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Abstract 

The Almádena-Odeáxere aquifer system is a free-to-confined karstic system and extends over 

an area of 63.5 km2, in the Algarve (southern Portugal). The aquifer’s two natural discharge 

areas are connected to two separate wetlands, which support environmentally important 

groundwater dependent ecosystems. Uncorroborated observations indicate that abstractions 

from municipal wells on the aquifer have led to a reduction in discharge in these areas. 

Other authors have determined various hydroestratigraphic units of the Almádena-Odeáxere 

and the spatial distribution of the transmissivity parameter has been determined via inverse 

calibration techniques. The first section of the current work characterizes the spatial distribution 

of the storage coefficient in order to allow for the simulation of the aquifer’s hydraulic behaviour 

under transient state conditions.  

 The calibration of the storage coefficient was carried out by trial-and-error methods. The 

relatively small span of physically possible values of storage coefficient was not considered 

sufficient to justify the effort required to implement inverse calibration methods. Calibration 

results provided the first estimate on the regional distribution of storage coefficient values, which 

range from 0.05 to 0.125 over 5 zones, resulting in a greater reliability of the spatial and 

temporal evolution of state variables for transient simulations. 

The calibrated model was tested against historical data to verify its accuracy and stability under 

stress conditions. Simulated temporal and spatial distribution of hydraulic heads and natural 

discharge flow show a good fit with observed data. 

In the second section, hypothetical scenarios of water withdrawal from the municipal boreholes 

were simulated to evaluate the effects of abstractions on the regional flow system and on the 

natural groundwater discharge. Results show that abstractions have an immediate effect on 

groundwater discharge, and rates of 1.4x104 m3/day are enough to reduce flow to zero at one of 

the discharge areas. However, to properly determine the maximum safe yield, a more detailed 

analysis of the importance of the groundwater component to the streams and wetlands 

associated to the AO is required. 

Keywords: Numerical groundwater flow models; groundwater-surface water interactions; groundwater 

dependent ecosystems; transient-state calibration; groundwater resource management.  
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Resumo 

O presente trabalho de investigação pretendeu caracterizar a distribuição espacial do 

coeficiente de armazenamento no sistema aquífero Almádena-Odeáxere (AO) através da 

calibração de um modelo numérico de elementos finitos, com o objectivo de aumentar a 

fiabilidade da simulação em regime transitório, do seu funcionamento hidráulico. Após a 

calibração e validação do modelo para a simulação do comportamento hidráulico do AO em 

regime transitório, procedeu-se à simulação e análise do impacto de vários cenários hipotéticos 

de exploração do sistema aquífero e assim, espera-se demonstrar a utilidade destes modelos 

como ferramentas para a gestão responsável destes recursos.  

O sistema aquífero AO estende-se ao longo de 63.5 km2 nos Municípios de Lagos e Vila do 

Bispo, no Algarve, e encontra-se hidraulicamente ligado a vários corpos de água superficial que 

suportam ecossistemas vulneráveis. Os mais significantes dos quais, são as duas zonas 

húmidas que se encontram nas áreas de descarga natural do aquífero: (1) ao longo da ribeira 

de Bensafrim e (2) na Boca do Rio no canto SW do sistema aquífero. Dada a variabilidade 

sazonal da disponibilidade de água superficial e a natureza efémera das ribeiras associadas a 

estas zonas húmidas, a exploração deste sistema aquífero poderá ter efeitos sobre a 

disponibilidade de água para estes ecossistemas. 

Durante o ultimo século o aquífero AO era a principal fonte de abastecimento de água para as 

cidades de Lagos e Vila do Bispo. Recentemente, em 1999 este, foi substituído como fonte de 

abastecimento público por um sistema suportado por fontes de água superficial 

(designadamente barragens). No entanto, as limitações desta estratégia, dependente de uma 

única fonte de abastecimento, tornaram-se evidentes durante a seca de 2004-2005 e iniciaram 

um movimento na direcção de integrar o uso de águas superficiais e subterrâneas na estratégia 

de gestão dos recursos hídricos. È portanto fundamental compreender os impactos que a 

exploração destes recursos subterrâneos poderão ter sobre os aquíferos e outros sistemas que 

deles dependem. 

Foi implementado um modelo regional de elementos finitos de forma a investigar as relações 

quantitativas entre os dados históricos disponíveis sobre a exploração do aquífero, realizada 

pelas Câmaras Municipais e, as variáveis de estado resultantes da monitorização do AO 

(medições piezométricas e do caudal de fontes e ribeiras). Numa fase prévia, a distribuição 

espacial do parâmetro hidráulico transmissividade foi determinado para o AO usando métodos 
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de calibração inversa do modelo e integrando informação disponível no que concerne à 

geometria do sistema, às condições de fronteira, à cartografia geológica e aos dados 

hidrológicos relevantes.  

De modo a permitir a simulação do comportamento hidráulico do AO em regime transitório, foi 

necessário proceder á caracterização da distribuição espacial do coeficiente de 

armazenamento. Comparado com o parâmetro transmissividade, o coeficiente de 

armazenamento considera uma gama de valores fisicamente possíveis bastante menor que a 

transmissividade, apresentando valores na ordem de 1x10-5 a 1x10-3 para aquíferos confinados 

e valores na ordem de 1x10-2 até valores de porosidade total para aquíferos livres. Considerou-

se que esta menor gama de valores a considerar não justificava o esforço e tempo necessários 

para a aplicação de métodos de calibração inversa em regime transitório. Assim, foi aplicado 

um método de tentativa e erro na calibração do modelo numérico para determinar a distribuição 

espacial do coeficiente de armazenamento. 

Os resultados da calibração forneceram a primeira estimativa da distribuição regional do 

coeficiente de armazenamento, com valores entre 0.05 e 0.125 obtidos em cinco zonas, o que 

resultou numa maior fiabilidade na evolução espacial e temporal de variáveis de estado para 

simulações em regime transitório, quer em regimes naturais, quer considerando diferentes 

cenários de utilização do recurso de água. 

Após esta calibração foi necessário proceder com a validação do modelo em regime transitório, 

o que contribuiu não só para averiguar a sua precisão e estabilidade mas também para a 

análise do impacto de vários cenários de exploração a que o aquífero foi exposto ao longo das 

últimas décadas. Estes cenários simulados do período entre 1997 e 2003 permitiram a análise 

do impacto das alterações significativas nas políticas de gestão dos recursos hídricos da 

região, não só a nível da dinâmica hidrogeológica numa escala regional mas também numa 

escala mais local nas áreas de descarga natural do sistema aquífero e as relações com as 

águas superficiais associadas. Os resultados obtidos mostraram um bom ajuste entre valores 

de potencial hidráulico e de descarga natural simulados e valores medidos no terreno. 

Com o estado actual do modelo foi possível avançar com a simulação de vários cenários 

hipotéticos de exploração do aquífero a partir dos furos municipais existentes no AO de modo a 

determinar os seus potenciais impactos. Para a realização destas simulações tomou-se em 

conta a recarga calculada a partir de valores de precipitação de Setembro de 2003 a Setembro 

de 2006, um período que cobre uma das épocas mais secas em registo. Os regimes de 
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extracção considerados para cada simulação foram calculados com base no valor de 

capacidade de extracção máxima dos furos. Os caudais dos regimes foram variados entre 0% 

e 100%, em passos de 10%, da capacidade máxima de cada furo. Apesar destes regimes 

hipotéticos não serem representativos da variabilidade sazonal da procura de água, considera-

se que representam casos de “pior cenário”. 

Os resultados destas simulações de cenários hipotéticos demonstraram que a extracção de 

água subterrânea dos furos municipais tem um impacto significativo na dinâmica hidrogeológica 

regional e sobretudo nas zonas de descarga e subsequentemente sobre os corpos de água 

superficial associados, reduzindo a contribuição do aquífero para as ribeiras e zonas húmidas. 

De facto, as simulações sugerem que a descarga natural na zona das Portelas seria 

efectivamente nula com regimes de exploração que consideram apenas caudais de extracção 

de1.4x104 m3/dia (cerca de 35% da capacidade total dos furos municipais).  

No entanto, para quantificar o impacto desta redução de descarga é necessário um estudo 

mais detalhado acerca da importância da componente de água subterrânea para o 

funcionamento destes corpos de água superficial e os seus ecossistemas associados.  

Sugere-se que seja levada a cabo uma pesquisa futura que coordene modelos de escoamento 

de água subterrânea, modelos de água superficial e modelos ecológicos, de forma a optimizar 

os regimes de exploração do aquífero de forma a resultar no menor impacto possível sobre 

estes sistemas e os seus ecossistemas associados. 

Em suma, espera-se que o presente trabalho consiga demonstrar a utilidade e importância 

destes modelos como ferramentas para uma gestão mais eficiente e racional dos recursos 

hídricos. Além disso, pretende-se que os conclusões apresentadas reforcem a possibilidade da 

gestão de reservas de água subterrânea do sistema aquífero AO poder vir a ser efectuada 

utilizando este tipo de modelos. 

Palavras-Chave: Modelos numéricos de escoamento subterrâneo; interacções águas superficiais-

subterrâneas; ecossistemas dependentes de água subterrânea; calibração em regime transitório; gestão 

de recursos hídricos subterrâneos. 
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1. Introduction 

The Almádena-Odeáxere aquifer system (hereafter known as AO) extends over a 63.5 km2 

area, across the Lagos and Vila do Bispo municipalities (Almeida et al., 2000) in the southern 

region of Portugal, Algarve. Up until the end of the 20th century it was the main source of public 

water supply for these municipalities, and records show that it was the main  source of supply 

for the city of Lagos as far back as the year 1521 (Paradela, 1959).  

In 1999 a multi-municipal water supply system entirely dependent on surface water provided by 

large reservoirs was implemented, leading to the abandonment of the AO (and other aquifer 

systems in the region) as sources of public water supply. The extreme drought of 2004-2005 

brought to light the serious limitations of this single-source strategy when several reservoirs 

reached their limit and could not satisfy water demand (Nunes et al., 2006b).  

It is likely that in the near future, a water management approach that integrates the use of 

surface and groundwater in order to guarantee public water supply will be put into practice 

(Martins, 2007). However, in order to do so in a responsible manner, it is necessary to 

understand the implications of extracting water from these aquifer systems. In the particular 

case of the AO, it is known that there are several surface water bodies which are hydraulically 

connected to the aquifer system, namely two wetlands located at the aquifer system’s main 

natural discharge areas (Almeida et al., 2000). It is important to understand the effects of 

extracting water on the regional groundwater flow patterns in order to protect these vital 

groundwater dependent ecosystems. 

Many aquatic ecosystems which are classified as surface water bodies are partially or wholly 

dependent on interactions with groundwater to sustain ecological structure and function. This 

includes springs, wetlands, karst and cave systems, rivers and estuaries with a strong baseflow 

component especially in the dry season. In the case of the AO, the two wetlands known as the 

Paul da Abedoeira and the Boca do Rio. 

Quite often, the interaction between groundwater and surface water is not adequately 

quantified. This may be because the interaction is complex and difficult to measure, or it may be 

simply because people haven’t considered that the interaction might be important and so don’t 

give it sufficient attention in their research or field measurement programmes. Another reason 

why the interaction is poorly understood is because groundwater and surface water hydrologists 

have generally worked separately in the past. Hydrological models have often been developed 
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independently, with a resulting mismatch in scale and resolution (both temporal and spatial) 

between surface water and groundwater models, and often substantial inaccuracies in 

estimates of the groundwater contribution to surface water flow, or the surface water recharge 

to groundwater. Groundwater and surface water hydrologists tend to use different terminology, 

leading to confusion when trying to build integrated conceptual models. 

Poor or inadequate quantification of the groundwater-surface water interaction means that 

management decisions (for example the abstraction of groundwater in the riparian zone of 

rivers) may be made without sufficient information on the potential impacts on aquatic 

ecosystems. 

The issue of groundwater interactions with aquatic ecosystems is becoming the subject of 

increasing attention, as the body of research into determination of the water requirements of 

ecosystems grows, and as more emphasis is placed on integrated water resource 

management.  

1.1. Scope and Purpose 

Numeric flow models are fundamental in analyzing the accuracy of hypothetical explanations for 

an aquifer’s hydraulic behaviour, and at a later stage in predicting the effects of changes in 

natural conditions or due to anthropogenic activities likely to interfere with groundwater flow 

(Monteiro and Silva, 1998). The use of numerical models in describing the hydraulic behaviour 

of aquifer systems is one of the most advanced methods for understanding events controlling 

water flow and contaminant transport in the subsoil, and therefore is an invaluable tool for water 

management (Martins, 2007). According to Monteiro et al. (2002), these models can be 

fundamental in answering questions such as: (1) Where and how much water can safely be 

extracted for public water supply; (2) What the effects of certain extraction scenarios will be on 

regional piezometric levels; (3) The importance of the extracted volume when compared to the 

aquifer system’s water budget; (4) What influence various exploitation scenarios will have on 

the intensification of undesirable phenomena. Considering that the AO is hydraulically 

connected to surface water bodies which are home to sensitive ground water dependant 

ecosystems, such as wetlands, understanding the effects of water withdrawals on this system 

could be fundamental in protecting them. 

Over the last few years researchers at the University of the Algarve have developed various 

models to simulate the AO within the framework of the study of regional groundwater flow of 
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aquifers in the Algarve. These efforts have lead to the construction of the numerical model on 

which the work undertaken during this thesis is based. In this fashion, the presented research 

represents the next step in an ongoing body of work in the development of a potentially 

invaluable tool to ground water research and management alike. 

The methodology for the development of numeric models can be summarized in four basic 

steps: (1) Analysis and description of conceptual models; (2) Calibration; (3) Validation; (4) 

Predicting possible future scenarios. Step (1), (2) and (3) have been completed for the physical 

distribution of the hydraulic parameter transmissivity under steady-state conditions for the case 

of AOs numeric flow model. To perform simulations under transient conditions a second 

calibration, of the storage coefficient parameter, is required. And subsequently, in order to 

guarantee the applicability of this model to simulating ground water flow under transient 

conditions it is necessary to validate it by comparing its results, under various stress conditions, 

with field data so as to allow for the next step, the simulation of hypothetical scenarios.  

The proposed research intends to demonstrate the potential impacts of certain water extraction 

scenarios on the Almádena-Odeáxere aquifer system and water bodies to which it is connected, 

and hopefully demonstrate the value of these models as a tool for water management schemes 

which incorporate ground water as a source of supply. 

1.2. Numerical Ground Water Flow Modeling in Karst Aquifers 

The lithological support of the AO consists of carbonate rocks, therefore it is important to refer 

to some of the particular aspects related to modelling ground water flow in this kind of media. 

Numerical groundwater models are amongst the most important tools available for the 

management of groundwater resources.  The models can be used to test or refine different 

conceptual models, estimate hydraulic parameters, and, most importantly for water-resource 

management, predict how an aquifer might respond to changes in pumping and climate change 

(Scanlon et al., 2003).  

Numerous models have been successfully developed for porous aquifers; however their 

application in karst aquifers has been more problematic. Karst aquifers are generally highly 

heterogeneous, being dominated by secondary (fracture) or tertiary (conduit) porosity and may 

exhibit hierarchical permeability structure or flow paths (Scanlon et al., 2003). The major 

difficulty faced is that karst aquifers typically exhibit dual groundwater flow regimes, that is, fast 

(conduit-dominated) flow and slow (diffuse) flow (TaylorandGreene, 2001), and therefore are 
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likely to have a turbulent flow component, which may be problematic since most numerical 

models are based on Darcy’s law, which assumes laminar flow (Scanlon et al., 2003) 

At present, great difficulties exist in accurately simulating karst flow systems at the local or sub 

regional scale because of the difficulty in developing numerical models that realistically 

represent boundary conditions for conduit networks. Nevertheless, according to Taylor and 

Greene (2001), numerical models are among the best quantitative tools for gaining a better 

understanding of the functioning of individual karst hydrology components and for predicting 

how the system works as a whole. However, as stated by Quinlan et al. (1996): “Although 

modeling of karstic processes is often possible and numerical flow models can sometimes 

simulate hydraulic heads, groundwater fluxes, and spring discharge, they often fail to correctly 

predict such fundamental information as flow direction, destination, and velocity.” Therefore, 

when discussing the relevance of numerical modeling in a karst aquifer, it is crucial to identify 

what type of model (i.e. flow model or transport model) is being proposed (Scanlon et al., 2003). 

It is important to consider the various modeling approaches available for simulating 

groundwater flow and contaminant transport in karst aquifers and to be aware of the 

advantages and limitations of each approach. According to Scanlon et al. (2003), one of the 

simplest approaches is the lumped parameter model, which has also been termed black box or 

mixing cell model. The spatial dimension in the equations is omitted in these models; therefore, 

only ordinary linear differential equations must be solved. The system is assumed to behave 

like an equivalent porous medium. These models generally result in good agreement between 

measured and simulated spring discharge (Yurtsever and Payne, 1986; Wanakule and Anaya, 

1993; Barrett and Charbeneau, 1996; Zhang et al., 1996). The advantages of using lumped 

parameter models are that data requirements are minimal and simulations are rapid. The main 

disadvantage is lack of information on spatial variability in hydraulic head and directions and 

rates of groundwater flow (Scanlon et al., 2003).  

Distributed parameter models are required to obtain detailed information on spatial variability in 

groundwater flow (Scanlon et al., 2003). Equivalent porous media distributed parameter models 

include single continuum and double continuum approaches. Single continuum models have 

generally been applied to aquifers characterized as predominantly diffuse (Teutsch, 1993), and 

some studies have found this approach to be inadequate for simulating regional flow in highly 

karstified aquifers (Teutsch, 1993; Keeler and Zhang, 1997). However, although accurate 

simulation of transport processes is still problematic, certain single continuum models have 
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proved adequate for simulating regional groundwater flow (Ryder, 1985; Kuniansky, 1993; 

Teutsch, 1993; Angelini and Dragoni, 1997; Keeler and Zhang, 1997; Greene et al., 1999 and 

Larocque et al., 1999); and Scanlon et al. (2003) suggest that this modeling approach is 

acceptable for the simulation of systems in which the conduit networks are fairly uniformly 

distributed and well interconnected. 

According to Monteiro (2001), double continuum and discrete continuum modeling approaches 

allow for a more realistic description of flow processes in carbonate aquifers, in which the 

regional flow pattern is strongly influenced by the conduit network. However, these methods are 

not commonly applied in hydrogeology outside of research and academic circles, mainly due to 

the large data requirements needed to describe karstic systems (Scanlon et al., 2003). 

Although a discrete continuum model would be the most adequate to simulate this karstic 

aquifers’ hydraulic behaviour, there is currently insufficient data to develop such a model. 

However, as will be discussed in more detail in a subsequent chapter, the fact that regional 

piezometry of the AO is characterized by low gradients denotes the existence of a well 

developed conduit network controlling flow at a regional level. And therefore a single continuum 

model should be sufficient for the task as long as it’s’ limitations are appreciated and respected.  
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2. Hydrogeological Setting 

2.1. Location and Geological Setting 

The Almádena-Odeáxere aquifer system (hereafter known as the AO) is located to the west of 

the river Arade, between the towns of Odeáxere (to the east) and Almádena (to the west) as 

can be seen in Figure 1. It encompasses the Lagos and Vila do Bispo municipalities in the 

Algarve, the southernmost region of Portugal and extends over an area of 63.5 km2 (Almeida et 

al., 2000).  

 

Figure 1 - Geographic location of the Almádena-Odeáxere aquifer 

system. From Martins (2007) 

The aquifer system is a free-to-confined karstic system, which occurs in carbonate Lias-Dogger 

outcrops and stretches in a NE-SW direction (Almeida et al., 2000). The dominant lithologies in 

which it occurs are limestone, dolomite limestone and dolomite rock with thicknesses between 
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60m and 1000m, and which appear in certain places as a well developed karst (Almeida et al., 

2000). These formations are covered in some places by Faro-Quarteira sands and gravels, as 

well as alluvial deposits associated with the Almádena and Bensafrim streams. The distribution 

of these lithologies, as well as the geographic boundaries of the AO can be seen in Figure 2.  

 

 

Figure 2 - Lithologies supporting the AO and its’ geometric boundaries; From: Almeida et al. (2000) 

Detritic and calcareous marl formations (Cretaceous) 
“Cacela” formation (Miocene) 
“Lagos-Portimão” carbonate formation (Miocene) 

  Eruptive rocks 
“Baixo Alentejo” flysh group (Carboniferous) 
“Silves” sandstone (Triassic) 
“Silves” Pellets, limest. and evap. (Triassic-Early Jurassic) 
Volcano-sedimentary complex (Early Jurassic) (Triassic-
“Espiche” dolomites and dolomitic limestones (Ear. Jur.) 

AO boundaries 

 “Faro-Quarteira” sands and gravels (Quaternary) 
Gravels and terraces (Quaternary) 
Dune and beach sands (Holocene) 
Alluviums and saltmarshes (Holocene) 

Populated places 

“Odeáxere” conglomerates-“V. Lamas” limest. (Mid. Jur.) 
“Almádena” dolomites and limestones (Middle Jurassic) 
 Escarpão limestones (Late Jurassic) 
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As can be seen in Figure 3, the aquifer formations present a synclinal structure, with a NE-SW 

direction, compressed between the Barão de S. João fault to the northwest, and the Espiche 

fault to the southeast (Reis, 1993). 

 

 

Figure 3 - Geological cross section between Bensafrim and Lagos. From Reis (1993) 

 

2.2. Precipitation 

Precipitation is the main source of recharge for the AO aquifer system. Daily precipitation 

values for the Lagos gauge (31E/01UC), the closest gauge to the AO, can be obtained for as far 

back as 1902 up to the present day from the SNIRH (National Service of Information on Water 

resources) (SNIRH, 2009). As can be seen in Figure 4, yearly precipitation values range from 

203.8 mm (2004/05) to 1035.9 mm (1989/90), with a pattern of alternating dry and wet periods 

every 2 to 5 years.  
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Figure 4 – Yearly precipitation values registered at the Lagos gauge from 1902 to 2005. Source 

SNIRH (2009). 

Precipitation is distributed throughout the year as expected for a Mediterranean climate, mainly 

occurring between October and April. The remaining summer months are mostly dry and hot. 

Nicolau (2002), estimated the average precipitation occurring in the area of the AO to be 650 

mm/year, based on the 1959/60 to 1991/91 period. This value was obtained using an 

orthogonal grid of 1 km x 1km calculated by the Kriging method and using elevation as an 
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external drift.  This method has proven to be the most suitable for the characterization of 

physiographic factors affecting the spatial distribution of rainfall in Portugal (Nicolau, 2002). 

 

2.3. Water Budget 

2.3.1. Ground-Water Recharge 

The two main sources of recharge for the AO occur through direct infiltration over the entire 

area of the aquifer system and through indirect infiltration from water in the streams that cross it 

(Reis, 1993). 

The first estimates of recharge in the AO area were undertaken by Reis (1993). For the areas 

where carbonate rocks are covered by sedimentary deposits, she estimated the recharge to be 

between 28.9% and 35.6% of the precipitation from 1955 to 1985 based on calculations of 

evapotranspiration and varying field capacity values. In areas with outcrops of carbonated rock, 

the percentage of precipitation that corresponds to recharge was calculated based on the 

Kessler method for values from the Lagos gauge between 1960 and 1985, and range from 

44.4% to 83.4%. 

In a more recent report, Almeida et al. (2000) estimated the recharge rate between 40% and 

60% of the yearly precipitation. Given the aquifers area of 63.5 km2, this would result in an 

estimated renewable resource of between 16x106 m3/year and 24x106 m3/year. It is of note that 

these values do not take into consideration the effect of indirect infiltration from streams 

crossing the system, which may include a significant amount of runoff generated upstream from 

the aquifer area.  

Vieira and Monteiro (2003) proposed an average recharge of 40.3% of the precipitation over the 

entire 63.5km2 of the aquifer system. This value was obtained from the weighted average, 

taking into account the presence of sub-areas in which the recharge rates vary between 5% and 

50% depending on the lithology which outcrops in that sub-area. This average recharge value is 

within the range proposed by Almeida et al. (2000), and corresponds to an average annual 

recharge of 16.6x106 m3/year. As will be discussed further on (chapter 4.2.2) these average 

values of annual recharge were applied to the individual recharge episodes during the 

considered climacteric data series, in order to estimate the transient recharge to be 

incorporated in the model.  
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2.3.2. Natural Discharge 

The main natural discharges areas, which can be seen in Figure 5, are located near Portelas on 

the Bensafrim stream, which forms the main drainage axis of the AO system; with a second, 

diffuse natural discharge area located at the SW point of the system, which feeds a wetland 

area (Almeida et al., 2000).  

 

Figure 5 – Geological setting and main discharge areas of AO. From Vieira and Monteiro (2003). 

The Portelas (Vala) gauge monitored the flow in a drainage system which collects the water 

from some of the springs at Portelas, one of the natural discharge areas. These springs dried 

up while the boreholes in the area were in use, however flow has restarted since 2000 (Reis, 

2007). Between January and September 2005, the total flow registered was 290608 m3, and 

429667 m3 for the hydrological year of 2005/06. 

On the east bank of the Bensafrim stream at Sargaçal, the ground water level is very close to 

the surface, sometimes causing flooding during winters with heavy rainfall (Reis, 2007). There 

are various springs which are collected by a drainage system. Between January and September 

2005 the total flow registered for these springs was 598646 m3 and 1141356 m3 for the 

hydrological year of 2005/06. 

According to Reis (2007) when water was being extracted for the city of Lagos from boreholes 

in the vicinity of Portelas these springs dried up, however since they were taken out of service 

in the year 2000 the springs have become active once more. This was confirmed by the 

simulations, as will be shown further on (chapter 5.2), as the simulation of the maximum 
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pumping capacity installed in the boreholes provokes an inversion of the gradient between the 

aquifer and the Bensafrim stream, with the consequent interruption of the baseflow in this 

watercourse. Reis (2007) notes that the influence of periodic water extraction for public water 

supply has a noticeable effect on the springs flow as can be seen during the summer of 2005 

on the spring hydrographs in Figure 6.  For the other main discharge area, along the Boca do 

Rio, there is currently no available data, due to difficulties in installing sensors in this area (Reis, 

2007). 
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Figure 6 – Spring hydrographs for the Portelas (vala) and Sargaçal springs from January 2005 

to June 2006. 

 

2.3.3. Ground-Water Withdrawals 

The use of the AO aquifer system as a source of urban water supply goes as far back as the 

year 1521. At that time, a spring at Paul da Abedoeira (also known as the Paul de Lagos) on 

the right bank of the Bensafrim stream, from which water was brought by gravity, was the sole 

source of water supplying the city of Lagos and remained so until the 1960’s (Paradela, 1959).  

In the early 1960s, due to the increased demand for water created by the rise in tourism, three 

well-fields were drilled in the proximity of springs in the area to the north of Lagos. Most of the 

boreholes were not particularly deep, with depths in the range of 21m to 39m. Registered flow 

rates were generally in the 20-30 l/s range; however two boreholes in one of the well-fields had 
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flows of 95 l/s and 100 l/s (Paradela, 1959).  Slightly earlier, in 1957, the municipality of Vila do 

Bispo was already supplied by a single borehole in the vicinity of the town of Almádena 

(Paradela, 1959). The location of the main boreholes extracting from the AO used for public 

water supply can be seen in Figure 7. 
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Figure 7– Location of the main public supply boreholes in use from 1989 to 2005. 

Until 1999 the AO was the main source for the public water supply of the municipalities of Lagos 

and Vila do Bispo, but after the Algarve multi-municipal water supply system was implemented, 

withdrawals from the AO diminished dramatically. Currently this aquifer system is held as a 

strategic reserve for use in case of a disruption to the municipal water supply as happened 

recently during the 2004/2005 drought. There is, however, a strong possibility that some of the 

existing boreholes could be used in the future in an integrated public water supply management 

scheme (Martins, 2007).  

Data on the volume of water extracted per month from the eight main public water supply 

boreholes during the last decade was gathered from the Municipal Councils in the scope of the 

OPTEXPLOR project (Nunes et al, 2006b). As can be seen in Figure 8, the data shows a 

steady increase in the number of boreholes in use as well as in the total extracted volume 
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during the last few years prior to the implementation of the multi-municipal water supply system, 

peaking in the year 1999 and then the subsequent dip in 2000. As is to be expected the highest 

registered extractions occurred during tourist season.  

 

Figure 8 - Yearly extracted volumes from the main public water supply boreholes on the AO from 1989 to 

2005. 

An inventory of extractions for irrigation and private supply, produced by the “Direcção Regional 

do Ambiente e Ordenamento do Terriotório” (DRAOT) Algarve and which covered 

approximately half of the known extraction points, indicates that these extractions are 

responsible for approximately 1.3x106 m3/year. Almeida et al. (2000) considered it safe to 

assume that therefore, the total of ground-water withdrawals for private supply and irrigation to 

be approximately 2.6x106 m3/year. 

Indirect methods, such as remote sensing, should be applied to better estimate these values 

based on the area of irrigated land such as already been done for the Querença-Silves aquifer 

system in this region (Nunes et al., 2006a) 
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Table 1– Water budget and estimation of withdrawal/recharge ratio for the AO considering average annual 

precipitation and pumping data from 1989 to 2005. 

Withdrawals 

Year Public Supply 
(m3/year x106) 

Private Supply 
(m3/year x106) 

Total        
(m3/year x106) 

Precipitation 
(mm) 

Recharge 
(m3/year x106) 

Withdrawal/Recharge 
(%) 

1989 2.51 2.60 5.11 1097.70 28.02 18.22% 

1990 2.84 2.60 5.44 553.90 14.14 38.47% 

1991 3.18 2.60 5.78 436.50 11.14 51.88% 

1992 2.82 2.60 5.42 422.00 10.77 50.35% 

1993 2.59 2.60 5.19 638.40 16.30 31.87% 

1994 3.25 2.60 5.85 317.00 8.09 72.35% 

1995 2.72 2.60 5.32 498.80 12.73 41.81% 

1996 3.41 2.60 6.01 1016.60 25.95 23.15% 

1997 3.69 2.60 6.29 787.90 20.11 31.27% 

1998 3.64 2.60 6.24 354.60 9.05 68.97% 

1999 5.33 2.60 7.93 399.20 10.19 77.84% 

2000 4.61 2.60 7.21 611.20 15.60 46.22% 

2001 0.99 2.60 3.59 720.00 18.38 19.56% 

2002 0.36 2.60 2.96 590.90 15.08 19.60% 

2003 0.34 2.60 2.94 602.40 15.38 19.14% 

2004 0.02 2.60 2.62 254.80 6.50 40.24% 

2005 0.37 2.60 2.97 361.50 9.23 32.19% 

 

The estimates presented in Table 1 indicate that a deficit in the water balance between inflow 

and outflow from the aquifer system has yet to occur. However it is likely that, if groundwater 

had continued to be the main source of public water supply up to the year 2005, the 

withdrawal/recharge ratio would have come close to reaching, or even surpassing 100%. The 

consequences of such a scenario would not necessarily have been drastic on the availability of 

water at a regional scale due to the high regulatory capacity of the aquifer system, however 

there is no indication of what effects these abstraction ratios would have at a local scale or on 

the quality of the water due to the lessening of the dilution effect. These estimates show that 

water management should take into account the high climate variability of the region, and not 

be based merely on values of average yearly budgets as has been the case for most 

management practices of ground-water resources. 
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2.4. Spatial and Temporal Evolution of Hydraulic Head 

Historical data used to characterize the spatial distribution and temporal evolution of ground-

water levels in the AO aquifer system were obtained from the observation points shown in 

Figure 9. The interpretation of this data allows us to define the predominant directions of 

ground-water flow which forms the basis of the conceptual model of the aquifer system.  

Part of this data consists of historical data collected by the CCDRA (Commission for the 

Coordination and Development of the Algarve), and is publicly available from the SNIRH 

website (SNIRH, 2009). This set of data is available, for some observation points, as far back 

as 1978 up to the present day. However, the spatial distribution of the observation points is 

insufficient to properly characterize the hydraulic behaviour of the aquifer (Martins, 2007). 

Piezometric data from automatic monitoring of ten observation points between March of 2007 

and July 2007 was obtained, and is also available online as part of the “Groundwater Flow 

Modelling and Optimization of Groundwater Monitoring Networks at the Regional Scale in 

Coastal Aquifers” research project undertaken at the University of the Algarve and funded by 

the Science and Technology Foundation “POCTI/AMB/57432/2004” (Martins and Monteiro, 

2008a). 

m0 20000 40000 60000 80000

 

Figure 9  – Location of the Piezometric observation points and piezometric 

map of the AO (doted lines). Red dots represent data provided by CCDRA, 

Blue dots represent data supplied by “POCTI/AMB/57432/2004” research 
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project. Thick black lines represent the aquifer systems main discharge 

areas. 

Table 2 – Piezometric data observation points. Ref. CCDR (reference number used by the CCDRA on their 

monitoring networks). Ref. UALG (reference number used by the University of the Algarve on their 

monitoring network). 

Ref. UALG Ref. CCDR M P Coordinate Max. Min. Average Amplitude 

 593/5 149150 22050 22.73 18.48 19.79 4.25 

- 594/400 152345 20470 4.10 1.77 3.15 2.33 

- 602/32 142640 14260 7.68 1.56 5.64 6.12 

- 602/36 142500 14270 7.65 1.09 4.52 6.56 

- 602/43 144320 14550 6.12 1.75 3.86 4.37 

- 602/76 149200 19450 8.53 0.88 3.89 9.05 

AO-02 602/178 145350 19250 7.23 2.51 5.45 4.72 

- 602/187 150350 19100 5.33 1.13 3.11 4.20 

- 602/242 146980 17100 6.98 1.86 4.67 5.12 

- 602/311 144000 17130 7.31 1.48 4.53 5.83 

- 603/38 152350 19020 5.00 0.25 2.56 4.75 

- 602/9 144016 14667 4.27 3.30 3.90 0.97 

- 602/10 143898 14670 4.57 3.72 4.24 0.85 

- 602/78 151336 18176 3.95 -0.28 1.93 4.23 

- 602/4 150021 18019 5.76 3.92 5.03 1.84 

- 602/5 150038 18028 5.89 3.76 5.19 2.13 

AO-13 602/6 149814 18328 5.27 4.10 5.04 1.17 

- 602/8 149810 18328 5.27 4.11 4.58 1.16 

AO-08 - 143286 18416 5.14 4.10 4.77 1.04 

AO-09 602/79 151565 17965 0.85 0.45 0.65 0.40 

AO-17 602/112 143376 15328 8.54 4.36 5.7 4.18 

AO-19 - 142900 14298 5.09 4.52 4.82 0.57 

AO-20 - 141418 15851 5.16 4.24 5.03 0.92 

AO-21 - 147622 17601 3.95 3.44 3.66 0.51 

AO-22 - 146846 20185 4.55 4.11 4.23 0.44 

AO-23 - 150524 20210 5.33 3.34 3.88 1.99 

 

The interpretation of the data in Table 2 and in Figure 9 shows that the hydraulic gradients are 

relatively low across most of the aquifer system except for in the north-eastern corner, and 
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regional flow occurs predominantly from NE (recharge area) to SW (discharge area at the Boca 

do Rio). A north to south flow can also be identified on the eastern side of the aquifer system, 

related to the discharge area at the estuary of the Bensafrim stream.   

In order to complement the spatial distribution of hydraulic heads represented by the 

piezometric map in Figure 9, the temporal variation of hydraulic heads for the 11 observation 

points with the longest time series (data provided by CCDRA) are represented in Figure 10. As 

can be seen, this data does not reveal significant variations of the water level. This behaviour 

could be a result of a high regulating capacity of the aquifer system, as well as being due to the 

well developed karst network of the aquifer system which allows for good hydraulic connections 

between all of the aquifers sectors and the natural discharge areas (Almeida et al., 2000). 
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Figure 10 – Historical data on hydraulic heads obtained from piezometers with the longest time series of data 

(data obtained from SNIRH, 2009). 

Of note are the values registered by the two piezometers which are significantly different from 

the rest. Unfortunately these are the only piezometers in their respective areas, and therefore 

there is currently no other data to corroborate these readings. Future monitoring planning 
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should consider the option of selecting extra observation points in these areas to obtain a more 

accurate understanding of these anomalous readings. 

 

2.5. Stream Network and Surface Water flow  

The system is crossed by various water lines originating in the hills to the north (the streams 

Vale do Barrão, Almádena and Bensafrim), and when these streams intersect the carbonated 

Jurassic formations which make up the aquifer system, most of the flow infiltrates. This is 

largely due to groundwater level below the stream bed which, as was mentioned previously, is 

in the range of 40-60m over most of its extension only coming close to the surface at the 

discharge areas due to the formations which cause a barrier at the southern limits of the aquifer 

system.  

Data on stream flow was collected by the CCDRA starting January 2005 to October 2006 from 

gauges on the Almádena and Bensafrim streams, the location of which can be seen in Figure 

11. Gauges on a drainage system which collects water from springs at Portelas and Sargaçal 

(one of the natural discharge areas for the AO) collected data on spring flow for the same 

period. 
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Figure 11 – Main streams (dotted blue lines) and hydrometric stations and monitored 

springs (red crosses) on the Almádena-Odeáxere aquifer system. 

From January 2005 to the end of the 2004/05 hydrological year, the stream at Almádena was 

always dry. For the same period of time, a total flow of 6480 m3 was registered at the Barão de 

S.João gauge. The entirety of that flow was registered before March, with the stream being dry 

from that month to the end of the hydrological year, in September. Downstream from the Barão 

de S.João gauge there is a discharge point for a sewage treatment plant, which registered a 

discharge of 12440 m3 for the same period (Reis, 2007). This corresponds to a total flow of 

18720 m3 which, apart from a small portion loss to evapotranspiration, will have infiltrated into 

the aquifer system. 

 During the 2005/06 hydrological year, total flow at Almádena was 189130 m3, whilst at Barão 

de S. João, including discharge from the sewage treatment plant was 221155 m3. This indicates 

that about 32025 m3 will have infiltrated, which is relatively insignificant at the scale of the AOs 

water budget (Reis, 2007). It is important to refer that there is no estimate of the flow from the 

tributaries which connect to this stream in-between the hydrometric stations. Therefore the 

impact of potential recharge from the tributaries is unknown. 

It is of note that, near Barão de S. João there are alluvium deposits on top of the limestone 

formations, which form a small aquifer which is mostly recharged by the stream. It is therefore 

likely that the volume of water from the stream that reaches the karst aquifer is even less 

significant (Reis, 2007). 

Unfortunately, due to technical difficulties in installing the sensor, there is no data for stream 

flow downstream from Almádena, at the Boca do Rio discharge area.  

The Bensafrim stream was monitored in three places, on the Machada and Sobrosa streams 

(which join together to form the Bensafrim stream, slightly upstream from the AO) and at 

Portelas at one of the AOs natural discharge areas. The difference between the volume of flow 

registered at Sobrosa and Machada and at Portelas was 716256 m3 for the hydrological year of 

2004/05 and 2192000 m3 for 2005/06 (Reis, 2007). This value of recharge from this stream is 

significant considering it represents approximately 13% of the AOS average annual water 

budget.  

Unfortunately this data only covers a short period, and is insufficient for a comprehensive 

analysis of surface water behaviour. However, as can be seen in Figure 12 the flow in both 
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these streams is dependent on rainfall, only occurring after precipitation episodes and drying up 

during dry periods. Therefore it can be supposed that the wetlands which are associated with 

them depend on the presence of ground water discharge to maintain their functionality. 
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Figure 12 – Stream hydrographs measured at the Portelas-Bensafrim gauge (blue line) and 

Almádena gauge (red line) compared to precipitation (black line; top axis) registered at the Lagos 

gauge (31E/01UC); Almádena gauge was inoperative during part of 2005. 

 

2.6. Wetlands 

The AO aquifer system is hydraulically connected to two wetlands which are formed by upward 

seepage at the aquifers diffuse discharge areas, as was previously mentioned in chapter 2.3.2. 

Wetland ecosystems hold an important part of Europe’s biodiversity. They provide ideal 

conditions for a vast diversity of habitats and species. They are especially important for birds, 

providing vital nesting and migratory flyway areas, as well as for fauna species and countless 

specialist plant species (Silva et al., 2007). Wetlands support a wide range of public goods and 

services, such as providing fresh water and recreational tourism opportunities. In addition they 

act as carbon sinks and are therefore fundamental asset in our efforts to reduce levels of 

greenhouse gases in the atmosphere. However, despite their importance, wetlands are 
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disappearing or are being polluted at an alarming rate and are among Europe’s most 

threatened ecosystems (Silva et al., 2007). 

The wetland known as the Paúl de Lagos (or Paúl da Abedoeira) is located at the mouth of the 

Bensafrim stream, to the North-east of the city of Lagos and within a short distance from the 

protected Ria do Alvor. It is considered one of the most important wetlands in the Western 

Algarve due to its rich biodiversity. This wetland covers an area of 297 hectares and has an 

interesting mix of flora and fauna (Costa, 2001). The vegetation found here, as well as the 

various channels which cover it, attract numerous species of birds which come to nest, as well 

as many reptiles and other animals which proliferate in the undergrowth (Costa, 2001). Over 

373 species of plants, 37 types of butterflies, 15 different mammals as well as 190 species of 

birds have been documented. Of particular note is the Monarch Butterfly (Danaus plexippus), 

which is extremely rare in Europe and the only known breeding colony in Portugal is at the Paúl 

de Lagos (Costa, 2001). 

 Human occupation and alteration of the Paúl is well documented as far back as the XV century, 

during which a channel system was built in order to drain the marsh as well as provide water to 

the city of Lagos (Barata, 2003). Since then the Paúl has mostly been used as agricultural land 

up until the 1970s, when it was occupied by rice paddies. With the decline of agricultural 

activities in the recent past, they have been mostly abandoned and are currently reduced to a 

few small farms (Domingos et al., 2008). 

This area was recently the focus of a study by the Portuguese Society for the Protection of 

Birds (SPEA) and the British Royal Society for the Protection of Birds (RSPB) to determine the 

present state of its wildlife and steer a proposed habitat creation opportunity supported by the 

Lagos Municipal council. They determined that the flow from the springs in the area, which is 

currently flowing along ditches into the sea, could be viably harnessed for habitat creation 

(Costa, 2001). It was established that the Paúl de Lagos would be suitable for creating a large 

self-sustaining fresh water lagoon which would enhance this areas already large ornithological 

significance.  

The Boca do Rio wetlands (also known as the Vale de Barao wetlands) form at the confluence 

of the Ribeiro de Budens, Ribeiro de Boi and Ribeiro de Vale Barao, west of Lagos. The 

wetlands occupy a fault-bounded valley at the coast, extending inland for approximately 1 km 

before dividing into the three tributary valleys (Allen, 2003). Land use in the catchment is at 

present largely agricultural, but with much uncultivated land. Much of the wetland area is 
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supratidal, separated from the sea by a narrow beach which prevents marine ingress even 

during severe storms (Allen, 2003). Consequently a well-developed creek system, such as that 

associated with many coastal marshes, is absent. The major outflow of the rivers has been 

canalized as it crosses the wetlands, but periodically there are extensive floods from 

precipitation in the catchment (Allen, 2003).  

Land-use activity in the catchment inevitably influences the ecology of the wetlands giving rise 

to the transience of the varying ecological status of the wetlands. Recognition of this is 

important given that wetlands are among the most threatened of Mediterranean ecosystems 

and environments. Major threats come from development pressures and reclamation; a Council 

of Europe survey in 1984 found that 80 per cent of Portuguese wetlands were vulnerable to 

reclamation (Hollis, 1992). The threat comes from tourism and recreation, and unsustainable 

abstraction of drinking water. For the Mediterranean basin as a whole, estimates suggest that 

by 2025 there will be about 380 million tourists per year if economic growth is weak, but about 

760 million if it is strong and that almost half of these tourists will be concentrated along the 

coast, many in Portugal (Stanners and Bourdeau, 1995). Although there have been no major 

tourist developments in the Boca do Rio catchment, there are some small villa complexes and 

the wetlands themselves are reportedly now threatened by the development of a marina. 

While not a site of prime conservation value in the Algarve (in comparison, for example, with the 

much larger and more varied habitats of the Rio Formosa National Park further east), the Boca 

do Rio wetlands provide valuable habitat for wildlife, especially as attempts at reclamation for 

agriculture have been abandoned and marsh conditions have become re-established (Allen, 

2003). Populations of some wetland species are high, especially of the European pond turtle 

(Emys orbicularis) and the viperine water snake (Natrix maura). It is also believed that there are 

important populations of freshwater birds such as rails (Rallidae) and crakes (Porzana spp.) 

(Pullan, 1988). 

Considering the significance and fragility of these surface water bodies, it is of utmost 

importance to properly understand any potential threats to their existence and function. Taking 

into account the dependence of these two wetlands to ground water discharge, any water 

resource management plan which takes into account the use of ground water as a source of 

supply must consider the impacts this could have on these surface water bodies and their 

associated ground-water dependent ecosystems. 
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3. Numerical Modelling Method 

In this chapter, a brief description will be given of the physical principals underlying the 

simulation of the hydraulic of the aquifer system, followed by a brief description of the numerical 

method to be applied. 

The following description is adapted from Monteiro (2001): 
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In which: 

Kxx, Kyy and Kzz are values of hydraulic conductivity [LT-1] along the x, y and z Cartesian axis 

which are assumed to be parallel to the directions of greater hydraulic conductivity, h is the 

hydraulic potential [L], Q is the volumetric flux per unit of volume [L3T-1L-3] that represents fluid 

gains and losses and Ss is the storage coefficient, necessary to simulate transient variations on 

the reserved volume of water [L-1]. 

Hydraulic conductivity is defined by the expression: 

µ

ρ kg
K =       (2) 

In which ρ is the density of water [ML-3], g is gravitic acceleration [LT-2], k is the intrinsic or 

geometric permeability [L2] and µ is the dynamic viscosity [ML-1T-1]. 

The piezometric level, also known as hydraulic potential (h [L]), corresponds to the energy per 

unit of mass of the fluid, if kinetic energy is disregarded, as is expressed as the sum of the 

elevation potential, z [L] of the fluid and the pressure potential, p [ML-1T-2] at a given point: 

z
g

p
h +








=

ρ
      (3) 

The storage coefficient [L-1] is defined by the expression: 

( )βαρ ngS s +=      (4) 
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In which α represents the compressibility of the porous media [LT2M-1], n is the effective 

porosity (non-dimensional) and β is the waters compressibility [LT2M-1]. 

Equation (1) is often expressed in a more compact manner, using the divergence and gradient 

differential operators: 

[ ]( ) QhgradKdiv
t

h
S s =−+

∂

∂

  
   (5) 

The equation describing groundwater flow can be solved for particular boundary conditions by 

the finite element method, which is a particularly well suited approach for integrating partial 

differential equations over space and thus to simulate flow  in complex geometry flow domains. 

The use of finite element models is currently a standard approach for solving problems in 

hydrogeology and is described in textbooks such as HuyakomandPinder (1983), Kinzelbach 

(1986), WangandAnderson (1982) and BearandVerujit (1987). 

The finite element method is implemented in several commercial and public domain codes to 

solve problems in hydrogeology. The most employed method to assemble the element matrix is 

the Galerkin method of weighted residuals. The description of the principles of this method is 

adapted from Monteiro (2001): 

The flow domain is divided into discrete elements, each of which is characterized by its shape, 

hydraulic conductivity and storage coefficient. Equation (5) is presented in the form: 

 0)( =hL       (6) 

Where L is a differential operator and h is the dependant variable (hydraulic head). 

A trial solution 
^

h  for the unknown variable is defined as a function of a set of quadratic or linear 

polynomial functions, expressed by the Equation (7). 

 j

n

j

j hNh ∑
=

≅
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^

      (7) 

, where hj are the unknown nodal values, Nj are the interpolation (or basis) functions and n is 

the total number of nodes defining the elements in a mesh representing the geometry of the 

flow domain. When h is substituted by 
^

h  in equation (7) an approximate solution is defined. 

Therefore residuals r, defined by equation (8) will occur: 
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0)( ≠= hLr
     

 (8) 

To minimize the residual over the entire flow domain an integral equation is written to ensure 

that the basis functions satisfies the partial differential equation of flow. This is accomplished by 

defining a weighted integral of r over the elements of the flow domain and then setting this 

integral equal to zero. As a consequence of this the weighted integral will be zero over the 

entire flow domain V and thus over the entire set of n weighting functions (Wi):  

 0)( =∑∫ dVhNLW j

j

j

V

i   for i = 1,2,…, n  (9) 

Thus the method of weighted residuals seeks to determine the unknown hj in such a way that 

the error is minimized in the flow domain V. In the Galerkin method the employed interpolation 

(or basis) functions and weighted residual functions are the same (Ni = Wj). After the definition 

of these functions (usually linear or quadratic polynomials) the values of hˆ calculated by 

equation (7) are combined with equation (9)  to provide a set of simultaneous equations where 

the unknown variable 
^

h is defined for each of the n nodes of the finite element mesh (equation 

10): 

 [ ] { }fhA =








⋅
^

      (10) 

Where
 
[ ]A  is the global stiffness matrix and 







 ^

h  is the vector of unknown variables and 








f  is 

the source term. Once the values of all elements are combined, including prescribed boundary 

conditions, the resulting set of simultaneous linear algebraic equations is solved using different 

solution algorithms. Different direct and iterative solvers based in matrix solution techniques are 

available to solve the resulting assembled algebraic equations. 
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4. Ground-Water Flow Model 

In Chapter 2, an overview was given of the current knowledge, data and information available 

on the AOs hydrogeological behaviour.  

The following chapter aims to describe the steps taken in the construction of the model which 

lead to the version applied in this thesis. It is important to point out that some of this work was 

carried out by researchers from the University of the Algarve prior to the beginning of this 

thesis, namely the generation of the finite element mesh, definition of boundary conditions and 

definition of spatial distribution of transmissivity.  

4.1. Conceptual Model 

The AO has an area of 63.5 km2 and stretches from Odeáxere (east) to Almádena (west). The 

aquifer system is a free to confined karstic system, which develops in carbonate Lias-Dogger 

outcrops and stretches in a NE-SW direction. The dominant lithologies are limestone, dolomite 

limestone and dolomite rock with thicknesses between 1000m and 60m, and which present, in 

certain places, a well developed karst (Reis, 1993; Almeida et al., 2000).  

Regional groundwater flow occurs predominantly from the NE to SW. There are two main 

sources of recharge: indirect infiltration from streams flowing across the system (the Bensafrim 

and Odeáxere being the most significant) and direct infiltration over the system (Reis, 1993). 

The system is traversed by various water lines originating in the hills to the north (the streams 

Vale do Barrão, Almádena and Bensafrim), and when these streams intersect the carbonated 

Jurassic formations which make up the aquifer system, most of the flow infiltrates. The main 

natural discharge areas are located (1) along the Bensafrim stream, which forms the main 

drainage axis for the AO system and (2) a second diffuse discharge area at Boca do Rio the 

SW point of the system which feeds a wetland area (Almeida et al., 2000). 

4.2. Numerical Model 

Ground water flow was simulated by the use of FEFLOW (Finite Element Subsurface Flow and 

Transport Simulation System). This is sophisticated software and consists of an interactive 

simulation model of groundwater flow in 3D and 2D, using the numeric method of resolving 

partial differential equations through finite elements mesh (FEM). 
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4.2.1. Finite Element Mesh 

The first step taken in the development of the current model was the creation of a 2D non-

structured finite element mesh (FEM). The mesh was generated using the Delaunay TMesh 

method, which was developed at the Swiss Institute of Technology (Laboratory of Geology, 

Laussanne, Switzerland) and is composed of 7494 nodes and 14533 triangular finite elements, 

which can be seen in Figure 13. In order to generate the mesh, the aquifer’s limits, the system’s 

geological cartography and a database containing important water points were taken into 

consideration. 

m0 20000 40000 60000 80000
 

Figure 13 - Finite element mesh based on the geometry of the Almádena-Odeáxere 

aquifer system. 

 

4.2.2. Simulation of Transient Ground-Water Recharge 

As discussed in Chapter 2.3.1, Vieira and Monteiro (2003) proposed an average recharge of 

40.3% of the precipitation over the entire 63.5km2 of the aquifer system. This value was 

obtained from the weighted average, taking into account the presence of sub-areas in which the 

recharge classes vary between 5% and 50% depending on the lithology which outcrops in that 
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sub-area. This value was considered adequate for use in transient state simulations by Martins 

and Monteiro (2008b). 

In order to perform transient simulations, recharge was calculated using average daily 

precipitation values, obtained at the Lagos (31E/01UC) meteorological station. These values 

consist of abrupt point inputs and were converted into smoother continuous recharge inputs 

before being introduced in the AO finite-element model in an attempt to minimize a potential 

source of numeric instability into the model, as is illustrated in Figure 14.  
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Figure 14 - Illustrated example of the transient recharge input method based on 

measured precipitation values of a typical precipitation episode. Adapted from Martins 

and Monteiro, (2008b). 

Given an episode of precipitation (consisting of one or more days of significant precipitation), 

equation (11) is used to calculate the highest value of recharge, hrec, attained during the 

episode: 

2
rec

R P
h

n

× ×
=       (11) 

In which R is recharge rate, n is the number of days of the precipitation episode and P is the 

total precipitation occurring at the episode.  

Values of transient recharge were distributed linearly increasing from the beginning of the 

episode until hrec and decreasing afterwards until reaching the last day of the episode. This 

method had been previously implemented by Martins and Monteiro (2008b). 
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4.2.3. Boundary Conditions 

Hydraulic potentials were imposed along the areas in which natural discharges are known to 

occur (Monteiro et al., 2003). Potentials were imposed on discharge areas, along the stream 

watercourses, where it is known that historical piezometric values in the surrounding area are 

above ground level as can be seen in Figure 15. 

m0 20000 40000 60000 80000  

Figure 15 – Imposed potentials (thick black lines) along the known natural discharge 

areas and stream network (dotted blue lines). 

 

4.2.4. Previously Calibrated Hydraulic Parameter: Transmissivity 

Over the last two decades, hydraulic parameters were obtained for the AO via pumping tests in 

boreholes (Reis, 1993; Almeida et al., 2000); however these methods cannot provide sufficient  

data to carry out a realistic representation of regional aquifers (Martins and Monteiro, 2008b).  

In order to enhance the reliability of the simulation of AO’s hydraulic behaviour, Martins (2007) 

performed a calibration of the physical parameters which control groundwater flow. The 

calibration of the transmissivity (T) parameter was performed by inverse modelling, using the 

Gaus-Marquadt-Levenberg method, implemented via the non-linear parameter estimation 
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software PEST.  Individual values of transmissivity were defined for 16 zones which can be 

seen in Figure 16, where the behaviour registered by piezometers allows for a reasonable fit 

between field data and the model’s results. The optimization of the results was based on 

numerous steady-state runs of the model, in which several variants of the model were tested to 

search for the best possible reproduction of the varying pattern of the hydrographs at the 

effluent reaches of the Bensafrim and Almádena streams (Martins, 2007; Martins and Monteiro, 

2008a). 

 

Figure 16 – Spatial distribution of T values for each of the 16 

predefined zones obtained using inverse calibration. From Martins 

(2007). 

The variant with the best fit showed a correlation coefficient, R, of 99.7% and a value of 4.56m 

for the sum of squared weighted residuals between model results and corresponding field data. 

The model’s calibration results provided the first estimate of the regional transmissivity values 

distribution, which range from 86 m2/day to 8158 m2/day, allowing for a higher precision in 

future simulations of spatial distribution and temporal evolution of state variables (Martins, 

2007). 

It should be noted that this variant of the model at the time of the current thesis had not been 

validated for use under stress conditions such as ground water withdrawals in transient-state 

simulations. 
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4.3. Transient State Calibration: Storage Coefficient 

Martins and Monteiro (2008b) undertook an initial analysis of the values of the storage 

coefficient (S) which best represented the aquifer systems behaviour over time. However at the 

time, they reduced their analysis to a uniform value of S for the entire area of the aquifer system 

not taking into account the spatial heterogeneity of hydraulic properties. This procedure is 

common practice due to the complex and time consuming nature of the calibration process 

under transient conditions. They determined that 0.1 was the most adequate uniform value of S 

in reproducing the variations of hydraulic head over time (Martins and Monteiro, 2008b).  

As part of the work undertaken for the current thesis, an attempt was made to refine the results 

obtained by these authors by obtaining a higher resolution of the spatial distribution of the 

storage coefficient (S). Even though physically possible values of S cover a much smaller span 

than those of the transmissivity parameter, the complexity of this process justifies by itself the 

time investment necessary to undertake the calibration of the parameter S. In fact, S can vary 

between values in the order of 1x10-5 to 1x10-3 for confined aquifers and 1x10-2 to much higher 

values (reaching close to values of total porosity) for unconfined aquifers. Considering the 

smaller span of possible values of S, a trial and error based method is likely to take less time to 

undertake than the use of inverse calibration techniques, however it must be kept in mind that 

this method brings with it certain limitations as will be discussed in chapter 4.5. 

Unfortunately the data made available by the CCDRA is not detailed enough for a proper 

analysis of the storage coefficient due to its insufficient temporal resolution. The data supplied 

by the CCDRA is comprised of measurements taken once per month from each observation 

point; therefore it does not show the aquifers response to short term recharge events which can 

last merely a few days or even a few hours. 

On the other hand, the data provided by the “Groundwater Flow Modelling and Optimization of 

Groundwater Monitoring Networks at the Regional Scale in Coastal Aquifers” research project 

(Malgar) is comprised of readings from 9 observation points taken every 2 hours from March 

2007 to July 2007, the location of which can be seen in Figure 17. Although this is a relatively 

short period of time, it is sufficient to analyse the aquifer system’s response to several recharge 

events as well as emptying periods of the system. 
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4.3.1. Calibration Process 

The aquifer system was divided into zones based on the constant transmissivity zones 

proposed by Martins (2007), which are based on the character of the piezometric contours as 

there is little variation in the geology of the study area, and are shown in Figures 16-17. Due to 

the limited spatial distribution of data, and to reduce the amount of necessary iterations, these 

zones were subsequently grouped into areas according to the geographical location of 

observation points as can be seen in Figure17.  
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Figure 17 – Location of the selected observation points and proposed areas of 

constant storage coefficient. 

Once the different areas had been obtained, the storage coefficient values were estimated by 

trial and error method by varying the value of storage coefficient for each area between 0.01 

and 0.15, with steps of 0.025 in search of the value that obtained the best fit between simulated 

and measured hydraulic heads at the chosen observation points for the time period under 

consideration. The simulations took into account recharge calculated from precipitation values 

March 2007 to July 2007, as explained in chapter 4.2.3.  

It was found that the behaviour of the simulated hydraulic head was not significantly influenced 

by the changes in the values of storage coefficient in down-gradient areas. Therefore, to reduce 
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the amount of necessary iterations, the values of storage coefficient for the up-gradient areas 

were varied first, whilst keeping the values in the down-gradient areas static 

 

4.3.2. Calibration Results 

The results of each iteration were evaluated based on their root mean square error (RMSE) 

which is defined by the expression (Belitz et al., 1993): 
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In which meash is the hydraulic head registered at the observation points, simh is the hydraulic 

head simulate with the model and n is the number of measurements.  

There is however a limitation to this method when evaluating how well a model simulates the 

transient behaviour of hydraulic head measured at a given piezometer.  In some cases due to 

inaccuracies in the model, values of hydraulic head are systematically simulated with a certain 

offset to the measured values. An example of this can be seen in Figure 18 in which results 

from simulations at AO-08 with different values of S in the respective area are both “above” 

measured values. Considering that RMSE is essentially the average of the differences between 

simulated and measured values of hydraulic head, in these cases the value of RMSE would be 

a measure of which simulated values are “closer” to measured values and not necessarily the 

ones which better simulate the transient behaviour observed at the piezometer. In the example 

presented in Figure 18, simulations with an S of 0.025 resulted in the lowest values of RMSE 

compared to simulations with an S of 0.05; however if the plots were transposed so as to make 

the initial heads of the simulated and measured plots coincide, it was clear that the simulation 

with an S of 0.05 was a better representation of the transient behaviour of the observed 

hydraulic head. 

It was therefore necessary to adjust the values obtained for simulated hydraulic head; this was 

done by subtracting the difference between the initial values of simulated and measured 

hydraulic head, from the simulated heads at each respective observation point. This effectively 

cancelled the previously mentioned offset, and guaranteed that the RMSE was an effective 

measurement of how well the simulations represented the transient behaviour observed at the 

piezometers. 
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Figure 18 – Comparison between corrected and non-corrected simulation results and their similarity to 

measured values for observation point AO-08. 

The spatial distribution of storage coefficient values which resulted in the lowest values of 

RMSE is shown in Figure 19. The values of RMS obtained for each observation point with this 

distribution are presented in Table 3. The values obtained for AO-19, 20, 22 and 23 are 

significantly higher than the rest.  

Table 3 – Values of RMSE for the best 

spatial distribution of storage coefficient. 

Observation Point 
RMSE 

(corrected) 

AO 02 0.042 

AO 08 0.040 

AO 13 0.030 

AO 19 0.162 

AO 20 0.186 

AO 21 0.054 

AO 22 0.133 

AO 23 0.337 

Total 0.984 
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Figure 19 – Proposed spatial distribution of storage coefficient. 

The data measured at AO-20, 22 and 23 shows an overall rise in ground water levels over the 

entire sample of data, contrary to the trends seen at all the other observation points and 

suggested by the model. This could be due to various reasons: measurement errors, an 

inadequate conceptual model for this area of the aquifer or, considering the location of these 

observation points, the influence of recharge from the hills to the North which is not considered 

by the numerical model. It is clear that a better description of this area is needed for further 

refinements of the model; however the currently available data is insufficient to refine it much 

further. 

 

4.4. Model Validation 

None of the previously described versions of the AO numeric model have yet been tested for 

use under stress conditions such as pumping. In order to carry out the analysis proposed in this 

thesis it was necessary to verify the models’ functionality under the aforementioned stress 

conditions, as well as its ability to accurately simulate hydraulic heads and flows at the natural 

discharge areas. 
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Unfortunately there is a discrepancy in the timeline of available data as can be seen in Table 4. 

Data on pumping rates is only available from 1989 up to 2003; and hydrometric and spring flow 

data is only available from 2004 until 2006. It was therefore necessary to analyse two separate 

periods (1) to verify both the models functionality under stress conditions and (2) its ability to 

simulate flows at the natural discharge areas under transient conditions.  

A first variant was used, based on recharge values from January 1997 until December 2003 

and pumping rates from the same period to test the models stability under stress conditions and 

the accuracy in simulating the temporal evolution of hydraulic heads.  

The second variant was based on recharge values from January 2005 until September 2006, in 

order to compare the models results to spring flows measured at the natural discharge areas.  

Table 4 – Temporal distribution of available data series relative to the AO. 

Precipitation                 

Piezometric (Malgar)                 

Piezometric (SNIRH)                 

Pumped Volumes                 

Hydrometric and Spring Flow                 

  <1989 1989 1990-2002 2003 2004 2005 2006 2007 

 

4.4.1. Temporal Evolution of Hydraulic Heads 

The aquifers response was simulated from January 1997 until the end of December 2003. This 

period was chosen for various reasons: being the period for which the largest amount of 

piezometric data is available, during which extraction for public water supply was in effect; and 

due to it covering both a period of high ground water levels (1997) followed by a drought period 

(1998-1999), as can be observed in Figure 10 and Table 1. Water extraction for public water 

supply was simulated based on monthly values supplied by the Municipal Councils, previously 

described in chapter 2.3.3. The location of the observation points with data for this period as 

well as that of the extraction points in use can be seen in Figure 20. 
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Figure 20 – Location of piezometric observation points with data from January 1997 

until December 2003 (black crosses) and boreholes for public water supply (red 

crosses). 

The plot of the measured and simulated values of hydraulic head for each observation point is 

shown in Figures 21-22, along with the respective values of RMSE in Table 5.  

Table 5 – Values of RMSE obtained for the 

simulated ground water levels between January 

1997 and December 2003. 

Observation Point RMSE 

593/5 3.280 

594/400 8.369 

602/43 0.936 

602/76 1.306 

602/178 1.282 

602/187 1.451 

602/242 1.020 

602/311 1.123 

603/38 1.152 
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Figure 21 - Measured (dotted line) and simulated (continuous line) hydraulic heads for the 

period between January 1997 and December 2003. 
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Figure 22  – Measured (dotted line) and simulated (continuous line) hydraulic heads for 

the period between January 1997 and December 2003. 
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Overall the model simulates the ground water levels adequately. There is however a significant 

discrepancy in North-eastern area of the aquifer system. At the observation point 594/400 the 

model consistently overestimates the ground water level; however there are certain 

uncertainties about the validity of the data for this piezometer as was discussed in chapter 2.4. 

4.4.2. Natural Discharge 

Unfortunately there is no data on spring flow for the period of time between 1997 and 2003. In 

fact available data on spring discharge is limited to a period from January 2005 to September 

2006, and only for certain springs’ in the area of Portelas. A second simulation was run for this 

period in order to verify the models ability to replicate spring discharge. 

As can be seen from Figure 23 the model simulates the behaviour of the springs relatively well, 

although the emptying rate is somewhat slower in the model than measured at the springs. The 

model shows significantly higher flow rates than those measured at the springs; this is likely due 

to the flow rates shown for the simulation being spread out over a much larger area than the 

two springs for which there are data. The lack of available spring discharge data and the 

difficulty in quantifying diffuse discharge in the area makes it difficult to accurately verify the 

numerical model ability to simulate the volumes of discharge. 

As explained in a previous chapter, there is no available data on spring flow rates for the Boca 

do Rio discharge area making it impossible at this time to verify the validity of the model in 

simulating discharge at this area. 
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Figure 23 – Flow rates measured at the two springs [Sargaçal and Portelas (vala)] and simulated discharge at the 

Portelas natural discharge area (top); measured flow rates at the Sargaçal spring and displaced plot of simulated 

discharge at Portelas (bottom). 
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4.5. Remarks on Model Limitations 

As well as the difficulties related to the modelling of ground water flow in karst aquifers 

discussed in a previous chapter, numerical flow models suffer from various other limitations. 

Despite the reasonable results obtained with the steady state and transient conditions, the use 

of this model as a management tool must be done taking into account the potential limitations 

inherent to such models. 

A ground-water-flow model represents a complex, natural system with a set of mathematical 

equations that describe the system. Intrinsic to the model is the error and uncertainty 

associated with the approximations, assumptions, and simplifications that must be made. 

Hydrologic modelling errors typically are the consequence of a combination of (1) input data, (2) 

representation of the physical processes by the algorithms of the model, and (3) parameter 

estimation during the calibration procedure (Troutman, 1985). 

(1) The number and distribution of piezometers monitoring the AO is limited. In particular 

piezometers with data with a sufficient temporal resolution to observe and analyse transient 

behaviour in the aquifer is severally limited. Added to which this data does not cover a period 

during which withdrawals for public supply were in effect. 

There is a significant lack of data on both surface water crossing the AOs surface as well as 

limited data on the spring flows at the discharge areas (in the case of Boca do Rio there is 

currently no data). Although this data is perhaps not fundamental for the ground water flow 

model, it would certainly contribute to its validation and a better understanding of the AOs 

hydraulic properties and behaviour in particular at the local scale of the discharge area. 

(2) A numerical model cannot represent completely, or "capture" all the physical processes of a 

watershed. Determining if a weakness in a simulation is attributable to input data error or model 

shortcomings is almost impossible, but the simplifying assumptions and generalizations that are 

incorporated into a model undoubtedly affect the results of the simulation. 

(3) Errors in parameter estimates occur when improper values are chosen during the calibration 

process. Various combinations of parameter values can result in low residual error, yet 

improperly represent the actual system. An acceptable degree of agreement between simulated 

and measured values does not guarantee that the estimated model parameter values 

reasonably represent the actual parameter values. The use of nonlinear regression and 

associated statistics could remove some of the effects of non-uniqueness, but certainly would 
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not eliminate the problem entirely. Considering that the methods applied for the transient 

calibration of the AO model were trial and error based, it must be kept in mind that there could 

be significant error in the geographical distribution of the storage coefficient parameter.  

The model used in this study can be refined, and the ground water flow system can be better 

represented as more data becomes available to constrain it. 
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5. Simulated Effects of Hypothetical Ground Water Withdrawals 

5.1. Hypothetical Scenarios 

The transient calibrated ground water flow model as described in previous chapters was used to 

evaluate the effects of hypothetical withdrawals from boreholes previously used as a source of 

public water supply on the regional flow system and on ground water discharge at the Portelas 

and Boca do Rio wetlands. 

Recharge for these simulations was calculated based on the precipitation values for the period 

between September 2003 and September 2006. This period was chosen as it covers the 

drought year of 2005, as well as a prior and subsequent year of average rainfall.  

As was previously described, head values are imposed on the nodes which correspond to the 

stream reaches at the natural discharge areas; this implies that the amount of water flowing 

between the stream and the aquifer depends on the heads in the nodes that surround the 

specified head boundary representing the stream. Considering the intermittent nature of these 

streams the existence of water flow is not constant, only occurring after rainfall. Therefore, for 

the purposes of these simulations, constraints (maximum and minimum flow rates) were 

imposed on the specified-head boundaries to avoid the streams becoming a source of recharge 

for the aquifer at these locations. 

Constant pumping rates were imposed on nodes corresponding to the location of the main 

boreholes used for public supply for the entire period of the simulation, even though this is not 

representative of observed seasonal variations in pumping rates. Scenarios were simulated by 

varying the pumping rate on these boreholes for each scenario. The pumping rates were varied 

between 0% and 100% with steps of 10% of the maximum yield of each borehole. An additional 

scenario with pumping rates of 35% of the maximum yield was added later, so as to have a 

better distribution of results when the natural discharge at Portelas reached zero. It should be 

noted that pumping rates of 100% of the maximum yield are not very realistic over the long 

term, and in fact the model simulated drawdown’s around several boreholes which resulted in 

water depths lower than the depth of the pumps. Constraints could also be have been defined 

here (in terms of maximum/minimum drawdown), however they were not applied at this time. 

Future variants of the model should take this into consideration. 
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The values of maximum yield were obtained from various sources, namely technical reports 

elaborated at the time of the boreholes construction which were collected by Paradela (1959) 

and values supplied by OPTEXPLOR. 

Table 6 – Hypothetical ground water withdrawal scenarios and their respective pumping rates based on 

percentages of the maximum yield for each borehole; *Almádena well-field; **Portelas well-field. 

 
Sim 

 1 

Sim 

2 

Sim 

 3 

Sim 

 4 

Sim 

 5 

Sim 

 6 

Sim  

7 

Sim  

8 

Sim  

9 

Sim 

10 

Sim 

11 

 10% 20% 30% 35% 40% 50% 60% 70% 80% 90% 100% 

Borehole Pumping Rate (m
3
/day) 

FD3* 216 432 648 756 864 1080 1296 1512 1728 1944 2160 

JK8* 518 1037 1555 1814 2074 2592 3110 3629 4147 4666 5184 

LF0* 104 207 311 363 415 518 622 726 829 933 1037 

LF11* 259 518 778 907 1037 1296 1555 1814 2074 2333 2592 

LF1** 605 1210 1814 2117 2419 3024 3629 4234 4838 5443 6048 

LF2** 432 864 1296 1512 1728 2160 2592 3024 3456 3888 4320 

LF5** 207 415 622 716 829 1037 1244 1452 1659 1866 2074 

LF6** 821 1642 2462 2873 3283 4104 4925 5746 6566 7387 8208 

LF8** 864 1728 2592 3024 3456 4320 5184 6048 6912 7776 8640 

TOTAL 4026 8053 12079 14092 16105 20131 24157 28184 32210 36236 40262 

Additionally two more scenarios were simulated, one with no pumping which corresponds to the 

natural state of the AO (Sim 0) and one based on the historically highest daily pumping rate 

measured at each borehole during the period of 1989 until 2003 (Sim 12) the values of which 

are presented in Table 5. 

Table 7 – Pumping rates based on historical data for 

hypothetical ground water withdrawal Scenario 12. 

Borehole 
Scenario 12 

(m
3
/day) 

% of Maximum 

Yield 

FD3- Almádena 1108.4 51% 

JK8- Almádena 4455.7 86% 

LF11- Almádena 721.5 28% 

LF1- Portelas 2944.6 49% 

LF2- Portelas 2786.4 65% 

LF5- Portelas 1645.4 79% 

LF6- Portelas 2081.3 25% 

LF8- Portelas 2294.4 27% 

LF0- Almádena 1036.8 100% 

TOTAL 32918.4  
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5.2. Results 

The results from the various scenarios were compared based on the lowest simulated outflow 

rate at both discharge areas for the period of the simulation, which are presented in Table 8 and 

Figure 24. The discharge at Portelas is the most rapidly affected, having reached values close 

to zero with pumping rates of 35% of the maximum yield, whilst the discharge at Boca do Rio 

only reaches zero at maximum yield pumping rates. This is to be expected, as the well field in 

this area (LF1 to LF8) has significantly higher values of maximum yield (approximately 3x 

higher) than the values of maximum yield of the well field at Almádena which is closer to the 

Boca do Rio discharge area. 

Scenario 12 (Sim 12), which measured ground water abstraction based on the highest historical 

pumping rates also caused flow from the discharge area at Portelas to cease. When 

considering this result it is important to keep in mind that the applied pumping regime is not 

realistic as it does not take into account seasonal variation and assumes all pumps to be 

working at all times. However, at their peak, values of annual volume of abstracted ground 

water (previously presented in Table 1) were at an average rate between 30% (2000) and 36% 

(1999) of the maximum yield. Taking into account that these are average values and seasonal 

variation of pumping rates it is safe to assume that pumping rates during the driest seasons 

would be even higher. Considering the growing demand for water in the last few years, it is 

possible that had public water supply continued to be dependent on ground water it is likely that 

discharge at Portelas would have ceased during the drought of 2005. This corroborates 

information provided by inhabitants of the area who describe the local springs as drying up 

during summers in which pumping occurred. 
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Table 8 – Lowest registered flow rates at the natural discharge 

areas for hypothetical ground water withdrawal scenarios. 

Discharge 

Scenario 
Total Pumping 

Rates (m
3
/day) Boca do Rio 

(m
3
/day) 

Portelas 

(m
3
/day) 

Sim 0 - 9.86E+03 6.28E+03 

Sim 1 4.03E+03 8.65E+03 4.19E+03 

Sim 2 8.05E+03 7.65E+03 2.12E+03 

Sim 3 1.21E+04 6.59E+03 3.71E+02 

Sim 4 1.41E+04 6.18E+03 0.00E+00 

Sim 5 1.61E+04 5.54E+03 0.00E+00 

Sim 6 2.01E+04 4.69E+03 0.00E+00 

Sim 7 2.42E+04 3.70E+03 0.00E+00 

Sim 8 2.82E+04 2.71E+03 0.00E+00 

Sim 9 3.22E+04 1.47E+03 0.00E+00 

Sim 10 3.62E+04 7.25E+02 0.00E+00 

Sim 11 4.03E+04 2.06E+01 0.00E+00 

Sim 12 3.29E+04 3.79E+03 0.00E+00 

 

An almost linear relationship can be clearly observed between the rise in pumping and 

decrease in discharge rates as shown in Figure 24. Should future research be carried out which 

quantifies the minimum discharge required for the sustainability of the ground water dependant 

ecosystems associated to the AO aquifer system, this linear relationship should make it 

relatively simple to couple a ground water flow model with ecological model of the wetlands in 

order to estimate a safe pumping rate from the AO. 
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Figure 24 – Plot of discharge rates at the two natural discharge areas (blue crosses for Portelas and red 

crosses for Boca do Rio) versus total pumping rate. 

As can be seen in the simulated discharge hydrographs presented in Figure 25, discharge is 

immediately influenced by pumping, in particular at Portelas. The effects on the Boca do Rio 

area are more gradual and to some extent less pronounced, likely due to both to being 

physically farther away from the closest well field at Almádena and this well field having a 

significantly smaller abstraction capacity than the Portelas well field. 
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Figure 25 – Examples of simulated discharge at the natural discharge areas (Portelas top and Boca do Rio 

bottom); discharge under natural (SIM0, black dotted lines) and under pumping conditions (SIM3 and 11, blue 

and red continuous lines respectively). 
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Final Remarks 

Prior to the work presented in this thesis, the various hydroestratigrafic units of the AO had 

been defined and the spatial distribution of the transmissivity parameter had been determined 

via inverse calibration techniques, allowing for accurate simulations under steady-state 

conditions.  

The work presented in this thesis represents the next step in the evolution of the AO numerical 

model. In order to carry out transient simulations which consider the variation in recharge and 

water withdrawals over time, a second calibration was carried out to determine the spatial 

distribution of the storage coefficient. This was done by trial and error methods, as the relatively 

small span of physically possible values of storage coefficient was not considered sufficient to 

justify the time and effort required to implement inverse calibration methods under transient 

conditions. 

The models calibration results provided the first estimate on the regional distribution of storage 

coefficient values, which range from 0.05 to 0.125 over 5 zones based on the hydroestratografic 

units, resulting in a greater reliability of the spatial and temporal evolution of state variables for 

simulations. 

The models stability and ability to accurately simulate groundwater flow in the AO in transient 

state and under stress conditions (such as pumping) was put to test so as to validate the model 

to be used in simulating hypothetical scenarios. The results were quite satisfactory both from 

the simulation of hydraulic heads, as well as the behaviour of groundwater discharge at the 

natural discharge areas which accurately depicts the variations in spring flows measured at the 

natural discharge areas. 

The validation of the models ability to accurately simulate the behaviour of groundwater flow 

under transient conditions allowed the simulation of several hypothetical scenarios of 

abstractions for public water supply. These simulations were based on precipitation values for 3 

years which cover a drought period. Abstraction regimes were chosen based on the maximum 

yield of boreholes historically used as sources for public water supply. 

Results from the hypothetical scenario simulations showed that abstractions from these 

boreholes significantly impact the flow at the natural discharge areas. In particular at Portelas, 

likely due to the close proximity and high yield of the closest well-field, the increase in 

abstractions rapidly reduces the natural discharge in this area. These simulations suggest that if 
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the well-fields reach 35% of their maximum capacity, discharge at Portelas would effectively 

cease during dry years, however for the discharge area at Boca do Rio to reach these 

conditions all boreholes would have to be extracting at their maximum capacity. They also 

demonstrated that the analysis and management of these resources must be done taking into 

account the large seasonal variability of the region, as variations in the amount and temporal 

distribution of rainfall will significantly affect the availability of groundwater. 

These simulations did not allow for a quantitative analysis of the impact of water abstraction. To 

do so, a detailed analysis is required of the importance of the groundwater component of the 

flow in the streams and wetlands as well as the effects of its variations on the groundwater 

dependent ecosystems associated to the AO. 

Future research could attempt to couple surface water and ecological models to this 

groundwater model in order to better understand the relationships which exist between them, as 

well as properly quantify the impacts of their use. Additionally, optimization techniques can be 

applied to determine the abstraction regimes likely to result in the least negative impacts. 

It is hoped that the present work will contribute to demonstrating the usefulness of such models 

as tools for a more efficient management of groundwater resources, as well as contribute to the 

development of a future potential model-based regional management of the AOs water 

reserves. 
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