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Abstract 

Pseudotuberculosis or pasteurellosis is caused 
by the microorganism Photobacterium 
damselae ssp piscicida (formely Pasteurella 
piscicida). Vaccines are one of the most 
efficient methods for this control. Together with 
this, adjuvants are enhancers of fish immune 
response. 
The aim of this research is to understand the 
effects of the Aluminium Potassium Sulfate 
(Alum) when used as an adjuvant of fish 
vaccines by immersion, namely in the sea 
bream (Sparus aurata) histological and specific 
immunological response. 
 

Key-words: Photobacterium damselae ssp. piscicida; Alum; Sparus aurata; 

vaccine; immersion;  

 

Resumo 

A pseudotuberculose ou pasteurelose é uma 
doença causada pela bactéria Photobacterium 
damselae ssp piscicida (anteriormente 
designada por Pasteurella piscicida). A medida 
profilática mais eficaz contra bacterioses são as 
vacinas; estas, juntamente com adjuvantes, 
potenciam a resposta imunitária dos peixes. 
O objectivo desta investigação foi determinar e 
compreender os efeitos a nível histológico e 
imunológico do Sulfato de potássio e aluminio 
(alumen) quando aplicado como adjuvante em 
vacinas por imersão, em douradas � Sparus 
aurata. 

 

Palavras-chave: Photobacterium damselae ssp. piscicida; Alumen; Sparus 

aurata; vacina; imersão;
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Introduction  1 

 

INTRODUCTION 

 

Since 1970, aquaculture has grown around 8.9 % per year, and thus has 

become the fastest growing sector of food production in the world (FAO, 2004; 

Subasinghe, 2005). It is estimated that the aquatic products generated from 

aquaculture by the year 2050 will be between 177.9 and 209.5 million tons per 

year (Wijkström, 2003). 

Gilthead sea bream (Sparus aurata, Linnaeus 1758) is one of the most 

important marine fish cultured in the Mediterranean countries (Balebona et al., 

1998; Cuesta et al., 2005). The intensive farming of Sparus aurata achieved 

commercial status in the beginning of the eighties when the last technical 

barriers restricting their full scale profitable culture were overcome (Le Breton, 

1999). According to FAO, in 2004 the global production is still growing (Fig I), 

and particularly in Portugal the culture of gilthead sea bream was 53% of the 

total production of marine fishes. 

 

Figure I: Global Aquaculture production for Sparus aurata (FAO Fishery Statistic, 2004). 
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Despite the encouraging trends, several constraints may still have some 

negative impact on the growth of aquaculture (Subasinghe, 2003; FAO, 2004). 

As in other animal industries, the progress of marine fish production depends on 

three dominant limiting factors: nutrition/feeding optimisation, genetic 

improvement and pathology (Le Breton, 1999). 

The main goal of aquaculture production is the maximum production, 

within a short period, having all the resources hoarded, with a profitable 

marketing strategy (Le Breton, 2003a; Pereira, 2004). In the other hand, 

intensification of animal production leads to increased stress levels, and 

consequently higher risk of pathologies (Evensen, 2003; Pereira, 2004), acting 

as a limitation for aquaculture (FAO, 2004). Although global economic losses 

from aquaculture diseases have not been compiled, disease reports from many 

regions of the world have been increasing with advances in the live aquatic 

animal trade (Le Breton, 1996; Balebona et al., 1998; Subasinghe, 2005). 

The most common pathologies in gilthead sea bream are parasitic and 

bacterial. The main parasites that affect this species are Protozoa (e.g. 

Myxidium leei), Monogenea (e.g. Microcotyle sp.) and Crustacea (e.g. Anilocra 

physodes) (Le Breton, 1996). If the parasitic pathologies are easy to treat, 

bacterial pathologies are a problem, due to bacterial antibiotic resistance and 

changes in fish behaviour (e.g. appetite) (Pereira, 2004). The major bacterial 

infections in sea bream involve pathogens such as Mycobacterium marinum, 

Aeromonas hydrophila, Pseudomonas anguilliseptica, several Vibrionaceae, 

and also Photobacterium damselae ssp. piscicida (Le Breton, 1999; Pereira, 

2004). 
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There are many problems concerning the use of antibiotics in fish 

intended for human consumption, since residues of antibacterial treatment have 

an indirect impact on human health as well as a bad environmental impact on 

aquatic species (Subasinghe, 2003). The number of chemicals indexed for use 

in aquaculture has decreased and is very limited in our days (Subasinghe, 

2005), and moreover, for some infectious diseases there are no treatments. 

The future of pathology in aquaculture lies in the prevention of diseases 

and not in their treatment (Le Breton, 2003b). Prevention is essential, and has 

proven to be economically profitable, and can be achieved by applying two 

different approaches: (a) hygienic procedures (including cleaning and 

disinfection) and (b) prophylactic programmes (immunostimulants and vaccines) 

(Le Breton, 2003a). Vaccination strategies covering the fish life cycle need to be 

developed further together with programs of preventive treatments (Le Breton, 

1999; Toranzo et al., 2003). Pharmaceutical companies have performed a 

considerable amount of research on fish vaccines, however, limited information 

is available in scientific publications (Sommerset et al., 2005). 

 

I. FISH IMMUNE SYSTEM 

 

Fish health depends on three important factors: environment, pathogen 

nature and issues intrinsic to fish (as host) (Schreck, 1996); this concept was 

first illustrated in the famous diagram �epidemiological triad� of Snieszko (1974) 

(Fig II). 
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Figure II: The epidemiological triad (Snieszko, 1974) 

 

All animals possess defence mechanisms that enable survival in hostile 

environments (Evensen, 2003). The defensive mechanisms are directed against 

pathogens, such as bacteria and virus, as well as against malignant cells 

(Anderson, 1996; Ellis, 1999). Fish immune system have many humoral and 

cellular mechanisms, which are non-specific (innate) or specific (adaptive), as 

presented in Table I (Ellis, 1999). 

 

Table I: Defence mechanisms in fish (modified from Ellis, 1999). 
 Humoral Cellular 

N
on

- S
pe

ci
fic

/ 
In

na
te

 

Inhibitors (transferrin, Interferons, 

antiproteases, lectins, antibacterial 

peptides) 

Lysins (proteases, lysozyme, 

complement, C-Reactive Protein) 

 

Non-specific cytotoxic cells 

Neutrophils (respiratory burst, hypohalite 

ions, lysozyme) 

Macrophages (hydrolytic enzymes, 

respiratory burst, nitric oxide) 

Macrophage/neutrophil cooperation 

Sp
ec

ifi
c/

A
da

pt
iv

e Antibody (anti-adhesins, anti-toxins, 

anti-invasins, activates classical 

complement pathway) 

Activated macrophages (specific T 

lymphocytes and antigens, cytokines) 
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The innate immune system of fish consists of physical barriers including 

scales, mucus, gills and epidermis; immunocytes (cellular mechanism) include 

phagocytic cells (e.g. neutrophils and macrophages), non-specific cytotoxic 

cells and endothelial cells; innate humoral components concern inhibitors and 

lysins (Magnadóttir, 2005). The adaptive immune responses are dependent on 

the activities of B and T lymphocytes, which work as in specific immunoglobulin 

production, cytotoxic activities, immunomodulation via cytokines and 

complement pathways (Shoemaker et al., 2001). 

The complement system comprises serum proteins that are activated 

using either classical or alternative pathways. These defense systems are vital 

to the ability of fish to respond to invasion (Ellis, 1999). 

To start an infection, pathogenic bacteria must invade the host, adhere to 

the epithelium surface, spread throughout the fluids, and be able to survive 

within the host. Antibodies that react with bacterial cell wall structures may 

prevent pathogens from gaining access to host cells. This acts like opsonins, 

activating complement. Then, the bacterial cell can be lysed, phagocytosis is 

enhanced and inflammation starts (Kaattari & Piganelli, 1996; Ellis, 1999; 

Shoemaker et al., 2001; Magnadóttir, 2005). 

The antibody response of fish to disease has been one of the most 

studied aspects of fish immunology. Antibodies are among the most structurally 

complex biological molecules (Kaattari & Piganelli, 1996). Although IgD has 

recently been described, IgM is the main immunoglobulin present in teleosts 

where, it is thought, different forms of IgM and its structural flexibility may 

compensate for a lack of diversity (Cuesta et al., 2004). Teleost IgM appear 



 

 
Introduction  6 

primarily as a tetramer, composed of four subunits, each containing two �heavy� 

protein chains, and two �light� chains (Kaattari & Piganelli, 1996), and circulating 

IgM levels reflect the immune system status without exposing the fish to a 

specific antigen (Cuesta et al., 2006). 

Pathogenic bacteria (e.g. Photobacterium damselae ssp. piscicida) have 

many ways of subverting fish defense mechanisms, including surface layers, 

capsules and elongated lipopolysaccharide (LPS) O-antigens that protect the 

pathogen against complement (Ellis, 1999; Gudding et al., 1999). 

The ability of fish to resist pathogens and respond to stress, and the 

interactive effects of stress and disease resistance capacity of fish, change 

seasonally and through ontogeny (Schreck, 1996; Hanif et al., 2005). 

 

a. Immunomodelators 

 

Aquaculturists are interested in substances that benefit or stimulate 

immune system in order to prevent diseases (Anderson, 1996).  

A better understanding about the effect of different immunomodelators on 

fish immune system is an important research topic, especially in farmed fish. 

Once a stressor is perceived, a cascade of neuroendocrine events generally 

leads to elevation of cortisol in circulation, where it affects lymphocytes and 

antibody production (Schreck, 1996). The physiological stress response and the 

immune system are under genetic influence (Schreck, 1996). In addition, the 

fish�s past and present rearing environment affect both the physiological 

response to stress and the ability to resist pathogens. 
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Numerous environmental variables have been shown to affect the 

physiological stress response in teleost (Schreck, 1996). However, the effects 

of environmental factors in fish immune system, such as temperature or salinity 

are not well documented despite their importance in fish biology (Cuesta et al., 

2005). 

It is known that the physiological effects of stressors in fish depend upon 

duration and intensity of such stressors, and two categories of responses can 

be established: acute and chronic stress response. Although the impact of 

these two categories of stress on fish immune system have been the object of 

much study in recent years there are no available results on the effect of 

stressors on fish serum IgM levels (Cuesta et al., 2004). 

A difficulty often arises when work has to be done with low levels of 

heavy metals in determining toxicity and immunomodulation effects (Anderson, 

1996). 

A good example of an immunomodelator is Aluminium. It is one of the 

heavy metals that affect fish health (Anderson, 1996). Deposition of Al onto gills 

is water quality dependent, and increased Al accumulation in fish gills is 

reported to enhance physiological stress symptoms, such as elevated levels of 

glucose in blood (Teien et al., 2004). Low levels of heavy metals are sometimes 

immunostimulatory, perhaps because of stress subsequent hyperactivity. 

Indeed, in protection tests, the metals may affect the pathogen�s physiology 

(Anderson, 1996). 
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II. FISH VACCINATION 

 

Vaccination is the most efficient prophylactic treatment. The purpose of 

vaccination is to induce protective immunity that should be specific and long 

lasting, thus reducing the level of fish infections (Ellis, 1999). The ability of fish 

vaccines to induce a protective immunity is based on experimental challenge 

studies and/or field experiments. Laboratory research focused on determining 

which antigens are the most immunogenic in fish is very scarce, and it is very 

important to identify the individual components involved in inducing protection 

(Arijo et al., 2004). 

The fish development stage and ontogeny is an important factor to have 

in mind, since early vaccination (when the major lymphoid organs are not 

completely developed) may give an undesired effect of immunosuppression. 

The right age for vaccination and the immunisation route have to be estimated 

for different fish species like sea bream (77 days of age) (Toranzo et al., 2003; 

Hanif et al., 2005). 

The practice of vaccinating fish has yielded good results on reduction of 

antibiotic use and thus avoiding perceived risks to the environment and to 

human health (Midtlyng, 2001). 

There are several commercial vaccines available for bacterial diseases, 

with satisfactory results, but little is yet understood about the nature of the 

protective mechanisms involved. In addition, for some economically important 

fish diseases (e.g. pasteurellosis) there aren�t any effective vaccines (Barnes et 

al., 2005). With such information, more directed approaches to the production 
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and presentation of pertinent antigens may permit further development of 

effective vaccination against many economically important fish diseases (Ellis, 

1999). 

Vaccines can be found as: 

- inactivated (or bacterins) 

- live (attenuated) 

- genetic (DNA/RNA) 

 

So far, most commercial vaccines in use are inactivated vaccines (Gudding et 

al., 1999; Toranzo et al., 2003). 

Inactivated vaccines are usually formulated by inactivating the whole 

pathogen or portions of it, by fermentation and subsequent formalin inactivation 

or by heat inactivation (Gudding et al., 1999; Toranzo et al., 2003). 

Live vaccines have great potentialities/advantages in aquaculture, either 

by potential protection or for economic reasons. In fact, live vaccines are an 

infection (attenuated strain), with effective dissimilation of the antigen in the fish 

population over an extended time period (Toranzo et al., 2003). However, live 

vaccines for fish have the great risk of reversion of virulence and uncontrolled 

environmental spreading. For this reason, live/attenuated vaccines have so far 

only been allowed for field trial purposes (Gudding et al., 1999). 

The basis of genetic vaccines (nucleic acids) is the delivery of a gene 

encoding for a protective vaccine antigen. The so-called naked DNA/RNA 

vaccines have already some results with characterization of fish immunization 

as well as high clinical efficacy (Midtlyng, 2001; Evensen, 2003), and in these 
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vaccines the possibility of reversion to virulence does not exist (Gudding et al., 

1999). 

Before applying these vaccines in aquaculture commercial enterprises, 

fish, environment and consumer safety have to be addressed (Heppell & Davis, 

2000; Evensen, 2003). 

Fish vaccines are commonly administered by injection, orally or by 

immersion (Table II). Injection is widely used and gives the best and most long-

lasting protection, and can be easily combined with adjuvants (Evensen, 2003). 

Injection has also the advantage of delivering the right dose of vaccine antigen. 

The major disadvantages are intensive labouring and costs, and is only feasible 

if applied in fish with c. 10g onwards (Evensen, 2003). The vaccine can be 

applied by injecting the fish either intra peritoneal (i.p) or intramuscularly (i.m) 

(Ellis, 1999). In i.p. injection reduction/depress in growth rate and qualities of 

farmed fish species are sometimes observed (Midtlyng, 1997; 2001). 

Oral vaccination is an option, but still largely in an experimental stage. 

Research in this field focuses on protection of the vaccine from digestion in the 

early digestive system through encapsulation. On the other hand, a large 

quantity of antigen is necessary and the protection achieved is generally weak 

and of short duration (Sommerset et al., 2005). 

Immersion vaccination is an established practice in aquaculture, because 

it is useful for mass vaccination, and has a particularly low cost/effect relation 

method of administration in small fish (Huising et al., 2003).  
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Table II: Comparison of vaccine delivery methods [adapted from (Evensen, 2003)]. 

Delivery method Injection Immersion Oral 
Efficiency + ± - 
Amount of Vaccine - - + 
Labour + - - 
Handling Stress + ± - 
Small fish vaccination - + + 
Use of Adjuvant + ±/- ±/- 
Operator safety - + + 

+: high/possible; ±: moderate; -: low/not possible 

 

a. Immersion 

 

Vaccine delivery in immersion vaccination may vary. Vaccine uptake is 

thought to occur largely along fish mucosal surfaces, i.e. the gills and skin. 

Lateral line and intestine are also implicated as sites of antigen uptake. An 

additional advantage of immersion is that vaccine delivery is done through the 

same route used by many pathogens, generating specific mucosal immunity 

(Huising et al., 2003). The efficacy of immersion vaccination is mostly evaluated 

by antibody production and/or survival upon challenge, and may depend on the 

amount of antigen absorbed (Midtlyng, 2001). Immersion vaccination induces 

detectable systemic and mucosal antibody responses, confers protection upon 

challenge, or both (Tatner, 1996; Huising et al., 2003). However, some reports 

indicate a transient humoral response (Whittington et al., 1994), indicating that 

the exact mechanisms of protection are sometimes enigmatic. Immune 

responses following immersion vaccination are generally less robust and of 

shorter duration than those obtained from injection (Huising et al., 2003). 
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Hyperosmotic immersion increases the uptake of vaccine and enhances 

the efficacy by which vaccine components are processed and presented by the 

innate immune system, dually enhancing the mucosal immune response 

(Huising et al., 2003). In the gilthead sea bream the ability to maintain constant 

ion concentration and osmolarity of body fluids appears early in the 

development (Guerreiro et al., 2004; Laiz-Carrion et al., 2005). Fish in seawater 

tend to gain ions such as sodium and chloride through diffusion and to lose 

water by osmosis. The acquisition of the capacity to control water balance in 

relation to external salinity through drinking by fish is, therefore, fundamental for 

osmoregulation (Jensen et al., 1998; Guerreiro et al., 2004; Laiz-Carrion et al., 

2005). 

Although the inherent difficulty of adding adjuvants in vaccines through 

this delivery method (immersion), some research focusing the antigen 

presentation by absorption phenomena and mucosal irritation is being 

performed nowadays (Ascarateil & Dupuis, 2003). 

 

b. Adjuvants 

 

Adjuvants (from the latin adjuvare, �to help�) are defined as a group of 

structurally heterogenous additives (Evensen et al., 2005). When these are 

added to an antigen enhance or modulate the immunogenicity of the poorly 

immunogenic vaccine proteins or peptides, resulting in an effective prolonged 

protection (Evensen et al., 2005; Schijns & Tangeras, 2005). The use of 

adjuvants also reduces the amount of purified antigen required for successful 
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immunization, thus making vaccine production more economical and more 

feasible (Anderson, 1997). Nevertheless, the type and role of adjuvant becomes 

very important to achieve an acceptable immune response (Stills, 2005). 

The role of innate immunity in stimulating adaptive immune responses is 

the basis of the action of adjuvants. Among the mechanisms used by adjuvants 

to enhance the immune response are the "depot" effect, antigen delivery (to 

Antigen Presenting Cells � APC�s), immune activation/modulation, and cytotoxic 

lymphocyte induction (Mulvey et al., 1995; Evensen et al., 2005).  

The effects produced by adjuvants in the immune system encloses an 

enhancement of processing and presentation of antigen, an increased cellular 

infiltration, induction of cytokine release, enhancement of speed, magnitude and 

duration of the immune response, modulation of antibody avidity and affinity, 

and stimulation of cell-mediated immunity and non-specifically lymphocyte 

proliferation (Midtlyng, 1997; Evensen et al., 2005). 

Usually adjuvants are delivered in fish by injection, and in many cases 

adjuvanted vaccines tend to elicit different intra abdominal lesions at the site of 

injection (Cossarini-Dunier, 1985). Because of these side-effects, researchers 

are studying adjuvants that augment protective immune responses with or 

without minimal side-effects (Gupta et al., 1993; Anderson, 1997; Midtlyng, 

1997; Evensen, 2003; Evensen et al., 2005). 

There are different types of adjuvants that have been used in commercial 

fish vaccines (Table III) (Anderson, 1997). 

Aluminium adjuvants are the most widely used adjuvants in both human 

and veterinary vaccines (Lindblad, 2004). 
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Table III: Most common types of adjuvants and their mode of action. 

 

III. Aluminium 

 

Potassium aluminium salts (alums) are one category of surface-active 

antigens that have long been studied, and are still used extensively in the 

production of bacterins. But there have been few studies on the use of alum-

adjuvanted bacterins in fish (Mulvey et al., 1995). When evaluating the effect on 

fish growth, divergent results have been obtained after use of vaccines 

prepared with aluminium salt adjuvants (Horne et al., 1984; Mulvey et al., 1995; 

Midtlyng, 1997). The adjuvant effect of aluminium compounds is generally more 

significant in primary than in secondary responses (HogenEsh, 2002). Thus, 

aluminium compounds can further enhance the immune response by direct or 

indirect stimulation of dendritic cells, activation of complement and by inducing 

the release of chemokines. The relative importance of these mechanisms 

remains to be determined (HogenEsh, 2002). 

 

 

TYPE ADJUVANT MODE OF ACTION 

Aluminium Salts 
Aluminium Phosphate 
Aluminium Hydroxide 

Alum 

Slow release 
Antigen depot 

Water-in-oil emulsions 
Freund�s Incomplete Adjuvant 

(FIA) 
Muramyl Dipeptide 

Slow release 
Antigen depot 

Complex carbohydrates Freund�s Complete Adjuvant 
(FCA) 

Slow release 
Antigen depot 

Bacterial fractions Lipopolysaccaride (LPS) 
Saponin Macrophage stimulator 

Surface-active agents Glucans 
Dextran Sulfate Macrophage stimulator 
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IV. Photobacterium damselae ssp. piscicida (Phdp) 

 

Pasteurellosis, also described as photobacteriosis (due to the change in 

the taxonomic position), is caused by the halophilic bacterium Photobacterium 

damselae ssp. piscicida � Phdp - (formerly Pasteurella piscicida). It was first 

isolated in mortalities occurring in natural populations of white perch (Morone 

americanus) and striped bass (M. saxatilis) in 1963 in Chesapeake Bay, USA 

(Snieszko et al., 1964). Since 1969, this disease has been one of the most 

important in Japan, affecting mainly yellowtail (Seriola quinqueradiata) (Kusuda 

& Yamaoka, 1972). From 1990 it has caused economic losses in different 

European countries including France (Baudin-Laurencin et al., 1991), Italy 

(Ceschia et al., 1991), Spain (Toranzo et al., 1991), Greece (Bakopoulos et al., 

1995), Turkey (Canand et al., 1996), Portugal (Baptista et al., 1996) and Malta 

(Bakopoulos et al., 1997). Gilthead sea bream (Sparus aurata), seabass 

(Dicentrarchus labrax) and sole (Solea spp.) are the most affected species in 

Europe Mediterranean countries, as well as hybrid striped bass (M. saxatilis x M. 

chrysops) in the USA. However, the natural hosts of the pathogen are a wide 

variety of marine fish (Romalde & Magariños, 1997). 

It is presently the most devastating pathology in sea bream production. 

Severe mortalities, rising from 50 to 100% of the affected batches, are observed 

as soon as larvae reach 35 days old (Le Breton, 1999). At this stage, antibiotic 

treatments have a very limited efficacy and antibiotic resistance can occur 
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within a week. Juvenile sea bream up to 80g are also sensitive to the disease. 

In adults, the disease assumes a chronic form with low sporadic mortalities 

(Romalde, 2002; Barnes et al., 2005). This pathology is temperature dependent 

and occurs usually when water temperatures rise above 18-20°C. Below this 

temperature, fish can harbour the pathogen as subclinical infection and become 

carriers for long time periods (Romalde, 2002). 

Pastereullosis is also known as pseudotubercullosis because it is 

characterized by the presence, in the chronic form of the disease, of creamy-

white granulomatous nodules or whitish tubercules in several internal organs, 

composed of masses of bacterial cells, epithelial cells, and fibroblasts. The 

nodules are most prominent in internal viscera, particularly kidney and spleen, 

and the infection is accompanied by widespread internal necrosis (Evelyn, 

1996; Romalde, 2002; Barnes et al., 2005). Anorexia with darkening of the skin 

as well as focused necrosis of the gills are the only external clinical signs often 

observed. These lesions are generally missing in the acute form. The disease is 

difficult to erradicate with antibiotic treatments, and there is evidence that 

carriers under stressful conditions could suffer from reinfection (Le Breton, 

1999). 

The presumptive identification of the pathogen is based on standard 

biochemical tests. In addition, although Photobacterium damselae subsp. 

piscicida is not included in the API-20E code index, this miniaturised system 

can also be useful for its identification, since all strains display the same profile 

(2005004). Slide agglutination test using specific antiserum is needed for a 

confirmative identification of the microorganism (Romalde, 2002). 
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The pathogenesis of Phdp is poorly understood (Lopez-Doriga et al., 

2000). However, the major strategy of Phdp is the induction of extensive 

apoptosis of fish macrophages and neutrophils that results in lysis of these 

phagocytes by post-apoptotic secondary necrosis (Barnes et al., 2005; do Vale 

et al., 2005). Other strategy is the capacity of intracellular survival in non-

phagocytic cells in order to avoid phagocyte bactericidal mechanism (Ellis, 

1999; Lopez-Doriga et al., 2000; Barnes et al., 2005). The virulence of the 

pathogen implies the production of polysaccharide capsular layer, and 

extracellular products, and is also depending on iron availability (Lopez-Doriga 

et al., 2000). The bacteria spreads via infected phagocytes, mainly 

macrophages. This spread can be rapid, and lethal effects may occur within a 

few days of challenge, affecting tissues containing large numbers of the 

pathogens (Evelyn, 1996). 

Because of its broad host range, ubiquitous distribution, widespread 

antibiotic resistance and lack of effective vaccines, Phdp remains a major 

concern for the world aquaculture and vaccine companies (Barnes et al., 2005). 
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AIM OF THE STUDY 

 

The main objective of this research is to test a hydro soluble adjuvant � 

alum (aluminum and potassium sulfate dodecahydrate) - in immersion 

vaccination allowing it to be used earlier in fish life, in order to prevent 

pasteurellosis. Histological and immunological effects of the adjuvant were 

evaluated, as well quantification of aluminium. The accumulation or non-

accumulation of this substance can provide remarkable information for its 

potential use in commercial aquaculture vaccines. From this research, it is also 

possible to check for the aluminium immunostimulant role that some authors 

defend. 

The finding of this study will increase the existing knowledge of 

immunoprophylaxis in gilthead sea bream against pasteurellosis. Furthermore, 

the findings are also expected to assist vaccine industry and interested 

companies to make effective pseudotubercullosis vaccines for gilthead sea 

bream. 
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MATERIAL AND METHODS 

 

This chapter provides detailed information about the material and methods 

used to run this experimental study. 

 

I. Fish 

 

Gilthead sea bream (Sparus aurata L.) were obtained from a fish farm 

(Timar) located in the south of Portugal. They were placed in IPIMAR (Olhão, 

Portugal) in 1000L tanks (open system), at a maximum density of 0.5 Kg.m-3. 

Fish were fed ad libitum with a commercial diet. Prior to their use in experiments, 

fish were transported to PRODEP � LEOA (Universidade do Algarve, Portugal), 

and acclimatized in 40L aquaria (recirculation system), with a maximum density 

of 2 Kg.m-3. 

 

II. Hyperosmotic Shock 

 

Hyperosmotic shock was performed by placing the fishes in a solution of 55 

PSU for 96 hours according to the method used by Guerreiro et al. (2004) and 

Cuesta et al. (2004). The 55 PSU solution was prepared adding salt (CORAL 

REEF) q.b. to seawater, and the salinity was checked every 3-4 hours, using a 

salinometer. 
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III. Aluminium Exposure 

 

98 fish with 4.08±2.31g (µ±σ) body weight were separated in two groups, 

with the first group going through the osmotic shock and the second group 

maintained in normal seawater (35 PSU). After 96 hours, an immersion in a 

solution of alum (Aluminium and Potassium Sulphate Dodecahydrated, ) with 

1% final concentration (Mulvey et al., 1995) was performed to both groups for a 

period of 30 seconds (standard time for immersion vaccines). 

Seven fish of each group were randomly sampled at 0, 3, 6, 14, 48, 672 and 

840 hours, euthanized with excess of anaesthetic (Ethyleneglycol mono phenyl 

ether also known as Phenoxy-2-ethanol) and immediately processed for 

aluminium detection (Fig III). 

 

Figure III: Design of the aluminium exposure. 
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IV. Al detection 

 

Two methods were used in order to detect aluminium in fish: Graphite 

Furnace Atomic Absorption Spectroscopy (GFAAS) for the whole body 

aluminium concentration, and histological analysis for deposition observation. 

 

a. GFAAS 

 

Because aluminium concentration in fish is usually very small (Türkmen et 

al., 2005), Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) was 

used to perform this determination for its sensitivity and accuracy (Bouman et 

al., 1986; Exley, 1996). At each time point, 5 fish of each group were 

euthanized, and whole fish were frozen at -20ºC until processing. Processing 

and pre-treatment of samples were done according to (Bouman et al., 1986). 

After weighting (wet weight), individual fish were dried to a constant weight in a 

drying oven at 105ºC (24-36h) and then incinerated in a muffle furnace (DINKO) 

at 550ºC (12 h). To ensure a constant humidity of the samples and to cool them, 

a desiccator was used. The ashes were weighted and acidified with 

concentrated HNO3 () to a final concentration of 5%. Total aluminium in each 

digest was determined by GFAAS (Soolar M AA, Unicam), using the 

wavelength 309,3 nm, at temperatures of ashing and atomization of 1500ºC and 

2700ºC, respectively. The detection limit of the method was 0.005 µg.g-1 of dry 
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weight. These analysis were performed in the Autoridade da Segurança 

Alimentar e Económica (ASAE) laboratory, in Lisbon (Portugal). 

 

b.  Histological analysis 

 

At each time point, fish were euthanized and samples of gills, liver, 

spleen and head-kidney were collected from two fish of each group. Histological 

sections of these organs were performed in order to detect pathological effects 

and aluminium deposition. The organs were immediately fixed in a buffered 

formalin (10%) at pH 7,0 (Panreac), processed in alcohol series, mounted in 

wax and 5 µm tissue sections were prepared. This sections were stained using 

Haematoxylin-Eosin stain (HE) (Luna, 1968), and a Modified Haematoxylin stain 

for aluminium detection (MH) (Havas, 1986). MH was prepared in pure water, 

with haematoxylin (0.2%) and sodium iodate (0.02%), obtaining an amber-

orange solution which gives a vivid deep purple colour when it reacts with 

Aluminium (Al). Histological work was performed in ITTUCA (Universidade do 

Algarve, Portugal), and expert identification and critical observations were given 

by Doctor Christopher Exley (Keele University, UK). 

 

V. Bacteria 

 

Photobacterium damselae ssp. piscicida (Phdp) strain PTAVSA95 was 

gently provided by Doctor Nuno Santos (Fish Immunology and Vaccinology 

group, Institute for Molecular and Cellular Biology - IBMC, Porto, Portugal). The 
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bacteria were kept at -80ºC in stock solutions of Tryptic Soy Broth (TSB, Difco) 

or Brain Heart Infusion Broth (BHIB, Merck), both supplemented with NaCl 

(Merck) at 1% final concentration (TSB-1 or BHIB-1) and 15% (v/v) of Glycerol 

(Panreac). Prior to use, bacteria were unfrozen and plated in Tryptic Soy Agar 

(TSA, Difco) or Brain Heart Infusion Agar (BHIA, Merck), both supplemented 

with NaCl for a final concentration of 1% (TSA-1 or BHIA-1). After colonies 

formation on plates, a swab was used to transfer bacteria to TSB-1 (or BHIB-1), 

and were kept overnight in a shaker (KS 501 digital KIKA Labortechnik) at room 

temperature (±25ºC). 

 

a. Calibration Curve 

 

A calibration curve was performed in order to have a correlation between the 

Absorbance at 600nm (Abs600 nm) (ThermoLabsystems Multiskan RC) and the 

Colony Forming Units (CFU.mL-1) of the bacterial solution (do Vale et al., 2005). 

At 0, 4, 6, 12 and 24 hours, Abs600 nm was measured and serial dilutions of the 

solution were plated into TSA-1 (or BHIA-1) (Fig IV) for CFU determination. 

Colony counts were performed within the range of 30 to 300 colonies per plate. 

All the microbiology experiments were performed at the Laboratório de 

Microbiologia (Faculdade de Ciências do Mar e Ambiente, Universidade do 

Algarve). 
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Figure IV: Ten fold dilutions to determine CFU�s of bacterial solution. 

 

b. Bacteria Identification  

 

Morphological and biochemical tests were often performed in order to 

confirm bacteria purity. Morphological tests included microscopical observation 

to detect form and mobility, whereas biochemical tests as gram staining, 

capsules staining and API 20E (Biomériaux-Vitek) were performed to detect the 

biochemical profile of Phdp. 
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VI. LD50 (Lethal Dose 50) Experiment 

 

Bacteria were unfrozen, plated in TSA-1 (or BHIA-1), incubated 48h at 25ºC, 

transferred to TSB-1 (or BHIB-1) and shaked overnight at room temperature 

(±25ºC). When Abs600nm value was between 0.400 and 0.600, the shaker was 

stopped and CFU determined. 

60 fish with 2.22±1.16 g (µ±σ) body weight were slightly anaesthised and i.p. 

(intraperitoneal) injected with 100µL of Phdp, using 1 mL syringe and 26 G 

needles. Fish were divided in 6 groups, regarding the dosis from 103 to 108, and 

mortalities were registered for a period of 7 days. 

 

VII. Challenge Test 

 

a. Immunization 

 

In order to do this experiment, 170 fish with 1.76±0.61 (µ±σ) body weight 

were separated in two groups. The first group went through osmotic shock (55 

PSU) for 96 h, and the second group was maintained in seawater (35 PSU).The 

design of this experiment is shown in Fig V. After 96h (4 days), immunization by 

immersion for 30 seconds was performed and the fish received the following 

treatments (20 fish each treatment): 

-  Control (CTRL): placebo bath in seawater at 55 PSU for the 

HSW group and seawater at 35 PSU for the SW group; 
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-  Bacterin (B): Phdp bacterin (Phdp MT1415 inactivated, 

supplied by Doctor Nuno Santos, IBMC, UP) diluted at 1:10 [(v/v) 

bacterin:seawater at 55 PSU for the HSW group and bacterin:seawater 35 PSU 

for the SW group]; 

-  Bacterin&Alum (B&A): Phdp bacterin diluted 1:10 (v/v), with 

addition of 1% of alum to water (final concentration); 

-  Alum (A): bath with 1% of alum (final concentration) in 

seawater at 55 PSU for the HSW group and seawater at 35 PSU for the SW 

group. 

 

 

Figure V: Design of the experiment: osmotic shock, immunization and challenge. 

 

 



 

 
Material and Methods  27 

b. Challenge experiment 

 

One week post immunization (Fig V), the challenge with bacteria was 

performed. 10 fish from each treatment were anaesthetised with Phenoxy-2-

ethanol and i.p. injected with 100 µL of Phdp. The Phdp dosis used was 2.7x107 

CFU/fish (determined previously). Mortality in each group was recorded daily, 

and samples of moribund and dead fish were taken in order to confirm the 

cause of death. Samples of liver, spleen and head kidney were plated in TSA-1 

and incubated at 25°C for 24-48 hours. Morphological and biochemical tests 

were then performed to confirm that the cause of death was Phdp (explained 

previously in section V-b). 

Cumulative mortality was registered and RPS% (Relative Percent Survival) 

was recorded at the end of the experiment (day 7 after challenge), according to 

the method used by Amend (1981): 

 

 

VIII. Immune Response 

 

a. Blood collection and serum separation 

 

5 fish of each experimental group were pooled for evaluation of antibody 

(IgM) level at 11 and 18 days. The t=0 represents a single pooled group (5 fish) 

sampled at the beginning of the experiment. The t=4 represents samples from 

fish (5) in both SW and HSW groups, 96 hours (4 days) after the osmotic shock, 
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and immediately before immunization. The fish were killed with excess of 

anaesthetic (Phenoxy-2-ethanol), and blood was immediately collected by 

severing caudal peduncle and using capillary tubes. The blood samples were 

kept at room temperature for 60 minutes and stored at 4ºC overnight for 

complete blood clotting. The samples were then centrifuged at 1700 rpm for 30 

minutes, and sera was separated and stored at �80ºC until use. 

 

b. ELISA of serum IgM quantification 

 

The antibody responses of Sparus aurata against Phdp were measured 

by indirect Enzyme Linked Immunosorbent Assay (ELISA). 

All protocols were followed as a recommendation from 

AquaticDiagnostics Ltd, except for the chromogen/substrate use that followed 

Sigma Aldrich recommendation product. 

 

  b.1. Antigen Coating 

 

Phdp was incubated overnight in TSB-1 at room temperature with 

agitation, as previously described. When solution reached the desired 

concentration indicated by the manufacturer�s instructions (109 CFU.mL-1), 1 mL 

of this solution was resuspended in 9 mL (dilution 1:10) of Phosphate Buffered 

Saline (PBS: 0.02M Phosphate and 0.15M NaCl), and 100µL of this solution 

was added to each well of a 96-well ELISA plate (NUNC, Flat-bottom, 

MaxiSorp). The plate was covered and incubated overnight at 4ºC. After this 
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incubation period, 50µL of a solution of 0.05% (v/v) of gluteraldehyde was 

added. Finally, the plate was incubated for 20 minutes at room temperature. 

 

  b.2. Block non-specific binding sites 

 

After the last antigen coating incubation period, three rinses with Low 

Salt Buffer (LSB: 2.42% Trisma base, 22,22% NaCl, 0.1% Merthiolate and 0.5% 

Tween 20, pH 7.3) were performed. The wells were then post-coated/blocked 

for 2h at room temperature with blocking/conjugate buffer [1% (w/v) of Bovine 

Serum Albumin (BSA) in LSB] followed by three rinses with LSB. 

 

  b.3. Serum samples and negative control 

 

Double dilutions of the fish serum samples were prepared in PBS, 

ranging from ½ to ¼, and PBS was used as negative control. 100µL of each 

sample dilution and negative control were then added to the plate, and 

incubation took place for 3h at room temperature. 

The plate was then washed 5 times with High Salt Buffer (HSB: 2.42% 

Trisma base, 29,22% NaCl, 0.1% Merthiolate and 1% Tween 20, pH 7.3) and 

incubated for 5 minutes on the last wash. 
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  b.4. IgM monoclonal Antibody labbeled with HRP 

 

After HSB washes and incubation, 100 µL of the reconstituted anti-

gilthead sea bream IgM monoclonal antibody-HorseRadish Peroxidase (Aquatic 

Diagnostics Ltd.) was added to each well. The plate was then incubated for 1h 

at room temperature. Rinse took again place with the HSB (5x), performed as 

previously. 

 

  b.5. Chromogen/substrate & Readings 

 

After the incubation of the anti-IgM labbeled with HRP, 200 µL of 

Chromogen (OPD: o-Phenyldiamine dihydrochoride), with the respective 

substrate buffer (SIGMA FAST tablets) were added to each well. The reaction 

was allowed to proceed for 30 minutes and stopped by the addition of 50 µL of 

2M H2SO4. Afterwards Optical Density was measured at 450 nm (O.D.450nm) in a 

ELISA reader (ThermoLabsystems Multiskan RC). 

Negative control consisted of wells without serum (i.e. PBS), whose OD 

value was deducted from each value of the samples. The results are expressed 

as (a) Stimulation Index (µ±σ), which is obtained by dividing each sample value 

by its respective control value, and (b) Circulating IgM level (OD450nm). 
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IX. Statistical Method of Analysis 

 

The SIGMA-STAT 3.11.0 of Systat software was used in GFAAS, 

Stimulation Index and Circulating IgM level statistical analysis performing the 

two way ANOVA, with subsequent Tukey corrections for multiple comparisons. 

The significant difference was considered if p<0.05. 

For the statistical analysis of Survival Percentages, the same software was 

used, although performing the Kaplan-Meier Survival Analysis - Gehan-Breslow, 

with subsequent Holm-Sidak corrections for multiple comparisons. The 

significant difference was considered if p<0.05. 
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RESULTS 

 

I. Aluminium Detection 

 

a. GFAAS 

 

Total aluminium values in the whole fish body were carried out at 0, 3, 6, 14, 

48, 672 and 840 hours. Fig VI shows the results of HSW (Hyperosmotic shock) 

and SW (normal sea water) groups. 

 
Figure VI: Distribution of Aluminium (expressed in µg.g-1 DW of the all sea bream body) at 
different time points in Hyperosmotic Shock (■HSW) and Normal Salinity (▲SW) groups. A 
represents the aluminium concentration within the first 14 hours. Values are expressed as 
mean±SD (n≥4). 

 

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800

Time (hours)

[A
l] 

µg
.g

-1
 D

W

[Al] µg.g-1 DW HSW

[Al] µg.g-1 DW SW

0

5

10

15

20

25

30

35

0 5 10 15

A 



 

 
Results  33 

HSW group presented a decrease on aluminium concentration from 

25.46±7.17 µg.g-1 DW (0 hours) to 15.67±4.46 µg.g-1 DW (3 hours) after the 

immersion treatment. From 3 hours onwards, the HSW group showed small 

variations in the aluminium concentrations. 

The SW group had a small increase on the aluminium content from 

14.94±4.65 µg.g-1 DW (0 hours) until 23.23±6.28 µg.g-1 DW (6 hours). At 14 hours, 

a decrease was observed (15.62±1.93 µg.g-1 DW), after witch there was a new 

raise at 48h (21.93±6.48 µg.g-1 DW). There was again a decrease at 840h 

(9.76±2.90 µg.g-1 DW). 

There where no statistically significant differences between SW and HSW 

groups (p=0.173). 

 
b. Histological analysis 

 

b.1. Gills 
 
 Histological sections of gills stained with Haematoxylin-Eosin (HE) (A and 

B) and Modified Haematoxylin (MH) (C - F) are shown in Fig VII. No pathological 

effects were observed in this tissue, either in control group or in groups exposed to 

aluminium. 

In order to observe aluminium deposits, MH stain was performed. Here (C - F) 

is possible to see gills from a fish of the control group (C and E), where no purple 

deposits were found. D (HSW group, 48h after exposure) and F (SW group, 3h 

after exposure) show abnormal deposits of aluminium mainly in the branquial 

cartilage, where the purple stain from the MH reaction appeared in the gill�s 
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primary lamellae. All groups that were exposed to aluminium presented these 

abnormal deposits. 

 

 
Figure VII: Histological sections of gills stained with Haematoxylin Eosin (A and B) and with 

Modified Haematoxylin stain (C-F). A SW at 3h (125x); B HSW at 48h (600x); C control (125x); D 
SW at 48h (125x); E control (975x); F SW at 3h (975x). ► aluminium deposits stained purple. 
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  b.2. Liver 

 

 Liver sections stained with Haematoxylin-Eosin (A and B) and Modified 

Haematoxylin stain (C) are showed on Fig VIII. The A and B section histological 

sections present a normal liver from SW group after 14 hours of exposure to 

aluminium. B illustrates structure of liver, with well defined hepatocytes. No 

pathological effects were observed. 

In the Modified Haematoxylin stain of liver sections there was no aluminium 

deposition in slides observed (all groups) (C, HSW at 672h). 

 

 

Figure VIII: Histological sections of liver stained with Haematoxylin-Eosin (A and B) and with 
Modified Haematoxylin stain (C). A 125x; B 600x; C 975x. 

 

 

CC  
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  b.3. Spleen 

 

 Spleen sections stained with Haematoxylin-Eosin (A and B) and Modified 

Haematoxylin stain (C and D) are showed in Fig IX, (HSW fish after 6 hours of 

aluminium exposure). Melanomacrophagic Centers (MMC) can be observed in B 

with a magnification of 600x. No pathological effects were observed in the tissue 

sections (in all groups). 

Histological sections of spleen stained with Modified Haematoxylin stain are 

showed in C and D, where no aluminium deposits were observed. 

Melanomacrophagic centres (MMC) appear brown, as in Haematoxylin-Eosin stain. 

Illustrations C show a fish from SW group at 6 hours and D a fish from HSW group 

also at 6 hours. 
 

Figure IX: Histological sections of spleen stained with Hematoxylin-Eosin (A and B) and with 

Modified Haematoxylin stain. A 125x; B 600x; C 125x; D 1250x. 
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  b.4. Head-kidney 

 

Fig X present histological sections of head-kidney stained with Haematoxylin-

Eosin (A and B) and Modified Haematoxylin stain (C and D). HSW group after 3 

hours of aluminium exposure). B shows a magnification of a MMC that is 

distinguished by the brown characteristic colour. After analysing the head-kidney 

histological sections, from all groups, no pathological effects were observed. 

In Modified Haematoxylin stain, MMC appear brown, as it can be seen in 

spleen sections. This Fig is illustrating a fish from the group HSW after 840 hours 

of aluminium exposure. No aluminium deposits were found in the histological 

sections of the head-kidney. 

 

 

Figure X: Histological sections of head-kidney stained with Haematoxylin-Eosin (A and B) and 
with Modified Haematoxylin stain (C and D). A 125x; B 1250x; C 600x and D 1250x. 
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II. Bacteria 

 

II.a. Calibration Curve 

 

After performing the Calibration curve, the following equation was obtained: 

y=5.4561x+7.5961 (Fig XI), where y represents log CFU.mL-1 and x the Abs600nm. 

The r2 value obtained was 0.7675. 
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Figure XI: Representation of the calibration curve, where bacterial growth is presented relating the 
optical density at 600 nm with the logarithm of the CFU.mL-1. 

 

II.b. Bacteria Identification 
 

Morphologically, the bacteria was a rod shaped cell, with no motility. 

Results of biochemical tests performed to the bacteria can be seen in Fig 

XII and Fig XIII. 

When Gram staining was performed (Fig XII-A), it was perceptible the 

bipolar staining characteristic of Phdp. With capsular stain (Fig XII-B), it is possible 
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to see a hale (transparent) around the bacteria (blue-purple), which is also 

characteristic of Phdp. 

 The result obtained in the API-20E (2005004) was coincident with the 

profile already obtained by some authors, which described similar pattern for all 

Phdp strains. 

 

 

Figure XII: (A) Gram negative result; (B) capsular layer. Both images with a 1250x magnification. 

 

 

 

Figure XIII: Biochemical profile of Phdp; gallery API 20E after 24 hours of incubation and 

biochemical result. 
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V. LD50 

 

The value of the Lethal Dose 50 obtained was 2.7x107 CFU.mL-1, 

calculated according to the method of Muench and Reed (1938). 

 

VI. Challenge-test 

 

VI.a. Challenge experiment 

 

Challenge-test provided the survival curves presented in Fig XIV (SW 

group) and Fig XV (HSW group). By analysing the curve of SW group, it is 

possible to see that the treatment with B&A had the highest survival (90%), and 

that the lower value of survival corresponds to Alum treatment (30%). On the other 

hand, in the HSW group curve, Alum treatment presented the highest survival 

(60%) when compared with the other treatments of this group. The lowest value 

correspond to the B&A treatment (20%). 

The mortalities obtained in the HSW group were higher than in the SW 

group. 
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Figure XIV: Survival curves of sea bream challenged with Phdp in the SW group. 
 
 

 
Figure XV: Survival curves of sea bream challenged with Phdp in the HSW group. 
 

 

  VI.b. RPS (%) 

 

Relative Percent Survival (RPS %) values for the different group treatments 

can be seen in Table IV. There are negative RPS%, which means that the 
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mortalities in those treatments are higher than the respective control. The best 

RPS% found was in the B&A treatment of the SW group (75%), and the worst 

protection was with Alum in the same group. Is also necessary refer that B&A in 

the HSW group had the opposite effect than the same treatment in SW group, with 

-60% and 75%, respectively. 

 

Table IV: Relative Percent Survival of the SW and HSW groups, exposed to different treatments of 
immunization � Bacterin (B), Bacterin and Alum (BA) and Alum (A). 

 
 

Bacterin (B) Bacterin&Alum (BA) Alum (A) 

SW 25 75 (-75) 
HSW (-20) (-60) 20 
 

VII. Immune Response 

 

VII.a. Stimulation Index 

 

Values of SI obtained in both SW and HSW groups are showed in Fig XVI 

and XVII. 

In both groups, the dash line represents the control value of SI (SI=1). The 

vertical bars (6), represent the value of SI obtained in different treatments (B, B&A 

and A), sampled at days 11 and 18. 

At day 11, in the SW group (Fig XVI) the only increase in SI was in the 

Bacterin treatment. At day 18, B and A treatments showed no variation in the SI 

values, while B&A treatment presented a remarkable SI increase. 
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Significant statistical differences were found between SW and HSW groups 

(p=0.003), mainly because of contribution day 18 of the the B&A (SW group) 

treatment. 

HSW group (Fig XVII) points up to a general stimulation in all treatments, 

having all the values been higher than the control. With exception of the Bacterin 

treatment, there was a certain depression of the values from day 11 to day 18 of 

sampling. 

 

 

Figure XVI: Stimulation Index (S.I.) of SW group. The control value is 1 (dot line) and 

higher values express an increase of serum content IgM. 
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Figure XVII: Stimulation Index (S.I.) of HSW group. The control value is 1 (dot line) and 

higher values express an increase of serum content IgM. 

 

  VII.b. Circulating IgM level 

 

Circulating IgM level in both SW and HSW groups represented by O.D.450nm 

can be observed in Fig XVIII and Fig XIX, respectively. 

The O.D.450nm value of the control (t=0), was 0,0504±0,0332. 

At day 4, the O.D.450nm values in the SW group and HSW group were 

similar (0,0575±0,0470 and 0,0634±0,0407, respectively). There is no evidence 

that this values are different from t=0 (p=0.363). 

At day 4 immunizations were performed. 

Statistical significant differences were found between SW and HSW 

(p<0.0001), because of the B&A treatment (SW group) contribution at day 18. 
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Figure XVIII: Circulating IgM level, expressed as Optical density at 450 nm, in serum of gilthead 
sea bream in SW group. Data represent the different treatments that include Control (A), Bacterin 
(B), Bacterin&Alum (C) and Alum (D). In C, y axis is different from the others, being in two 
segments. 
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Figure XIX: Circulating IgM level, expressed as Optical density at 450 nm, in serum of gilthead sea 
bream in HSW group. Data represent the different treatments that include Control (A), Bacterin (B), 
Bacterin&Alum (C) and Alum (D). 
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DISCUSSION 
 

Aquaculture is the fastest growing sector of food production industry in 

the world. Because this sector growth, maximum profitable production tend to 

be required, thus leading to higher densities. This enhanced culture conditions 

tend to increase pathological problems. Prophylactic measures, such as 

vaccines, are among several possibilities of fish pathology control. 

Adjuvants are substances that potentiate efficacy of vaccines. Current 

information show that adjuvants are commonly used in injected vaccines. 

Nevertheless, information about the use of adjuvants by immersion is still 

scarce (Ascarateil & Dupuis, 2003). 

The aim of this research was to test the efficacy of alum, when used as 

an adjuvant in immersion vaccine against Photobacterium damselae ssp. 

piscicida in gilthead sea bream (Sparus aurata). 

Mechanisms of vaccine absorption in fish are not clearly described 

(Ascarateil & Dupuis, 2003; Huising et al., 2003), but adsorption of the vaccine 

can be enhanced by the use of hyperosmotic shock (Huising et al., 2003). At 

the same time, the hyperosmotic shock increases ion influx (Guerreiro et al., 

2004; Laiz-Carrion et al., 2005), when fish were placed in 55 PSU water.  

Our first objective was to test aluminium absorption in sea bream. For 

that we used the standard immersion time of 30 seconds (recommendation of 

fish vaccines producers), applied together with an hyperosmotic shock of 55 

PSU, in order to see the influence of the salinity in metal (Al) absorption. 
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The hyperosmotic shock lasted for 4 days, because there are indications 

that this period is needed to augment absorption of the ionic influx (Jensen et al., 

1998; Guerreiro et al., 2004; Laiz-Carrion et al., 2005). 

Although aluminium adjuvants have been used for a long time, 

surprisingly little is known about mechanisms by which they enhance the 

immune response (Lindblad, 2004). The two most commonly cited mechanisms 

are formation of an antigen depot and immunostimulation (HogenEsh, 2002). 

Aluminium adjuvants are the only adjuvants approved for use in human and 

veterinary vaccines (HogenEsh, 2002; Lindblad, 2004), but there have been few 

studies on the use of the alum adjuvanted bacterins in fish (Horne et al., 1984; 

Mulvey et al., 1995). In injected vaccines, the alum concentration tested was of 

1% (Mulvey et al., 1995) and 2.5% (Horne et al., 1984). There are evidences 

that aluminium can be toxic to fish (Horne et al., 1984; Exley, 1998), thus we 

decided to use alum at 1% final concentration. The choice of alum use was 

because of its solubility in water (W.H.O., 1997). The presence of aluminium in 

fish was measured by two methods: GFAAS for aluminium quantification and 

histology for aluminium deposition. There are no data on whole body aluminium 

concentration, thus we cannot compare our results with other works. 

Concentrations of aluminium in fish can be mainly found in muscle and gills 

(Exley, 1996 and 1998; Tein et al., 2004; Türkmen et al., 2005; Tein et al. 2006). 

In studies regarding the augment of ion absorption with hyperosmotic 

shock have already been published (Jensen et al., 1998; Huising et al., 2003; 

Guerreiro et al., 2004; Laiz-Carrion et al., 2005). Our results didn�t support 
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those statements, since there were no differences in aluminium concentration 

between SW and HSW groups. 

Modified Haematoxylin technique (Havas, 1986) is used by several 

authors (Exley, 1996; 1998; Peuranen et al., 2003; Vuorinen et al., 2003) to 

evidenciate aluminium in histological sections. According to Exley (1996), the 

gill is the main site of accumulation during acute exposure to aluminium. Our 

observations showed the same pattern of deposition in gills, while liver, spleen 

and head-kidney didn�t show any signs of aluminium presence. Several authors 

(Exley, 1996; Peuranen et al., 2003; Vuorinen et al., 2003; Teien et al., 2006) 

indicated that aluminium binds to the gill epithelium, where it is internalized to 

secondary lamellae (Peuranen et al., 2003; Vuorinen et al., 2003). In our study, 

the main site of deposition was the cartilage of primary lamellae, where the 

aluminium could play a role in replacing Calcium from bone matrix (Verbost et 

al., 1992; Goyer, 1997). 

MMC (cells filled with dark brown pigment granules) are normally present 

in spleen and head-kidney of fish (Rodrigues & Pereira, 2004), although it has 

been also reported in the liver of some teleost (Manera et al., 2000; Leknes, 

2001). Sea bream didn�t showed this MMC structures in the liver, which is 

similar to the findings in sea bass (Rodrigues & Pereira, 2004). These 

macrophage aggregates can deposit iron (Rodrigues & Pereira, 2004). In 

circulation, iron is captured by transferrin and transported to several organs 

(Rodrigues & Pereira, 2004). This plasma binder, transferrin, is able to bind 

aluminium, since aluminium behaves like iron in many biological systems 
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(Goyer, 1997). In this way, it could be expected to find aluminium deposits in 

MMC, however MH didn�t show aluminium deposits in sea bream MMC. 

In addition, there were no indications of pathological problems in all the 

tissues analyzed, in spite some results indicate gill damage, mainly hypertrophy 

and necrosis (Peuranen et al., 2003; Vuorinen et al., 2003). 

These experiments showed that the hyperosmotic shock didn�t influence 

aluminium absorption, indicating that alum can be used as an adjuvant in fish 

immersion vaccines, without side effects. 

Photobacterium damselae ssp, piscicida is the causative agent of 

pasteurellosis (or pseudotubercullosis) in fish, associated to big mortalities in 

fish farms all over the world (Romalde & Magariños, 1997; Le Breton, 1999; 

Romalde, 2002; Barnes et al., 2005). Pahology and histopathology have been 

widely described and reviewed (Barnes et al., 2005). Susceptibility to 

pasteurellosis differs in some fish species on the basis of fish age; moreover, 

the fact that this bacteria is highly pathogenic indicates that it must have strong 

virulence mechanisms (Le Breton, 1999; Romalde, 2002). 

Our results showed morphological and biochemical similitudes between 

PTAVSA95 and other Phdp strains (Romalde, 2002). Thus, the result obtained 

in the API-20E (2005004) sustain author indications on API-20E usefulness for 

the presumptive identification of Phdp (Romalde, 2002). 

In order to determine the virulence of Phdp strain PTAVSA95 in 

2.22±1.16 g sea bream, the LD50 experiment was performed. Several studies 

indicate that Phdp LD50 range for sea bream is between 103 and ≥108 

(Magariños et al., 1992; Magariños et al., 1996; Balebona et al., 1998; do Vale 
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et al., 2005). Our LD50 result was 2.7x107 CFU/fish which is within this range. In 

addition this result is similar with the result obtained by do Vale et al., (2005) 

when used PTAVSA95 in sea bass. Thus we can consider PTAVSA95 as a low 

virulent strain (Magariños et al., 1992; Magariños et al., 1996). 

Throughout the last 25 years, there have been a variety of studies 

analysing the effectiveness of immunization in preventing pasteurellosis 

(Romalde, 2002). The ability of fish vaccines to induce a protective immunity is 

for the most part based on experimental studies and/or field experiments, but is 

critical to identify the individual components involved in inducing protection 

(Arijo et al., 2004). 

Immunological status of fish exposed to different treatments (B, B&A and 

A) are represented by SI and circulating IgM level. The ratio obtained by 

IgMsample/IgMcontrol is the SI value, which means that the SI value obtained is 

already a comparison with the control. SI values below the control were found in 

some treatments in SW group, namely in A (11 and 18 days) and B&A (11 

days) treatments. Cuesta et al. (2004) found negative SI values when exposed 

sea bream (100-200g WW) to 1.6 mM 2-phenoxyetanol (anaesthetic) for 1 hour, 

and when applied the immunostimulant levamisole at 0.3g/kg diet, after 3 and 6 

weeks. 

Few studies have evaluated the salinity effects on fish immune 

parameters (Cuesta et al., 2005). According to Huising et al. (2003) 

hyperosmotic immersion acts as an adjuvant in the way that it enhances 

vaccine uptake and stimulates the activation of the innate as well as the 

acquired immune system. Results from Cuesta et al. (2005) show that 
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hyperosmotic acclimatization has a beneficial (or no) effect on sea bream (100-

150g WW) humoral immune parameters. Our results are in agreement with 

those obtained by Cuesta et al. (2005), having been achieved positive SI values 

in all treatments of HSW group. However, statistical analysis show that SW 

group had a general better Stimulation Index, because of the contribution of the 

B&A treatment at day 18. 

Circulating IgM molecules are affected by immunomodulators (Cuesta et 

al., 2004), however there is no evidence of which mechanisms influence the fish 

immune system after salinity disturbances (Cuesta et al., 2005). Our results 

show that after 4 days of acclimatization (HSW or SW), values of circulating IgM 

were not significantly different (p=0.924). Thus, it is possible to consider that 

sampling days 11 and 18 correspond to 7 and 14, respectively. Cuesta et al. 

(2005) found higher circulating IgM level at day 14 in response to hyperosmotic 

shock. In opposition, our results at day 14 show a significant higher circulating 

IgM level in the SW group, because of contribution of B&A treatment (p<0.001). 

According to Huising et al. (2003), HSW leads initially to a profound acute 

inflammatory response (as the antigen uptake increases, intracellular uptake by 

leucocytes also increase) and later to an enhanced specific mucosal response. 

Thus, a lower circulating IgM level obtained can be justified, for the short 

sampling time (14 days). 

Antibodies in the circulation constitute an important part of resistance 

against pathogenic microorganisms (Arijo et al., 2004). To correlate serum 

antibodies (circulating IgM level) with protection offered by the different 

treatments, a challenge test with Phdp was performed. After sea bream 
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infection with Phdp, survival curves (Fig XIV and Fig XV) along 7 days were 

made. The challenge results showed statistically significant differences 

(p=0.003) between SW and HSW group, again because of the contribution of 

B&A treatment. Mulvey et al. (1995) results indicate lower mortalities in B&A, 

followed by Bacterin, Control and Alum, respectively. RPS% values obtained 

from this work depended upon challenge time, since the authors used 30, 60 

and 90 days post-vaccination to perform challenges. In these challenges, 

RPS% values in average were 100±0.00% for B&A, 86.37±8.20% for B and 

finally -8.30±13.95% for A treatment. Considering the survival percentage of the 

SW group, our results are coincident with Mulvey et al. (1995). On the other 

hand, survival rate results from HSW group, showed an opposite response, 

having the B&A obtained the higher mortalities, followed by Bacterin, Control 

and alum, respectively. 

Our RPS% values indicated a 75% protection in the B&A treatment. The 

other treatments showed RPS% values lower than 70%, meaning that those 

treatments are not so effective. Bakopoulos et al. (2003) tested several 

vaccines, and obtained better RPS% values with vaccine mixtures (94.5-100%) 

than with a commercial Bacterin (25%) in sea bass (c. 20 g). Our result is 

similar in what concerns Bacterin treatment (SW group), where we obtained 

25% of RPS. 
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CONCLUSION 

 

The aim of this study was to investigate a hydro soluble adjuvant � alum 

(aluminum and potassium sulfate dodecahydrate) - in immersion vaccine 

against Photobacterium damselae ssp. piscicida. The target species of fish was 

gilthead sea bream. 

The results obtained showed that an osmotic shock (55 PSU for 96 

hours) didn�t allow enhance absorption of aluminium, in addition hyperosmotic 

shock didn�t confer additional protection to fish. 

No pathological effects were found in the tissue samples of the fish 

treated with alum. The aluminium deposits were only detected at the branchial 

cartilage of the primary lamellae. 

Specific antibody responses and stimulation index demonstrated that 

although the fishes from the HSW group presented higher antibody responses, 

the best protection was in SW group. 

The challenge test showed that the best protection is given by a 

treatment with Bacterin and Alum, thus could be applied for a commercial 

vaccine. 

Further research should be done with longer challenge tests, in order to 

test efficacy as well as in other species, with the intention of evaluate similar 

results. 
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