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Abstract

The last decade has seen the rise and consolidation of a new trend of stochastic

optimizers known as estimation of distribution algorithms (EDAs). In essence, EDAs

build probabilistic models of promising solutions and sample from the corresponding

probability distributions to obtain new solutions. This approach has brought a new

view to evolutionary computation because, while solving a given problem with an

EDA, the user has access to a set of models that reveal probabilistic dependencies

between variables, an important source of information about the problem.

This dissertation proposes the integration of substructural local search (SLS)

in EDAs to speedup the convergence to optimal solutions. Substructural neigh-

borhoods are defined by the structure of the probabilistic models used in EDAs,

generating adaptive neighborhoods capable of automatic discovery and exploitation

of problem regularities. Specifically, the thesis focuses on the extended compact

genetic algorithm and the Bayesian optimization algorithm. The utility of SLS in

EDAs is investigated for a number of boundedly difficult problems with modular-

ity, overlapping, and hierarchy, while considering important aspects such as scaling

and noise. The results show that SLS can substantially reduce the number of func-

tion evaluations required to solve some of these problems. More importantly, the

speedups obtained can scale up to the square root of the problem size O(
√
`).
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Resumo

A última década tem assistido ao aparecimento e consolidação de uma nova tendên-

cia de optimizadores estocásticos conhecidos por algoritmos da estimação da dis-

tribuição (AEDs). Essencialmente, os AEDs constroem modelos probabiĺısticos das

soluções promissoras e amostram das correspondentes distribuições de probabilidade

para obter novas soluções. Esta abordagem trouxe uma nova visão à computação

evolutiva porque, enquanto um determinado problema é resolvido com um AED, o

utilizador tem acesso a um conjunto de modelos que revelam dependências proba-

biĺısticas entre variáveis, uma importante fonte de informação sobre o problema.

Esta dissertação propõe a integração de pesquisa local sub-estrutural (PLS)

em AEDs para acelerar a convergência para soluções óptimas. As vizinhanças

sub-estruturais são definidas pela estrutura dos modelos probabiĺısticos utilizados

nos AEDs, dando origem a vizinhanças adaptáveis, capazes de descobrirem au-

tomáticamente e explorem as regularidades do problema. Especificamente, esta tese

foca-se no algoritmo genético compacto estendido e no algoritmo de optimização

Bayesiana. A utilidade da PLS nos AEDs é investigada para vários problemas de

dificuldade limitada com modularidade, sobreposição, e hierarquia, considerando

também aspectos como o escalonamento e o rúıdo. Os resultados mostram que

a PLS pode reduzir substancialmente o número de avaliações da função objectivo

necessárias para resolver alguns destes problemas. Mais importante, é o facto do
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speedup obtido crescer no melhor caso de acordo com a ráız quadrada do tamanho

do problema O(
√
`).
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Chapter 1

Introduction

1.1 Motivation

Estimation of distribution algorithms (EDAs) are search and optimization proce-

dures that use probabilistic modeling of promising solutions to bias the search in the

solution space. By incorporating advanced machine learning techniques into evolu-

tionary algorithms (EAs), EDAs can solve many challenging optimization problems

in an efficient and scalable manner, significantly outperforming standard EAs and

other optimization techniques [133].

Although EDAs are effective at exploring the search space to find promis-

ing regions, they inherit a common drawback from traditional global search

methods—slower convergence to optimal solutions when compared to appropriate

local searchers that start the search within the basin of attraction of the optima.

This observation often leads to the combination of global search with more local

search methods. In this context, EDAs are no exception and many applications in

real-world optimization have been accomplished with the help of some sort of lo-

cal search. However, systematic methods for hybridizing and designing competent

1



2 CHAPTER 1. INTRODUCTION

global and local-search methods that automatically identify the problem decompo-

sition and important problem substructures are still scarce.

One of the key requirements for designing efficient local search operators is to

ensure that they search in the correct neighborhood [149, 10, 168]. This is often ac-

complished by exploiting and incorporating domain- or problem-specific knowledge

in the design of neighborhood operators. When these neighborhood operators are

designed for a particular search problem, oftentimes on an ad-hoc basis, they do not

generalize their efficiency beyond a small number of instances. On the other hand,

simple bitwise hillclimbers are frequently used as local search methods with more

general applicability, providing inferior but still competitive results, especially when

combined with population-based search procedures. Clearly, there is a tradeoff be-

tween generalization and efficiency for neighborhood operators with fixed structure.

Therefore, it is important to study systematic methods for designing neighborhood

operators that can solve a broad class of search problems.

This thesis demonstrates that the probabilistic models of EDAs contain useful in-

formation about the underlying problem structure that can be exploited to speedup

the convergence of EDAs to optimal solutions. The exploration of neighborhoods de-

fined by the probabilistic models in EDAs—named as substructural neighborhoods—

is an approach that exploits the underlying problem structure while not loosing the

generality of application. The resulting mutation operators explore a more global,

problem-dependent neighborhood than traditional local search procedures purely

representation-dependent. To investigate the utility of incorporating substructural

local search (SLS) in EDAs, the thesis concentrates on the extended compact genetic

algorithm (eCGA) and the Bayesian optimization algorithm (BOA).



1.2. THESIS OBJECTIVES 3

1.2 Thesis Objectives

The thesis has three main objectives, which are:

• Extend the concept of substructural neighborhoods to Bayesian EDAs.

• Design more robust and efficient EDAs by combining model sampling with

substructural local search.

• Investigate the importance of exploiting model-based information to improve

the search in structure-learning EDAs.

1.3 Main Contributions

The main contributions of this thesis are:

• Integration of substructural local search in the extended compact genetic al-

gorithm [104, 100]. The resulting algorithm combines the best of both ap-

proaches and implicitly allows to choose between a global and local search

operator based on problem requirements.

• Development of substructural neighborhoods for Bayesian EDAs [103, 100].

These adaptive neighborhoods consider more complex variable interactions

than previous works.

• Application of fitness modeling with Bayesian networks to the context of sub-

structural local search [103, 102, 100]. This feature allows to substantially

reduce the cost of local search in terms of function evaluations.

• A detailed study on model structural accuracy in the Bayesian optimization

algorithm [99, 98, 101, 96, 70, 71]. This study identifies both the selection
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operator and the scoring metric (that guides model search) as the main fac-

tors1 to influence model quality in Bayesian EDAs. These results demystifies

previous empirical comparisons between different Bayesian EDAs.

• Development of a substructural local searcher based on loopy belief propaga-

tion [102, 100]. The proposed loopy SLS is shown to speedup the search for

optimal solutions when compared to a previous approach.

• Integration of substructural local search in the Bayesian optimization algo-

rithm [103, 102, 100]. The resulting algorithm is able to significantly improve

the performance of standard BOA for problems with both overlapping and

non-overlapping interactions.

1.4 Organization

The thesis is composed by seven chapters. Chapter 1 introduces the motivation for

this work, clarifies the main objectives of the thesis, enumerates the contributions

to the current state-of-the-art, and details the organization of the thesis.

Chapter 2 reviews the topic of scalable optimization through probabilistic mod-

eling. It starts by introducing genetic algorithms (GAs) as search methods inspired

by natural selection and genetics, and then proceeds to the design of scalable GAs.

Estimation of distribution algorithms are presented as a combination of GAs and

machine learning methods for competent and scalable problem-solving. A connec-

tion between EDAs and other model-based search (MBS) methods is also made,

recognizing that EDAs are among the most general frameworks in MBS. The chap-

ter ends by referring to some of the efficiency-enhancement techniques that can be

used in GAs and EDAs.

1Given a sufficient population size (learning data set).
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Chapter 3 presents the integration of substructural local search in the extended

compact genetic algorithm. Consequently, the probabilistic model of eCGA is used

for two distinct purposes: (1) effective recombination of partial solutions that pro-

vides rapid global-search capabilities, and (2) effective search in the neighborhood

of partial solutions that locally provides high-quality solutions. Experiments per-

formed for different dimensions of problem difficulty show that, independently from

the faced difficulty dimension(s), the eCGA which integrates SLS obtains a more ro-

bust performance, following the behavior of the best single-operator-based approach

for each problem.

Chapter 4 extends the concept of SLS for the Bayesian optimization algorithm.

The substructural neighborhoods explored in local search are consequently defined

by the conditional dependencies learned in the Bayesian networks. Additionally, a

surrogate fitness model is used to evaluate the alternatives in the subsolution search

space. The results show that incorporating SLS in BOA can lead to a significant re-

duction in the number of generations necessary to solve the problem, while providing

significant savings in function evaluations. However, for larger problem instances

the efficiency decreases. The reason behind such behavior is associated with the

structural accuracy of the probabilistic models in BOA.

Chapter 5 investigates the relationship between the Bayesian networks learned in

BOA and the underlying problem structure. The purpose of the chapter is threefold.

First, model building in BOA is analyzed to understand how the problem structure is

learned. Second, it is shown how the selection operator can lead to model overfitting

in Bayesian EDAs. Third, the scoring metric that guides the search for an adequate

model structure is modified to take into account the non-uniform distribution of the

mating pool generated by tournament selection. Overall, this chapter makes a con-

tribution towards understanding and improving model accuracy in BOA, providing
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more interpretable models to assist efficiency-enhancement techniques and human

researchers.

Chapter 6 proposes new developments to improve the efficiency of SLS in BOA.

The s−penalty (proposed in Chapter 5) is shown to improve significantly the per-

formance of local search for larger problem instances. The presence of overlapping

interactions as a new source of problem difficulty is investigated while performing

SLS. To efficiently tackle overlapping problems, a new SLS method is proposed

based on the principles of loopy belief propagation. The resulting loopy SLS can

efficiently solve problems with both overlapping and non-overlaping interactions.

The utility of such local searcher is also discussed for problems with hierarchical

interactions, where it fails to improve the results obtained by standard BOA. The

chapter ends by recognizing that integrating loopy SLS in BOA enables the resulting

algorithm to have the best of both worlds—efficient mutation and recombination of

partial solutions—for problems with non-overlapping, overlapping, and hierarchical

interactions.

Chapter 7 presents some topics for further research and concludes the thesis.



Chapter 2

Scalable Optimization via

Probabilistic Modeling

2.1 Introduction

When facing an optimization problem, one must decide how to solve it. Exhaustive

search methods can be used to find the exact best solution(s) to the problem at hand.

However, that comes to a price of evaluating a great part of the entire solution space.

While this may be a reasonable approach for some small-sized problems, it becomes

a serious bottleneck when facing larger problem instances. For example, the problem

of finding the optimal order of visit for a given number of cities such that the total

distance traveled is minimized, is known as the traveling salesman problem (TSP).

For a TSP instance with 10 cities there is a total of 9!
2

= 181, 440 possible solutions,

which is still a manageable search space. But simply doubling the problem size to

20 cities makes the search space grow to more than 1016 solutions! Therefore, for

many problems a rather good solution obtained in a few seconds is preferred over

the exact best solution that can take years to achieve.

7
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Classical methods from operations research (OR) were among the first solvers

to address this kind of problems. However, most of these methods require problem-

specific knowledge to solve large-scale problems in reasonable time. But domain-

specific knowledge to reduce the combinatorial complexity is often hard to obtain.

Moreover, decision variables can interact in such ways that are not clear from the

optimization problem formulation. In black-box optimization, there is no informa-

tion about the relation between the performance measure and the semantics of the

solutions [125]. Therefore, the problem is treated as a black box, where for each

possible solution as an input parameter the box returns its quality measure as an

output. In such cases, the only way of learning something about the problem at

hand is to generate candidate solutions and evaluate them.

This chapter introduces genetic algorithms which are particularly suited for

black-box optimization, although there are several ways to incorporate prior in-

formation about the problem into these algorithms. The design of scalable genetic

algorithms is also discussed along with the definition of the test problems used in

the thesis. Estimation of distribution algorithms, which combine machine learning

methods with genetic algorithms, are also introduced with some detail and their con-

nection with other model-based search methods is referred. The chapter ends with a

description of some efficiency enhancement techniques that can be used to speedup

the search process of genetic algorithms and estimation of distribution algorithms.

2.2 Genetic Algorithms

Genetic algorithms (GAs) [77, 47, 51] approach black-box optimization by evolving

a population of candidate solutions with operators inspired by natural selection

and genetics [125]. In GAs, the decision variables of the optimization problem
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Simple Genetic Algorithm (sGA)

(1) Initialize a population P of n individuals.

(2) Evaluate population P.

(3) Select P’ individuals from P .

(4) Recombine individuals in P’ to generate the offspring population O.

(5) Mutate individuals in O.

(6) Evaluate population O.

(7) Replace all (or some) individuals in population P by those from O.

(8) If stopping criteria are not satisfied, return to step 3.

Figure 2.1: Pseudocode of the simple genetic algorithm (sGA).

are encoded in strings of a certain length and cardinality. Each string represents

a candidate solution and is referred to as chromosome, while each string position

is known as gene and its value allele. Each candidate solution can be represented

either by its phenotype, which is the solution representation in the objective function

domain, or by its genotype, that is the solution representation under which the

genetic operators operate. Depending on the problem and encoding scheme, the

chromosome can be binary, integer, real-valued, etc. The size of the chromosome

can be either fixed or variable during the search process. This thesis focuses on

binary encoding and fixed chromosome length.

The major input of a GA is the fitness function which determines the quality

of candidate solutions. This can be an objective function, given by a mathematical

model or a computer simulation, or take the form of a subjective function where

humans choose better solutions over worse ones. Figure 2.1 presents the pseudocode

of a simple GA. Each essential component of the GA is detailed below:

Initialization Typically, the initial population of individuals is generated at ran-
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dom across the entire search space. Alternatively, it can be initialized based

on some prior knowledge about the problem, by inserting previously known

good solutions or applying local search methods before the GA run.

Selection The selection operator is responsible for applying the survival-of-the-

fittest principle in GAs. The main idea is to select promising individuals over

worse individuals according to fitness. Several selection schemes have been

proposed in the literature, but this work focuses on tournament selection and

truncation selection.

In tournament selection [56, 18], s individuals are randomly picked from the

population and the best one is selected for the mating pool. This process

is repeated n times, where n is the population size. There are two popu-

lar variations of tournament selection, with and without replacement. With

replacement, the individuals are drawn from the population following a dis-

crete uniform distribution. Without replacement, individuals are also drawn

randomly from the population but it is guaranteed that every individual par-

ticipates in exactly s tournaments. While the expected outcome for both

alternatives is the same, the latter is a less noisy process.

In truncation selection [121] the best τ% individuals in the population are

selected for the mating pool. This method is equivalent to the standard (µ, λ)-

selection procedure used in evolution strategies [138], where τ = µ
λ
× 100.

Note that when increasing the size of the tournament s, or decreasing the

threshold τ , the selection intensity increases. The population of selected indi-

viduals is often referred to as mating pool.

Recombination Crossover or recombination operators combine parts of two or

more parent solutions to create new, possibly better solutions, which are re-
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ferred as offspring. The recombination operator is performed according to a

user-defined probability pc, which is usually high. There are many ways to

achieve recombination of different solutions, from which one-point crossover,

α-point crossover, and uniform crossover are classical examples. One-point

crossover between two parents consists in randomly picking a position along the

chromosome and exchanging one of the two portions defined by the crossover

point. For the α-point crossover, there are α + 1 portions from which half

is exchanged between the two parents (exchange the first, leave the second,

exchange the third, leave the fourth, and so on). For uniform crossover, every

allele in the chromosome has probability p (typically 0.5) of being exchanged.

These crossover operators have different biases and mixing abilities [147].

In GAs, properly designed recombination mechanisms are often identified as

the main ingredient for achieving competent performance. Consequently, a sig-

nificant effort has been made in designing competent recombination operators,

that automatically identify the important components of parental solutions

and effectively exchange them [47, 51, 130, 95, 133, 108, 23].

Mutation Like in nature, mutation is responsible for introducing small variations

to chromosomes, useful for maintaining diversity in the population. This is

achieved by performing random modifications locally around a solution. For

a binary chromosome, the bit-wise mutation operator simply flips the values

of genes according to a mutation probability pm, which is typically low. Note

that without mutation, the offspring chromosomes are limited to the alleles

present in their parents.

Replacement The replacement method specifies in which way the offspring pop-

ulation is combined with the original parental population. Replacement tech-
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niques such as elitism, generation-wise, steady-state, or niching can be used.

This thesis mainly considers the generation-wise replacement where the off-

spring fully replaces the original population.

Stopping Criteria The stopping criteria determine one or more termination con-

ditions to end the search process. The conditions can be based on the number

of generations, number of fitness evaluations, solution quality, or simply clock

time.

2.3 Design of Scalable Genetic Algorithms

While nature, with all its beauty and diversity, is very useful to understand the

working mechanisms of GAs, it poses difficulty as a design metaphor because its

underlying processes are themselves extremely complex and not well understood.

Facing this dilemma, some researchers have taken a design decomposition approach

to understand and design competent genetic algorithms, which can solve hard prob-

lems, quickly, reliably, and accurately [51].

Based on the notion of building block (BB) [77]—highly fit partial solutions1—

the problem of designing competent selectorecombinative GAs can be decomposed

in the following seven subproblems [51]:

1. Know what GAs process—building blocks.

2. Know thy BB challengers—building-block-wise difficult problems.

3. Ensure an adequate supply of raw BBs.

4. Ensure increased market share for superior BBs.

1Along the thesis, the definition of BB is often relaxed to a partial solution, module, or sub-
structure, which is not necessarily associated with high fitness.
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5. Know BB takeover and convergence times.

6. Make decisions well among competing BBs.

7. Mix BBs well.

Research done along these lines include problem difficulty [1, 46, 31, 169, 126, 172],

adequate supply [76, 48, 139, 59], market share growth [58], takeover time [52, 4, 20],

convergence time [121, 164, 5, 112, 166, 105], decision making [29, 57, 53, 62, 166,

105], and understanding mixing [55, 165, 163, 147, 148]. A more detailed review of

this methodology can be found elsewhere [51].

Efficient mixing has been a central topic of research and eventually led to the

development of competent GAs [51, 130, 95, 133, 108, 23]. In contrast to traditional

GAs, competent GAs use recombination operators that are able to capture and adapt

themselves to the underlying problem structure. The existence of competent GAs

significantly reduces the importance of choosing an adequate codification or genetic

operator that characterizes many GA applications. Depending on the technique

used to discover the problem decomposition, competent GAs can be classified into

the following categories:

• Perturbation techniques [56, 54, 86, 122, 175, 73].

• Linkage adaptation techniques [66, 22].

• Probabilistic model building techniques [130, 95, 125, 16, 133, 108].

This thesis focuses on the third approach to automatically recognize and mix

important problem subsolutions. The next section details the test problems used

along the thesis.
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2.3.1 A Design Approach to Problem Difficulty

To verify the performance of competent GAs, the approach taken is to design

bounding adversarial problems that represent different dimensions of problem diffi-

culty [51]. In this way, different algorithms can be tested against a limited number

of boundedly difficult problems, where the algorithm success for these particular

problems ensures success against a large class of problems no harder than the test

cases2. This adversarial design method contrasts sharply with the common practices

of using historical, randomly generated, or ad hoc functions [51]. While adversarial

problems are not real-world problems as well, they provide an important proof-of-

concept which has been successfully used in designing state-of-the-art solvers.

The testbed used in the thesis combines the core of three important problem

difficulty dimensions [51]:

1. Intra-BB difficulty where deception is considered to be the core of the dif-

ficulty generated from within a building-block;

2. Inter-BB difficulty where scaling is considered to be the core of the difficulty

generated between or among building-blocks;

3. Extra-BB difficulty where noise is considered to be the core of the difficulty

generated outside the problem or any building-block.

As the core of intra-BB difficulty, deceptive functions are among the most chal-

lenging problems for competent GA candidates. This kind of functions normally

have one or more deceptive optima that are far away (in the genotype space) from

the global optimum and which misleads the search, in the sense that the attraction

area of the deceptive optima is much greater than the one of the optimal solution.

2What is often referred as performance envelope.
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Figure 2.2: The trap function of order k = 5 (trap-5). The fitness value is a function
of the number of ones in the string. The local optimum is located at 00000 and the
global optimum at 11111. Note that the attraction area of the local optimum is
much greater than for the optimal solution.

A well known deceptive function is the trap function [1, 31] defined as follows:

ftrap(u) =

 k if u = k

k − 1− u otherwise,
(2.1)

where u is the number of ones in the string and k is the size of the trap function.

Figure 2.2 illustrates a trap function of order k = 5 (trap-5). For k ≥ 3, the trap

function is said to be fully deceptive [31] which means that any lower than k-order

statistics will mislead the search away from the optimum.

Note that if the entire problem is composed by a single large trap function, the

problem becomes as hard as the needle-in-a-haystack (NIAH) problem, for which

has been shown that no algorithm can do any better (in finding the optimal solution)

than random search or deterministic enumeration. Therefore, a bound on difficulty

has to be set such that k < `. One such problem is the m-k trap problem, which is
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composed by m copies of the trap function with order k:

fmk(X) =
m∑
i=1

ftrap(xIi), (2.2)

where each index set Ii is a disjoint tuple of variable indexes belonging to the ith

subfunction.

The inter-BB difficulty can be explored together with the intra-BB difficulty.

Specifically, the same bounded deceptive function is used, but now each subfunction

fitness contribution to the overall fitness is exponentially scaled such that

fscaling(X) =
m∑
i=1

2i−1ftrap(xIi). (2.3)

While scaling difficulty does not necessarily need to be exponential, this function

act as bounding case for power-law scaling.

The core of extra-BB difficulty can be divided in two components: non-

determinism or noise, and non-stationarity [51]. This thesis concentrates on noise

as the main source of external difficulty. Specifically, it is assumed that the ex-

ogenous noise follows a Gaussian distribution with mean 0 and variance σ2
N . To

make the problem even more challenging, a noisy version of the m-k trap problem

is considered. The function is defined as follows

fnoise(X) = fmk(X) + G(0, σ2
N). (2.4)

While the three problem difficulty dimensions have been defined based on a single

type of modular interaction, other important types of interactions are considered

along the thesis as well:

• No interaction when variables can be optimized independently from each
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other.

• Overlapping interaction when different subproblems share common vari-

ables.

• Hierarchical interaction when important dependencies are expressed at

more than a single level.

These additional types of interactions will be explored through the following test

problems.

In onemax the fitness is simply given by the sum of ones in a binary string:

fonemax(X) =
∑̀
i=1

xi. (2.5)

This is a simple linear function with the optimum in the solution with all ones.

While there is no need of linkage learning to be able to solve this problem efficiently,

it allows to set a lower bound on problem difficulty.

The overlapping difficulty is addressed by considering an overlapping version of

m-k trap problem, where each index set Ii (corresponding to subfunction i) is no

longer a disjoint tuple of variable indexes. Instead, each trap function shares o

variables with two other neighboring subproblems. More precisely, a trap-k sub-

function fj(xi, xi+1, . . . , xi+k−1) will overlap with fj−1(xi−k+o, xi−k+o+1, . . . , xi+o−1)

and fj+1(xi+k−o, xi+k−o+1, . . . , xi+2k−o−1).

Finally, the hierarchical trap problem [126] poses a more difficult challenge to

search procedures, as important dependencies are expressed at more than a single

level. For this problem, the interactions at an upper level are too weak to be detected

unless all lower levels are already solved. The hierarchical trap is defined by three

components:
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Figure 2.3: The 27-bit hierarchical trap problem with three levels and k = 3. This
problem is defined by three components: (a) structure, (b) mapping function, and
(c)(d) contribution functions. Note that 000 and 111 are equally good except for
the top level. However, the local optimum 000 is easier to climb, which requires the
maintenance of all alternatives until a decision can be reached at the top level.

1. Structure which is given by a balanced k−ary tree.

2. Mapping function that maps variables from a lower level to the next level. A

block of all 0’s and 1’s is mapped to 0 and 1 respectively, and everything else

is mapped to null.

3. Contribution functions are based on trap functions of order k. If any position

of the string is null, the corresponding fitness contribution is zero.

Figure 2.3 shows a 27-bit hierarchical trap with three levels and k = 3. The contri-

butions on each level are multiplied by 3level so that the total contribution of each

level is the same. The optimal solution is given by the string with all 1’s. Notice

that subsolutions 000 and 111 are equally good except for the top level. However,

the local optimum 000 is easier to climb, which requires the maintenance of all

alternatives until a decision can be reached at the top level.
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2.4 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) [130, 95, 16, 133, 108], also known

as probabilistic model-building genetic algorithms (PMBGAs) or iterated density

estimation algorithms (IDEAs), use probabilistic modeling of promising solutions to

guide the search instead of the traditional recombination and mutation operators

of GAs. Genetic algorithms use the genetic operators to bias the exploration of

new regions in the search space, where new solutions inherit components from their

parents. However, fixed, problem-independent variation operators have been proven

to be inefficient for hard problems with bounded difficulties [115, 163], because BBs

are often disrupted and not mixed efficiently.

On the other hand, EDAs are able to capture the underlying problem decom-

position on-the-fly, thus scaling much better than simple GAs in terms of fitness

evaluations required to solve the problem. The main feature in EDAs is to prevent

disruption of important partial solutions contained in the population by giving them

high probability of being present in the offspring population. The working principles

of EDAs are similar to those of simple GAs except that the genetic operators are

replaced by the following two steps:

1. Estimate the joint probability distribution of promising solutions (selected

individuals).

2. Generate new solutions by sampling from the estimated distribution.

This procedure tries to mimic the behavior of an ideal recombination operator that

combines subsolutions with minimal disruption and maximum efficiency.

The estimation of the true distribution however is not a trivial task. There

is a tradeoff between the accuracy and the efficiency of the estimate. For each

choice of the probabilistic model used in an EDA there is an associated model
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expressiveness and learning complexity. Therefore, these algorithms are typically

classified according to the expressiveness/complexity of the probabilistic model they

rely on. This chapter classifies EDAs into univariate, bivariate, and multivariate.

Several EDAs have been proposed for discrete [130, 95], real-valued [130, 95, 87],

computer programs [158], and other representations. Since this thesis focuses on

discrete EDAs, the overview presented below concentrates on this domain as well.

2.4.1 Univariate Models

The first proposed EDAs rely on univariate models where the variables of the prob-

lem are assumed to be independent. These models consist on the product of local

probabilities for each variable. Therefore, univariate EDAs use a fixed model struc-

ture and only learn the corresponding parameters. The model contains a set of

frequencies of all possible values for each string position. For a representation with

cardinality χ and size `, the model stores (χ − 1)` frequencies3. These frequencies

are first estimated by inspecting the population of promising solutions, and then

used to construct new solutions through sampling.

The population-based incremental learning (PBIL) algorithm [8], also known as

equilibrium genetic algorithm [85], replaces the entire population by a probability

vector. This probability vector is initially set to pi = 0.5, where pi represents

the probability of 1 for the ith variable position. Consequently, there is an equal

probability of sampling 0 and 1, which simulates a randomly generated population.

For each iteration of PBIL, a number of solutions is generated according to the

current probability vector and the best one is used to update the probabilities in

3Given that all relative frequencies should sum up to 1 for each chromosome position, only χ−1
need to be stored.
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the following way

pi = (1− λ)pi + λxi, (2.6)

where λ is the learning rate (between 0 and 1) and xi is the ith bit of the best solu-

tion. According to the above update rule, the probability vector is shifted towards

the values of the best solutions.

The compact genetic algorithm (cGA) [67] is similar to PBIL but uses a different

update rule inspired on the behavior of a steady-state GA with binary tournament

selection. In each iteration, two solutions are sampled from the probability vector

and undergo tournament selection, which determines the winner W and the looser

L. The probability vector is then updated as follows

pi =


pi + 1

n
if Wi = 1 and Li = 0

pi − 1
n

if Wi = 0 and Li = 1

pi otherwise,

(2.7)

where n is the simulated population size, Wi and Li represent the ith bit of the

winner and looser solution. Note that while cGA does not maintain a population,

the update step of the probability vector corresponds to replacing the looser solution

by another copy of the winner solution in a population of size n.

The univariate marginal distribution algorithm (UMDA) [120] differs from PBIL

and cGA by explicitly maintaining a population. The probability vector computed

using the selected population is then used to sample the entire offspring population.

Essentially, UMDA is equivalent to a GA with n-parent uniform crossover, where

each offspring can inherit components from any solution in the parental population

(instead of the typical pairwise crossover).

All these algorithms present a similar behavior. They perform very well for linear
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(a) PBIL, cGA, UMDA

Figure 2.4: Graphical representation of the probabilistic models used by PBIL, cGA,
and UMDA. Nodes represent variables and edges represent dependencies. The model
can not express interactions between variables.

problems, achieving between linear and sub-quadractic performance, but they fail

on problems with strong interactions between variables [130]. On the other hand,

the model learning complexity is very low as it only requires parameter learning.

Figure 2.4 shows the graphical representation for the probabilistic models used by

PBIL, cGA, and UMDA.

2.4.2 Bivariate Models

Recognizing that univariate models are not sufficient to solve complex problems,

structure-learning models were later introduced. EDAs based on bivariate models

that represent pairwise interactions between variables were proposed under a number

of frameworks, typically using chain or tree structures.

The mutual-information-maximization input clustering (MIMIC) [28] is one of

such algorithms. The MIMIC algorithm uses a chain distribution which determines

that every variable depends on another variable, with the exception of the initial

variable in the chain that is independent (see Figure 2.5 (a)). In each generation,

the permutation of variables in the chain is searched to maximize the mutual in-
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(a) MIMIC (b) Tree-based EDA (c) BMDA

Figure 2.5: Graphical representation of the probabilistic models used by MIMIC,
tree-based EDA, and BMDA. Nodes represent variables and edges represent de-
pendencies. The models can cover pairwise interactions between variables using a
(a) chain, (b) tree, or (c) forest distribution.

formation of neighboring variables. Because there are `! possible chain structures,

MIMIC uses a greedy algorithm to find an adequate permutation. In this way, the

Kullback-Liebler divergence [94] between the chain and the complete joint distri-

bution is (heuristically) minimized. Once the chain distribution is learned, each

solution is sampled according to the chain order and the corresponding conditional

probabilities.

Baluja and Davies [9] extended PBIL by replacing the population with a prob-

ability vector that contains all pairwise probabilities (initially set to 0.25). The

model structure takes the form of a dependency tree, where the variable in the root

is independent and every other variable is conditioned on its parent in the tree (see

Figure 2.5 (b)). The model search starts by picking the variable to place at the

root of the tree, and then keeps adding variables to the existing tree so that the

mutual information between the new variable and its parent is maximized. New

solutions are then sampled by following the tree structure and using the conditional

probabilities computed from the probability vector.

The bivariate marginal distribution algorithm (BMDA) [131] extends the UMDA

by using a distribution over a set of dependency trees, also known as forest distribu-
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tion. This type of model is even more general than the previous one because it allows

to represent several mutually independent dependency trees (see Figure 2.5 (c)). To

guide the search for an adequate model structure, the Pearson’s chi-square test [109]

is used to determine which variables to connect and how many independent trees

should have the final model.

Bivariate EDAs can reproduce and mix BBs of order two very efficiently, per-

forming quite well on linear and quadratic problems. However, pairwise interactions

are still insufficient to solve problems with multivariate and highly overlapping BBs.

The complexity of model learning varies between quadratic and cubic with respect

to the number of variables.

2.4.3 Multivariate Models

Multivariate EDAs are based on more powerful probabilistic models such as marginal

product models or Bayesian networks. These models are capable of expressing in-

teractions between multiple variables. However, such models don’t come for free as

they require more computational effort than simpler models to estimate the distri-

bution of promising solutions. On the other hand, these models allow EDAs to solve

many difficult problems that are simply intractable to simpler EDAs and GAs.

The factorized distribution algorithm (FDA) [118] uses a factorized distribution

that contains multivariate marginal and conditional probabilities (see Figure 2.6 (a)).

However, FDA only learns the corresponding parameters because the structure of the

model has to be given to the algorithm. Therefore, when solving a given problem

with FDA one must care about the problem decomposition and explicitly inform

the algorithm about it. While in some cases it might be useful to incorporate prior

knowledge about the problem, the FDA approach is not adequate for black-box

optimization where the solver should be able to learn the regularities in the search
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(a) FDA (b) eCGA (c) BOA, EBNA, LFDA

Figure 2.6: Graphical representation of the probabilistic models used by FDA,
eCGA, and BOA (EBNA and LFDA as well). Nodes represent variables and edges
represent dependencies. All these models can cover interactions between multiple
variables. However, in FDA the model structure has to be specified, contrary to the
remaining algorithms that learn an adequate structure on-the-fly. Also, eCGA can
not capture overlapping interactions while others can.

space.

The extended compact genetic algorithm (eCGA) [65, 63] uses marginal product

models that partition the problem variables into several non-overlapping clusters

(see Figure 2.6 (b)). These clusters are then manipulated as whole in the same

way that UMDA deals with each independent variable. Therefore, each cluster

represents the structure of a building block that should be propagated and combined

with other BBs. To determine which variables should be grouped together in each

cluster, eCGA uses a greedy learning algorithm guided by a metric based on the

minimum description length (MDL) principle [140]. Essentially, the MDL metric

gives preference to models that better compress the data (set of promising solutions)

and at the same time are not overly complex4.

The Bayesian optimization algorithm (BOA) [127, 129] makes use of Bayesian

networks to model the set of promising solutions. Bayesian networks represent

a more general class of distributions than marginal product models. The model

structure is represented by an acyclic directed graph and the parameters by con-

4Following Ockham’s razor principle: “All other things being equal, the simplest solution is the
best.”
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ditional probabilities according to the structure of the graph (see Figure 2.6 (c)).

The search for an adequate Bayesian network structure can be guided by different

metrics such as the Bayesian-Dirichlet (BD) [26, 74] and the Bayesian information

criteria (BIC) [156]. Several algorithms have been proposed to learn the adequate

structure (including GAs themselves), but for the EDA context a greedy algorithm is

more appropriate to obtain a good compromise between search efficiency and model

accuracy.

The estimation of Bayesian networks algorithm (EBNA) [37] and the learning

factorized distribution algorithm (LFDA) [119] are Bayesian EDAs as well. These

algorithms are very similar to BOA as they mainly differ in the score metrics used to

guide model search and the selection method (truncation or tournament selection).

Later on, Pelikan and Goldberg proposed the hierarchical BOA (hBOA) [126, 125],

which uses Bayesian networks with decision trees and a niching mechanism to replace

old solutions.

With the exception of FDA, all the algorithms described above can learn mul-

tivariate distributions to capture possible problem decompositions. This feature

is highly desirable in black-box optimization. Of course, there is an additional

complexity for learning these models which is typically O(`3). However, the com-

putational time saved by the reduced number of evaluations necessary to solve the

problem can be much larger than the time spent in learning the models, thereby

reducing the overall time complexity. The rule of thumb, when facing a new problem

with EDAs, is to start with simpler models and progress to more complex models

as long as the solution quality improvements pays off (or the time spent to obtain

the same solution quality decreases).
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Model Sample

Auxiliary

Memory
Learning

Figure 2.7: Scheme of model-based search (adapted from Zlochin et al. [178]). Aux-
iliary memory may be, or not, part of the loop. For instance, UMDA makes use of
memory (population of solutions) while PBIL and cGA do not.

2.4.4 Model-Based Search: The Big Picture

Heuristic search algorithms can be classified as being either instance-based or model-

based [137, 178]. Instance-based heuristics generate new candidate solutions using

only the current solution or set of solutions, while model-based heuristics rely on

a probabilistic model that is updated according to previously seen solutions. Most

traditional search methods can be considered instance-based, including genetic al-

gorithms [77, 47], simulated annealing [89, 167], tabu search [43, 44, 45], iterated

local search [106, 107], and others. On the other hand, model-based search (MBS)

is a more recent approach, which have gain increasing popularity in the last decade.

Model-based search algorithms generate candidate solutions using a parameter-

ized probabilistic model that is updated using the previously seen solutions in such

way that the search will concentrate in the regions containing high quality solu-

tions [178]. Figure 2.7 presents the main scheme of model-based search. Clearly,

EDAs belong to such class of algorithms. Other algorithms that can be classified

as model-based include ant colony optimization (ACO) [32, 34, 33], cross-entropy

method [142], and stochastic gradient ascent [141, 12].

Zlochin et al. [178] proposed a unifying MBS framework that accommodates all
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these algorithms and analyzed their similarities as well as their distinctive features.

The authors identified two important components in the EDA approach that are not

present in other MBS techniques: (1) a population of solutions which evolves during

the search process and is used for building the probabilistic model, and (2) the use

of a flexible model structure, which is determined using an appropriate learning

algorithm. On the basis of this observation, it is fair to say that the EDA approach

is the most general among MBS methods. A detailed overview about MBS is beyond

the scope of this thesis and for that the reader is referred elsewhere [178]. Instead,

an illustrative example is provided to demonstrate the similarities between EDAs

and ACOs, and the generality provided by EDAs.

Ant colony optimization is inspired by the capacity of ants in finding near-

shortest paths between their nests and food. Along their path, ants place a

pheromone trail on the ground to inform other ants about the quality and amount

of food that can be found in that trail. Heuristic search with ACO models such

behavior for identifying promising solutions in the search space. The vast majority

of ACO algorithms use models based on univariate statistics, fact which has already

been identified as the main reason for poor performance in some problems [15].

One exception is the binary ant algorithm (BAA) [40] which builds pheromone

maps over a graph of possible trails represented in Figure 2.8 (a). The generation of

candidate solutions is done by starting from the left, instantiating the first variable

with 0 or 1. After that, each 0 or 1 has two connections, each leading again to 0 or 1.

These trails are unidirectional, therefore the solution is built starting from the first

variable towards the last one. For each possible alternative in the trail there is an

associated probability (or pheromone level to be more accurate), which essentially

depends on the value of the current variable (if the ant is located at 0 or 1) and

the next variable. Clearly, this is a probabilistic model that takes into account
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Figure 2.8: The pheromone graph used in the binary ant algorithm (BAA) and its
equivalent chain distribution used in MIMIC. In BAA the solution is built from left
to right based on probabilities associated with each arrow. At a given point in the
graph, the choice of the value for variable Xi depends on the value chosen for Xi−1,
therefore pairwise interactions are captured by this model.

pairwise interactions. Moreover, the graph used in BAA is a particular case of the

model used in MIMIC. The equivalent model in MIMIC is shown in Figure 2.8 (b),

where the chain distribution follows the sequence X1 → X2 → . . . → X`. The

fundamental difference is that MIMIC searches for a chain order that maximizes

mutual information between neighboring variables, while BAA uses a fixed model

structure.

Indeed, while learning the structure of the model based on search experience,

EDAs demonstrate to be a more general framework than ACOs. Nevertheless, the

important point is to recognize their similarities as well as their differences, so that

lessons learned from each field can be generalized and transferred. One such example

is the integration of a new update strategy for the probabilistic model in UMDA

based on ACO’s transition probability equations, with very promising results for

dynamic optimization [39].
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2.5 Efficiency Enhancement Techniques

Competent GAs successfully solve hard problems with bounded difficulties, requir-

ing only a low polynomial (often subquadratic) number of function evaluations with

respect to problem size. Essentially, competent GAs take problems that were in-

tractable to first-generation GAs and renders them tractable. While from a theo-

retical perspective, low-polynomial scalability is a very good performance, from a

practical point of view, even a subquadratic number of fitness evaluations can be

very demanding when considering large-scale problems. This is especially true if the

fitness evaluation requires a complex simulation or computation. Thus, a number

of efficiency enhancement techniques (EETs) have been developed with the aim of

taking problems from tractable to practical.

A clear advantage of EDAs is that the probabilistic models contain useful in-

formation about the underlying problem structure that can be exploited in the

principled design of various efficiency-enhancement methods. Systematically incor-

porating problem knowledge mined through the model-learning process of EDAs into

the design of an EET makes it adaptive and can potentially improve the speedup of

the method [155]. EETs can be broadly classified into four categories [51, 155]:

Parallelization. When GAs are run over multiple processors to distribute the com-

putational load. GAs themselves are implicitly parallel search procedures and

many configurations for explicit parallelization can be found in the litera-

ture [19, 21]. Independently from the configuration used, the main idea is

to distribute the computational effort on several independent processors to

speedup the entire GA run. A relevant design theory for optimizing the key

facets of parallel architecture, connectivity, and deme size is already avail-

able [21].
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Hybridization. When GAs are combined with local search methods that use some

sort of domain- or problem-specific knowledge [114, 68, 91, 159]. Many ap-

plications of GAs in industry follow this approach in order to gain from the

benefits of hybridization. Typical motivations for incorporating local search

methods in GAs include faster convergence, refinement of solutions obtained

by the GA, initialization of the population, and repairing infeasible solutions.

In this way, the GA can focus on finding good search regions while the local

search ensures that local optima in these regions will be found.

Evaluation relaxation. When accurate, but expensive fitness functions are re-

placed by less accurate, but inexpensive fitness estimators, thereby reducing

the total number of costly fitness evaluations [83, 160, 145]. The first proposal

for relaxing evaluation is attributed to Fitzpatrick et al. [41], that obtained

substantial speedups through reduced random sampling of pixels in a medical

image. Although the first studies in evaluation-relaxation were mostly em-

pirical, recent years have brought more theoretical work to understand and

optimize the speedups obtained for fitness functions with known variance or

known bias, integrated fitness functions, and fitness inheritance. Fitness inher-

itance [160, 152] is of particular importance because, when coupled with the

probabilistic models of EDAs [132, 154, 153, 155], it has produced speedups

substantially superior to those obtained by conventional schemes.

Time continuation/utilization. Considers the tradeoff between the search us-

ing a large population and a single convergence epoch or using a small pop-

ulation with multiple convergence epochs (see Figure 2.9). This tradeoff

also includes the optimal use of both mutation and recombination capabil-

ities to obtain the best possible solution within limited computational re-
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Figure 2.9: Two scenarios of time utilization: (a) large population with a single
convergence epoch, and (b) small population with multiple convergence epochs.

sources [50, 162, 150, 149, 151]. Previous theoretical work indicates that when

both recombination and mutation operators have linkage information, a small

population with multiple convergence epochs is more efficient for problems

with BBs of equal (or nearly equal) salience. However, if the problem is noisy

or has overlapping BBs, then a large population with a single convergence

epoch is more effective [150]. On the other hand, if the BBs of the problem

have non-uniform salience (requiring serial processing), then a small popula-

tion with various epochs is more appropriate [50, 151].

The speedup obtained by any EET can be measured as the ratio between

the computation effort required by a standard GA and a GA with efficiency-

enhancement. The computational effort can be quantified simply as clock time

or number of function evaluations (which for many problems dominates the total

computational time). If one assumes that the performance of one EET does not

affect the performance of others, then if more than one of the above methods is

employed, the overall speedup is given by the product of individual speedups—what

is known as multiplicative speedup [51].
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While the possibility of obtaining multiplicative speedups with EETs is promising

by itself, recent studies indicate that when integrating problem knowledge mined by

EDAs in the design of the EET, substantially higher speedups can be obtained [132,

154, 104, 103, 153, 155]. These are known as super-multiplicative speedups.

The work presented in this thesis deals with three of the EETs mentioned above

in the following way:

• Most hybridization methods are ad hoc and automatic methods for identifying

and exploiting problem decomposition in both global search and local search

methods are lacking. The thesis addresses this issue by integrating adaptive-

neighborhood local search in multivariate EDAs. Note that conceptually this

is different from typical hybrid EDAs in the sense that local search is based

on the learned probabilistic model instead of using prior knowledge about

the problem, which turns it into a more general applicable type of hybridiza-

tion (with all the corresponding advantages and disadvantages).

• The local search methods proposed in this work use a form of BB-wise mutation

which can be viewed as the counterpart of BB-wise recombination simulated

by sampling candidate solutions from the probabilistic model. As mentioned

above, the decision making involved in time continuation/utilization can also

be posed as choosing between these two key operators. The robust behavior

that characterizes the integration of substructural local search in EDAs will

implicitly allow to switch between a global and local search operator based on

problem requirements. This behavior introduces what is named as adaptive

time continuation.

• The estimation of fitness is also considered to evaluate the local search steps

in BOA. Previous results using the probabilistic models of EDAs to induce
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the functional form of surrogates have shown this approach to be surprisingly

accurate. Given that substructural local search looks for the most promising

BBs, the choice of a model-based surrogate to evaluate the quality of each

alternative becomes natural.

2.6 Summary

This chapter reviews essential topics to understand and situate the work presented

in the thesis. It starts by introducing genetic algorithms and its basic components

inspired on genetics and natural selection. While the importance of having scal-

able GAs is highlighted, a design methodology for competent GAs—GAs that solve

boundedly difficult problems quickly, reliably, and accurately—is introduced, which

is followed by the definition of boundedly-difficult problems used in the thesis to val-

idate the proposed methods. Estimation of distribution algorithms are introduced

by a brief survey on different types of discrete EDAs. A connection between EDAs

and other model-based search methods is also made, recognizing that EDAs are a

more general framework than other MBS approaches. The chapter ends by enu-

merating some of the efficiency-enhancement techniques that can be used in GAs

and particularly in EDAs. The remainder of the thesis addresses most of these

techniques.



Chapter 3

Substructural Local Search in

eCGA

3.1 Introduction

The extended compact genetic algorithm (eCGA) divides decision variables into

non-overlapping clusters, where each cluster is taken as a whole when recombining

different solutions. Therefore, each cluster of variables represents a building-block

or a substructural partition.

This chapter presents the integration of a competent recombination operator,

that effectively exchanges key partial solutions of the problem, with a competent

local search method that efficiently searches for the best subsolutions. Specifically,

the probabilistic model of eCGA is used to identify an effective problem decompo-

sition and important substructures. The probabilistic model, which automatically

induces good neighborhoods, is subsequently used for two distinct purposes:

1. Effective recombination of BBs that provides rapid global-search capabilities.

2. Effective search in the BB neighborhood that locally provides high-quality

35
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solutions.

The key idea is to obtain the benefits from both approaches, recombination without

disrupting important BBs, and mutation (local search) that rapidly searches for the

best BBs in each partition.

The next section introduces the extended compact genetic algorithm, while its

selectomutative counterpart is described in the subsequent section. Section 3.4 pro-

poses the incorporation of substructural local search in eCGA and outlines other

possible applications of substructural mutation. In Section 3.5, computational ex-

periments are performed in different problem difficulty dimensions to evaluate the

performance of the hybrid approach. The chapter ends with a discussion about the

advantages and limitations of such approach, followed by a brief summary.

3.2 Extended Compact Genetic Algorithm

The extended compact genetic algorithm [65, 63] was designed with the idea that

the choice of a good probability distribution for promising solutions is equivalent to

linkage learning. The eCGA uses a product of marginal distributions on a partition

of variables. This type of probability distribution belongs to a class of probability

models known as marginal product models (MPMs). For example, the following

MPM, [1,3][2][4], for a 4-bit problem represents that the 1st and 3rd variables

are linked, and the 2nd and 4th variables are independent.

In eCGA, both the structure and the parameters of the model are searched

and optimized to best fit the data (promising solutions). The measure of a good

MPM is quantified based on the minimum description length (MDL) principle [140],

that penalizes both inaccurate and complex models, thereby leading to an optimal

distribution. According to this principle, good distributions are those under which
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the representation of the distribution using the current encoding, along with the

representation of the population compressed under that distribution, is minimal.

More precisely, the MPM complexity is given by the sum of model complexity Cm

and compressed population complexity Cp. The model complexity Cm quantifies

the model representation in terms of the number of bits required to store all the

marginal probabilities. Let a given problem of size ` with binary encoding, have m

partitions with ki variables in the ith partition, such that
∑m

i=1 ki = `. Then each

partition i requires 2ki−1 independent frequencies to completely define its marginal

distribution. Taking into account that each frequency is of size log2(n + 1), where

n is the population size, the model complexity Cm is given by

Cm = log2(n+ 1)
m∑
i=1

(2ki − 1). (3.1)

The compressed population complexity quantifies the data compression in terms of

entropy of the marginal distribution over all partitions. Therefore, Cp is given by

Cp = n
m∑
i=1

2ki∑
j=1

−pij log2(pij), (3.2)

where pij is the frequency of the jth gene sequence of the genes belonging to the ith

partition. In other words, pij = Nij/n, where Nij is the number of chromosomes

in the population (after selection) possessing bit sequence j ∈ [1, 2ki ] for the ith

partition. Note that a substructural partition of size k has 2k possible bit sequences

where the first is denoted by 00...0 and the last by 11...1.

The eCGA performs a greedy MPM search at every generation. The greedy

search starts with the simplest possible model, assuming that all variables are inde-

pendent (like in the compact GA [67]), and then keeps merging partitions of genes
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MPM Greedy Search

(1) Assign each variable to an independent partition.

(2) Compute the MDL metric for the current model M.

(3) For all possible merges of two partitions in M:

(3.1) Compute the MDL metric for each resulting model structure.

(4) Let M’ be the resulting model with lowest metric value.

(5) If the metric value of M’ is lower than that of M, M’ becomes M and return
to step 3, otherwise finish search with model M as the most adequate.

Figure 3.1: Pseudocode of the marginal product model (MPM) greedy search.

whenever the MDL score metric is improved. This process goes on until no further

improvement is possible. An algorithmic description of this greedy search can be

found in Figure 3.1.

Looking at Figure 3.2, it can be seen that eCGA is similar to a traditional GA,

where the variation operators (crossover and mutation) are replaced by the proba-

bilistic model building and sampling procedures. The offspring population is gen-

erated by randomly choosing subsets from the current individuals, according to the

probabilities of the subsets stored in the MPM.

Analytical models have been developed for predicting the scalability of

EDAs [128, 134]. In terms of number of fitness evaluations necessary to converge

to the optimal solution, these models predict that for additively separable problems

eCGA scales subquadratically with the problem size. Sastry and Goldberg [149]

empirically verified this scale-up behavior for eCGA.
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Extended Compact Genetic Algorithm (eCGA)

(1) Create a random population P of n individuals.

(2) Evaluate population P.

(3) Select P’ individuals from P using a selection procedure.

(4) Model the selected individuals P’ by learning the most adequate marginal
product model M.

(5) Generate a new population O by sampling from the joint probability distri-
bution of M.

(6) Evaluate population O.

(7) Replace all (or some) individuals in population P by those from O.

(8) If stopping criteria are not satisfied, return to step 3.

Figure 3.2: Pseudocode of the extended compact genetic algorithm (eCGA).

3.3 Extended Compact Mutation Algorithm

In genetic algorithms, significant attention has been paid to the design and under-

standing of recombination operators. Systematic methods for successfully designing

competent selectorecombinative GAs have been developed based on decomposition

principles [49, 51].

Mutation, on the other hand, is usually a secondary search operator which per-

forms a random walk locally around a solution and therefore has received far less

attention. However, in evolutionary strategies [138], where mutation is the primary

search operator, significant attention has been paid to the development of mutation

operators. Several mutation operators, including adaptive techniques, have been

proposed [138, 157, 6, 13, 61]. The mutation operators used in evolution strategies

are powerful search operators; however, the neighborhood information is still local

around a single solution. In fact, when solving boundedly difficult problems, local

neighborhood information is not sufficient, and a mutation operator which uses local
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neighborhood requires Θ(`k log `) function evaluations [115], which even for moder-

ate values of k, grows extremely fast and the search becomes inefficient compared

to competent GAs.

The building-block-wise mutation algorithm (BBMA) [149] is a selectomutative

algorithm that performs local search in the BB neighborhood. Instead of using a

bitwise mutation operator that scales polynomially with order k as the problem size

increases, BBMA uses a substructural mutation operator that scales subquadrati-

cally, as shown by Sastry and Goldberg [149].

The main idea is to use the substructural information—obtained by estimating

the distribution of promising solutions—to perform a local search that exploits de-

composition principles. For instance, consider again the same problem of size ` with

binary encoding, that has m partitions with ki variables in the ith partition, such

that
∑m

i=1 ki = `. According with this decomposition, each individual will have m

substructural neighborhoods, each of size 2ki−1. Therefore, the ith neighborhood is

composed by the set of solutions that contain the remaining possible configurations

for the ith substructural partition, while variables outside the partition are kept un-

changed. The exploration of all m neighborhoods requires a total of
∑m

i=1(2ki − 1)

fitness evaluations.

For substructural identification, the probabilistic model building procedure of

eCGA is used in this chapter. However, other probabilistic models or linkage learn-

ing methods can also be used. Since this chapter focus on eCGA, from now on this

instance of BBMA is referred as the extended compact mutation algorithm (eCMA).

Once the linkage groups are identified, an enumerative substructural mutation op-

erator is used to find the best subsolution for each detected partition. A description

of eCMA can be seen in Figure 3.3.

The performance of eCMA can be slightly improved by using a greedy heuristic to
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Extended Compact Mutation Algorithm (eCMA)

(1) Create a random population P of n individuals.

(2) Evaluate population P.

(3) Select P’ individuals from P using a selection procedure.

(4) Model the selected individuals P’by learning the most adequate marginal
product model M.

(5) Choose the best individual of the population Best for substructural muta-
tion.

(6) For each partition of variables in M:

(6.1) Create 2k − 1 unique individuals with all possible remaining values
for the current partition, while other variables are kept as in Best.

(6.2) Evaluate all 2k−1 individuals and retain the best for mutation in the
other partitions. This individual becomes the Best.

(7) Return Best as the final result.

Figure 3.3: Pseudocode of the extended compact mutation algorithm (eCMA).

search for the best among competing BBs in each partition. Even so, the scalability

of eCMA is determined by the population size required to accurately identify the

BB partitions. Therefore, the number of function evaluations scales at least as

Ω(2km1.05) and at most as O(2km2.1) [149, 134]. Recently, the model which estimates

the population size required to obtain accurate substructural information has been

refined to a more precise Θ(22km logm) [177].

It should be also noted that on eCMA the linkage identification is only done at

the initial stage. This kind of offline linkage identification works well on problems

of nearly equal salience, however, for problems with non-uniformly scaled BBs, the

linkage information needs to be updated at regular intervals. This limitation will be

empirically shown with experimental results (Section 3.5.2).
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3.4 eCGA with Substructural Local Search

After presenting two competent operators based on the probabilistic model of eCGA,

this chapter investigates the combination of both operators in the same algo-

rithm [104]. Similar to eCGA, the hybrid extended compact genetic algorithm

(heCGA) models promising solutions in order to effectively recombine important

substructures and perform effective local search in the substructural space.

The incorporation of substructural local search (SLS) in eCGA is done after

learning the adequate MPM for the present generation, and before sampling new

individuals from the model (which mimics recombination). This contrasts with the

typical approach in hybrid GAs where local search improves the solutions produced

by crossover. The motivation for doing so is twofold. First, it allows to replicate

the procedure of eCMA before sampling and evaluating a new population. This

will be particularly useful for problems where eCMA is known to be superior to

eCGA (and other selectorecombinative GAs) [150]. Second, the traits learned by

local search update the model before new individuals are generated, thereby biasing

the generation of the offspring population in the present generation, instead of only

in the next generation.

Figure 3.4 shows that heCGA starts like the regular eCGA (steps 1-4), but after

building the model the linkage information is used to perform substructural local

search in the best individual of the population. Once a result is obtained, heCGA

updates the substructural frequencies of the model according to the values of the

recently improved best solution. This is done by increasing the sampling proba-

bility for each substructure of the new best individual by s/n and decreasing each

substructure of the previous best solution (before performing local search) by s/n,

where s is the tournament size. Note that the copies of the best individual can
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Hybrid Extended Compact Genetic Algorithm (heCGA)

(1) Create a random population P of n individuals.

(2) Evaluate population P.

(3) Select P’individuals from P using a selection procedure.

(4) Model the selected individuals P’ by learning the most adequate marginal
product model M.

(5) Apply substructural local search to the best individual Best of population
P. The resulting individual is NewBest.

(6) Update model M according to the new substructures found in NewBest. For
each partition of variables in M:

(6.1) Increase the frequency of the substructure present in NewBest by s/n.

(6.2) Decrease the frequency of the substructure present in Best by s/n.

(7) Generate a new population O by sampling from the joint probability distri-
bution of the updated model M.

(8) Replace all (or some) individuals in population P by those from O.

(9) If stopping criteria are not satisfied, return to step 3.

Figure 3.4: Pseudocode of the hybrid extended compact genetic algorithm (heCGA).
The parameter s is the tournament size.

also be replaced by the mutated one, with a similar overall effect1. Alternatively,

a user-defined parameter can be introduced. Finally, a new population is gener-

ated according to the updated model. If the stopping criteria are not satisfied, the

algorithm returns to step 3.

Other ways to integrate substructural mutation with substructural recombina-

tion can also be considered. An alternative approach to combine these operators

would be to apply stochastic substructural mutation to all individuals in the popu-

lation. In this way, instead of having the traditional bitwise mutation with a certain

1Notice that if tournament selection without replacement is used the best individual gets exactly
s copies in the mating pool.
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probability to be applied to each bit, it would be possible to have a substructural

mutation with a certain probability to be applied to each substructure in each in-

dividual. Still, the impact of this kind of mutation will be slower than that of

the proposed method. Although superior BBs can still be discovered by applying

stochastic substructural mutation in the population, the combination of such BBs

(that form good solutions) will take a certain number of generations known as mix-

ing time [165, 51]. By applying local search to all substructural neighborhoods in

the same individual, the resulting subsolutions will be instantly combined.

The additional cost in terms of function evaluations for doing substructural local

search should also be taken into account when considering other hybridization con-

figurations. For the proposed scheme, approximately 2km additional evaluations are

spent in each generation2. Here, k and m refer to the decomposition learned by the

probabilistic model, which is not necessarily the real decomposition of the problem.

For the stochastic scheme mentioned above, the cost depends on the probability of

applying substructural mutation. If one allows to spend the same 2km evaluations

on average, the probability of applying stochastic mutation should have to be set

around pm = 1/n (recall that n is the population size). This is a fairly low mutation

rate (even in the substructural sense) and the high-quality substructures acquired

by mutation will take long (if ever) to be mixed. If a stronger mutation rate is

considered, for instance pm = 1/m, on average n/m more evaluations will be spent

than with the proposed method.

As mentioned earlier, the performance of the BB-wise mutation operator can be

slightly improved using a greedy procedure to search for the best among compet-

ing substructures. This can be particularly useful for the application of stochastic

mutation, especially for higher mutation rates. For the case of performing SLS it is

2Note that
∑m

i=1(2ki − 1) ≈ 2km, if k1 = k2 = . . . = km.
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not desirable to apply greedy search, since failing possible subsolutions (due to the

nature of the greedy search) will probably be much costlier than what is about to

be saved.

Finally, it should be noted that eCGA, and consequently eCMA and heCGA,

can only build linkage groups with non-overlapping variables. However, the ideas

here presented for integrating SLS can be extended to other linkage identification

techniques that can handle overlapping BBs such as the Bayesian optimization algo-

rithm or the dependency structure matrix driven genetic algorithm (DSMGA) [175].

The next chapter addresses the application of substructural local search in BOA.

3.5 Experiments

This section performs computational experiments with various problems of bounded

difficulty. Following a design approach to problem difficulty [51], the described

algorithms are tested on a set of problems that combine the core of three important

problem difficulty dimensions: (1) deception, (2) scaling, and (3) noise.

For each algorithm, it is empirically determined the minimal number of func-

tion evaluations to obtain a solution with at least m − 1 building blocks solved

(optimal solution with an error of α = 1/m). For eCGA and eCMA, a bisection

method [145, 125] over the population size is used to search for the minimal pop-

ulation size necessary to find a target solution. However, for heCGA an interval

halving method [30] is more appropriate given the algorithm behavior as the pop-

ulation increases, as will be shown later (Figure 3.6). The results for the minimal

sufficient population size are averaged over 30 bisection runs. In each bisection run,

the solution quality obtained with a given population size is averaged over another

30 runs. Thus, the results for the number of function evaluations and the num-
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ber of generations spent are averaged over 900 (30x30) independent runs. For all

experiments, tournament selection without replacement is used with size s = 8.

3.5.1 Problem 1: Deception

As the core of intra-BB difficulty, deceptive functions are among the most challenging

problems for competent GA candidates. Figure 3.5 presents the results obtained for

the m-k trap problem. The number of BBs (or subfunctions) m is varied between 2

and 20, for size k = {4, 5}.

While eCGA needs smaller populations than eCMA and heCGA to solve the

problem, it takes more function evaluations than both algorithms. This happens

because in eCGA (1) the BBs are discovered in a progressive way and (2) more gen-

erations are required to exchange the right BBs. Although increasing the population

size for eCGA accelerates the BB identification process, additional generations are

still needed to mix the correct BBs into a single individual. Since eCGA (like every

selectorecombinative GA) requires this mixing time, relaxing the BB identification

process (using smaller populations, thus saving function evaluations) to a certain

point seems to be the best way to tune eCGA performance.

The scalability difference between eCGA and eCMA is not surprising and was

verified before [149, 150]. The similarity between eCMA and heCGA performances

supports that the best way to use heCGA on deterministic and uniformly-scaled

boundedly deceptive functions (and problems bounded by this one), is to set a large

enough population size to get the problem structure in the first generation(s), and

then perform substructural local search to rapidly achieve the global optimum.

These results suggest that there is no direct gain of heCGA over eCMA for this

problem; however, another observation can be made. From a practitioner point of

view, heCGA is a more flexible search algorithm because it is able to solve the prob-
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Figure 3.5: Population size (top), number of function evaluations (middle), and
number of generations (bottom) required by eCGA, eCMA, and heCGA for the
m-k trap problem (m = [2, 20] and k = {4, 5}).
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Figure 3.6: Number of function evaluations required by heCGA for the m-k trap
problem (k = 4 and m = 10) when using increasing population sizes.

lem within a larger range of population size values. Figure 3.6 shows the number of

function evaluations for heCGA to find the target solution (k = 4 and m = 10), as

the population size increases. Note that only population sizes that find the target

solution (over 30 independent runs) are shown. The points plotted form four increas-

ing lines. In each line, as the population increases the number of function evaluations

also increases until it falls down into a lower line and then keeps increasing again.

This behavior is cyclic until the population size is enough to discover all3 correct

substructural partitions in the first generation, being the problem solved by the SLS

procedure in the initial generation. Each discontinuity between lines represents a

decrease in the number of generations necessary for heCGA to successfully solve the

problem. This happens because, as the population size increases, the model building

procedure can capture more correct substructural partitions, improving the ability

of local search to quickly solve the problem.

3In this specific case, m− 1 partitions due to the stopping criterion used.
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3.5.2 Problem 2: Deception + Scaling

In this problem, the inter-BB difficulty is explored together with the intra-BB dif-

ficulty. Specifically, the same m-k trap problem is used, but now each subfunction

fitness contribution to the overall fitness is exponentially scaled. The weight of

each subfunction fitness contribution is given by powers of 2, being the resulting

exponentially scaled problem already defined in Equation 2.3.

This function has the interesting property that a high-scaled subfunction gives

more fitness contribution than the sum of all inferior subfunctions. When solving

this problem with a GA, in the initial generations the signal that comes from the

low-salient BBs is negligible when faced with the decision making between the high-

salient BBs. Whenever the higher BBs are solved, the next highly-scaled BBs will

have their time of attention by the GA, and so on. Given this property, the correct

substructural partitions can only be discovered in a sequential way, which contrasts

with the uniformly-scaled case where the problem structure can be captured in the

first generation(s) with a sufficiently large population size. Thus, eCMA is not

able to solve exponentially-scaled problems with reasonable population sizes, as was

pointed out before [149]. The model built based on the selected initial individuals

will only be able to get the high-salient substructures, failing the rest. Therefore,

the model of eCMA has to be updated at a regular schedule to capture the problem

structure in a sequential manner.

Figure 3.7 empirically shows that eCMA needs prohibitively large population

sizes to achieve the target solution. In heCGA the model is updated every generation

and the substructural local search can benefit from that. Nevertheless, heCGA

spends approximately the same number of function evaluations to solve the problem

as the regular eCGA. In this case, heCGA behaves similarly to eCGA, preferring a

reasonable population size, enough to get the most relevant substructures and then
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Figure 3.7: Population size (top), number of function evaluations (middle), and
number of generations (bottom) required by eCGA, eCMA, and heCGA for the
exponentially-scaled m-k trap problem (m = [2, 20] and k = {4, 5}).
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Figure 3.8: Number of function evaluations required by heCGA for the
exponentially-scaled m-k trap problem (k = 4 and m = 10) when using increas-
ing population sizes.

keep going sequentially to the remaining ones. In terms of number of generations,

heCGA scales as the eCGA, increasing linearly with the problem size.

Figure 3.8 shows the number of function evaluations that heCGA needs to solve

this problem as the population size increases. In this case, the number of function

evaluations scales approximately linearly with the population size. Since increasing

the population size will not reveal much more correct substructural information, the

effect on the overall search process is minor.

3.5.3 Problem 3: Deception + Noise

Noise is a common feature in many real-world optimization problems. Sources of

noise can include physical measurement limitations, incomplete sampling of large

spaces, stochastic simulation models, human-computer interaction, among others [3].

Furthermore, evaluation-relaxation techniques [145, 83] are commonly used in evo-

lutionary algorithms for performance enhancement, bringing an additional source of
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noise to the original optimization problem. Thus, analyzing heCGA performance

in noisy environments is important to investigate its behavior when facing the core

of the extra-BB difficulty dimension. For the experiments, it is assumed that the

exogenous noise follows a Gaussian distribution with mean 0 and variance σ2
N . To

make the problem even more challenging, a noisy version of the uniformly-scaled

deceptive function is considered (see Equation 2.4).

To overcome the noise with eCMA, the evaluation of a solution in the local search

phase needs to be performed over an average of function evaluations. The number

of times that each individual needs to be evaluated, to allow correct decision mak-

ing between competing substructures, depends on the noise variance. Therefore,

to obtain the optimal results for eCMA in noisy conditions two different bisections

runs need to be performed, one over the initial population size and the other over

the number of fitness samples that is necessary to correctly evaluate an individ-

ual. First, the bisection method is used to find the minimal population size that

generates a model with at least m − 1 correct substructural partitions. Then, for

each population that captures the target dependencies, a second bisection method

is performed over the number of fitness samples to obtain the minimal number of

times that an individual needs to be evaluated, in order to achieve a final solution

with the subproblems detected by the model optimally solved.

Figure 3.9 depicts the results obtained for a uniformly-scaled m-k trap prob-

lem with additive noise for k = 4 and m = {5, 10}. As the noise-to-signal ra-

tio σ2
N/σ

2
f increases, two different scenarios can be identified. For small values

of noise, as σ2
N/σ

2
f → 0, the scenario is somewhat similar to the deterministic

case, where eCMA and heCGA perform better than eCGA. However, in this case

eCMA performs slightly worse than heCGA (this is particularly true for small m,

see m = 5). This occurs because the MPM is required to detect at least m − 1
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Figure 3.9: Population size (top), number of function evaluations (middle), and
number of generations (bottom) required by eCGA, eCMA, and heCGA for the
noisy m-k trap problem (m = {5, 10} and k = 4), with varying noise-to-signal
ratio σ2

N/σ
2
f .
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Figure 3.10: Number of fitness samples (ns) used in each averaged fitness evaluation
in eCMA for the noisy m-k trap problem (m = {5, 10} and k = 4).

partitions, while in the deterministic case this criteria is only applied to the target

solution.

When noise increases the behavior of the algorithms changes. Considering the

tested cases, k = 4 and m = {5, 10}, the scenario changes around σ2
N/σ

2
f = 0.001.

At this point, eCGA starts to perform better than eCMA, which is expected given

that crossover is likely to be more useful than mutation in noisy environments [150].

However, heCGA, which was behaving like eCMA (using larger population sizes

to quickly solve the problem) to small noise values, starts performing similarly to

eCGA, that is known to be a best approach than eCMA for moderate-to-high noise

values. This change in heCGA behavior can be better observed in the population

size and number of generations plots.

In Figure 3.10, it is shown the minimal number of fitness samples necessary

to eCMA correctly decide between competing substructures in noisy conditions.

Note that in heCGA the substructural local search does not take advantage of the

averaging technique used in eCMA, because the objective is to test heCGA in various



3.6. DISCUSSION 55

difficulty dimensions as a black-box method. Based on these results, the robust

behavior of heCGA stands for noisy conditions as well, confirming the observations

made for the first two problems.

3.6 Discussion

Looking at the behavior of heCGA on both uniformly and exponentially scaled prob-

lems, distinct dynamics can be observed for each situation. In the uniformly-scaled

case, heCGA has a similar behavior to eCMA, which is the algorithm that performs

better. For the exponentially-scaled problem, heCGA changes completely its dy-

namics behaving like eCGA, which is known to perform much better than eCMA.

While in both cases there is no direct gain in using heCGA over the best algorithm,

it becomes clear what seems to the greatest advantage of the proposed approach:

robustness. For both problems, heCGA obtains a very similar performance to the

best algorithm for each domain.

A better insight on this robust behavior can be obtained by looking at the results

for the problem with additive exogenous noise. Depending on the noise amount,

eCGA which integrates SLS is able to follow the performance of the best single-

operator-based approach. This is indeed quite important in the absence of domain-

or problem-specific knowledge.

As previously mentioned, time continuation in evolutionary algorithms deals

with the tradeoff between using a large population for a single convergence epoch or

a small population for multiple convergence epochs. For the latter, a continuation

operator is then required to inject diversity between epochs. Typically, this oper-

ator is assumed to be some form of mutation or local search method. Therefore,

the decision making involved in time continuation can also be posed as choosing
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Figure 3.11: Speedup obtained when using substructural local search in eCGA for
the noisy m-k trap problem (k = 4 and m = 10). heCGA obtains significant savings
when compared with the least adequate single-operator-based approach for both
scenarios (low or high values of noise). This adaptive behavior can be achieved by
setting the population size accordingly.

between two key variation operators—recombination and mutation [155]. From this

standpoint, heCGA introduces what can be named as adaptive time continuation.

The incorporation of SLS in eCGA implicitly allows to switch between a global

and local search operator based on problem requirements. This can result in sig-

nificant savings that depend upon the type of problem being solved. For exam-

ple, consider the previous noisy problem. Figure 3.11 shows the speedup (ratio in

the number of evaluations) of heCGA over the single-operator-based approaches.

Clearly, heCGA obtains substantial speedups over the less adequate approach, even

for a moderate problem size (k = 4 and m = 10). This adaptive behavior can be

achieved by setting the population size accordingly.

While the experiments focused on problems with non-overlapping subfunctions,

many problems can have different substructures that share common components.

The effect of overlapping interactions between variables has been studied before [51],
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where it was argued to be similar to that of exogenous noise. However, the prob-

abilistic model used by the algorithms in this chapter (marginal product models)

can not capture overlapping dependencies. For that purpose, the more powerful

Bayesian optimization algorithm [127, 125] will be considered in the next chapter,

where the utility of incorporating SLS will be investigated as well. Additionally,

the use of a surrogate fitness model for evaluating local search steps will also be

investigated.

3.7 Summary

This chapter integrates substructural local search in eCGA. The resulting

algorithm—the hybrid extended compact genetic algorithm (heCGA)—combines the

substructural recombination operator from eCGA with a substructural mutation op-

erator that is also based on the probabilistic model of eCGA. Essentially, heCGA

makes use of mined substructural information to perform (1) effective recombina-

tion of subsolutions and (2) effective local search in the substructural search space.

Experiments are performed on three different test functions that combine important

problem difficulty dimensions: deception, scaling, and noise. The results show that,

independently from the faced difficulty dimension(s), the eCGA which integrates

SLS obtained the most robust performance, mimicking the behavior of the best

approach (recombination-based or mutation-based) for each problem.

Additionally, the incorporation of substructural local search in eCGA implicitly

allows to switch between a global and local search operator based on problem re-

quirements. This form of adaptive time utilization can result in significant savings

even for moderate problem sizes, as it is empirically shown for the noisy problem.

Overall, the results presented in this chapter indicate the robustness of using
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both search operators—recombination and mutation—in the context of EDAs, as it

is known to be advantageous for traditional evolutionary algorithms.



Chapter 4

Substructural Local Search in

BOA

4.1 Introduction

The Bayesian optimization algorithm (BOA) is an EDA that uses Bayesian net-

works (BNs) as the probabilistic model. In BNs, the interactions between vari-

ables are expressed under conditional dependencies represented by a directed acyclic

graph. Similar EDAs include the estimation of Bayesian networks algorithm and

the learning factorized distribution algorithm. Bayesian networks are more power-

ful probabilistic models than MPMs because they allow to represent more complex

non-linearities such as overlapping and hierarchical dependencies.

This chapter introduces the concept of substructural local search for Bayesian

EDAs. The substructural neighborhoods explored in local search are defined by the

conditional dependencies learned by the Bayesian networks. Additionally, a surro-

gate fitness model that also makes use of substructural information is used to eval-

uate the alternatives while performing hillclimbing in the subsolution search space.

59
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In this way, the cost of performing local search can be reduced to a small number

of fitness evaluations, while providing effective learning of important subsolutions.

The chapter starts by introducing the Bayesian optimization algorithm, followed

by a description of fitness modeling with Bayesian networks. In Section 4.4, several

substructural neighborhoods are considered, and the most adequate is chosen. The

incorporation of substructural local search in BOA is presented in Section 4.5. Sec-

tion 4.6 and 4.7 present and discuss empirical results. The chapter finalizes with a

brief summary.

4.2 Bayesian Optimization Algorithm

The Bayesian optimization algorithm [127, 125] uses Bayesian networks to capture

the (in)dependencies between the decision variables of the optimization problem. In

BOA, the traditional crossover and mutation operators of evolutionary algorithms

are replaced by (1) building a BN which models promising solutions and (2) sampling

from the corresponding probability distribution to generate new solutions. The

pseudocode of BOA is detailed in Figure 4.1.

Bayesian networks [124] are powerful graphical models that combine probability

theory with graph theory to encode probabilistic relationships between variables

of interest. A BN is defined by its structure and corresponding parameters. The

structure is represented by a directed acyclic graph where the nodes correspond to

the variables of the problem and the edges correspond to conditional dependencies.

The parameters are represented by the conditional probabilities for each variable

given any instance of the variables that this variable depends on. More formally, a
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Bayesian Optimization Algorithm (BOA)

(1) Create a random population P of n individuals.

(2) Evaluate population P.

(3) Select P’ individuals from P using a selection procedure.

(4) Model the selected individuals P’ by learning the most adequate Bayesian
network B.

(5) Create a new population O by sampling from the joint probability distri-
bution of B.

(6) Evaluate population O.

(7) Replace all (or some) individuals in population P by those from O.

(8) If stopping criteria are not satisfied, return to step 3.

Figure 4.1: Pseudocode of the Bayesian optimization algorithm.

Bayesian network encodes the following joint probability distribution,

p(X) =
∏̀
i=1

p(Xi|Πi), (4.1)

where X = (X1, X2, . . . , X`) is a vector with all variables of the problem, Πi is the

set of parents of Xi (nodes from which there exists an edge to Xi), and p(Xi|Πi) is

the conditional probability of Xi given its parents Πi.

The parameters of a Bayesian network can be represented by a set of conditional

probability tables (CPTs) or local structures. Using local structures such as decision

trees (DTs) allows a more efficient and flexible representation of local conditional

distributions, improving the expressiveness of BNs [25, 42, 125]. Figure 4.2 illustrates

the differences between a CPT and a decision tree. This thesis focuses on BNs with

decision trees.

The quality of a given network structure is quantified by a scoring metric. There
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        0.15
        0.45

(a) CPT

X

X

0 1
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p(X1=1) = 0.20

p(X1=1) = 0.15 p(X1=1) = 0.45

(b) Decision tree

Figure 4.2: Example of a conditional probability table for p(X1|X2X3) using the
(a) traditional representation and a (b) decision tree. The decision tree allows a
more efficient and flexible representation of the conditional probabilities.

are two popular metrics for BNs: the Bayesian-Dirichlet metric (BD) [26, 74] and the

Bayesian information criterion (BIC) [156]. The BD metric for BNs with decision

trees [25] is given by

BD(B) = p(B)
∏̀
i=1

∏
l∈Li

Γ(m′i(l))

Γ(mi(l) +m′i(l))

∏
xi

Γ(mi(xi, l) +m′i(xi, l))

Γ(m′i(xi, l))
, (4.2)

where p(B) is the prior probability of the network structure B, Li is the set of leaves

in the decision tree Ti (corresponding to Xi), mi(l) is the number of instances in

the population that contain the traversal path in Ti ending in leaf l, mi(xi, l) is the

number of instances in the population that have Xi = xi and contain the traversal

path in Ti ending in leaf l, m′i(l) and m′i(xi, l) represent prior knowledge about the

values of mi(l) and mi(xi, l). This work considers the K2 variant of the BD metric,

which uses an uninformative prior that assigns m′i(xi, l) = 1.

To favor simpler networks over more complex ones, the prior probability of each

network p(B) can be adjusted according to its complexity, that is given by the

description length of the parameters required by the network [25, 42]. Based on this
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principle, the following penalty function was proposed for BOA [125],

p(B) = 2−0.5 log2(n)
P`

i=1 |Li|, (4.3)

where |Li| is the number of leaves in decision tree Ti.

The BIC metric is based on the minimum description length (MDL) princi-

ple [140] and is given by

BIC(B) =
∑̀
i=1

(∑
l∈Li

∑
xi

(
mi(xi, l) log2

mi(xi, l)

mi(l)

)
− |Li|

log2(n)

2

)
. (4.4)

It has been shown that the behavior of these metrics is asymptotically equivalent;

however, the results obtained with each metric can differ for particular domains,

particularly in terms of sensitivity to noise. In the context of EDAs, when using

CPTs to store the parameters, the BIC metric outperforms the K2 metric, but when

using decision trees or graphs, the K2 metric has shown to be more robust [125].

This observation will be confirmed in the next chapter.

To learn the most adequate structure for the BN, a greedy algorithm is usually

used for a good compromise between search efficiency and model quality. A simple

learning algorithm starts with an empty network and at each step performs the op-

eration that improves the metric the most, until no further improvement is possible.

Figure 4.3 describes the learning algorithm in more detail.

When using DTs to store conditional probabilities, the greedy search does not

directly manipulate the Bayesian network structure. Instead, the search operates

over the set of decision trees {T1, T2, . . . , T`}. The search operator(s) modify the

DTs and by consequence the BN structure is updated. The operator used is the

split, which splits a leaf on some variable and creates two new children on that leaf.

Each time a split on Xj takes place at tree Ti, an edge from Xj to Xi is added to
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Bayesian Network Greedy Search

(1) Start with an empty Bayesian network with no edges B and ` decision trees
T(i) with a single leaf (storing p(Xi)).

(2) Compute the score metric for the current network (B,T).

(3) For all possible splits on every decision tree T(i).

(3.1) Compute the score metric for the resulting model structure.

(4) If every split fails to improve the current score, finish; otherwise, perform
the split that improves the score metric the most and does not introduce
a cycle in B.

(5) Add the corresponding edge to B. Return to step (3).

Figure 4.3: Pseudocode of the greedy algorithm for learning a Bayesian network
with decision trees.

the network. For more details on learning BNs with local structures the reader is

referred elsewhere [25, 42, 125].

The generation of new solutions is done by sampling from the learned Bayesian

network using probabilistic logic samping (PLS) [75]. Briefly, PLS consists in

(1) computing an ancestral ordering of the nodes (where each node is preceded

by its parents) and (2) generating the values for each variable according to the

ancestral ordering and the conditional probabilities (Equation 4.1).

The hierarchical BOA (hBOA) was later introduced by Pelikan and Gold-

berg [126, 125] and results from the combination of BNs with local structures with a

simple yet powerful niching method to maintain diversity in the population, known

as restricted tournament replacement (RTR) [64]. hBOA is able to solve hierarchi-

cal decomposable problems, where variable interactions are present at more than a

single level.
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4.3 Modeling Fitness in BOA

Pelikan and Sastry [132] extended the Bayesian networks used in BOA to encode a

surrogate fitness model that estimates the fitness for a proportion of the population,

thereby reducing the total number of function evaluations. For each possible value xi

of every variable Xi, an estimate of the marginal fitness contribution of a subsolution

with Xi = xi is stored for each instance πi of Xi’s parents Πi. Therefore, in the

binary case, each row of the CPT is extended by two additional entries. The fitness

of an individual can then be estimated as

fest(X1, X2, . . . , X`) = f̄ +
∑̀
i=1

f̄(Xi|Πi), (4.5)

where f̄ is the average fitness of all solutions used to learn the surrogate and f̄(Xi|Πi)

is the conditional average fitness of solutions with Xi. Note that

f̄(Xi|Πi) = f̄(Xi,Πi)− f̄(Πi), (4.6)

where f̄(Xi,Πi) is the average fitness of solutions with Xi and Πi, and f̄(Πi) is the

average fitness of all solutions with Πi.

Fitness information can also be incorporated in Bayesian networks with decision

trees in a similar way. In this case, the average fitness of each instance for every

variable must be stored in every leaf of the decision tree. The fitness averages in

each leaf are now restricted to solutions that satisfy the condition specified by the

path from the root of the tree to the leaf. Figure 4.4 shows the previous example

when storing fitness information as well.

The original proposal for fitness estimation in BOA uses the surrogate to evalu-

ate the fitness of a proportion of the offspring population, which reduces the total
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(a) Conditional probability table

X

X

0 1

10

p(X1=1) = 0.20

p(X1=1) = 0.15 p(X1=1) = 0.45

f(X1=0) = -0.48
f(X1=1) = 0.54

f(X1=1) = 0.47 f(X1=1) = 0.62
f(X1=0) = -0.55 f(X1=0) = -0.52

(b) Decision tree

Figure 4.4: Example of a conditional probability table which also stores fitness in-
formation for p(X1|X2X3) using the (a) traditional representation and a (b) decision
tree.

number of evaluations spent. The information necessary to compute statistics used

for fitness estimation is acquired from (1) selected parents that were evaluated using

the actual fitness function, and (2) offspring that were evaluated with the actual fit-

ness function. The computation is restricted to these solutions because the current

Bayesian network is directly related to this information (learned from the parents

and sampled the offspring). Only evaluated solutions from the original fitness func-

tion are considered so that the noise coming from the errors in estimating fitness is

not propagated through several iterations of the algorithm.

In this thesis the surrogate model will be exclusively used for evaluating the

substructural local search steps, therefore the entire parent and offspring population

is evaluated with the actual fitness function. By doing this, the population is kept
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free of noise arising from possible surrogate errors, and performing local search

becomes costless while rapidly achieving important subsolutions.

4.4 Substructural Neighborhoods in Bayesian

Networks

Recently, it has been shown that a selectomutative algorithm that performs hill-

climbing in the substructural space can successfully solve problems of bounded diffi-

culty with subquadratic scalability, as opposed to Θ(`k log `) scalability of traditional

local search methods [150, 115, 149]. The previous chapter showed that when incor-

porating substructural local search in eCGA, the resulting algorithm is more robust

than both single-operator-based approaches [65, 149].

This section concerns about extending the concept of substructural neighbor-

hoods to the case of Bayesian networks [103]. Marginal product models are fun-

damentally different from Bayesian networks and other graphical models that rely

on conditional dependencies. While eCGA groups variables together in a joint dis-

tribution, BOA factorizes the problem by making use of conditional dependencies

and independencies. The notion of interaction is of special relevance here. Two

(or more) variables interact if they yield more information when considered to-

gether than separately. Interaction itself is that dependency that cannot be broken

down [81].

Consider the example of a possible factorization shown in Figure 4.5. While

eCGA is able to directly represent interactions between variables, BOA implicitly

represent the interaction through a product of conditional dependencies. If k vari-

ables interact with each other, the Bayesian network should express their joint dis-

tribution to be able to maintain k-order statistics. As can be seen in Figure 4.5 (b),
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(a) Marginal Product Model

X1

X2X4
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X7
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(b) Bayesian network

Figure 4.5: Factorization of the probability distribution using a (a) marginal product
model and a (b) Bayesian network. While in the first case the factorization is directly
expressed as p(X1X2X3X4)p(X5X6X7), with BNs the factorization is expressed as
p(X1)p(X2|X1)p(X3|X1X2)p(X4|X1X2X3)p(X7)p(X5|X7)p(X6|X5X7).

the joint distribution of variables X1, X2, X3, and X4 can be expressed in a Bayesian

network as

p(X1X2X3X4) = p(X1)p(X2|X1)p(X3|X1X2)p(X4|X1X2X3), (4.7)

or any other permutation of the variables that respect this dependency structure.

Ideally, the Bayesian network structure should contain a clique1 between interacting

variables, where the direction of the edges is defined in such way that there are

no cycles (so that sampling new instances with PLS is feasible). Additionally, the

model should not contain edges between non-interacting variables.

Given the structure of a Bayesian network, several neighborhood topologies can

be considered to perform random or improvement-guided mutations. For a given

variable Xi, the corresponding set of parent nodes Πi, and set of child nodes Ωi

(nodes to where an edge arrives from node Xi), four different substructural neigh-

borhoods can be defined:

Parental neighborhood considers variable Xi together with parent variables Πi.

1A clique is a set of nodes N such that for every two nodes in N, there exist an edge (regardless
its direction) connecting them.
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Figure 4.6: Topology of the (a) parental, (b) children, (c) parental+children, and
(d) Markov blanket neighborhoods for variable X4.

This neighborhood is therefore defined by K = 1 + |Πi| different variables,

resulting in 2K possible values in the binary realm.

Children neighborhood considers variable Xi together with child variables Ωi.

Thus this neighborhood is defined by K = 1 + |Ωi| variables.

Parental+Children neighborhood considers variable Xi together with both

parent variables Πi and child variables Ωi. This neighborhood is composed

by K = 1 + |Πi|+ |Ωi| variables.

Markov blanket neighborhood same as above, but in addition the remaining

parents of the child variables Ωi are considered as well. This neighborhood is

composed by K = |Πi|+ |Ωi|+ |ΠΩi
| − |Πi ∩ ΠΩi

| variables.

Figure 4.6 shows the topology of the different neighborhoods for a particular

variable. When considering the substructural neighborhood of different variables,

these four topologies explore the structure captured by the Bayesian network to

different extents. However, looking at the dependency structure exemplified in Fig-

ure 4.5 (b), the neighborhoods defined for every variable inside an interaction group

are exactly the same for both parental+child and Markov blanket neighborhoods.

Take for example the interaction {X5, X6, X7}. For every of these variables, both
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neighborhoods are exactly the same. This leads to a certain redundancy when ex-

ploring the neighborhoods for each variable Xi. Therefore, the parental or child

neighborhoods are more efficient choices.

The parental neighborhood however presents a clear advantage over the child

neighborhood. Because the conditional probabilities and corresponding fitness con-

tribution are already stored in the form p(Xi|Πi) and f̄(Xi|Πi), the information

needed to perform SLS is directly accessible when using the parental neighborhood.

Thus, this work focuses on the parental neighborhood to guide substructural local

search.

A somewhat related approach has been recently proposed by Handa [60], where

the traditional bitwise mutation operator is employed in the estimation of Bayesian

networks algorithm (EBNA) [37]. Consequently, variables that depend on the mu-

tated node are resampled according to the conditional probabilities for the new

instance. Although this mutation operator takes into account the dependencies be-

tween variables, it is specifically designed to perturb solutions in order to maintain

diversity in the population. The approach proposed in this chapter is to interpret the

structure of the Bayesian network as a set of linkage groups to define neighborhoods

explored by local search.

4.5 BOA with Substructural Local Search

This section integrates a local search method in BOA that uses the parental neigh-

borhood proposed in the previous section [103]. The substructural local search is

performed for a proportion of the population to speedup the convergence to good so-

lutions, as in traditional hybrid GAs. After the offspring population is sampled from

the probabilistic model and evaluated, each individual is submitted to substructural
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BOA with Substructural Local Search (BOA+SLS)

(1) Create a random population P of n individuals.

(2) Evaluate population P.

(3) Select P’ individuals from P using a selection procedure.

(4) Model the selected individuals P’ by learning the most adequate Bayesian
network B.

(5) Create a new population O by sampling from the joint probability distri-
bution of B.

(6) Evaluate population O.

(7) Submit population O to substructural local search with probability pls.

(8) Replace all (or some) individuals in population P by those from O.

(9) If stopping criteria are not satisfied, return to step 3.

Figure 4.7: Pseudocode of the Bayesian optimization algorithm with substructural
local search (BOA+SLS).

hillclimbing with probability pls. Figure 4.7 shows an algorithmic description of the

resulting algorithm (BOA+SLS).

While in eCGA substructural local search was only applied to the best individ-

ual, in BOA it is more efficient to perform local search for several individuals. The

first reason for doing so is related to the more complex nature of probabilistic mod-

eling with Bayesian networks, where increasing model complexity can sometimes

lead to model overfitting. In addition, the decision making between competing

substructures is certainly not error free, due to the noise coming from estimated

fitness. To overcome these possibilities, experiments for several proportions of local

search are considered. Another important reason is that SLS uses surrogate fitness

which substantially decreases the cost of local search in terms of number of function

evaluations. The substructural local searcher is described in Figure 4.8.
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Substructural Local Search (SLS)

(1) Consider the first variable Xi according with the reverse ancestral ordering
of variables in the Bayesian network.

(2) Choose the values (xi, πi) associated with the maximal substructural fitness
f̄(Xi,Πi).

(3) Set variables (Xi,Πi) of the considered individual to values (xi, πi) if the
overall fitness of the individual is improved by doing so, otherwise leave
the individual unchanged.

(4) Repeat steps 2-3 for all remaining variables following the reverse ancestral
order of variables.

(5) Evaluate the resulting individual.

Figure 4.8: Pseudocode of the substructural local search in BOA.

Some details need further explanation. First, a reverse order of that used to

sample the variables of new solutions is used, where each node is preceded by its

parents. By doing so, higher-order dependencies within the same linkage/interaction

group are optimized first. This procedure aims to reduce the possibility of doing

incorrect decisions when considering problems whose lower-order statistics can be

misleading. Later on, the removal of lower-order dependencies is also considered.

Two different versions of the SLS are tested with experiments, that only differ in

step 3. The first version uses the estimated fitness of the individual (Equation 4.5)

to decide if the best substructure (according to f̄(Xi,Πi)) for a given neighborhood

should be accepted, while the second version uses the actual fitness function to

make the decision. After performing substructural hillclimbing for all variables, the

resulting individual is evaluated with the fitness function before being inserted back

into the population. This avoids the propagation of error possibly introduced by

using surrogate fitness. Thus, the surrogate is only used to perform local search

in the substructural neighborhoods. That said, the additional cost in terms of
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evaluations when performing local search can be simply estimated as n · pls for the

first version of the local searcher and n · pls · ` for the second version.

It should be noted that searching within the same substructural neighborhoods

for different individuals yields results whose similarity increase with the accuracy of

the probabilistic model. However, in practice, performing local search on different

individuals helps to overcome incorrect biases from possible errors in the learned

models.

4.6 Experiments

This section presents the results obtained for varying proportions of local search

pls and empirically analyzes the scalability of the proposed method for increasing

problem size. Two different problems are initially used to test substructural local

search in BOA: onemax and m-k trap functions. These problems represent two

important bounds on a class of additively decomposable problems with bounded

difficulty.

Onemax is a simple linear function for which there is no need of linkage learning

to be able to solve it efficiently. While the optimization of the onemax problem is

easy, the probabilistic models built by EDAs such as eCGA and BOA, however, are

known to be only partially correct and include spurious dependencies/interactions.

Therefore, the results on this function will indicate if the effect of using partially

correct linkage mapping on the accuracy of the surrogate is significant, and con-

sequently, if performing substructural local search under these conditions is still

advantageous. A onemax function with size ` = 50 is considered. The second

function is m-k trap problem with m = 10 and k = 5, therefore with ` = 50 as well.

For each problem, experiments are performed for different proportions of local
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search pls, between 0 and 0.2. The minimal number of function evaluations required

to obtain the optimal solution is empirically determined using the bisection method

over the population size [145, 125]. For each experiment, 10 independent bisection

runs are performed. Each bisection run searches for the minimal population size

required to find the optimum in 10 out of 10 independent runs. The results for the

minimal sufficient population size are therefore averaged over 10 bisection runs, while

the results for the number of function evaluations and the number of generations

spent are averaged over 100 (10×10) independent runs. For all experiments, binary

tournament selection without replacement is used.

4.6.1 Results

The results for onemax and trap problems are shown in figures 4.9 and 4.10. For both

problems, the number of evaluations is substantially reduced when using local search

that explores substructural neighborhoods. Also, both versions of the substructural

hillclimber succeed to reduce the cost of solving the problem. Nevertheless, different

dynamics can be observed for each problem.

For onemax, using the actual fitness function for deciding between competing

substructures provides slightly better results than using estimated fitness, while the

population size required is substantially smaller, in particular for higher proportions

of local search. Note that the correctness of the substructural neighborhoods is not

crucial when solving onemax using local search because there is no linkage. However,

the choice of the best alternative in each neighborhood is based on the substructural

fitness contribution that is estimated by the surrogate whose correctness relies on

the accuracy of the probabilistic model. But even more important is the acceptance

(or not) of the substructures. By using real fitness evaluation in this decision, only

those partial solutions that really improve the fitness of the individual are accepted,



4.6. EXPERIMENTS 75

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

Proportion of Local Search, p
ls

P
o
p
u
l
a
t
i
o
n
 
s
i
z
e
,
 
n

Estimated fitness
Evaluated fitness

0 0.05 0.1 0.15 0.2
0

2000

4000

6000

8000

10000

12000

Proportion of Local Search, p
ls

N
u
m
.
 
o
f
 
F
u
n
c
t
i
o
n
 
E
v
a
l
u
a
t
i
o
n
s
,
 
n
f
e Estimated fitness

Evaluated fitness

Figure 4.9: Population size and number of function evaluations required to solve the
50-bit onemax problem for different proportions of local search.
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Figure 4.10: Population size and number of function evaluations required to solve
the 10x5-bit trap problem for different proportions of local search.

which drastically reduces the need of having an accurate surrogate fitness model (and

consequently larger population size). For the local searcher that uses only estimated

fitness, the population size required grows even more for higher proportions of local

search because the diversity in the population is quickly reduced, which requires the

surrogate to be accurate enough to solve the problem in the first generations.

For the trap problem, the correct identification of substructures is essential to

solve the problem, which requires the accuracy of the Bayesian network to be higher.

Therefore, both hillclimbers perform similar for small proportions of local search.
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Figure 4.11: Number of generations required to get the optimum and the speedup
obtained by performing SLS for the trap-5 problem. For pls = 0.0005 the speedup
scales approximately as Θ(`0.45), although for larger problem instances the speedup
is more moderate. For higher proportions of local search the speedup seems to
decrease due to excessive reduction of diversity in the population.

In this case, however, the cost of using fitness function calls at each step of the

substructural hillclimber shows to be an expensive overhead for higher values of pls.

Similar to onemax, there is a transition phase in the population size required for

the local searcher that uses surrogate fitness. For pls ≥ 0.05, the population size

stagnates at a value where the model is accurate enough to solve the problem in the

first generation by performing SLS.

Figure 4.11 presents the results obtained for increasing instances of the trap

problem (k = 5 and varying m) with BOA+SLS using estimated fitness. The

number of generations required to reach the optimum and the speedup obtained by

local search are shown. Note that the speedup is simply the ratio of the number of

evaluations required by BOA with and without local search. The population size

required (not plotted) scales similarly for all tested pls values and according with

population sizing theory [128, 134].

The results show that while obtaining a significant reduction in the number of

generations, substantial speedups are provided by using substructural local search
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Figure 4.12: Speedup obtained for different proportions of local search in BOA+SLS.
For higher proportions of local search the speedup decreases after some problem size
` which depends on pls. Smaller proportions of local search lead to a curve with
similar slope to pls = 0.0005 but with inferior speedups.

in BOA. The speedup grows approximately as Θ(`0.45), however for larger problem

instances the increase in speedup becomes more moderate for pls = 0.0005, while

for higher proportions of local search the speedup even decreases. This seems to be

due to the population size required for larger problems, increasing the number of

individuals that undergo local search for the same value of pls, and thereby reducing

diversity in the population. Note that the resulting individuals from substructural

local search are very similar. On the other hand, smaller proportions of local search

lead to a curve with similar slope to that obtained for the adequate proportion but

with inferior speedups. This can be observed in Figure 4.12.

4.7 Discussion

While using (the right amount of) substructural local search in BOA is shown to

speedup the convergence to good solutions, the scalability results demonstrate that

the corresponding speedup becomes more moderate for larger problem instances.
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The reduction of the slope in the speedup curve, even for adequate values of pls,

seem to be related to problem-structure learning and interpretation with BNs. Two

aspects deserve further investigation.

The first point to consider is the exploration of substructural neighborhoods

using a reverse ancestral ordering of variables (where each node is preceded by its

child). For example, consider that variables X1, X2, X3, X4, and X5 interact with

each other. Assuming that the joint distribution of these variables is represented

by the typical product of conditional dependencies (see Equation 4.7), the resulting

substructural neighborhoods will be explored in the following order:

1. {X1, X2, X3, X4, X5}

2. {X1, X2, X3, X4}

3. {X1, X2, X3}

4. {X1, X2}

5. {X1}

As mentioned before, this order allows higher-order dependencies within the same

linkage/interaction group to be optimized first. While this procedure reduces the

chance of doing incorrect decisions (in particular for problems whose lower-order

statistics may mislead the search), it does not avoid it completely. An efficient solu-

tion for this problem is to skip substructural neighborhoods that are subsets of previ-

ously visited neighborhoods. By proceeding in this way only the first neighborhood

would be visited in the previous example. Note that the fitness information stored in

the model already contains fifth-order statistics for the term f̄(X1, X2, X3, X4, X5),

therefore all the required information to make a correct decision is present. While

this is valid for evaluating a substructure2, to estimate the overall fitness of a solution

all the terms are still required (as in Equation 4.5).

2Notice that when comparing competing subsolutions, it is not relevant if the corresponding
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Figure 4.13: Speedup obtained for BOA+SLS when exploring all dependency groups
or only relevant ones. Both versions of SLS fail to maintain the speedup for larger
instances.

Figure 4.13 presents the speedup obtained when using only relevant dependen-

cies compared to exploring all ` neighborhoods. Note that now instances up to

` = 200 are tested. Both versions of SLS fail to maintain the speedup for larger

instances. Although the speedup seems to decrease slowly when using only relevant

dependencies, for ` > 140, both alternatives reduce their efficiency.

The second aspect to investigate is the structural accuracy of the probabilistic

models. Analyzing the dependency groups learned by the Bayesian network, it can

be observed that the number and size of spurious linkages increases with problem

size. Spurious linkage can be defined as additional variables that are considered

together with a correct linkage/interaction group. Consequently, local search deals

with substructural neighborhoods of excessive size and complexity, that do not en-

tirely correspond to the underlying structure of the problem. Although the structure

of the Bayesian network captures these spurious dependencies, the conditional proba-

estimated fitness is normalized or not.



80 CHAPTER 4. SUBSTRUCTURAL LOCAL SEARCH IN BOA

X5

X4

X3

X1

X29

p(X2=0) = 0.276
p(X2=1) = 0.243 

p(X2=0) = 0.129
p(X2=1) = 0.119 

p(X2=0) = 0.058
p(X2=1) = 0.056 

p(X2=0) = 0.013    p(X2=0) = 0.015
p(X2=1) = 0.015    p(X2=1) = 0.011  

p(X2=0) = 0.025
p(X2=1) = 0.041 

(a) Spurious linkage
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(b) Correct linkage

Figure 4.14: Example of (a) spurious and (b) correct linkage identification with
decision tree learning for a trap-5 subfunction (located at {X1,X2,X3,X4,X5}). The
decision tree encodes the parameters for X2. Instead of conditional probabilities,
joint probabilities are presented to demonstrate the low significance of the spurious
variable X29. The addition of less significant dependencies depends on the scoring-
metric sensitivity to noise.

bilities nearly express independency between spurious and linked variables, therefore

not affecting the capability of sampling such variables as if they were independent.

Figure 4.14 shows an example of spurious linkage identification with decision

tree learning. The decision tree represents the parameters corresponding to variable

X2, which is known to be correlated with X1, X3, X4, and X5 (learned structure

of a 5-bit subfunction). Instead of conditional probabilities, joint probabilities are

presented to demonstrate the low significance of the spurious variable X29. Notice

that the correlation detected for X29 is the least significant among all variables in

the decision tree. Because the score metric accepts every split whose corresponding

gain is greater than zero, additionally spurious variables can later be added3 to

3In the last iterations of BN learning.
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the already correct linkage group. The addition (or not) of these less significant

dependencies greatly depends on the sensitivity of the scoring metric to noise.

In eCGA, while model overfitting can also be an issue, this is usually not the

case for problems like the (non-overlapping) m-k trap, because MPMs have an “ad-

equate” complexity for representing such problem structure. Notice that MPMs

group variables into non-overlapping clusters. Therefore, assigning a spurious vari-

able to a particular cluster, requires the corresponding metric value to be better

than having that variable assigned to the cluster where it actually belongs. On the

other hand, and because BNs allow the representation of overlapping interactions,

BOA can assign a spurious variable to some interacting group of variables and still

have that variable interacting with highly-correlated variables. In this case, the only

condition is that the corresponding metric gain is greater than zero, which can often

happen due to stochastic noise.

Therefore, to efficiently tackle this issue the accuracy of Bayesian networks in

BOA has to be addressed to understand in which conditions the model quality is

inferior, and how it can be improved. This is the topic of the next chapter.

4.8 Summary

This chapter introduces substructural local search in BOA—an EDA which uses

Bayesian networks to model promising solutions and sampling new ones. The con-

cept of substructural neighborhood is extended from eCGA to BOA, which uses

more complex models than MPMs. For that, four different substructural neigh-

borhoods are considered, being the parental neighborhood identified as the most

suitable one. In addition, a surrogate fitness model is used to evaluate competing

substructures while performing local search, so that the corresponding cost in terms
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of function evaluations is substantially reduced. The results show that incorporating

substructural local search in BOA can lead to a significant reduction in the number

of generations necessary to solve the problem, providing relevant speedups in terms

of number of evaluations. However, for larger instances of the trap problem the effi-

ciency decreases, which suggests further analysis to identify the reason behind such

behavior. While a more efficient exploration of the substructural neighborhoods

fails to improve the results for larger instances, the root of the problem is associated

with the structural accuracy of the probabilistic models in BOA. The next chapter

addresses this issue in detail.



Chapter 5

Model Accuracy in BOA

5.1 Introduction

Estimation of distribution algorithms are typically classified according to the com-

plexity of the probabilistic models they rely on. Simpler EDAs use a model of simple

and fixed structure, and only learn the corresponding parameters. At the other side

of the spectrum, are the Bayesian EDAs which use Bayesian networks to model

complex multivariate interactions.

While Bayesian EDAs are able to solve a broad class of nearly decomposable and

hierarchical problems in a reliable and scalable manner, their probabilistic models

oftentimes do not exactly reflect the problem structure [96, 71, 35, 116, 101, 98, 99].

Because these models are learned from a sample of limited size (population of in-

dividuals), particular features of the specific sample are also encoded, which act as

noise when seeking for generalization. This is a well-known problem in machine

learning, known as model overfitting. However, in the context of EDAs model over-

fitting is double-sided. While the goal is to model promising solutions rather than

the entire search space, focusing on an excessively narrowed portion of this space

83
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might not reveal meaningful information about the underlying problem structure,

and even reduce the probability of finding the optimum.

In many situations, the knowledge of the problem structure can be as valuable

as a high-quality solution to the problem. This is the case for several model-based

efficiency enhancement techniques [154, 132, 153, 149, 103, 104, 146, 176, 72, 69, 97]

developed for EDAs that yield super-multiplicative speedups. Another impor-

tant situation is the offline interpretation of the probabilistic models [173, 174]

to help develop fixed but structure-based operators for specific instances or classes

of problems that have similar structure. In this case the EDA can act as a data

miner to gain insight about the problem. The importance of analyzing the re-

sulting probabilistic models in EDAs has also been recently highlighted by oth-

ers [144, 171, 27, 35, 71, 96, 116].

Bayesian network learning is an active topic of research in machine learning, as

the choice of the search procedure can have a great influence on model accuracy.

However, the problem of finding the best network has been proven to be NP-complete

for most scoring metrics [24]. Therefore, in Bayesian EDAs a simple local search

procedure is typically used for a good compromise between search efficiency and

model quality [127, 125, 37, 119], given the high computational cost of considering

more sophisticated alternatives [35]. Note that the Bayesian networks (or any other

probabilistic model for that matter) are used as an auxiliary tool in the optimization

process, thus it is a good practice to keep the search complexity as simple as possible.

On the other hand, this work focuses on the best way to integrate BNs within

the evolutionary computation framework to improve the expressiveness of learned

models.

This chapter investigates model structural accuracy in the Bayesian optimization

algorithm [98, 99, 101, 96], giving particular emphasis to the relationship between
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the underlying problem structure and the learned Bayesian network structure. The

chapter also addresses the selection operator as a source of overfitting in Bayesian

EDAs. First, a detailed analysis of model learning in BOA is performed to better

understand how the problem structure is learned and when inaccuracies are intro-

duced in the network. Next, the role of selection in BN learning is investigated by

looking at selection as the mating pool distribution generator, which turns out to

have a great impact on model structural accuracy. Particularly, it is shown that

tournament selection generates the mating pool according to a power distribution

that leads to model overfitting. However, if the metric that scores networks takes

into account the resampling bias induced by tournament selection, the model qual-

ity can be highly improved and comparable to that of truncation selection which

generates a uniform distribution, more suitable for BN learning.

The chapter is organized as follows. The next section presents a brief survey on

previous work related to model accuracy in EDAs. Section 5.3 analyzes in detail

how the model is learned in BOA, while Section 5.4 investigates the role of selection

in model learning and overfitting. Section 5.5 models the scoring metric gain when

overfitting with tournament selection. In Section 5.6, an adaptive scoring metric

is proposed to avoid overfitting, which is shown to considerably improve model

accuracy. The chapter ends with a summary.

5.2 Related Work

Although the main feature of BOA and other EDAs is to perform efficient mixing

of key substructures or BBs, they also provide additional information about the

problem being solved. The probabilistic model of the population, that represents

(in)dependencies among decision variables, is an important source of information
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that can be exploited to enhance the performance of EDAs even more, or to assist

the user in a better interpretation and understanding of the underlying structure of

the problem. Examples of using structural information from the probabilistic model

for another purpose beyond mixing include the design of structure-aware crossover

operators [173], fitness estimation [154, 132, 153], induction of global neighborhoods

for mutation operators [149, 103, 60, 135], hybridization and adaptive time continu-

ation [104, 103], substructural niching [146, 97], offline [174] and online [176] popu-

lation size adaptation, and speeding up the model building itself [72, 69]. Therefore,

it is important to understand in which conditions the structural accuracy of the

probabilistic models in BOA and other structure-learning EDAs can be maximized.

Recently, some studies have been done in this direction [144, 171, 27, 35, 71, 116].

The remainder of this section takes a brief look at these works.

Santana, Larrañaga, and Lozano [144] analyzed the effect of selection on bivariate

interactions between single variables for random functions. They showed that for

these functions, independence relationships not represented by the function structure

are likely to appear in the probabilistic model. The authors also noted that even

if the function structure plays an important role in the creation of dependencies,

this role is mediated by selection [144]. Additionally, an EDA that only used a

subset of the dependencies that exist in the data (malign interactions) was proposed.

Some preliminary experiments showed that these approximations of the probabilistic

model can in certain cases be applied to EDAs.

Wu and Shapiro [171] investigated the presence of overfitting when learning the

probabilistic models in BOA and its consequences in terms of overall performance

for solving random 3-SAT problems. CPTs (to encode the conditional probabilities)

and the corresponding BIC metric were used. The authors concluded that overfitting

does take place and that there is some correlation between this phenomenon and
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performance. The reduction in overfitting was proposed by using an early stopping

criterion (based on cross entropy) for the learning process of BNs, which gave some

improvement in performance.

The tradeoff between model complexity and performance in BOA was also stud-

ied by Correa and Shapiro [27]. They looked at the performance achieved by BOA

as a function of a parameter that determines the maximum number of incoming

edges for each node. This parameter puts a limit on the number of parents for each

variable, simplifying the search procedure for a model structure. This parameter was

found to have a strong effect on the performance of the algorithm, for which there is

a limited set of values where the performance can be maximized. These results were

obtained using CPTs and the corresponding K2 metric. It should be noted that in

fact this parameter is crucial if CPTs are used with the K2 metric, however this is

not the case for more sophisticated metrics that efficiently incorporate a complexity

term to introduce pressure toward simpler models. This can be done better with

the BIC metric for CPTs, or with the K2 metric for the case of decision trees [125].

Echegoyen et al. [35] applied new developments in exact BN learning into the

EDA framework to analyze the consequent gains in optimization. While in terms of

convergence time the gain was marginal, the models learned by EBNA were more

closely related to the underlying structure of the problem. However, the computa-

tional cost of learning exact BNs is only manageable for relatively small problem

instances (experiments were made for a maximum problem size of 20).

Hauschild et al. [71] made an empirical analysis of the probabilistic models built

by hierarchical BOA for several test problems. The authors verified that the models

learned closely correspond to the problem structure and do not change much over

consequent iterations. They have also concluded that creating adequate probabilistic

models for the 2D Ising spin glasses problem by hand is not straightforward, even
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with complete knowledge of the problem. While in that work Hauschild et al. used

truncation selection, this chapter demonstrates that the results from [71] do not carry

over to other selection methods that assign several copies of the same individual to

the mating pool according to a non-uniform distribution.

Recently, Muhlenbein [116] investigated the Bayesian networks learned for LFDA

and BOA when solving a trap-5 decomposable function. He found that in order

to find the optimum about 80 − 90% of the edges have to be correctly identi-

fied. Also, the penalty factor used for the BIC metric was shown to have influence

on the network density. Although these results are relevant to better understand

Bayesian EDAs, there is a fundamental difference from the study presented in this

chapter—the maximum number of incoming edges was set according to the problem

structure—which reduces dramatically the overfitting phenomenon. In real-world

optimization this is not typically the case, therefore the task of learning the ade-

quate complexity is left to the algorithm itself. Another important difference is that

both LFDA and BOA used CPTs to encode the model parameters, as opposed to

decision trees used in this thesis. Additionally, while LFDA used truncation selec-

tion, BOA was paired with tournament selection, resulting in worse model quality

when compared to LFDA [116]. The author however did not make any remarks

about the reason of such quality difference.

On the contrary, this work demonstrates that the difference in model quality is

actually related with the selection procedure rather than the algorithm as a whole.

Furthermore, it is shown when and why overfitting is related to the selection operator

and a method to counterbalance this feature is proposed. The results presented

in this chapter clarifies previous empirical comparisons between different Bayesian

EDAs, which are known to mainly differ on the choice of the selection operator and

scoring metric.
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5.3 Analyzing Model Expressiveness

This section analyzes model learning in BOA when solving a problem of known

structure and where that knowledge is crucial to solve it efficiently. It starts by

introducing the experimental setup used along the chapter and then proceeds to a

detailed analysis of the learning process of BNs in BOA.

5.3.1 Experimental Setup for Measuring Structural Accu-

racy of Probabilistic Models

At this point, it is adequate to clarify some terms that are relevant to the scope of

this chapter.

Definition 5.3.1 The model structural accuracy (MSA) is defined as the ratio of

correct edges over the total number of edges in the Bayesian network.

Definition 5.3.2 An edge is correct if it connects two variables that are linked

according to the objective function definition.

Definition 5.3.3 Model overfitting is defined as the inclusion of incorrect (or un-

necessary) edges to the Bayesian network, which leads to excessive complexity.

To investigate the MSA in BOA, this chapter focuses on solving problems of

known structure, where it is clear which dependencies must be discovered (for suc-

cessful tractability) and which dependencies are unnecessary (reducing the inter-

pretability of the models). The first problem considered is the m− k trap function.

If k variables interact with each other, the probabilistic model should express their

joint distribution to be able to maintain k-order statistics. Figure 5.1 shows an ideal

BN for the m−k trap problem with k = 4. As mentioned before, the ideal Bayesian
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Figure 5.1: An ideal Bayesian network to solve the m− k trap problem with k = 4.
A clique is formed for each set of variables corresponding to a trap subfunction,
while between different traps there are no dependencies.

network structure should contain a clique between interacting variables, where the

order of the edges is defined in such way that there are no cycles. Additionally, the

model should not contain dependencies between different trap subfunctions.

Later, in Section 5.6, the experiments are extended to onemax and hierarchi-

cal trap problems to validate the proposed approach for different types of variable

interactions.

Like in the previous chapter, the minimal population size required to solve the

problem in 10 out of 10 independent runs (success rate of 100%) is used. The

population size is obtained by performing 10 independent bisection runs [145, 125].

Therefore, the total number of function evaluations is averaged over 100 (10 × 10)

runs. To focus on the influence of selection in model quality, the replacement strategy

is kept as simple as possible, where the offspring fully replace the parent population.

5.3.2 A Closer Look at Model Learning

When analyzing the dependencies captured by the Bayesian networks in BOA, it

can be observed that while all important linkages are detected—given a sufficient

population size [134, 125, 177]—spurious dependencies are also incorporated in the

model. Remember that spurious dependencies are those incorrect (or unnecessary)
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edges added to the network (according to the problem definition), which lead to

model overfitting. On the other hand, the corresponding conditional probabilities

oftentimes nearly express independence between spurious variables and correct link-

age groups, therefore not affecting the capability of sampling such variables as if

they were almost independent. Nevertheless, as model overfitting increases with

problem size and selection pressure [96], the interpretation of the resulting models

becomes meaningless.

To better understand the excessive complexity of the learned models in BOA,

a detailed analysis is made to the model learning process. Figures 5.2 and 5.3

show the scoring metric gain obtained in model building for a typical run of BOA

with K2 and BIC metrics, respectively. For each learning step (edge addition), the

corresponding gain in the scoring metric is plotted, as well as if the edge inserted is

correct (upper dots) or spurious (lower dots). The first, middle, and last generations

of the run are plotted using binary tournament selection. Clearly, the K2 metric

produces more accurate models than the BIC metric, when using BNs with local

structures. Looking at the results, one can easily conclude that the K2 metric is

better for learning the underlying problem structure because it introduces much less

spurious dependencies than the BIC metric. Nevertheless, some incorrect edges are

also inserted in the network for the K2 metric, particularly at the end of the learning

process.

The number of correct edges (nce) in a Bayesian network for the m − k trap

problem is given by

nce =
∑m

i=1
ki(ki−1)

2
, for k ≥ 2, (5.1)

where m is the number of subfunctions and ki is the size (number of interacting

variables) of the ith subfunction. Therefore, for the trap problem with m = 10 and

k = 5 there is a total of 100 correct edges. While for the K2 metric at most 20
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Figure 5.2: Metric gain vs. learning step in Bayesian network learning for a typical
run with BOA using the K2 metric. The upper dots are correct edge additions while
the lower ones are incorrect edges. The problem is the trap-5 with m = 10 (` = 50),
for which there is a total of 100 correct edges. The first, middle, and last generations
of the run are plotted.

incorrect edges are inserted in the network, for the BIC metric a maximum of 350

incorrect edges (generation 6) are learned! Even so, BOA with the BIC metric is

able to solve the problem, although the model building phase takes more time. For

the K2 metric, it can also be seen that while only 90% of the correct edges are

learned, the problem can still be solved (recall however that this refers to a single

run). This result agrees with the observations made elsewhere [116].

Analyzing BOA with the more robust K2 metric, it can be seen that the met-

ric gain is higher at the beginning of the learning process and decreases towards

zero—which is the threshold for accepting a modification in the Bayesian network.

Additionally, the metric gain magnitude increases towards the end of the run (note
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Figure 5.3: Metric gain vs. learning step in Bayesian network learning for a typical
run with BOA using the BIC metric. The upper dots are correct edge additions while
the lower ones are incorrect edges. The problem is the trap-5 with m = 10 (` = 50),
for which there is a total of 100 correct edges. The first, middle, and last generations
of the run are plotted.

that the maximum metric gain at generation 1 is 81, while at generation 11 is 8913).

This is due to the fact that as the search focuses on specific regions of the search

space (loss in diversity) the marginal likelihood of the model increases. Indeed, for

the last generation the shape of the metric gain function is less noisy when compared

to the first and middle generations. With respect to the correctness of the edges,

it is clear that the overwhelming majority of the spurious edges are inserted in the

network at the end of the learning procedure. This suggests that an earlier stopping

criterion or a higher acceptance threshold (note that spurious edges have a metric

gain quite small) in the learning procedure could avoid the acceptance of a large

part of incorrect edges.
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Figure 5.4: Different stages of Bayesian network learning in BOA when solving a trap
function with k = 5. The order in which dependencies are learned is determined by
their corresponding metric gain. Remember that the greedy algorithm for learning
the network structure accepts at each step the edge that improves the scoring metric
the most. Also note that the metric gain corresponding to adding an edge from a
node Xa to another node Xb is inversely proportional to the number of parent nodes
that Xb already contains [2]. Therefore, the magnitude of the metric gain for the
k− 1 different stages will differ. Typically, incorrect edges are added to the network
at the later stages of learning, when the metric gain is smaller.

Before discussing the role of selection in model quality, it is relevant to look at

the particular shape of the metric gain function observed for the last generation in

Figure 5.2 (more clear for the K2 metric). This function appears to have the shape

of several decreasing steps, where the metric gain drops considerably at particular

points in BN learning. These are indeed different stages of dependency learning.

Figure 5.4 shows an example with the different stages in Bayesian network learn-

ing when solving a trap-5 function. Four different stages can be identified, where

the order in which edges are inserted into the network is determined by their corre-

sponding metric gain. Remember that the greedy algorithm for learning the network

structure accepts at each step the edge that improves the scoring metric the most.

Note also that the metric gain corresponding to adding an edge from a given node

Xa to another node Xb is inversely proportional to the number of parent nodes that

Xb already contains [2]. This can also be concluded from the population size re-

quirements for adding a correct edge in BOA [134, 125], which scales as O(2β`1.05),

where β is the number of parent nodes that Xb already contains. Therefore, the
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Figure 5.5: Metric gain vs. learning step in Bayesian network learning for a typical
run with BOA using the K2 metric. The last generation is plotted for a trap problem
with (a) k = 5,m = 20 and (b) k = 4,m = 10, which have a total of 200 and 60
correct edges, respectively. The decrease in metric gain closely match the different
stages of BN learning.

magnitude of the metric gain for the k − 1 different stages will decrease towards

later stages.

Looking at the metric gain function for generation 11 with the K2 metric (see

Figure 5.2), this conjecture can be confirmed. For m = 10 trap functions of k = 5,

there should be 10×4 = 40 edges for the first stage, 10×3 = 30 edges for the second

stage, 10×2 = 20 edges for the third stage, and 10×1 = 10 edges for the fourth and

last stage of BN learning. These estimated stages closely match the observed shape

for the metric gain function. Note that some of the edges might not be learned

(about 10% in this case) or learned at a different stage from the expected one, due

to noise originated from learning with a finite population size; however, the above

estimates are still quite accurate. To confirm this rationale, Figure 5.5 plots the last

generation of a run with BOA+K2 when solving the same problem with different

number of subfunctions (k = 5,m = 20) and different trap size (k = 4,m = 10).
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Table 5.1: Equivalent tournament size (s) and truncation threshold (τ) for the same
selection intensity (I).

I 0.56 0.84 1.03 1.16 1.35 1.54 1.87
s 2 3 4 5 7 10 20

τ(%) 66 47 36 30 22 15 8

Once again, the metric gain decreases more or less at the expected points where

there is a stage shift.

Typically, incorrect edges are added to the network at the later stages of learning,

when the metric gain is smaller. This means that model overfitting comes mainly

in the form of excessive number of incoming parents for the nodes that depend on

some other interacting variables. For example, in stage 4 (Figure 5.4 (d)), when

learning the dependency X1 → X5, additional spurious dependencies are oftentimes

added to the network, such as X6 → X5, X7 → X5, etc.

5.4 The Role of Selection

When EDAs model the set of promising solutions to guide the search, these are

identified by a selection operator, which can have a great influence on their per-

formance [67, 84, 144, 96, 177]. This section pays special attention to the role of

selection in BOA. In particular, two widely used selection schemes in EDAs are

considered: Tournament and truncation selection.

In order to compare the two selection operators on a fair basis, different config-

urations for both methods with equivalent selection intensity are considered. The

relation between selection intensity I, tournament size s, and truncation threshold τ

is taken from [14] and is shown in Table 5.1.

The influence of the selection strategy in BOA has been discussed in detail else-



5.4. THE ROLE OF SELECTION 97

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Selection intensity, I

M
od

el
 S

tr
uc

tu
ra

l A
cc

ur
ac

y,
 M

S
A

 

 

Tournament w/ K2
Tournament w/ BIC
Truncation w/ K2
Truncation w/ BIC

(a) Model structural accuracy

0.5 1 1.5 2
0

1

2

3

4

5

6

7

x 10
5

Selection intensity, I

N
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

, n
fe

 

 
Tournament w/ K2
Tournament w/ BIC
Truncation w/ K2
Truncation w/ BIC

(b) Num. of function evaluations

Figure 5.6: Model structural accuracy and number of function evaluations for dif-
ferent selection-metric combinations when solving the trap-5 problem of size ` = 50.

where [96]. Here, essential findings for the purpose of studying model overfitting are

reviewed and extended to the BIC metric. Figure 5.6 shows the model quality and

number of function evaluations for different combinations of selection methods and

scoring metrics. From a model quality perspective, it is clear that (1) truncation

selection performs better than tournament selection and (2) K2 metric performs bet-

ter than BIC metric. Note that with tournament selection, while for small values of

s the number of evaluations decreases, after some value of s, the number of evalu-

ations starts to increase again. Curiously, this happens when the MSA approaches

0.1 (meaning that 90% of the edges are incorrect or unnecessary).

5.4.1 Selection as the Mating Pool Distribution Generator

Like in traditional genetics, the selection mechanism is responsible for ensuring

the survival of the fittest in the population. In the context of EDAs, this is one

of the most important components inherited from the evolutionary computation

framework. However, in EDAs, which have a strong connection with data mining

and classification, the selection operator can also be viewed as the generator of the
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data set used to learn the probabilistic model at each generation. Since in EDAs

one is interested in modeling the set of promising solutions, the selection operator

indicates which individuals have relevant features to be modeled and propagated

in the solution set. Before proceeding to the study of the selection strategy as the

data set generator for learning the BNs, a simple analysis of the selection operators

considered is made.

In terms of creating duplicate individuals in the population there are two re-

sponsible mechanisms. The selection operator explicitly assigns several copies of

the same individual to the mating pool, where the number of copies is somewhat

proportional to their fitness rank. This is the case for tournament, ranking, and

proportional selection. Additionally, the model sampling procedure generates with

a certain probability duplicates of the same individual, although selection implicitly

controls how often this happens. Note that this probability will increase in time as

the EDA starts focusing on more concrete regions of the search space. Clearly, the

selection operator has some influence on this phenomenon as it explicitly regulates

the convergence speed of the algorithm. Without loss of generality, consider that

the replication of individuals done explicitly by the selection operator is the main

source of duplicates in the population.

For the sake of simplicity, let us assume that all individuals have different fit-

ness. Ordering the population by fitness, where the worst individual has rank 1 and

the best has rank n, the probability that an individual with rank i wins a given

tournament of size s is, for i ≥ s, given by

pi =

(
i−1
s−1

)(
n−1
s−1

) =
(i− 1)!(n− s)!
(i− s)!(n− 1)!

=
s−1∏
j=1

i− j
n− j

, for s ≥ 2. (5.2)

Note that the worst s − 1 individuals will never win a tournament, therefore for
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i < s, pi = 0.

Given that in tournament selection without replacement each individual partic-

ipates in exactly s tournaments, the expected number of copies (ci) in the mating

pool for an individual of rank i is simply

ci = s pi. (5.3)

For i � s, and consequently n � s, the distribution of the expected number of

copies ci can be approximated by a power distribution [7] with p.d.f.,

f(x) = α xα−1, 0 < x < 1, α = s. (5.4)

In this way, the distribution of ci can be expressed for any population size, where the

relative rank is given by x = i/n. Note that as the relative rank slightly decreases

from 1 the corresponding number of expected copies rapidly decreases. This is

particularly true for higher tournament sizes, when increasing the exponent of the

power factor.

On the other hand, in truncation selection the expected number of copies for the

selected individuals is one, which follows a uniform distribution with p.d.f.,

ci =

 0, if i < n (1− (τ/100))

1, otherwise.
(5.5)

Figure 5.7 illustrates the distributions of the expected number of copies for each in-

dividual with rank expressed in percentile. The difference between the two selection

methods is remarkable. While tournament selection assigns increasing relevance

to top-ranked individuals according to a power distribution, truncation selection
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Figure 5.7: Distribution of the expected number of copies in the mating pool for
(a) tournament and (b) truncation selection with different selection intensity values.
Note that s and τ values generate the same selection intensity. Rank is expressed
in percentile.

gives no particular preference to any of the selected individuals, all having the same

frequency in the learning data set.

The differences between tournament and truncation distributions stress out two

relevant features of any given selection method:

1. Window size which determines the proportion of unique individuals that are

included in the mating pool.

2. Distribution shape which determines the relevance of each selected individual

in the mating pool, in terms of the number of copies.

These features in a certain way control the tradeoff between exploration and ex-

ploitation in model structural learning in EDAs.

Clearly, tournament and truncation selection differ in both features. While the

window size is deterministically defined in truncation selection—solutions above the

threshold are included in the selected set and solutions below are not—in tournament

selection, the choice of which individuals to include in the mating pool is a stochastic
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process (except for the best solution and the worst s− 1), but also guided by fitness

rank. The probability of inclusion rapidly decreases with rank, particularly for

larger tournament sizes, as can be seen in Figure 5.7 (a). In terms of distribution

shape, the two selection methods also differ significantly. Tournament selection

gives higher emphasis to top-ranked solutions according to a power distribution

with α = s. This means that the best solutions get approximately s copies in the

mating pool, which forces the learned models to focus on particular features of these

individuals, which contain good substructures, but also undesirable components due

to stochastic noise1.

Another way to look at tournament selection in comparison with truncation

selection as the mating pool generator, is recognizing that this selection procedure

acts as a biased data resampling on a uniform data set. The uniform data set is the

set of unique selected solutions (solutions that will win at least one tournament),

similar to what happens in truncation, while the resampling is performed when top-

ranked individuals participate in more than one tournament. This sort of resampling

is clearly biased by fitness.

A related topic in data mining is the generalization of features with low-density in

the learning data set, generally known as learning from imbalanced data sets [82, 93,

170, 136]. One way to achieve this is to artificially create additional data instances

that appears to have the feature of interest, but in a way that does little impact to

the distribution of the population as a whole. The last remark however can be quite

difficult to ensure, as the question of what is the “natural” distribution of the data

does not have a straightforward answer. Quoting from [136]:

When added to the original data set, these now appear as more instances

with the feature, increasing the apparent count and increasing the feature

1Notice that selection operates at the entire solution level, making decisions on the basis of the
overall fitness, and therefore can not “judge” single substructures or subsolutions.
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density in the overall data set. The added density means that mining

tools will generalize their predictions from the multiplied data set. A

problem is that any noise or bias present will be multiplied too.

This is indeed the problem with tournament selection when trying to model the

overall problem structure.

5.5 Modeling Metric Gain when Overfitting

To analyze the effect of tournament size on resampling bias one must look at the

cumulative distribution function (c.d.f.) of the power distribution, which is given

by

F (x) = xs, 0 < x < 1, s ≥ 1. (5.6)

Note that s = 1 generates an uniform distribution (no resampling), as the mating

pool becomes a complete copy of the population. For s ≥ 2, the proportion of

individuals in the mating pool with rank equal or less than x can be obtained by

simply calculating F (x), or alternatively, the market share of the (1−x) top-ranked

individuals given by 1− F (x) (corresponding to the right-side area of the c.d.f.).

The overfitting due to noise coming from top-ranked individuals is certainly

more likely to happen if considering a fairly small percentage of the population.

Said differently, the smaller this proportion is, the more likely these individuals will

contain the same misleading features that are induced by noise. On the other hand,

this proportion should be significant enough in terms of relative frequencies so that

it can influence the metric component that scores the likelihood of the model with

respect to the data. How large or small should this proportion be depends obviously

on the tournament size. For larger tournament sizes, this proportion is expected

to be inferior to the case of smaller tournament sizes because the number of copies
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Figure 5.8: Expected market share of top-ranked individuals included in the mating
pool after selection for infinite population size. For small proportions (≤ 1%) of top-
ranked individuals the relation between tournament size and the expected proportion
in the mating pool after selection is approximately linear.

assigned to top individuals increases considerably. Therefore, it is recognized that

this proportion should be small, but the exact proportion will differ from situation

to situation.

To better ilustraste this argument, Figure 5.8 shows the power c.d.f. for several

proportions of top-ranked individuals. It can be seen that for small proportions

(≤ 1%) of top-ranked individuals, the expected proportion in the mating pool after

selection grows approximately linearly with the tournament size. Note that as the

proportion considered is more elitist, the slope of the linear relationship approaches

the proportion itself. For example, when considering the best 0.1%, the market

share after selection with s = 50 is 4.88% ≈ 0.1%× 50.

The bottom line of this rationale is to verify that, in the worst case, the noise

in terms of counts or relative frequencies coming from the replication of top-ranked

individuals grows linearly with the tournament size.

Consider now the possibility of adding an edge from a variable X2 to another
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variable X1 due to nonlinearities introduced by tournament selection, knowing that

these two variables are in fact independent from each other. To investigate the

influence of the resampling done by successive tournaments, the score metric for the

network where an edge is added from X2 to X1 must be derived. Given that both

MDL and Bayesian metrics are decomposable, it is sufficient to look at the term

corresponding to the node X1. The metric gain Gmetric obtained by splitting a leaf

on X2 in the tree encoding the parameters of X1, and adding the corresponding edge

to the network, is given by

Gmetric = ScoreAfter − ScoreBefore− ComplexityPenalty, (5.7)

where ScoreAfter is the metric score obtained after splitting the leaf into two new

ones, ScoreBefore is the score obtained before the split (keepingX1 independent from

X2), and ComplexityPenalty is the penalty associated with the increased complexity

of adding one leaf to the tree. In BOA, if this gain is positive the split is accepted

and the corresponding edge is inserted in the Bayesian network.

Due to its simplicity (compared with the K2 metric), the BIC metric is considered

in the following calculations. The metric gain corresponding to adding an edge from

X2 to X1 is

GBIC = m(X1X2 = 00) log2

(
m(X1X2 = 00)

m(X2 = 0)

)
+m(X1X2 = 10) log2

(
m(X1X2 = 10)

m(X2 = 0)

)
+m(X1X2 = 01) log2

(
m(X1X2 = 01)

m(X2 = 1)

)
+m(X1X2 = 11) log2

(
m(X1X2 = 11)

m(X2 = 1)

)
−m(X1 = 0) log2

(
m(X1 = 0)

n

)
(5.8)
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−m(X1 = 1) log2

(
m(X1 = 1)

n

)
− 1

2
log2 (n) ,

where m(X1X2 = x1x2) is the number of individuals in the population with X1 = x1

and X2 = x2. Note that the first four terms correspond to ScoreAfter, the fifth and

sixth terms express ScoreBefore, and the final term penalizes the score because of

the complexity added to the network. Denoting m(X1X2 = x1x2) by mx1x2 and

recognizing that m(X1 = x1) = m(X1X2 = x10) + m(X1X2 = x11), as well as

n = m00 +m01 +m10 +m11, the previous expression can be expressed as

GBIC = m00 log2

(
m00

m00 +m10

)
+m10 log2

(
m10

m00 +m10

)
+m01 log2

(
m01

m01 +m11

)
+m11 log2

(
m11

m01 +m11

)
− (m00 +m01) log2

(
m00 +m01

m00 +m01 +m10 +m11

)
− (m10 +m11) log2

(
m10 +m11

m00 +m01 +m10 +m11

)
− 1

2
log2 (m00 +m01 +m10 +m11) .

(5.9)

Expressing in terms of relative frequencies, the gain can be formulated as

GBIC = n G′BIC −
1

2
log2(n), (5.10)

where

G′BIC = p00 log2

(
p00

p00 + p10

)
+ p10 log2

(
p10

p00 + p10

)
+ p01 log2

(
p01

p01 + p11

)
+ p11 log2

(
p11

p01 + p11

)
− (p00 + p01) log2 (p00 + p01)− (p10 + p11) log2 (p10 + p11) .

(5.11)
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The next step is to model the deviation from the actual frequencies, in a uniformly

distributed mating pool (in terms of copies), to biased frequencies towards the noise

induced by the replication of top-ranked individuals (power distribution). First,

consider the frequencies on the uniform mating pool to be p00 = p01 = p10 =

p11 = 0.25, which reveals independence between X1 and X2. Then, and without

loss of generality, it is assumed that these frequencies are deviated towards equally

increasing p00, p11 and equally decreasing p01, p10. This assumption relies on the fact

that the decrease in entropy (corresponding to an increase in score) will be achieved

faster than for other possible configurations of pairwise frequency deviation. In this

way, the case that can upper bound other possible deviations is analyzed.

Assuming that the deviation of the “true” frequencies is linear with respect to

the tournament size, as argued before, the frequency deviation can be expressed as

p00 ≈ 0.25 + ∆(s− 1),

p01 ≈ 0.25−∆(s− 1),

p10 ≈ 0.25−∆(s− 1),

p11 ≈ 0.25 + ∆(s− 1),

(5.12)

where ∆ is the slope of the linear relationship plotted in Figure 5.8, therefore the

exact value will depend on the proportion considered. Replacing (5.12) into (5.11)

and denoting (s− 1) by s′,

G′BIC ≈ (0.25 + ∆s′) log2

(
0.25 + ∆s′

0.5

)
+ (0.25−∆s′) log2

(
0.25−∆s′

0.5

)
+ (0.25−∆s′) log2

(
0.25−∆s′

0.5

)
+ (0.25 + ∆s′) log2

(
0.25 + ∆s′

0.5

)
− 0.5 log2 (0.5)− 0.5 log2 (0.5) .

(5.13)
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Simplifying the previous equation,

G′BIC ≈ (0.5 + 2∆s′) log2

(
0.25 + ∆s′

0.5

)
+ (0.5− 2∆s′) log2

(
0.25−∆s′

0.5

)
+ 1.

(5.14)

Using the logarithm property log(a/b) = log(a)− log(b) and simplifying again,

G′BIC ≈ (0.5 + 2∆s′) log2(0.25 + ∆s′) + (0.5− 2∆s′) log2(0.25−∆s′) + 2.

(5.15)

Dividing both terms by 2,

1

2
G′BIC ≈ (0.25 + ∆s′) log2(0.25 + ∆s′) + (0.25−∆s′) log2(0.25−∆s′) + 1.

(5.16)

Looking at the function x log2(x) for the interval [0, 0.5], one can see that the first

term in Equation 5.16 is relatively constant around -0.5. Therefore,

1

2
G′BIC ≈ (0.25−∆s′) log2(0.25−∆s′) + 0.5, (5.17)

or alternatively,

G′BIC ≈ 2 (0.25−∆s′) log2 (0.25−∆s′) + 1. (5.18)

The approximate expression for the metric gain G′BIC due to overfitting of top-

ranked individuals in tournament selection is plotted in Figure 5.9. A value of

∆ = 0.001 is used (best 0.1%). Since the proportions considered will vary from 0.25

to 0 or 0.5, the ∆ value will basically define the increment/decrement step of that

same proportions. For example, for a higher ∆ = 0.005 the approximate expression
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Figure 5.9: Approximated metric gain G′BIC due to overfitting of top-ranked indi-
viduals in tournament selection. A value of ∆ = 0.001 is used (best 0.1%). The
growth of the metric gain is somewhere between linear and quadratic, but closer to
linear.

would be defined only for s = [1, 50], instead of the plotted s = [1, 250].

As can be seen, the metric gain scales close to linear in log-log scale, with the

exception made for lower and higher values of s. This means a polynomial growth

in linear scale, somewhere between linear and quadratic, which can be confirmed by

comparison with reference curves. While the metric gain G′BIC does not account for

the factor n (population size) and the complexity penalty term 0.5 log2(n), it does

tell us about the way the gain grows with respect to the tournament size s.

5.6 Improving Model Accuracy

In this section, the complexity penalty of the scoring metric is changed in order to

account for the power distribution of tournament selection. First, the efficacy of

different penalty factors that are functions of the tournament size s is investigated.

Second, the penalty found to be the most appropriate is validated for two additional

problems that pose new sources of difficulty to model learning in Bayesian EDAs.
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5.6.1 Adaptive Scoring Metric

While the metrics considered have different backgrounds, the penalty associated

with each leaf addition is exactly the same: 0.5 log2(n) [125]. This becomes clear

if one compares the logarithm of the K2 metric with the BIC metric. Additionally,

the K2 metric has some implicit “penalty” for complex models, which comes from

the marginal likelihood function. However, this is insufficient on its own for mak-

ing models simple enough in Bayesian EDAs (both with standard CPTs and local

structures). In fact, this extra penalty seems to be the reason for the K2 metric

producing less complicated models than the BIC metric.

To compensate for the resampling bias of tournament selection, the complexity

penalty is aggravated by a factor cs that depends on the tournament size s, using

0.5cs log2(n) instead of the standard penalty. In this way, the greater the number

of copies of top-ranked individuals in the mating pool, the more demanding is the

scoring function in accepting an edge/leaf addition. From the previous section, it is

known that the metric gain due to overfitting grows approximately as Θ(s), therefore

different cs values around that estimate are tested to investigate the corresponding

response in terms of MSA and number of function evaluations. In particular, ex-

periments for cs = {
√
s, s, s log2(s)} are performed and compared to the original

penalty correction (cs = 1).

Experiments for both BIC and K2 metrics were performed, although BIC was

shown to produce excessively complex models (both for tournament and truncation

selection). Figures 5.10 and 5.11 (for K2 and BIC metrics, respectively) show the

model quality and corresponding evaluations for BOA with tournament selection

using different complexity penalties. Despite the difference observed between met-

rics, their behavior when increasing the complexity penalty is somewhat equivalent.

Already for cs =
√
s, the model quality improves with respect to the standard case
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Figure 5.10: Model quality and number of function evaluations for different penalty
correction values cs = {1,

√
s, s, s log2(s)} with the K2 metric, when solving the trap

problem with k = 5 and m = 10.
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Figure 5.11: Model quality and number of function evaluations for different selection-
dependent values cs = {1,

√
s, s, s log2(s)} with the BIC metric, when solving the

trap problem with k = 5 and m = 10.

cs = 1, but when considering cs = s and cs = s log2(s) the improvement is much

better. Increasing the penalty by a factor of s or higher takes model structural

accuracy very close to 100%. However, looking at the number of evaluations spent

by each penalty, it is clear that cs = s log2(s) is too strong as a penalty because

for larger s values it takes too many evaluations and the situation gets worse with
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Figure 5.12: Model quality and number of function evaluations for tournament
selection with the K2 metric and s−penalty (cs = s). The problem is the same
trap-5 with different sizes ` = {40, 60, 80, 100}.
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Figure 5.13: Model quality and number of function evaluations for truncation se-
lection with the K2 metric. The problem is the same trap-5 with different sizes
` = {40, 60, 80, 100}.

increasing s. On the other hand, the s−penalty (cs = s) shows to be an adequate

penalty because while obtaining high-quality models the number of evaluations is

kept constant after some tournament size. This point us out to another advantage

of the s−penalty, because it allows to have a wider range of s values for which BOA

performs well and at a relatively low cost.
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Figure 5.14: Model quality and number of function evaluations for tournament
selection with the BIC metric and s−penalty (cs = s). The problem is the same
trap-5 with different sizes ` = {40, 60, 80, 100}.

It is time now to look at the behavior of tournament selection with the s−penalty

for different problem sizes and compare it to truncation selection with the standard

penalty. Figures 5.12 and 5.13 show BOA using the K2 metric with tournament and

truncation selection, respectively. Clearly, tournament selection with the s−penalty

obtains better model quality than truncation selection with the standard penalty.

Notice, however, that model quality is now plotted between 90% and 100%, because

both methods obtain models of much better quality than tournament selection with

the standard penalty. In terms of number of evaluations, tournament selection is

still less expensive than truncation selection, but as selection intensity increases their

costs become comparable.

Figure 5.14 shows BOA with tournament selection but now using the BIC metric

and s−penalty. The results for truncation selection with the standard penalty are

not plotted as their quality is much inferior to those with the s−penalty, with MSA

typically varying between 40− 70% (see Figure 5.6). For this metric, the s−penalty

also improves dramatically the model quality obtained with the standard penalty;

however, the results are still not as good as for the K2 metric. For higher selection
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pressures the model quality is close to 100%, but as tournament size decreases

the MSA degrades, which becomes more evident for increasing problem size. This

confirms the tendency of the BIC metric to generate more dense networks.

5.6.2 Method Validation

While the previous results showed a significant improvement of model quality for

BOA with the s−penalty, it is important to validate the proposed methodology

when solving problems that pose new challenges in model learning for BOA and

other Bayesian EDAs. Specifically, the onemax and hierarchical trap problems are

considered.

While the optimization of onemax is quite easy for univariate EDAs, the proba-

bilistic models built by multivariate EDAs are known to easily introduce unnecessary

dependencies, which lead to increased population-sizing requirements. On the other

hand, the hierarchical trap problem poses a more difficult challenge to EDAs, as

important variable interactions are expressed at more than a single level. For these

problems, the interactions at an upper level are too weak to be detected unless all

lower levels are already solved.

A 27-bit hierarchical trap with three levels and k = 3 is considered (see Fig-

ure 2.3). Recall that subsolutions 000 and 111 are equally good except for the top

level. However, the local optimum 000 is easier to climb, which requires the mainte-

nance of all alternatives until a decision can be reached at the top level. Therefore,

for this problem the hierarchical version of BOA is used by employing restricted

tournament replacement to insert the offspring into the original population. Note

that for hierarchical problems the probabilistic model must be capable of represent-

ing chunks of solutions from lower levels in a compact way so that only relevant

features are considered [125].
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Figure 5.15: Number of edges in the Bayesian network when solving the onemax
problem with ` = 50. Note that the ideal BN should not contain edges as the
problem variables can be optimized independently from each other. The results for
the (a) standard penalty and the (b) s−penalty are shown from a different angle so
that they can be better observed. The s−penalty considerably reduces the number
of edges captured by the network.

For the onemax problem, experiments are made for a string length of ` = 50,

while the number of edges present in the Bayesian network is recorded. Note that the

ideal model should not contain any edges because the variables are independent from

each other. Therefore, the fewer edges the more accurate is the model. Figure 5.15

compares the model quality of the standard penalty with the s−penalty, during the

run and for different tournament sizes. The plots are shown from a different angle

to better observe the results. The number of edges in the networks for the standard

penalty is considerably higher than that observed for the proposed penalty. Fur-

thermore, when increasing selection pressure for the standard penalty the resulting

models become considerably more complex, which requires exponentially increasing

population sizes with respect to tournament size s (to be able to solve the prob-

lem). This seems to reveal some sensitivity of BOA with tournament selection and

the standard penalty in correctly modeling linear or approximately linear functions.

On the contrary, when using the s−penalty the number of edges is drastically re-
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duced, while the population-sizing requirements are considerably smaller, scaling

approximately as Θ(s).

For the hierarchical trap problem the definition of correct/incorrect edges is not

so clear. While the dependencies at the lower level are clearly correct and necessary

dependencies, it is not clear when the dependencies at the higher levels should be

captured. That will depend on whether the problem is already solved at the lower

level. Therefore, instead of looking at the MSA, the results explicitly plot bivariate

statistics relative to the dependencies learned by the Bayesian network.

Figure 5.16 plots the proportion of pairwise dependencies between variables for

the 27-bit hierarchical trap captured by the Bayesian network in the last generation

(when the optimum is found). The dependency proportion between any two vari-

ables refers to edges in both directions, which means that the graph is symmetrical

with respect to the diagonal between points (1, 1) and (27, 27). The z-axis indicates

the proportion of runs (out of 100) in which a certain dependency was learned by

the Bayesian network. For example, a dependency proportion of 0.87 between X1

and X2 means that in 87 out of 100 runs there was a dependency X1 → X2 or

X2 → X1. Clearly, the graph obtained for the s−penalty is more informative about

the underlying structure of the hierarchical problem than the one obtained for the

standard penalty. Note that stronger dependencies (nine linkage groups of order

k = 3) reveal the base level structure, while more weak dependencies (three linkage

groups of order k = 9) denote the structure of the middle level. Because the problem

is solved at the higher level, the optimum is found before the model can capture the

next level structure.

With respect to truncation selection using the standard penalty, the conclusions

are similar to those made before. Truncation selection achieves comparable (al-

though marginally inferior) model quality to tournament with the s−penalty. In
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Figure 5.16: Pairwise dependencies between variables for the 27-bit hierarchical trap
problem, captured by Bayesian network in the last generation (when the optimum is
found). The statistics presented do not consider the direction of the dependencies,
which means that the graph is symmetrical with respect to the diagonal between
points (1,1) and (27,27). The z-axis indicates the proportion of runs (out of 100) in
which a dependency between Xi and Xj is learned by the Bayesian network.
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terms of function evaluations requirements, tournament selection is still less expen-

sive than truncation, but for higher selection intensities their cost become similar.

Together, these results demonstrate that tournament selection is an efficient

selection method for Bayesian EDAs, as it is for genetic algorithms, as long as the

complexity penalty of the scoring metric takes into account the power distribution

in the mating pool. The greater the tournament size is, the more demanding the

scoring metric should be in accepting edge/leaf additions.

5.7 Summary

While the main goal of BOA and other Bayesian EDAs is to perform efficient mixing

of good substructures, it also provides additional information about the problem.

The Bayesian networks learned during the run, which represent probabilistic de-

pendencies between variables, is an important source of information that can be

exploited to improve performance, or to get a better insight on the problem itself.

Thus, it is important to investigate the relationship between the learned probabilistic

models and the underlying problem structure.

This chapter makes a contribution towards understanding and improving model

accuracy in the Bayesian optimization algorithm. Three main issues are addressed.

First, a careful analysis of model building in BOA is made to understand how the

problem structure is captured by learned dependencies in the BNs, as well as when

incorrect or unnecessary dependencies are introduced. Specifically, it is shown that

the Bayesian-Dirichlet (K2 version) scoring metric produces more accurate models

than the Bayesian information criterion metric, and that spurious dependencies are

learned mainly at the end of the network construction. Additionally, it has been

identified the existence of k− 1 different stages when learning strong interactions of



118 CHAPTER 5. MODEL ACCURACY IN BOA

order k, due to their different contributions to the scoring metric.

The role of selection in Bayesian network learning is also investigated by looking

at selection as the mating-pool distribution generator, which is found to have a great

impact on model structural accuracy. Empirically, it has been shown that truncation

selection produces considerably more accurate models in BOA than tournament

selection. Intrigued by these results, a theoretical analysis of both selection methods

is made to understand the reason behind such quality difference. The outcome of

this study is that while tournament selection generates the mating pool according to

a power distribution, which leads to model overfitting, truncation selection generates

a more suitable uniform distribution for learning (using standard scoring metrics).

Finally, the metric gain originated from the resampling bias of tournament se-

lection is modeled so that a quantitative measure can be obtained. Based on these

results, the complexity penalty used in the scoring metrics is changed to counterbal-

ance the corresponding metric gain in the same order of magnitude. The s−penalty

which penalizes each edge/leaf addition by an additional factor of s (tournament

size) is found to significantly improve the model structural accuracy. In essence,

the greater the tournament size s is, the more demanding the metric should be in

accepting edge/leaf additions. The proposed scoring metric is tested on the onemax,

m − k trap, and hierarchical trap problems, which present different challenges to

probabilistic modeling in Bayesian EDAs. The results obtained for these problems

show that the interpretability of the corresponding models is significantly improved

with respect to the standard penalty.

These results demonstrate that tournament selection is an efficient selection

method for Bayesian EDAs, as it is for traditional genetic algorithms, as long as

the scoring metric is adjusted according to its natural distribution in the mating

pool. Additionally, truncation selection is found to be more appropriate when using
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standard scoring metrics. However, the corresponding model quality is inferior to the

one obtained for tournament with the s−penalty. In terms of function evaluations

requirements, tournament selection is less expensive than truncation, particularly

for lower values of selection intensity (typical used values).

Overall, this work makes a step towards understanding and interpreting the

probabilistic models in BOA, providing more interpretable models to assist efficiency

enhancement techniques and human researchers. While other selection operators

such as ranking or proportionate selection are not considered, the methodology

developed in the chapter should provide enough guidelines to account for the non-

uniform distributions generated by these operators.
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Chapter 6

Improved Substructural Local

Search in BOA

6.1 Introduction

While substructural local search in the Bayesian optimization algorithm is shown to

speedup convergence to optimal solutions, its efficiency reduces for larger problem

instances. The previous chapter illustrated that model accuracy can vary signifi-

cantly if one does not take into account the duality between the selection operator

and the scoring metric which guides model search.

This chapter proposes new developments to improve the efficiency of substruc-

tural local search in BOA. First, the utility of the s−penalty is investigated in terms

of local search performance. Second, the presence of overlapping and hierarchical

interactions is introduced. Overlapping difficulty is an important problem feature

because many problems can have different interactions that share common com-

ponents. Since the effect of overlapping variable interactions is similar to that of

exogenous noise [51], recombination is likely to be more efficient than mutation-based

121
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methods to solve problems with overlapping substructures [150]. Finally, to make

SLS more effective for problems with substantial overlap between subproblems, a

new SLS method is proposed based on the principles of loopy belief propagation.

The utility of such local searcher is discussed for problems with overlapping and

hierarchical interactions.

The next section reveals the influence of model accuracy when performing sub-

structural local search in BOA, while Section 6.3 investigates the efficiency of sub-

structural local search for the trap problem with overlapping interactions. Sec-

tion 6.4 presents a brief introduction to belief propagation in graphical models and

relevant applications for function optimization. To better deal with overlapping dif-

ficulty, Section 6.5 presents a new SLS method based on loopy belief propagation. In

Section 6.6, the performance of the loopy local searcher is also tested for hierarchical

problems. The chapter ends with a discussion about the efficiency of loopy SLS for

different types of problems and with a brief summary.

6.2 Influence of Model Accuracy

The accuracy of model structures in BOA and other EDAs is important not only

for their performance but also for a number of model-based efficiency enhancement

techniques and for the offline interpretation of probabilistic models, which gives a

further insight about the problem being solved. In this section, the influence of

such model accuracy is demonstrated when performing substructural local search

in BOA. Essentially, the speedup obtained for BOA with SLS using the proposed

s−penalty (tailored for tournament selection) is compared to that obtained for the

standard score metric (previous results). Figure 6.1 illustrates the results. The

experimental setup is exactly the same as that in Chapter 4.
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Figure 6.1: Speedup obtained when performing substructural local search in BOA
with the standard penalty and the s−penalty for the trap-5 problem. The s−penalty
approximates the theoretical bound for the speedup, which is given by the number
of generations necessary to solve the problem with standard BOA: Θ(

√
`).

While the standard penalty fails to maintain increasing speedups for larger prob-

lem instances, the s−penalty consistently presents substantial speedups—up to 9 for

` = 200. In fact, the speedup approximates the theoretical upper bound of O(
√
`),

which is the expected number of generations tc for a properly designed GA to solve

boundedly difficult problems [121, 51]. Note that the number of function evaluations

is given by the product

nfe = n · tc. (6.1)

If a problem can be solved by only inspecting the initial population, the correspond-

ing speedup in terms of function evaluations is given by

η =
Θ(n
√
`)

Θ(n)
= Θ(

√
`). (6.2)

Despite the optimistic context of this speedup, it demonstrates that if crucial infor-

mation about the problem is present in the initial populations, the corresponding
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speedups can be up to O(
√
`). Clearly, this is not the case for exponentially-scaled

or highly-noisy problems, in which situation iterative recombination of multiple so-

lutions is a more efficient search approach.

6.3 Overlapping Difficulty

Up to this point in the thesis, only problems with non-overlapping interactions have

been considered for evaluating the utility of SLS. While eCGA is unable to map such

kind of interactions through probabilistic modeling, that is not the case with BOA.

Bayesian networks are known to be able to express interactions of subproblems that

share common variables by making use of conditional probabilities.

After ensuring that SLS can be efficient for exploring non-overlapping substruc-

tures, it is now time to address its applicability in more complex settings. Be-

cause the effect of overlapping variable interactions is similar to that of exogenous

noise [51], mutation-based search methods are known to have difficulty in dealing

with such problems [150]. Nevertheless, this section investigates the performance

of BOA with SLS for several overlapping trap-5 problems. Figure 6.2 shows the

variable mapping of different subfunctions for the overlapping version of the prob-

lem. Notice that for the case of o = 3, every other variable is associated with three

different subfunctions, and each subfunction overlaps with another four, which adds

substantial noise to the decision-making for each subproblem.

Figure 6.3 details the performance of substructural local search in BOA for the

trap-5 problem with overlapping subfunctions (o = {1, 2, 3}). Essentially, when

the degree of overlapping between different subfunctions increases, the efficiency

of performing local search reduces substantially. Even for small overlap (o = 1),

the speedup obtained is quite inferior to the non-overlapping case. These results
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(a) One-overlapping variable (o = 1)

(b) Two-overlapping variables (o = 2)

(c) Three-overlapping variables (o = 3)

Figure 6.2: Variable mapping for the overlapping trap-5 problem. Notice that for
o = 3, one in every two variables is associated with three different subfunctions,
and each subfunction overlaps with another four, introducing a significant amount
of noise when solving a particular subproblem.

are not surprising given the nature of the local searcher. When searching for the

best substructure at a given subproblem, the decision-making does not take into

account the corresponding context. Because different subproblems are solved in a

particular sequence, the best subsolution for a subproblem considered in isolation

might not be the best choice when considering other subproblems that overlap with

the first. While this is not the case for the overlapping trap-5 problem, because all

subproblems have the same global optimum at 11111, the local searcher can still be

deceived.

Consider the following example, where two different trap-5 subproblems overlap

in two variables (X4 and X5), being the total problem size ` = 8. When performing

local search, the initial solution 00000000 has fitness f = 4 + 4 = 8, but when

considering the best substructure for the first partition 11111000 the corresponding

total fitness decreases to f = 5 + 2 = 7. While locally the best substructure

is identified, the decrease in the overall fitness will not accept the move. Even

if the order of visit for the neighborhoods is randomly shuffled each time local
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(e) Num. of function evaluations, o = 3
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Figure 6.3: Number of function evaluations (left) and corresponding speedup (right)
for BOA with SLS, when solving the trap-5 problem containing several overlapping
variables between subfunctions. Overlap of o = 1 (top), o = 2 (middle), and o =
3 (bottom) variables are considered.
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search is performed, there is no guarantee that all possibilities are covered for highly

overlapping problems.

Therefore, the context of a given variable should be addressed to make a correct

decision about the best value for that variable. This can be done for instance with

dynamic programming or loopy belief propagation. The latter is introduced in the

next section.

6.4 Loopy Belief Propagation

Belief propagation (BP) [124] is a method for performing exact and approximate

inference in graphical models, which has enjoyed increasing popularity over the

last years. Although BP has been reinvented several times in different fields [92,

113], it is mainly applied to two tasks: (1) obtaining marginal probabilities for

some of the variables, or (2) finding the most probable explanation or instance for

the graphical model. These two versions are known as the sum-product and max-

product algorithms.

6.4.1 A Brief Introduction to Belief Propagation

BP algorithms are typically applied to factor graphs [92], which can be seen as a uni-

fying representation for both Bayesian networks and Markov networks [88]. Factor

graphs explicitly express the factorization structure of the corresponding probability

distribution. Consider a function g(X) whose joint probability distribution can be

factorized in several local functions, such that

g(x1, x2, . . . , x`) =
1

Z

∏
I∈F

fI(xNI
), (6.3)

where Z =
∑

x

∏
I∈F fI(xNI

) is a normalization constant, I is the factor index, NI is
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Figure 6.4: Example of a (a) Bayesian network and its equivalent representation as
a (b) factor graph. Note that each factor corresponds to a conditional probability
table, therefore the number of variable and factor nodes is the same.

the subset of variable indices associated with factor I, and factor fI is a nonnegative

function. Note that for a Bayesian network each factor corresponds to a conditional

probability table.

A factor graph is a bipartite graph consisting of variable nodes i ∈ V , factor

nodes I ∈ F , and an undirected edge {i, I} between i and I if and only if i ∈ NI ,

meaning that factor fI depends on xi. The neighbors of a factor node I are precisely

variables NI , while the neighbors Ni of a variable node i are the factors that depend

on that variable. Factor nodes are typically represented as squares and variable

nodes as circles.

An example of a Bayesian network, along with the corresponding representa-

tion as a factor graph, is presented in Figure 6.4. The factor graph represents the

following factorization

g(x1, x2, x3, x4, x5) =
1

Z
f1(x1)f2(x1, x2)f3(x1, x2, x3)f4(x4, x5)f5(x5). (6.4)

If one substitutes the factor functions by the corresponding conditional probabilities,

the joint probability distribution of a Bayesian network is obtained.
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When BP is applied to cyclic graphs it is often referred as loopy belief propaga-

tion (LBP). In this situation, the convergence to exact beliefs can not be guaranteed

as it is for acyclic graphs (without loops). However, empirical studies have shown

that good approximate beliefs can be obtained for several domains (see [113] for an

extensive list).

The inference performed by BP is done by message-passing between the nodes of

the graphical model. Each node sends and receives messages from its neighbors until

a stable state is reached. The outgoing messages are functions of incoming messages

at each node. This iterative process is repeated according to some schedule that

describes the sequence of message updates in time [113].

When performing BP in factor graphs, there are two types of messages: messages

mI→i, sent from factors I ∈ F to neighboring variables i ∈ NI , and messages mi→I ,

sent from variables i ∈ V to neighboring factors I ∈ Ni. The new messages m′ are

given in terms of the incoming messages by the following update rules:

m′i→I(xi) =
∏

J∈Ni\I

mJ→i(xi) ∀i ∈ V , ∀I ∈ Ni, (6.5)

m′I→i(xi) =
∑
xNI\i

fI(xNI
)
∏

j∈NI\i

mj→I(xj) ∀I ∈ F , ∀i ∈ NI , (6.6)

m′I→i(xi) = max
xNI\i

fI(xNI
)
∏

j∈NI\i

mj→I(xj)

 ∀I ∈ F , ∀i ∈ NI , (6.7)

whereNi\I represents the set of neighboring factor nodes of variable node i excluding

node I, NI \ i represents the set of neighboring variable nodes of factor node I

excluding node i, and xNI\i stands for a possible combination of values that all
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variables but Xi in XNI
can take while variable Xi remains instantiated with value

xi.

For the sum-product algorithm (calculation of marginal probabilities), equa-

tions 6.5 and 6.6 are used, while for the max-product algorithm (most probable

configuration) equations 6.5 and 6.7 should be used instead. When messages stop

changing over a certain period of time, the BP algorithm has converged and marginal

functions (sum-product) or max-marginals (max-product) can be obtained as the

normalized product of all messages received for Xi:

gi(xi) ∝
∏
I∈Ni

mI→i(xi). (6.8)

For the max-product algorithm, the most probable configuration (MPC) for each

variable Xi is obtained by assigning the value associated with the highest probability

at each max-marginal:

MPC(Xi) = arg max
xi

(gi(xi)) . (6.9)

When applying BP algorithms, three types of parameters need to be de-

fined [111]:

Scheduling policy considers the way messages are spread through the nodes of

the factor graph. A synchronous model can be used, where a clock triggers

when messages should be sent. Alternatively, rule-based scheduling can be

employed, in which case the message-sending is triggered by the number of

messages received by a particular node or a set of nodes [111].

Stopping criteria consider different criteria to stop the BP algorithm when con-

vergence can not be guaranteed. This is particularly important when per-
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forming BP in cyclic graphs where good results can still be obtained without

reaching a stable state.

Initial settings consist of a number of initial parameters that need to be set by

the user and may depend upon the graph itself. The parameters include values

for the initial messages, an allowed difference between two messages to declare

them similar, the maximum number of messages before stopping the algorithm,

number of message comparisons needed to identify a stable state, and others.

For more details about parameter setting in BP algorithms the reader is referred

elsewhere [111, 113, 124, 92].

6.4.2 Message-Passing Techniques for Optimization

Several message-passing algorithms have been developed and applied to different

optimization problems. The idea is to associate a probability distribution to the

function to be optimized in such a way that the most probable value of the distri-

bution is reached for the solution(s) that optimize the function [111].

Warning and survey propagation have been proposed for solving satisfiability

problems [17, 38]. The constraint satisfaction problem is mapped into a graph fac-

tor where factor nodes represent the clauses to be satisfied. Message passing between

variables and clauses is performed with the goal of finding satisfiable assignments

for all clauses. The max-product algorithm has also been used for finding the max-

imum weight matching in a bipartite graph [11]. Essentially, the authors consider a

weighted complete bipartite graph and define a probability distribution on it, whose

MPC corresponds to the maximum weight matching in that graph.

Ochoa et al. [123] introduced BP to the polytree distribution algorithm (PADA).

The objective is to construct higher-order marginal distributions from the bivariate
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probabilities corresponding to a polytree distribution. These results were later ex-

tended [78] to the FDA. The calculation of the most probable configuration has been

also used with UMDA and EDAs based on trees and polytrees [161]. These results

were extended to pairwise Markov networks as well [143]. Recent developments in

BP have also been applied to EDAs for obtaining higher order consistent marginal

probabilities [117], and for calculating the MPCs for models based on Kikuchi ap-

proximations [79]. Nevertheless, for all these cases, the probabilistic models are

simpler than Bayesian networks and factor graphs, or the structure of the model

has to be known a priori.

Recognizing the potential of BP for Bayesian EDAs, Mendiburu et al. [110] intro-

duced belief propagation to the estimation of Bayesian networks algorithm (EBNA),

which is very similar to BOA. The idea is to combine probabilistic logic sam-

pling (PLS) with loopy belief propagation to sample the offspring population. Specif-

ically, n − 1 individuals are sampled through PLS and the remaining individual is

instantiated with the most probable configuration for the current Bayesian net-

work. The Bayesian network is mapped into an equivalent factor graph so that the

max-product algorithm can be applied to obtain the new individual. Although the

authors concluded that this modification allowed an improvement in the optimiza-

tion capabilities of EBNA, the results fail to demonstrate great improvements both

in solution quality and number of function evaluations spent.

While the calculation of the most probable configuration of the Bayesian network

at each generation is expected to generate a good solution, its relative quality is

strongly dependent upon the current stage of the search. It seems clear that high-

quality solutions can only be generated by LBP when BOA starts focusing on more

concrete regions of the search space. On the other hand, instead of performing

loopy belief propagation based on the conditional probabilities, substructural fitness
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information can be used for the factor nodes. Although probabilities represent likely

substructures, using the associated fitness provides more direct information when

looking for solutions with high quality. That is what is proposed in the next section.

6.5 BOA with Loopy Substructural Local Search

6.5.1 Method Description

This section describes a substructural local searcher based on loopy belief propaga-

tion, and how it can be integrated in BOA. The resulting method which is named

as loopy substructural local search (loopy SLS) uses substructural fitness informa-

tion f̄(Xi,Πi) to guide the max-product algorithm in finding the MPC, which is

the solution that is expected to maximize fitness based on the contribution of its

substructures.

Regarding the parameterization of BP, the maximum number of iterations that

the algorithm is allowed to run is set to 2`, while the allowed difference when compar-

ing two messages is of at least 10−6 (otherwise messages are considered to be similar).

These are typical parameter values from the literature. The update schedule used

is the maximum residual updating [36], which calculates all residuals (difference be-

tween updated and current messages) and updates only the message with the largest

residual. Consequently, only the residuals that depend on the updated message need

to be recalculated.

If the factor graph is acyclic, BP will converge towards a unique fixed point within

a finite number of iterations, while the beliefs can be shown to be exact. However,

if the factor graph contains loops, which is the typical situation when translating a

Bayesian network from BOA, the result can be only interpreted as an approximated

solution. Therefore, two different situations can arise when performing loopy SLS:
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(1) the max-product algorithm might not converge to a stable point and (2) even in

case of convergence, the solution can present ties for certain positions.

If the LBP algorithm does not converge to a stable state, the configuration found

after the maximum number of iterations (2`) is still used as the result of loopy

SLS. While this solution is not guaranteed to be the MPC, it is certainly a local

optimum1 and therefore should be inserted in the population. Another situation

that can happen is the presence of ties for certain variables, where the most probable

configuration can not be decided between 0 and 1. Typically, for problems tested

with BOA, this occasionally occurs but for very few variables. Therefore, when the

MPC presents ties, the loopy SLS enumerates all possible configurations and insert

them in the population as the result of local search. To account for the rare case

where the number of ties nt is beyond reasonable, the maximum number of possible

configurations/individuals returned by local search is set to `, in which case the

configurations chosen are randomly selected from all possible 2nt .

The loopy SLS method presents several differences from the proposal by

Mendirubu et al. [110]. The most significative difference is that the factor nodes

use fitness information instead of the traditional approach in BP which is to use the

conditional probabilities stored in CPTs. The motivation for doing so is discussed

later with a detailed example. By using fitness information, the algorithm becomes

a local search method based on loopy message-passing principles— therefore the

name of loopy substructural local search. Another important innovation is the se-

lection of relevant factor nodes to perform loopy SLS. Essentially, factor nodes (and

corresponding edges) whose variable set is a subset of another factor are removed.

Consider the previous example of a factor graph in Figure 6.4. The relevant factor

nodes are f3 and f4 because the variable domain of the remaining factors is already

1Assuming that the optimal configuration is found for at least one subproblem.
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Loopy Substructural Local Search (Loopy SLS)

(1) Map the current Bayesian network B into a factor graph F, where factor
nodes store substructural fitness information f̄(Xi,Πi).

(2) Remove factor nodes (and corresponding edges) whose variable set is a
subset of another factor in F.

(3) Perform loopy belief propagation in F. Return the most probable configu-
ration MPC and possible number of tied positions nt.

(4) If nt = 0, instantiate an individual with the values from MPC;
Else If 2nt ≤ `, enumerate all possible 2nt configurations and instantiate
them in 2nt different individuals;
Else enumerate ` randomly chosen configurations out of 2nt and instantiate
them in ` different individuals.

(5) Evaluate the resulting individuals.

Figure 6.5: Pseudocode of the loopy substructural local search in BOA.

included in these factors. Note that this simplification of the BN is possible because

f̄(X1, X2, X3) (stored in factor f3) is more informative than both f̄(X1, X2) and

f̄(X1) (stored in factors f2 and f1). In the same way, f̄(X4, X5) already contains

information from f̄(X5). This straightforward procedure simplifies and improves the

information exchange between nodes in the factor graph. In addition, the method

for dealing with ties is also a novel contribution.

Figure 6.5 presents the pseudocode for the loopy substructural local searcher in

BOA. The algorithm starts by mapping the current Bayesian network to a factor

graph which stores fitness information in the factor nodes. The method proceeds by

removing all factor nodes that are not relevant to local search, simplifying the search

complexity for the MPC. The max-product algorithm is then applied to the resulting

graph and the result is inserted in the population. Depending upon the number

of possible ties for certain variable positions, up to ` different individuals can be

inserted in the population. This is a reasonable number in terms of population-sizing
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which is known to scale as Θ(` log `) [177]. Finally, it is important to mention that

the loopy local search takes place between steps 5 and 6 in BOA+SLS pseudocode,

previously detailed in Figure 4.7.

6.5.2 Results

This section presents the results obtained for loopy SLS in both overlapping

and non-overlapping trap-5 problems. Apart from loopy SLS, the proposal by

Mendiburu et al. [110] is also considered in the experiments. It should be clear that

the only difference between the two alternatives is that loopy SLS uses (1) substruc-

tural fitness information instead of conditional probabilities for the factor nodes and

(2) removal of non-relevant factors. Other aspects such as message-scheduling, ties

management, and parameters are set similarly (as described for loopy SLS), to focus

the experimental comparison on the capability for generating high-quality solutions,

rather than comparing different configurations of the max-product algorithm.

Experimental Setup

While for the previous version of the local searcher, the bisection method returned

the adequate population size for both standard BOA and BOA+SLS, when applying

loopy SLS this method seems not to be the most adequate. This is particularly true

for overlapping problems. Figure 6.6 shows the influence of the population size in

the number of generations and the corresponding number of evaluations to solve an

instance of the overlapping trap-5 problem (o = 2).

Clearly, the minimal population size required to solve the problem is not the

most adequate in terms of minimizing evaluations of the fitness function. As the

population size increases the number of generations necessary to converge to global

optima reduces substantially. However, because increasing population size is a cost
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Figure 6.6: Influence of population size in the number of generations and function
evaluations required by BOA with loopy SLS to solve an instance of the overlapping
trap-5 problem (with o = 2 and ` = 44).

payed in function evaluations (larger population sizes require more evaluations),

there is an optimal population size. When the decrease in number of iterations

slows down (after reducing significantly), the increase in population size seems no

longer to pay off in terms of function evaluations (n > 72500).

Therefore, in addition to the bisection method, a simple population-size tuning

method is used. Initially, the traditional bisection method is performed to obtain

the minimal required population size. Afterwards, the population is increased as

long as the number of function evaluations spent decreases. To make the method

more robust to noise, it is required that two consecutive population sizes do not

improve the result to stop the tuning method. For example, searching in the plot

of Figure 6.6 (b), the method would start at n = 42500 and finish with n = 55000.

Note that the number of evaluations have been reduced from 350000 to 220000.

It can also be seen that the number of evaluations could be further optimized at

n = 62500; however, this is directly related to the interval size used for the tuning

method. Smaller intervals for the population size may have to deal with more

noisy decisions, while larger intervals may miss important gains. Consequently, the
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Figure 6.7: Results for BOA with both standard LBP and loopy SLS when solving
the two-overlapping trap-5 problem (o = 2).

incremental interval for the population size is set according to the smallest interval

used by bisection, which in this case is n = 5000, therefore finding n = 62500 as the

most appropriate value.

Loopy SLS versus standard LBP

The results for BOA with both standard loopy BP (as proposed for EBNA) and

loopy SLS are presented in Figure 6.7. The two alternatives present a very differ-

ent behavior. While the LBP algorithm behaves very similarly to the original BOA,

preferring smaller population sizes but taking more iterations and consequently eval-
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uations, the loopy SLS seems to take advantage from using larger population sizes.

Note that both alternatives use the same method to tune the population size. Never-

theless, increasing the population size for standard LBP does not reduce the number

of generations necessary to solve the problem. Although minor gains are obtained

with LBP for some problem instances, the corresponding speedup is very close to

one.

Loopy SLS can effectively take advantage from larger populations to gather more

accurate information to speedup the solution of the problem. More accurate fitness

information allows the loopy local searcher to converge faster to optimal solutions.

If conditional probabilities are used instead (as in standard LBP), the algorithm

requires a certain number of generations for selecting and propagating the best sub-

structures until their sampling probability becomes significant enough. For example,

consider the trap-5 function with the local optimum at 00000 and the global opti-

mum at 11111. Initially, the local optimum will dominate the population because

it’s much easier to climb. Later on, when both optima are the most frequent al-

ternatives, the selection process starts propagating 11111 over 00000. Only at this

stage, the max-product algorithm based of conditional probabilities is expected to

return 11111 as the most probable configuration. On the other hand, when using

substructural fitness information, once the fitness surrogate is accurate enough to

identify 11111 as a better alternative than 00000, the MPC is expected to return the

optimal solution. Consequently, BOA with loopy SLS takes advantage from using

larger populations by building a more accurate fitness surrogate model.

Another important difference between the two approaches is the removal of fac-

tors which are not relevant to the MPC search. This is directly related to the

dependency structure used by Bayesian networks to represent interactions among

several variables. While this structure is required to be able to sample new instances
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with PLS, it is not necessary or even desirable when using BP methods. Given that

k∏
i=1

p(Xi|Xi+1, Xi+2, . . . , Xk) = p(X1, X2, . . . , Xk), (6.10)

if a factor node relating k interacting variables stores the joint probability

p(X1, X2, . . . , Xk), there is no need of having k factors, one for each conditional

probability in the product above. In this case, the presence of k factors can be even

prejudicial if the lower-order statistics are misleading, which is the case for deceptive

problems. The factors corresponding to lower-order statistics will make judgments

based on local/deceptive information, somehow discrediting the information sent

by the factor nodes with k−order statistics. Only when lower-order statistics start

guiding the search towards 11111 (as mentioned above), this configuration will get

enough recommendations to set the MPC with the optimal substructure.

Loopy SLS for overlapping trap problems

Figure 6.8 presents the results for the trap-5 problem with several degrees of over-

lapping (o = {1, 2, 3}). By using loopy substructural local search the savings in

function evaluations are much better than those obtained by the previous local

searcher (see Figure 6.3). For 1-variable overlap (o = 1), the speedup grows up to 6,

behaving very similarly to the non-overlapping case. For 2-variable overlap (o = 2),

the speedup also increases with the problem size but with a more moderate slope.

Finally, for 3-variable overlap, the speedup grows with even a more moderate slope,

while for larger problem instances the speedup seems to stagnate. Notice that for a

trap subfunction with k = 5 and o = 3, three out of five variables (60%) are shared

with each of the two neighboring subfunctions, and each subfunction overlaps with

another four on at least one variable. This translates into a considerable amount of
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Figure 6.8: Number of function evaluations (left) and corresponding speedup (right)
for BOA with loopy SLS, when solving the overlapping trap-5 problem. Variable
overlapping between subproblems of o = 1 (top), o = 2 (middle), and o = 3 (bottom)
are considered.
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noise at the decision-making for each subproblem, when looking for the best subso-

lution. Therefore, it is expected that loopy SLS decreases its efficiency for higher

values and occurrence of overlapping.

It is interesting to note that this behavior is similar to that obtained with local

search in eCGA for noisy problems. For increasing amounts of noise, the perfor-

mance of SLS reduces while the recombination capabilities of eCGA excel. The

same tradeoff seems to happen here. For problems with highly overlapping subfunc-

tions, PLS which simulates recombination is expected to be the main responsible

component for efficiently generating good solutions. Notice that standard BOA

deals quite well with overlapping problems, as the number of required evaluations

is barely affected with increased overlap. Nevertheless, the speedups obtained with

loopy SLS for problems with overlap are still substantial for considerable proportions

of overlap.

As mentioned before, when applying belief propagation to graphs with loops

there is no guarantee of convergence to a fixed point. Therefore, increasing the

number of loops (by increasing the proportion of overlap) will affect the chances

of converging to high-quality solutions with loopy SLS. Looking in detail at the

loopy belief propagation algorithm, it can be seen that for highly overlapping trap-5

problems (o ≥ 3) the number of ties becomes larger at initial generations delaying

the ability to find good solutions from the start. This makes BOA with loopy SLS

require more generations to solve the problem.

Loopy SLS for non-overlapping trap problems

Apart from being able to tackle overlapping problems, it is important that the loopy

substructural local searcher can deal with the non-overlapping case and deliver the

same speedups obtained for the previous substructural local searcher. To address
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Figure 6.9: Results for BOA with loopy SLS when solving the non-overlapping
trap-5 problem. These results are compared with the previous substructural local
searcher. The results from the left side are obtained with the traditional bisection
method (n0), while for the right side the modified bisection (n1) is used.
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this issue, experiments for BOA with loopy SLS on the non-overlapping trap-5 prob-

lem are performed. The corresponding results are plotted in Figure 6.9. Results

obtained through both the traditional bisection method and the refined method are

shown and compared to the results obtained for the previous SLS version. For both

population-sizing methods, the loopy SLS obtains similar speedups to the previous

local searcher. Also, both versions of local search slightly improve with a marginally

larger population size (n1), particularly for larger instances of the problem. However,

the impact of the population size on performance is much greater when addressing

the overlapping case.

6.6 Hierarchical Difficulty

The hierarchical difficulty is a relevant feature that should be addressed to model

complex real-world problems. As previously mentioned, hierarchical problems con-

tain interactions that are present at more than a single level or context. The test

problem considered is the hierarchical trap-3 function. Figure 6.10 shows the results

obtained for loopy substructural local search.

For the three instances of the problem tested (with 3,4, and 5 hierarchical levels),

the incorporation of substructural local search does not seem to bring any advantage

over the traditional BOA. Both versions of the algorithm perform similar for this

particular problem. The population size and number of generations taken by the two

approaches is similar, and consequently the number of function evaluations spent is

about the same.

Because there is no way of deciding whether 000 is better than 111 for any

subproblem on all levels except for the top one, the local searcher can not speedup the

identification of optimal subsolutions. For this problem, the preservation of different
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Figure 6.10: Number of generations and function evaluations required for BOA with
loopy SLS for solving three different instances of the hierarchical trap-3 problem.

alternatives and consequent recombination between them, lead to the discovery of

optimal settings for the upper level, until the top level is reached and a decision can

be made based on the fitness signal between the string of ones and zeros. Essentially,

the problem needs to be solved iteratively because the information gathered by

the probabilistic model about the underlying problem structure is not enough to

accelerate the decision-making between competing optima. In addition, the problem

is highly multimodal at the lower levels, which reduces the impact of local search.

An interesting local search approach to tackle hierarchical problems have been

recently proposed [80]. The method consists of using self organizing maps (SOM) [90]

to map variables into substructural partitions which are then explored locally. For

each module at a given level, the most two significant subsolutions are mapped into

a single variable, while the remaining 2k − 2 subsolutions are discarded, therefore

reducing the dimensionality of the problem. This method is able to solve hierarchical

problems quite efficiently using incremental model learning, while avoiding large

samples of solutions to infer about the problem structure.

Although this approach is efficient for hierarchical problems, it relies on a num-
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ber of assumptions that are not appropriate for broadly applicable optimization

techniques. The first limitation of the method is that it relies on a map of fixed

size (grid of 5×5 nodes), which can not learn an adequate complexity by itself. This

is somewhat equivalent of using BOA with a predefined number of incoming edges.

Another drawback of this approach is the assumption that the problem at each level

only has two relevant subsolutions. Furthermore, encapsulating several variables

into a single one raises the question of how do deal with overlapping interactions.

Clearly, the method ends up incorporating specific knowledge about the problem

itself, therefore cannot be considered as a black-box solver. This approach contrasts

with the work presented in the thesis, as the methods proposed herein have in mind

a more general range of application. Nevertheless, the methodology proposed in [80]

is interesting and very much related to the ideas presented in this thesis.

6.7 Discussion

Considering the behavior of BOA with loopy SLS on boundedly difficult problems

with non-overlapping, overlapping, and hierarchical interactions, distinct dynamics

can be observed for each case. For the non-overlapping trap problem, substructural

local search is shown to substantially reduce the number of function evaluations,

providing speedups superior to 10 for a problem size of ` = 200. This translates

into one order of magnitude less evaluations to solve the same problem. More

importantly, the speedup consistently increases with problem size approximately

as Θ(
√
`).

For the overlapping trap problem, BOA with loopy SLS maintains the substan-

tial speedups from the non-overlapping case, but as the dimension of overlapping

increases (making the problem more noisy), its efficiency is reduced. Nevertheless,
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local search still succeeds in saving a significant number of function evaluations

when compared to standard BOA. Speedups of 6, 3.75, and 2.5 were obtained for

proportions of overlap of 20%, 40%, and 60%, respectively.

When solving the hierarchical trap problem, the local search approach has not

been successful in reducing the number of evaluations. The reason for SLS not

providing any benefits is related to the amount of information about the problem

captured by the Bayesian network. While interactions at the base level are captured

and exploited by local search, further interactions from superior levels can only be

detected by careful preservation and combination of subsolutions from the lower

levels. Therefore, the number of generations required by recombination seem to be

necessary to mine the crucial structure of the problem.

Essentially, in order to take full advantage from substructural local search, crucial

information about the problem should be minable from the set of solutions in the

initial generations. In some cases, particularly for the overlapping trap problem, the

choice of the population size can have an important role in capturing the necessary

information to perform SLS with success. While a smaller population size can

still solve the problem through iterative recombination of subsolutions, a larger

population can excel the SLS capabilities to quickly solve the problem. Once more,

this goes back to the topic of adaptive time continuation discussed previously in

Section 3.6. The incorporation of substructural local search in BOA implicitly allows

to switch between a global and a local search operator based on problem features,

being the population size responsible for “choosing” one over the other.
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6.8 Summary

This chapter starts by applying the developments from the previous chapter to im-

prove the efficiency of substructural local search in BOA. The s−penalty is shown

to improve significantly the savings obtained with local search, allowing the cor-

responding speedup to scale approximately as Θ(
√
`) for larger problem instances.

The presence of overlapping interactions as a new source of problem difficulty is

investigated while performing SLS. Although the effect of overlapping variable in-

teractions is similar to that of exogenous noise, which is known to be extremely

hard for local search, a new SLS method based on loopy belief propagation is pro-

posed. The loopy SLS is shown to efficiently solve problems with both overlapping

and non-overlaping interactions. The utility of such local searcher is also discussed

for problems with hierarchical interactions, where it fails to improve the results ob-

tained for standard BOA. The chapter ends by recognizing that integrating loopy

SLS in BOA enables the resulting algorithm to have the best of both worlds—efficient

mutation and recombination—for problems with non-ovelapping, overlapping, and

hierarchical interactions.



Chapter 7

Future Work and Conclusions

This final chapter highlights a number of extensions that deserve further exploration

and presents the major conclusions from this dissertation.

7.1 Future Work

Following the work presented in this thesis, a number of topics deserve further

investigation:

Application to real-world problems. While the artificial problems used in the

thesis cover different types of variables interactions and problem difficulty

dimensions, it is important to investigate the utility of SLS in real-world prob-

lems. The main motivation for designing adversarial problems with bounded

difficulty is to achieve competence when solving real-world problems that are

bounded in difficulty by this kind of functions. Therefore, experiments on

real-world problems should be performed to confirm the proposed approach as

a robust real-world solver.

Automatic population-sizing. The incorporation of SLS in both eCGA and

149



150 CHAPTER 7. FUTURE WORK AND CONCLUSIONS

BOA implicitly allows to switch between a global and local search operator

based on problem requirements. However, such behavior is mediated by the

population size. While SLS requires more accurate substructural information

to quickly solve a problem, standard EDAs through iterative recombination of

solutions can afford less accurate models and consequently smaller population

sizes. One possible approach is to adapt online the population size using model

information and theoretical population-sizing models [176, 177].

Consider other fitness estimators. The key idea behind fitness modeling with

Bayesian networks (and other multivariate EDAs) is to use the model structure

to induce the functional form of the surrogates and combine with techniques

for estimating the coefficients of the induced surrogates. The thesis considered

a method based on the schema theorem for fitting coefficients of the surrogate

function; however, other more robust methods from system identification, es-

timation, and regression, can be used to estimate the same coefficients. A first

step in this direction has already been made with promising results [153].

Extension for multi-objective optimization. While this work considers single-

objective problems, many interesting problems have multiple conflicting ob-

jectives. The goal in multi-objective optimization is to find the solutions that

form the Pareto-optimal front (solutions which are not dominated in at least

one objective). Consequently, it would be interesting to investigate if SLS can

help EDAs to converge to the optimal front. However, probabilistic modeling

for multi-objective optimization purposes is not straightforward, as the prob-

lem decomposition might differ for different objectives. One possible solution

is to build different models for each objective and generate solutions by consid-

ering all models [173]. In this case, substructural neighborhoods from different
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models can be combined to perform SLS.

7.2 Conclusions

This thesis investigates substructural local search for discrete estimation of distri-

bution algorithms. Particularly, the extended compact genetic algorithm and the

Bayesian optimization algorithm are considered. For both algorithms it is shown

that incorporating SLS is advantageous for several types of boundedly-difficult prob-

lems. Empirical results demonstrate that SLS can substantially reduce the total

number of function evaluations required to solve such problems, providing speedups

superior to 10. This translates into one order of magnitude less evaluations to solve

the same problem. More importantly, the speedups obtained scale with problem

size as O(
√
`).

Looking at the behavior of both eCGA and BOA when incorporating SLS, dis-

tinct dynamics can be observed for different problems. In eCGA, using SLS is

shown to be beneficial for deterministic and low-noise problems with uniformly-

scaled BBs. For problems with moderate-to-high amounts of exogenous noise or

with exponentially-scaled BBs, SLS in eCGA can not improve the search for opti-

mal solutions, performing similar to the standard eCGA which is the more adequate

approach. On the other hand, BOA with SLS considerably improves the results ob-

tained for problems with both non-overlapping and overlapping interactions. For in-

creasing overlapping between subfunctions (becoming the problem more noisy), SLS

reduces its efficiency, but still succeeds in saving a significant number of evaluations

compared to standard BOA. For hierarchical problems, BOA with and without SLS

perform similarly, indicating that SLS brings no additional value for solving these

type of problems.
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Essentially, in order to take full advantage from SLS, relevant information about

the problem should be minable from the set of solutions in the initial generations.

The choice of the population size have an important role in capturing the necessary

information to perform SLS with success. While a smaller population size can still

solve the problem through iterative recombination of subsolutions, a larger popula-

tion can excel the SLS capabilities to quickly solve the problem. This tradeoff can

be seen as a type of adaptive time continuation. The incorporation of substructural

local search in eCGA and BOA implicitly allows to switch between a global and a

local search operator based on problem features. This adaptive behavior is however

mediated by the population size.

Different ways of incorporating substructural local search in EDAs are also pro-

posed. While for eCGA only the best individual is considered for local search, in

BOA several individuals are obtained after performing SLS. This difference is di-

rectly related to the cost of performing local search, which is significantly reduced

when using a surrogate fitness model instead of actual function evaluations. The

more complex nature of the probabilistic models in BOA, and corresponding neigh-

borhoods, also motivate the incorporation of several solutions obtained through

local search. Nevertheless, eCGA and BOA can use both approaches. Therefore,

the choice of incorporating local search results into the population (or into the prob-

abilistic model) should depend on the particular approach. For certain optimization

problems where diversity in the population is extremely important, the strategy for

incorporating SLS should take that fact into account.

While the analysis of model structural accuracy in BOA was not one of the ini-

tial objectives for the thesis, this study has been crucial to improve SLS in BOA.

Furthermore, this work takes a step towards understanding and interpreting the

Bayesian networks in BOA, providing more interpretable models to assist efficiency-
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enhancement techniques and human researchers. The study identifies both the selec-

tion operator and the scoring metric (that guides model search) as the main factors1

to influence model quality in Bayesian EDAs. These results demystifies previous

empirical comparisons between different Bayesian EDAs, which mainly differ on the

choice of the selection operator and scoring metric.

More generally, the importance of exploiting model-based information in EDAs

to further improve the search has been demonstrated with SLS. The study of model

quality in BOA will be also important for situations where the knowledge of the

problem structure can be as valuable as a high-quality solution to the problem. This

is the case for several other model-based efficiency enhancement techniques [154, 132,

153, 146, 97, 176, 174, 72, 69], or simply for the offline interpretation of probabilistic

models [173, 174] to gain insight on the problem.

1Given a sufficient population size (learning data set).
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[19] Cantú-Paz, E. A survey of parallel genetic algorithms. Calculateurs Paral-
leles, Reseaux et Systems Repartis 10, 2 (1998), 141–171.
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[37] Etxeberria, R., and Larrañaga, P. Global optimization using Bayesian
networks. In Second Symposium on Artificial Intelligence (CIMAF-99) (Ha-
bana, Cuba, 1999), A. A. O. Rodriguez et al., Eds., pp. 332–339.

[38] Feige, U., Mossel, E., and Vilenchik, D. Complete convergence of
message passing algorithms for some satisfiability problems. In Approximation,
Randomization, and Combinatorial Optimization: Algorithms and Techniques,
LNCS 4110. Springer, 2006, pp. 339–350.

[39] Fernandes, C., Lima, C. F., and Rosa, A. UMDAs for dynamic op-
timization problems. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference (GECCO-2008) (2008), C. Ryan et al., Eds., ACM
Press, pp. 399–406.

[40] Fernandes, C., Rosa, A., and Ramos, V. Binary ant algorithm. In
Proceedings of the ACM Genetic and Evolutionary Computation Conference
(GECCO-2007) (2007), D. Thierens et al., Eds., ACM Press, pp. 41–48.

[41] Fitzpatrick, J. M., Grefenstette, J. J., and Gucht, D. V. Image
registration by genetic search. In Proceedings of the IEEE Southeast Confer-
ence (1984), pp. 460–464.

[42] Friedman, N., and Goldszmidt, M. Learning Bayesian networks with
local structure. Graphical Models (1999), 421–459.

[43] Glover, F. Future paths for integer programming and links to artificial
intelligence. In Computers and Operations Research (1986), pp. 533–549.

[44] Glover, F. Tabu Search: Part I. In ORSA Journal of Computing (1989),
vol. 1, pp. 190–206.

[45] Glover, F. Tabu Search: Part II. In ORSA Journal of Computing (1990),
vol. 2, pp. 4–32.

[46] Goldberg, D. E. Genetic algorithms and Walsh functions: Part II, decep-
tion and its analysis. Complex Systems 3 (1989), 153–171.

[47] Goldberg, D. E. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, Reading, MA, 1989.

[48] Goldberg, D. E. Sizing populations for serial and parallel genetic algo-
rithms. In Proceedings of the Third International Conference on Genetic
Algorithms (San Mateo, CA, 1989), J. D. Schaffer, Ed., Morgan Kaufman,
pp. 70–79. (Also TCGA Report 88004).



BIBLIOGRAPHY 159

[49] Goldberg, D. E. The race, the hurdle, and the sweet spot. In Evolutionary
Design by Computers, P. J. Bentley, Ed. Morgan Kaufmann, San Francisco,
CA, 1999, pp. 105–118.

[50] Goldberg, D. E. Using time efficiently: Genetic-evolutionary algorithms
and the continuation problem. In Proceedings of the Genetic and Evolution-
ary Computation Conference (San Francisco, CA, 1999), Morgan Kaufmann,
pp. 212–219.

[51] Goldberg, D. E. The Design of Innovation - Lessons from and for Compe-
tent Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, 2002.

[52] Goldberg, D. E., and Deb, K. A comparative analysis of selection schemes
used in genetic algorithms. Proceedings of the First Workshop on Foundations
of Genetic Algorithms 1 (1991), 69–93.

[53] Goldberg, D. E., Deb, K., and Clark, J. H. Genetic algorithms, noise,
and the sizing of populations. Complex Systems 6 (1992), 333–362.

[54] Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. Rapid,
accurate optimization of difficult problems using fast messy genetic algorithms.
In Proceedings of the Fifth International Conference on Genetic Algorithms
(San Mateo, CA, 1993), S. Forrest, Ed., Morgan Kaufmann, pp. 56–64.

[55] Goldberg, D. E., Deb, K., and Thierens, D. Toward a better under-
standing of mixing in genetic algorithms. Journal of the Society of Instrument
and Control Engineers 32, 1 (1993), 10–16.

[56] Goldberg, D. E., Korb, B., and Deb, K. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems 3, 5 (1989), 493–530.

[57] Goldberg, D. E., and Rudnick, M. Genetic algorithms and the variance
of fitness. Complex Systems 5, 3 (1991), 265–278.

[58] Goldberg, D. E., and Sastry, K. A practical schema theorem for genetic
algorithm design and tuning. In Proceedings of the Genetic and Evolution-
ary Computation Conference (San Francisco, CA, 2001), Morgan Kaufmann,
pp. 328–335.

[59] Goldberg, D. E., Sastry, K., and Latoza, T. On the supply of building
blocks. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (San Francisco, CA, 2001), Morgan Kaufmann, pp. 336–342.

[60] Handa, H. The effectiveness of mutation operation in the case of estimation
of distribution algorithms. Journal of Biosystems 87, 2-3 (2007).



160 BIBLIOGRAPHY

[61] Hansen, N., and Ostermeier, A. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001),
159–195.
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[144] Santana, R., Larrañaga, P., and Lozano, J. A. Interactions and
dependencies in estimation of distribution algorithms. In Proceedings of the
IEEE Congress on Evolutionary Computation (2005), IEEE Press, pp. 1418–
1425.

[145] Sastry, K. Evaluation-relaxation schemes for genetic and evolutionary algo-
rithms. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana,
IL, 2001.

[146] Sastry, K., Abbass, H. A., Goldberg, D. E., and Johnson, D. D.
Sub-structural niching in estimation distribution algorithms. In Proceedings
of the ACM SIGEVO Genetic and Evolutionary Computation Conference
(GECCO-2005) (2005), H. Beyer et al., Eds., ACM Press.

[147] Sastry, K., and Goldberg, D. E. Analysis of mixing in genetic al-
gorithms: A survey. IlliGAL Report No. 2002012, University of Illinois
at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,
2002.

[148] Sastry, K., and Goldberg, D. E. Scalability of selectorecombinative ge-
netic algorithms for problems with tight linkage. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2003), Part II, LNCS
2724 (2003), E. Cantu-Paz et al., Eds., Springer, pp. 1332–1344.

[149] Sastry, K., and Goldberg, D. E. Designing competent mutation opera-
tors via probabilistic model building of neighborhoods. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2004), Part II,
LNCS 3103 (2004), K. Deb and et al., Eds., Springer, pp. 114–125.



168 BIBLIOGRAPHY

[150] Sastry, K., and Goldberg, D. E. Let’s get ready to rumble: Crossover
versus mutation head to head. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2004), Part II, LNCS 3103 (2004), K. Deb
and et al., Eds., Springer, pp. 126–137.

[151] Sastry, K., and Goldberg, D. E. Let’s get ready to rumble redux:
Crossover versus mutation head to head on exponentially scaled problems.
In Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation
Conference (GECCO-2007) (New York, NY, USA, 2007), ACM, pp. 1380–
1387.

[152] Sastry, K., Goldberg, D. E., and Pelikan, M. Don’t evaluate, in-
herit. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001) (San Francisco, CA, 2001), L. Spector et al., Eds., Morgan
Kaufmann, pp. 551–558.

[153] Sastry, K., Lima, C. F., and Goldberg, D. E. Evaluation relaxation
using substructural information and linear estimation. In Proceedings of the
ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO-
2006) (2006), M. Keijzer et al., Eds., ACM Press, pp. 419–426.

[154] Sastry, K., Pelikan, M., and Goldberg, D. E. Efficiency enhancement
of genetic algorithms via building-block-wise fitness estimation. In Proceedings
of the IEEE International Conference on Evolutionary Computation (2004),
pp. 720–727.

[155] Sastry, K., Pelikan, M., and Goldberg, D. E. Efficiency enhancement
of estimation of distribution algorithms. In Scalable optimization via Proba-
bilistic Modeling: From Algorithms to Applications, M. Pelikan, K. Sastry, and
E. Cant-Paz, Eds. Springer, 2006, pp. 161–186.

[156] Schwarz, G. Estimating the dimension of a model. The Annals of Statistics
6 (1978), 461–464.

[157] Schwefel, H.-P. Numerische optimierung von computer-modellen mittels
der evolutionsstrategie. In Interdisziplinäre Systemforschung. Birkhäuser Ver-
lag, Basel and Stuttgart, 1977, ch. 1, pp. 5–8.

[158] Shan, Y., McKay, R. I., Essam, D., and Abbass, H. A. A survey
of probabilistic model building genetic programming. In Scalable Optimiza-
tion via Probabilistic Modeling: From Algorithms to Applications, M. Pelikan,
K. Sastry, and E. Cantu-Paz, Eds. Springer, 2006.

[159] Sinha, A. A survey of hybrid genetic and evolutionary algorithms. IlliGAL
Report No. 2003004, University of Illinois at Urbana-Champaign, Illinois Ge-
netic Algorithms Laboratory, Urbana, IL, 2003.



BIBLIOGRAPHY 169

[160] Smith, R. E., Dike, B. A., and Stegmann, S. A. Fitness inheritance in
genetic algorithms. In SAC ’95: Proceedings of the 1995 ACM symposium on
Applied computing (New York, NY, USA, 1995), ACM, pp. 345–350.

[161] Soto, M. R. A Single Connected Factorized Distribution Algorithm and Its
Cost of Evaluation. PhD thesis, University of Havana, Havana, Cuba, 2003.

[162] Srivastava, R. Time continuation in genetic algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, 2002.

[163] Thierens, D. Scalability problems of simple genetic algorithms. Evolutionary
Computation 7, 1 (1999), 45–68.

[164] Thierens, D., and Goldberg, D. Convergence models of genetic algo-
rithm selection schemes. In Parallel Problem Solving from Nature, PPSN III
(Berlin, 1994), Y. Davidor, H.-P. Schwefel, and R. Manner, Eds., Springer-
Verlag, pp. 116–121.

[165] Thierens, D., and Goldberg, D. E. Mixing in genetic algorithms. In
Proceedings of the Fifth International Conference on Genetic Algorithms (San
Mateo, CA, 1993), S. Forrest, Ed., Morgan Kaufmann, pp. 38–45.

[166] Thierens, D., Goldberg, D. E., and Pereira, A. G. Domino conver-
gence, drift, and the temporal-salience structure of problems. In Proceedings
of 1998 IEEE International Conference on Evolutionary Computation (Picat-
away, NJ, 1998), IEEE Press, pp. 535–540.

[167] Van Laarhoven, P. J. M., and Aarts, E. H. L. Simulated Annealing:
Theory and Applications. D. Reidel Publishing Company, Dordrecht, Holland,
1987.

[168] Watson, J.-P. Empirical modeling and analysis of local search algorithms
for the job-shop scheduling problem. PhD thesis, Colorado State University,
Fort Collins, CO, 2003.

[169] Watson, R. A., Hornby, G., and Pollack, J. B. Modeling building-
block interdependency. In PPSN V: Proceedings of the 5th International
Conference on Parallel Problem Solving from Nature (1998), Springer-Verlag,
pp. 97–108.

[170] Weiss, G. M., and Provost, F. Learning when training data are costly:
The effect of class distribution on tree induction. Journal of Artificial Intelli-
gence Research 19 (2003).

[171] Wu, H., and Shapiro, J. L. Does overfitting affect performance in estima-
tion of distribution algorithms. In Proceedings of the ACM SIGEVO Genetic



170 BIBLIOGRAPHY

and Evolutionary Computation Conference (GECCO-2006) (2006), M. Keijzer
et al., Eds., ACM Press, pp. 433–434.

[172] Yang, S. Constructing dynamic test environments for genetic algorithms
based on problem difficulty. In Proceedings of the IEEE International Confer-
ence on Evolutionary Computation (2004), IEEE Press, pp. 1262–1269.

[173] Yu, T.-L. A Matrix Approach for Finding Extrema: Problems with Modu-
larity, Hierarchy, and Overlap. PhD thesis, University of Illinois at Urbana-
Champaign, Urbana, IL, USA, 2007.

[174] Yu, T.-L., and Goldberg, D. E. Dependency structure matrix analysis:
Offline utility of the dependency structure matrix genetic algorithm. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2004), Part II, LNCS 3103 (2004), K. Deb et al., Eds., Springer, pp. 355–366.

[175] Yu, T.-L., Goldberg, D. E., Yassine, A., and Chen, Y.-P. A genetic
algorithm design inspired by organizational theory: Pilot study of a depen-
dency structure matrix driven genetic algorithm. In Proceedings of the Artifi-
cial Neural Networks in Engineering 2003 (ANNIE 2003) (2003), pp. 327–332.

[176] Yu, T.-L., Sastry, K., and Goldberg, D. E. Population size to go:
Online adaptation using noise and substructural measurements. In Parameter
Setting in Evolutionary Algorithms, F. G. Lobo et al., Eds. Springer, 2007,
pp. 205–224.

[177] Yu, T.-L., Sastry, K., Goldberg, D. E., and Pelikan, M. Popula-
tion sizing for entropy-based model building in genetic algorithms. In Proceed-
ings of the ACM SIGEVO Genetic and Evolutionary Computation Conference
(GECCO-2007) (2007), D. Thierens et al., Eds., ACM Press, pp. 601–608.

[178] Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M. Model-
based search for combinatorial optimization: A critical survey. Annals of
Operations Research 131 (2004), 373–395.


