0004 0,195 0,158 2,9E-07 0,000764 

            
BMP-R 
IB CC  0,483 -0,319 -0,121 -0,254 -0,343 -0,258 0,0939 -0,393 -0,148 

 P  0,0069 0,0861 0,525 0,176 0,0636 0,169 0,628 0,0319 0,436 

            

FoxL2 CC   -0,332 -0,241 -0,363 -0,315 -0,0051 -0,0167 -0,444 -0,193 

 P   0,0727 0,2 0,0489 0,0897 0,979 0,932 0,0141 0,306 

            

CPI-17 CC    0,287 0,474 0,438 0,179 -0,0036 0,533 0,458 

 P    0,124 0,00819 0,0156 0,344 0,985 0,0024 0,011 

            

RBMX CC     0,885 0,829 0,52 0,76 0,81 0,797 

 P     8,21E-11 2E-08 0,0032 1,7E-06 6E-08 1,32E-07 

            

Vasa CC      0,868 0,538 0,647 0,922 0,926 

 P      5E-10 0,0022 0,00015 5,03E-13 2,50E-13 

            

XP2 CC       0,503 0,551 0,846 0,831 

 P       0,0047 0,00194 3,9E-09 1,35E-08 

            

Aly CC        0,408 0,417 0,443 

 P        0,0282 0,0218 0,0141 

            

SART CC         0,479 0,495 

 P         0,00863 0,00639 

            

PPMP CC          0,862 

 P          9,27E-10 
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7.9. ANNEX IX 

RACE-PCR (RAPID AMPLIFICATION OF CDNA ENDS PCR) 

RACE-PCR is a technique used to obtain the full sequence of a gene from a fragment. It 

consists in adding a poly-A in a differently synthesized cDNA that can then be amplified beyond 

the known sequence. The idea is to use the poly-A tail to anneal with a poly-T that will be added 

to the PCR reagents mixture and another primer from a site in the sequence, resulting in a longer 

sequence with possibly the full length gene, or at least a longer version of the fragment directed 

to the 5’ or the 3’ end. This synthesis however can be The RACE was done to retrieve the full 

sequence of the CPI-17 gene, occurring in a total of 25 µl per tube with positive and negative 

controls. 

 

cDNA synthesis: 

 

Protocol 1 

Each compoment was mixed and centrifuged briefly before use. To a volume with 3 µg of 

tilapia ovary RNA 1 µl of primer ND-CPI-rv1 (10uM) was added and H2O up to 6 µl. This was 

incubated at 65ºC during 5 minutes and centrifuged briefly and put on ice during at least 1 

minute. The next mix was added: 

           - 1 µL 10X first strand buffer 

           - 1 µl 0,1 M DTT 

           - 0,5 µl dNTP (10mM each) 

 Incubation at 42ºC during 2 minutes, 1 µL of Supercript II RT (Invitrogen) added and 

incubated at 42ºC during 2 minutes. 1 µl of BD Smart CDS primer IIA (5µM) was put into the 

tube and reaction was run at 42ºC during 15 minutes. Add MnCl2 (20 mM) and incubate at 42ºC 

during 15 minutes. End reaction at 70ºC during 15 minutes. 
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Protocol 2 

To a volume with 3 µg of the RNA to be used were added 0,5 µl of specific primer (20 

µM) ND-CPI-rv1 and then up to 13 µl with H2O DEPC or sigma. Mix was incubate 10 minutes at 

70ºC and centrifuged briefly and placed on ice during at least 1 minute. Then the next mix was 

added:  

-2 µl of 10x rt buffer 

-1 µl of dNTPs (10 mM each) 

-0,5 µl DTT 

-0,5 µl RNA guard 

-2 µl of H2O 

The mixture was incubated 2 minutes at 42 ºC, 0,5 µl of Superscript II RT (Invitrogen) were put 

together and the reaction was run for 75 minutes at 42ºC. 

 

Tailing: 

To 8 µl of the previous reaction (cDNA synthesis) were added: 

- 2 µl of rTdT buffer  

- 2 µl of ATP (2mM) 

- 7 µl H2O 

 

This mixture was incubated for 5 minutes at 70ºC, centrifuged briefly and placed on ice 

during at least 1 minute. Then again incubated 10 minutes at 37ºC, 1 µl of rTdT (enzyme) was 

put and incubated 10 min at 37ºC. The reaction was terminated at 65ºC for 10 minutes. 

 
 Fig. 1 – CPI-17 sequence for some vertebrate species and consensus regions. 



 
XVI

RACE-PCR was run for 35 cycles, with initial denaturation at 94ºC for 5 minutes and 

cycles of 94ºC for 30 seconds of denaturation, 57ºC during 30 seconds for annealing and 

elongation at 72ºC for 40 seconds. Primers used for 1st protocol synthesis were rv1 on table 2 in 

the methods section with BD smart and CPI rv1 with CPI rv2 at 25 µg/µl. For 2nd synthesis 

primers were CPI rv1 with oligo dT adapter and CPI rv1 with oligo dT (1 µg/µl) also at 25 µg/µl. 

 

 
Fig. 2 – Bands obtained with RACE-PCR for a 3rd synthesis not described. The desired sequences were not 

amplified. 
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