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Abstract
Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax

(PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unex-

plored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first

PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and

of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix

Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele

score difference between cases and controls (|RASdiff|), by a novel cluster method and by a

combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these

three approaches for technical validation by individual genotyping in the discovery dataset.

87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset.

Replication of the 87 technically validated SNPs was then carried out in an independent rep-

lication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP

in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the

discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02,

ORC[95% CI] = 1.50[1.08–2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] =

1.65[1.29–2.13]). This study identified for the first time one genetic risk factor for sporadic

PSP, but future studies are warranted to further confirm this finding in other populations and

uncover its functional role in PSP pathogenesis.
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Introduction
Primary Spontaneous Pneumothorax (PSP) is characterized by presence of air in the pleural
cavity without preceding trauma or known cause. The annual incidence of PSP is 1–28 cases
per 100,000 individuals, typically affecting tall, thin, smoking young males [1–5]. This is the
only condition in which young patients are discharged after a first episode having a very high
probability of recurrence [3–5] and no effective secondary prevention measures. Available
therapeutic options vary from simple aspiration with a catheter to complex video-assisted thor-
acoscopic surgery, but optimal management of PSP remains controversial [3].

Approximately 10% of PSP patients have a positive family history [6], with an autosomal
dominant inheritance with incomplete penetrance, X-linked recessive or polygenic inheritance
[6–8]. Mutations in the folliculin gene have been identified in individuals with familial PSP [8–
12], but the genetic aetiology of sporadic PSP remains unknown since there are no published
genetic association studies.

Genome-wide association study (GWAS) is a highly-powered association strategy covering
the entire genome with densely distributed markers, looking for common variants that contrib-
ute to complex traits risk in an unbiased way. GWAS marked a new era in the complex disor-
ders field and led to the discovery of several causal loci. These studies are powerful but remain
very expensive and time-consuming. Thus, DNA-pooling strategies combined with microarray
genotyping have proven effective in reducing costs and in identifying risk loci in several studies
[13–19]. Here we used this validated strategy to perform the first GWAS for PSP. In DNA
pooling, genotyping pools of individuals replace individual genotyping. Hence, equimolar
amounts of DNA are combined from each sample to form cases and controls pools, to assess
any allelic frequency differences between these. Subsequently, only a fraction of the most signif-
icant SNPs will be validated using individual genotyping groups [13]. Using different high-den-
sity genotyping platforms and numerous analysis methods to rank the polymorphisms, this
pooling GWAS strategy has been validated by the replication of known associations while iden-
tifying new loci for other complex disorders [20–22]. We thus applied this strategy to the field
of PSP genetics to pioneer the search for genes involved in its susceptibility, using a southern
European population.

Materials and Methods

Participants
All study participants are Portuguese of Southern European descent. Patients were diagnosed
with idiopathic PSP according to the criteria described in Henry et al. [3]. Individuals were
excluded if known to have medical disorders etiologically associated with pneumothoraces,
namely alpha1-antitrypsin deficiency, Marfan syndrome, Ehlers-Danlos syndrome, Birt-Hogg-
Dubé syndrome, cystic fibrosis, histiocytosis, pulmonary lymphangiomyomatosis and sarcoid-
osis. A thorough medical history was performed for each patient, including information on
PSP family history, pulmonary disorders, smoking, physical activity, medication, anthropo-
metric measures, and a detailed characterization of the PSP episodes. If thoracoscopy was per-
formed, macroscopic stages were defined according to Vanderschueren classification as
follows: I–normal visceral pleura, II–some pleural adhesions, III–blebs or bullae (emphysema-
like changes)<2cm in diameter, and IV–bullae>2cm in diameter [23–25]. Recurrence was
defined as a novel pneumothorax episode occurring in more than 1-month period after the
end of the treatment in patients that achieved full lung expansion after the first episode.

Pneumologists ascertained patients at Hospital de Santa Maria (Lisboa), Centro de Pneumo-
logia, Faculdade de Medicina da Universidade de Coimbra (Coimbra), Hospital Infante Dom
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Pedro (Aveiro), Centro Hospitalar de Vila Nova de Gaia (Vila Nova de Gaia), Hospital de São
Bernardo (Setúbal), Hospital de Santo António (Porto), Hospital da Luz (Lisboa), and Centro
Hospitalar de Lisboa Ocidental (Lisboa). The controls were collected through the Instituto Por-
tuguês do Sangue e da Transplantação (Lisboa) and requested from Biobanco-IMM, Lisbon
Academic Medical Center, Lisbon, Portugal. The ethical committee of Hospital de Santa Maria
approved this study and all participants provided written informed consent.

Construction of DNA pools
DNA was extracted as described previously [26]. Quantification of genomic DNA was per-
formed in triplicate using the Picogreen1dsDNA Quantitation Kit (Invitrogen, Oregon, USA)
in a PerkinElmer top Fluoroscence reader (PerkinElmer, Inc., Waltham, USA). Samples with
values>3% of the sample standard deviation (SD) between replicates or with values>2 SDs
from the median volume to be pooled for each sample (2 PSP cases and 6 controls) were not
included in the respective pool. DNA (200ng) from each sample that passed quality control (92
cases and 129 controls) was then added to either a case or a control pool. Each pool was assem-
bled, quantified and adjusted to 50ng/μl. To minimize pipetting-associated errors, no less than
1.7uL of each sample was added to a pool. This procedure was repeated twice so that two repli-
cate pools of cases and of controls were constructed.

Genomewide allelotyping
High-throughput allelotyping of 906,000 SNPs was performed in triplicate on Affymetrix
Human SNP Array 6.0 (Santa Clara, California, USA) at Instituto Gulbenkian de Ciência’s
Microarray Core Facility using standard protocols. After thorough quality control, probe inten-
sity data was transferred to the R statistical platform (http://www.r-project.org) and normal-
ized across chips using the SNPMaP package [27]. SNPMaP identified and removed 38,338
SNPs performing poorly (e.g. located in sex chromosomes, CNV regions and mitochondria),
and calculated the Relative Allele Scores (RAS), the pooling equivalent of a relative allele fre-
quencies. RAS usually correspond to the ratio of the A probe to the sum of the A and B probes
(where A is the major allele and B is the minor allele). However, with Affymetrix arrays, each
SNP is assayed as quartets of perfect match (PM) and mismatch (MM) probes and the RAS
score is corrected for the non-specific hybridisation (mismatch probes). The RAS for the sense
strand is therefore the median(si

(s)), where si
(s) (median of relative allele signal for the ith probe

quartet of the sense strand) is defined as si
(s) = Ai

(s) / (Ai
(s) + Bi

(s)), given that Ai
(s) = max

(PMi
(sA)–MMi

(s), 0), Bi
(s) = max(PMi

(sB)–MMi
(s), 0), and the average mismatch signal is

MMi
(s) = (MMi

(sA) + MMi
(sB))/2 [28]. Twelve RAS values were calculated for each SNP (from

six case and six control pools) and used for the subsequent analysis. All markers in the mito-
chondrial genome were also excluded given that no normalization for mitochondrial DNA
copy number was performed at the pooling stage. A Pearson’s correlation coefficient was calcu-
lated between the average of the RAS values of cases and controls using R. The modified Man-
hattan plot was also built using R.

Cluster method
SNPs with an absolute value of the RAS difference (|RASdiff|)�8% were annotated according
to the University of California at Santa Cruz (UCSC, GRCh37/hg19, http://genome.ucsc.edu/
cgi-bin/hgGateway) and the Affymetrix GenomeWideSNP_6.na32.annot databases and
assigned to either a genic cluster or an intergenic cluster. The linkage disequilibrium (LD)
between each pair of SNPs within a cluster was calculated from HapMap3 data (http://
hapmap.ncbi.nlm.nih.gov/, CEU samples).
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Individual genotyping
Genotyping was performed as described previously [29] using the primer sequences listed in
the S1 Table. Deviation (P<1.00E-03) of genotype distribution from Hardy-Weinberg equilib-
rium (HWE) was tested for each marker in the control dataset using Haploview 4.2 [30]. In the
technical validation stage, five SNPs failed quality control (monomorphic: rs1525833,
rs1526483, and rs2919427; out of HWE: rs2971955 and rs10504160). In the replication phase,
three SNPs had a very low call rate (rs230833, rs10508279) or were not in HWE (rs922799).
Pairwise LD (r2) was calculated and plotted using SNAP (http://www.broadinstitute.org/mpg/
snap/ldsearch.php). Haplotype tagging SNPs (htSNPs) in SLC6A1 (chr.3: 11,009,456–
11,055,934 kb) were identified with Tagger from Haploview 4.2 using genotypes of 30 Euro-
pean (HapMap CEU–Utah residents with ancestry from northern and western Europe) family
trios (V.3, release 27) and with the following options: aggressive tagging mode, r2>0.75 and
minimumminor allele frequency (MAF) of 0.05.

Association analyses
Unpaired Student’s t tests and χ2 tests were used to compare quantitative and qualitative clini-
cal and demographic data, respectively, between PSP patients and controls. Association analy-
ses were performed using a logistic regression (linear regression for a dichotomous response
variable, in this case affected or unaffected) implemented with the glm function in R. The gen-
eral equation of the model used is ln[p/(1−p)] = β0 + β1X1, in which p is the probability of
being affected, X1 is the exploratory variable (assuming values 0, 1, or 2 in the log-additive
model depending on the number of reference alleles an individual has at the SNP being investi-
gated), β0 is the regression coefficient in the reference group, and β1 is the regression coefficient
associated with the reference group and the X1 explanatory variable [31]. Odds ratios (OR) and
95% confidence intervals (CI) were calculated using β1 and its standard error to determine the
relative disease risk conferred by a particular allele.

Results

DNA pooling and GWAS
The main demographic and clinical characteristics of the discovery dataset used in the GWAS
are summarized in Table 1. These 135 controls and 94 PSP cases were matched for age, gender,
and mean height (P = 8.29E-01, P = 7.76E-01, and P = 5.87E-02, respectively) and therefore
association tests do not need to be adjusted for these three known PSP risk factors, but not for
weight, BMI and Rohrer’s index (P = 2.91E-09, P = 1.99E-16, and P = 3.78E-17, respectively).
As described previously for spontaneous pneumothoraces, the vast majority of patients were
resting at PSP onset (83.3% versus 87% in [32]) when they suddenly felt chest pain (97.8%)
[33], dyspnea (81.7%), and cough (34.9%). Almost all patients had unilateral pneumothoraces
and approximately 40% of them had recurrent events.

DNA samples from these study participants met our quality controls and were therefore
pooled in equimolar amounts in duplicate and allelotyped in triplicate on Affymetrix Genome-
Wide Human SNP Array 6.0 assaying 906 600 SNPs (total of 12 arrays). This strategy was pre-
ferred over constructing several smaller pools and hybridizing them on single arrays as most of
the pooling error is due to variation between arrays, not to variation in pool construction [15,
34]. Still, the added variance created by pooling specific errors was additionally taken into
account in the analysis performed using the combined Z-test [13]. Furthermore, the average of
the RAS values over the six case and six control arrays showed a strong Pearson correlation
with each other (r = 0.998, S1 Fig), suggesting a low technical variability of the pooling method.
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Table 1. Main clinical and demographic characteristics of the PSP case-control discovery and replication datasets.

Characteristic Discovery dataset Replication dataset

Cases Controls Cases Controls

N 94 135 100 425

Gender ratio (M/F) 6.8:1 6.1:1 3.3:1 4.2:1

Mean age at examination (years±SD) (n/N) 26.4±5.2 (94/94) 26.2±5.4 (135/135) 27.5±6.6 (100/100) 23.3±4.5 (425/425)

Mean height (cm±SD) (n/N) 177.2±7.7 (94/94) 175.2±7.8 (135/135) 175.3±8.1 (100/100) 174.5±10.0 (425/425)

Mean weight (kg±SD) (n/N) 66.2±8.4 (94/94) 75.4±12.6 (135/135) 66.2±10.6 (100/100) 72.4±12.2 (425/425)

BMI (kg/m2±SD) (n/N) 21.0±2.0 (94/94) 24.5±3.3 (135/135) 21.5±2.9 (100/100) 23.6±3.23 (425/425)

Rohrer’s index (kg/m3±SD) (n/N) 118.9±12.8 (94/94) 139.9±19.5 (135/135) 122.8±17.3 (100/100) 135.3±18.8 (425/425)

Symptoms at onset

Cough (%) (n/N) 34.9 (30/86) - 30.9 (30/97) -

Dyspnea (%) (n/N) 81.7 (76/93) - 65.0 (63/97) -

Chest pain (%) (n/N) 97.8 (91/93) - 94.0 (94/100) -

Onset

During physical activity (%) (n/N) 16.7 (15/90) - 26.4 (24/91) -

At rest (%) (n/N) 83.3 (75/90) - 73.6 (67/91) -

Recurrence (%) (n/N) 40.4 (38/94) - 29.0 (29/100) -

1st PSP EPISODE

N 94 100

Mean age (years±SD) (n/N) 25.3±5.4 (92/92) - 26.4±7.0 (100/100) -

Affected lung

Left (%) (n/N) 47.8 (43/90) 51.0 (51/100)

Right (%) (n/N) 51.1 (46/90) 49.0 (49/100)

Bilateral (%) (n/N) 1.1 (1/90) 0.0 (0/100)

Mean collapse (%±SD) (n/N) 45.6±24.3 (55/55) - 51.5±28.3 (71/71)

Macroscopic stage* (%) (n/N) I—18.9 (7/37) I—15.8 (3/19)

II—40.5 (15/37) II—26.3 (5/19)

III—29.7 (11/37) III—47.4 (9/19)

IV—10.8 (4/37) IV—10.5 (2/19)

2nd PSP EPISODE

N 38 34

Mean age (years±SD) (n/N) 24.3±4.7 (38/38) - 23.8±5.7 (34/34)

Affected lung

Left (%) (n/N) 51.4 (19/38) 58.8 (20/34)

Right (%) (n/N) 43.2 (16/38) 38.2 (13/34)

Bilateral (%) (n/N) 5.4 (2/38) 2.9 (1/34)

Mean collapse (%±SD) (n/N) 44.3±21.1 (18/18) 38.7±23.8 (23/23)

Macroscopic stage* (%) (n/N) I—8.3 (1/12) I—0.0 (0/6)

II—25.0 (3/12) II—50.0 (3/6)

III—66.7 (8/12) III—33.3 (2/6)

IV—0.0 (0/12) IV—16.7 (1/6)

3rd PSP EPISODE

N 13 12

Mean age (years±SD) (n/N) 23.2±4.0 (13/13) 23.6±5.1 (12/12)

Affected lung

Left (%) (n/N) 25.0 (3/12) 54.6 (6/11)

Right (%) (n/N) 66.7 (8/12) 45.4 (5/11)

Bilateral (%) (n/N) 8.3 (1/12) 0.0 (0/11)

Mean collapse (%±SD) (n/N) 30.8±31.2 (6/6) 36.5±23.0 (8/8)

(Continued)
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SNPs prioritization
A total of 868,260 SNPs passed quality controls and were further analyzed. Since there is no
single gold-standard method to rank SNPs from GWAS performed on pools, we used three
complementary approaches: 1) |RASdiff|; 2) cluster method; 3) combined Z-test.

The absolute value of the |RASdiff| in pooling experiments is thought to be a good proxy for
allelic frequency difference in individually genotyped datasets [20, 29, 35, 36]. Fig 1 depicts a
modified version of a Manhattan plot where |RASdiff| between cases and controls is plotted
against the genomic position of all the genetic markers passing quality controls. 4589 SNPs had
a |RASdiff| above background levels (>8%), ranging up to 19% for rs10504160 in chromosome
8. In Fig 1, the density of dots is much higher for |RASdiff| below 8%, supporting our choice of
8% for the “background” level cutoff. Another drop in dot density occurs at 12%, with only 135
SNPs with |RASdiff|�12% (listed in S2 Table).

Table 1. (Continued)

Characteristic Discovery dataset Replication dataset

Cases Controls Cases Controls

Macroscopic stage* (%) (n/N) I—50.0 (1/2) I—50.0 (1/2)

II—50.0 (1/2) II—50.0 (1/2)

III—0.0 (0/2) III—0.0 (0/2)

IV—0.0 (0/2) IV—0.0 (0/2)

Abbreviation: SD, standard deviation.

*Macroscopic stages were defined according to Vanderschueren classification [23–25] as follows: I–normal visceral pleura, II–some pleural adhesions,

III–blebs or bullae (emphysema-like changes) <2cm in diameter, and IV–bullae >2cm in diameter.

doi:10.1371/journal.pone.0156103.t001

Fig 1. Modified Manhattan plot (|RASdiff| against chromosomal location) for the primary spontaneous pneumothorax genome-wide
association study. The absolute value of the relative allele score (RAS) difference between cases and controls (|RASdiff|) is shown for 868,260
autosomal SNPs allelotyped in 92 PSP patients and 129 healthy controls, ordered by chromosomal position. The red and blue lines represent the 12%
and 8% |RASdiff| thresholds, respectively.

doi:10.1371/journal.pone.0156103.g001
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Considering that multiple independent evidences of association pointing to a specific gene
or genomic region may be a stronger indication of a true association signal than isolated peaks
of association in GWAS with very high SNP density, we devised a cluster approach that high-
lights weaker but consistent signals of association. SNPs with a |RASdiff| above background
were assigned to either a gene cluster (if it lies within a gene or up to 10% of its gene size
upstream or downstream) or an intergenic cluster (sliding window of 100Kb without overlap
containing at least five SNPs), using UCSC and Affymetrix databases. The pairwise LD between
each pair of SNPs within a cluster was calculated and an LD score was attributed to each cluster
according to the number of independent LD signals within that cluster. Every set of at least two
SNPs within one cluster with pairwise LDs (as measured by r2)�0.8 contribute 1 point to the
LD score as they represent a single LD signal. Using this approach, among the 4589 SNPs with
a |RASdiff|>8%, 1960 SNPs were grouped in 1078 gene clusters and the 2629 SNPs were
grouped in 61 intergenic clusters. The clusters with LD score�5 are listed in S3 Table.

The combined Z-test developed by Abraham et al. [20] merges chi-square estimation to
assess allelic proportional differences in patients and controls and a Z-statistic for testing mean
allelic frequency differences between the same groups. Hence, this approach takes into account
both experimental and sampling errors. The 100 SNPs with lower P-values according to this
test are listed in S4 Table.

Technical validation
To validate the pool construction, SNPs prioritized using the three above mentioned
approaches were selected for technical validation by individual genotyping in the discovery
dataset. S5 Table lists the 101 SNPs which were taken into the technical validation phase: 48
SNPs with higher |RASdiff| (S2 Table), one SNP per cluster with LD score� 5 (within each clus-
ter, SNPs that had already been selected by the |RASdiff| method were selected first, followed by
the SNP with highest |RASdiff| and MAF>0.05 for which genotyping primers could be
designed, S3 Table), and the top 49 SNPs from the combined Z-test (S4 Table). Among these
101 SNPs, seven were selected by all three methods, two markers were convergent between the
|RASdiff| and cluster methods, twenty-nine markers were convergent between the |RASdiff| and
combined Z-test approaches, and one SNP was convergent between the cluster and combined
Z-test strategies (S5 Table and S2 Fig).

Out of the 101 SNPs selected for individual genotyping in the discovery dataset using the
Sequenom technology, five markers failed quality control and the association of another two
markers (rs4377469, and rs17133680) could not be assessed using a logistic regression due to
the lack of individuals with the rare homozygous genotype. 87 out of the 94 successfully ana-
lyzed SNPs (92.6%) were technically validated since they were associated with PSP at the con-
ventional P-value of 5.00E-02 (S6 Table).

Independent replication of GWAS-associated SNPs
For the 87 SNPs that were technically validated, the next step was to assess their association in
an independent replication dataset composed of an additional 100 PSP cases and 425 controls
(Table 1) matched for gender and height (P = 4.10E-01 and P = 4.50E-01, respectively), but not
for age at examination (P = 1.41E-13). A combined analysis was performed using both the dis-
covery and replication datasets (total of 746 individuals) for SNPs that were significantly asso-
ciated in both the discovery and replication datasets.

Of the 87 genetic markers tested in the replication dataset, three failed quality control
(rs230833, rs10508279, and rs922799), and the remaining 84 markers were successfully tested
for association in the replication dataset. Among these, the intergenic rs4733649 SNP in
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chromosome 8 (Table 2) was associated with PSP in the discovery (P = 4.07E-03, ORC[95%
CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08–2.09]) and com-
bined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29–2.13]). Additionally, two SNPs
(rs6531429 and 612389) were significantly associated with PSP in both the discovery and repli-
cation datasets, but in opposite directions, such that they are not associated in the combined
dataset (Table 2).

To follow-up on the most interesting finding, the regional pattern of LD in the neighboring
genomic region of rs4733649 was analysed (Fig 2). Seven neighboring intergenic polymor-
phisms (rs1519857, rs7460492, rs4545057, rs1367962, rs1432010, rs1432009 and rs2116455)
are in strong LD (r2�0.8) with rs4733649 in the CEU population panel of the 1000GP Pilot 1
data (Fig 2).

Discussion
In this first GWAS ever reported for PSP, the C allele of the intergenic rs4733649 SNP in chro-
mosome 8q24.21 was associated with increased risk for PSP in a discovery, replication and
combined datasets of Portuguese PSP cases and controls. The relatively low prevalence of PSP
renders the ascertainment and collection of large groups of clinically homogeneous patients an
extremely challenging task to carry out and may explain why no association study for PSP has
been reported thus far. To increase the statistical power of our study, we used a four-fold larger
number of controls than cases in the replication dataset.

To the best of our knowledge, we hereby provide the first comprehensive clinical and demo-
graphic characterization of a large PSP dataset. Previous descriptions of datasets have not set
apart primary from secondary spontaneous pneumothorax [37] or have focused on specific
aspects (e.g. epidemiology, risk factors, management). Some of the characteristics of our data-
sets are similar to those reported previously (e.g. mean age-at-onset within the 15–34 years
range [2], symptoms at onset [32, 33], unilaterality of almost all events [37], 20–60% risk of
recurrence [5]), while others differ appreciably (e.g. percentage of PSP cases in each of the mac-
roscopic stages varies widely in different reports [24, 38], probably due the small number of
individuals with PSP who undergo thoracoscopy). Curiously, contrary to the common belief
that PSP affects taller and thinner individuals [39], the mean height was not significantly differ-
ent between our cases and controls despite the weight, BMI and Rohrer’s index [39] being sig-
nificantly different.

Table 2. PSP association results for the three SNPs associated in the discovery and replication datasets.

SNP Chr. Gene (nearest gene) Allele Dataset Case freq. Control freq. P OR [95% CI]

rs6531429 4 LOC439933 C Discovery 0.185 0.324 1.12E-03 0.45 [0.28–0.73]

Replication 0.365 0.268 6.79E-03 1.58 [1.13–2.19]

Combined 0.279 0.281 9.32E-01

rs4733649 8 LINC00824 (358kb); C Discovery 0.429 0.301 4.07E-03 1.88 [1.22–2.89]

LINC00977 (431kb) Replication 0.389 0.300 1.50E-02 1.50 [1.08–2.09]

Combined 0.408 0.300 8.61E-05 1.65 [1.29–2.13]

rs612389 11 DLG2 C Discovery 0.120 0.213 1.10E-02 0.49 [0.28–0.85]

Replication 0.195 0.118 3.59E-03 1.89 [1.23–2.90]

Combined 0.159 0.140 3.67E-01

Abbreviations: Chr., chromosome; freq., frequency; P, logistic regression P-value using the log-additive model.

The SNPs are ordered by chromosomal position. Nominally significant associations are highlighted in bold and their respective OR (odds ratio) and 95%

CI (confidence interval) are indicated.

doi:10.1371/journal.pone.0156103.t002
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There were also some differences between our discovery and replication groups that could,
at least in part, explain the non-replication of some initial positive findings. The male to female
ratios in our discovery and replication datasets of patients (6.8:1 and 3.3:1, respectively) varied
considerably but are similar to reported ratios in the US (6.2:1 in [40]) and England (2.7:1 in
[2]), respectively. Even though smoking was more frequent among our PSP cases (59.6% and
72.0% in the discovery and replication datasets, respectively) than among our controls (35.6%
and 31.8% in the discovery and replication datasets, respectively) and documented evidence
supports a dose-response relationship between smoking and PSP risk [1], we did not include
this information in Table 1 or correct for smoking status in the adjusted statistical analyses as
data was missing in a number of individuals and was not collected with the desired precision
(e.g. quantification, duration).

Since there is no consensus in the literature on which is the most adequate method (e.g.
|RASdiff|, combined Z-test, F ratio) to prioritize discovery phase results from pool-based
GWAS, we used three different approaches. We used the |RASdiff| as it seems to be one of the
most sensitive methods to pinpoint differences between cases and controls in presence of low
technical variation between pools [15, 34], and has previously been successful in identifying
risk factors for another complex disease [29]. The biggest disadvantage of this method is that it
does not account for RAS variation between replicates, possibly leading to a higher rate of false
positives and false negatives, when variations amongst pools are high. To decrease the error
attributed to pool construction (biological error) and to array differences (technical error), we
prepared two biological replicates and carried out three technical replicates, with a high

Fig 2. Regional LD plot for rs4733649 at 8q24.21. The pairwise LD (r2) between the SNP of interest and surrounding
variants and the estimated recombination rate are plotted as a function of genomic position. This plot was constructed by
SNAP (SNP Annotation and Proxy Search, http://www.broadinstitute.org/mpg/snap/ldplot.php) using the CEU population
panel in the 1000 Genome Project (1000GP) Pilot 1 data and a 500 kilobases (kb) distance limit on each side. The horizontal
dashed line is at the 0.8 cut-off for r2, and the vertical dashed lines indicate the genomic region encompassing SNPs in
strong LD (r2�0.8) with the variant of interest.

doi:10.1371/journal.pone.0156103.g002
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correlation between arrays. Moreover, we complemented our approach using a combined Z-
test [20] that accounts for both experimental and sampling errors, and has proven to be suc-
cessful in other studies [20]. Furthermore, in parallel, we were inspired by Abraham et al. [20]
to select SNPs using the cluster method, but decided to include a LD weight, creating an alter-
native clustering method for both genic and intergenic regions. Technically, the pooling strat-
egy and analysis methods we selected were adequate since the association of 87 out of the 94
successfully tested SNPs was validated by individual genotyping. All three approaches taken
were robust in selecting the top findings, since only seven SNPs were not associated in the tech-
nical validation phase (five from the LD cluster method and two from the combined Z-test
approach). Despite our best efforts, the DNA pooling approach still has limitations and true
association signals may have been missed.

Performing multiple statistical tests leads to inflation of false positives, and therefore the sta-
tistical significance threshold (usually 5.00E-02) should be adjusted taking into account the num-
ber of independent tests. A Bonferroni correction using the total number of SNPs in a GWAS is
usually over-conservative given that high linkage disequilibrium between numerous SNPs. The
fact that none of the 87 markers tested in the replication dataset would reach the Bonferroni cor-
rection threshold (P�5.74E-04) may in part be a consequence of the small sample size and lim-
ited power of this study. Furthermore, since this is the very first GWAS ever reported for this
disorder, we opted to be more inclusive and less conservative so as not to discard possible inter-
esting findings that must be validated by independent replications in other populations.

rs4733649 maps at 8q24.21, approximately 358 kb and 636 kb downstream from nearest
genes LINC00824 [long intergenic non-protein coding RNA 824] andMIR1208 [microRNA
1208], respectively, and over 431 kb upstream of LINC00977 [long intergenic non-protein cod-
ing RNA 977]). As observed in most GWAS published to date, the top findings localize to non-
coding genomic regions and do not have an immediate functional relevance [41]. Once again,
the first and most important step to follow up the association of rs4733649 with PSP is to con-
firm this finding in a dataset collected by independent researchers. Subsequently, bioinformat-
ics approaches should be pursued to predict the functional consequence of this non-coding
variant before designing appropriate molecular experiments [41].

Identification of PSP genetic underpinnings may ultimately have a crucial impact in public
health by implementing preventive lifestyle changes in individuals at risk. This study is unique
and novel in the pulmonary field, and represents a first step towards controlling PSP.

Conclusion
In this very first PSP association study, we identified through a comprehensive and unbiased
genome-wide approach the first genetic risk factor for sporadic PSP.
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