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Abstract

End-stopped cells in cortical area V1, which combine outputs of complex cells tuned
to different orientations, serve to detect line and edge crossings, singularities and
points with large curvature. These cells can be used to construct retinotopic keypoint
maps at different spatial scales (Level-of-Detail). The importance of the multi-scale
keypoint representation is studied in this paper. It is shown that this representation
provides very important information for object recognition and face detection. Dif-
ferent grouping operators can be used for object segregation and automatic scale
selection. Saliency maps for Focus-of-Attention can be constructed. Such maps can
be employed for face detection by grouping facial landmarks at eyes, nose and
mouth. Although a face detector can be based on processing within area V1, it
is argued that such an operator must be embedded into dorsal and ventral data
streams, to and from higher cortical areas, for obtaining translation-, rotation- and
scale-invariant detection.
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saliency, Focus-of-Attention, face detection

1 Introduction

Our visual system can still be seen as a huge puzzle with a lot of missing
pieces. Even in the first processing layers in area V1 of the visual cortex there
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remain many gaps, despite all knowledge already compiled (Rasche, 2005;
Hubel, 1995; Bruce et al., 2000). Nevertheless, some of the gaps are being filled
by developing and studying computational models. Models of simple, complex
and end-stopped cells have been developed more than ten years ago (Heitger
et al., 1992). Several inhibition models (Grigorescu et al., 2003; Petkov et al.,
1993), keypoint detection (Heitger et al., 1992; Rodrigues and du Buf, 2004b;
Würtz and Lourens, 2000) and line/edge detection schemes (Grigorescu et al.,
2003; Rodrigues and du Buf, 2004b; Elder and Sachs, 2004; van Deemter and
du Buf, 1996), including disparity models (Fleet et al., 1991; Rodrigues and
du Buf, 2004a), have become available. On the basis of such models and neural
processing schemes, it is possible to create a cortical architecture for figure-
ground segregation (Hupe et al., 2001; Rodrigues and du Buf, 2006) and visual
attention or Focus-of-Attention (FoA) (Parkhurst et al., 2002; Rodrigues and
du Buf, 2005a). In addition, object detection, categorisation and recognition
can be obtained by means of bottom-up and top-down data streams in the
so-called “what” and “where” subsystems (Rensink, 2000; Deco and Rolls,
2004; Rodrigues and du Buf, 2006).

We will focus exclusively on keypoints in this paper. Heitger et al. (1992)
developed a single-scale basis model that consists of single and double end-
stopped cells in combination with complex inhibition schemes. Würtz and
Lourens (1997) and Rodrigues and du Buf (2004) presented a pseudo-multi-
scale approach, in which detection stabilisation at a fine scale is obtained by
averaging keypoint positions over a few neighbouring, coarser, micro-scales. A
truly multi-scale analysis was introduced later (Rodrigues and du Buf, 2005a).
This idea was based on the fact that there are simple and complex cells tuned
to different spatial frequencies, spanning multiple octaves; therefore, it can
be expected that also end-stopped cells exist at all frequencies. We analysed
the multi-scale keypoint representation, from very fine to very coarse scales,
in order to study its importance and possibilities for developing a cortical
architecture, with an emphasis on FoA. Also, a new aspect was included,
namely the application of non-classical receptive-field (NCRF) inhibition to
keypoint detection. Before, NCRF inhibition had only been applied to contour
detection (Grigorescu et al., 2003), in order to separate object structures from
surface textures. Below, we will argue that NCRF inhibition can be applied
to edges and to keypoints, for creating two data streams dedicated to object
structures and surface textures, but only at the finest scales. Furthermore, we
will show that the multi-scale keypoint representation can be combined with
automatic scale selection, for obtaining keypoints which are most characteristic
of objects, and that it can play a role in object segregation. The latter two
processes are thought to be essential in the what and where subsystems, for a
rapid detection of where an object may be and a first categorisation to select
most likely object templates in memory, after which all available features are
used in object recognition.
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A difficult and still challenging application, even in computer vision, is face
detection. Despite the impressive number of methods devised for faces and
facial landmarks (Yang et al., 2002), complicating factors are pose (frontal
vs. profile), beards, moustaches and glasses, facial expression and image con-
ditions (lighting, resolution). Despite these complications, we will study the
multi-scale keypoint representation in the context of a plausible architecture
for face detection. We add that we will not employ the multi-scale line/edge
representation that also exists in area V1, in order to emphasise the impor-
tance of the information provided by keypoints. Also, we will not solve all
complications referred to above, because we will argue, in the final Discussion,
that low-level processing in area V1 needs to be embedded into a much wider
context, including object templates stored in short- and long-term memory,
and this context is expected to solve many problems.

There exists a vast literature concerning keypoints in computer vision, from
basic feature extraction to object recognition, but much less in biological vi-
sion. Here we summarise a few approaches. Lourens and Würtz (1997) pre-
sented an object recognition system based on symbolic graphs, in which object
corners are nodes and object contours are edges of the graphs. Their algo-
rithm for corner detection is based on Heitger et al.’s (1992) model of cortical
end-stopped cells, but they combined several scales and generalised to colour
channels (Würtz and Lourens, 2000). Resulting corner detection was shown
to be very stable in the presence of high-frequency textures, noise, varying
contrast and rounded corners, see also Lourens et al. (2001) and Würtz and
Lourens (2003). In this processing, graph edges are constructed by following
contours between corners, using local evidence from the multi-scale Gabor
wavelet transform. Model matching is achieved by finding subgraph isomor-
phisms in global image graphs.

Rosenthaler et al. (1992) also presented an integrated framework for extract-
ing edges and keypoints. This detection scheme is based on analysis of oriented
energy channels by using differential geometry. Barth et al. (1998) proposed
end-stopped operators based on iterative, non-linear centre-surround inhibi-
tion. Henricsson and Heitger (1994) showed that an independent represen-
tation of corner and junction features provides suitable stop conditions for
an aggregation process which allows to divide contours into meaningful sub-
strings. They demonstrated that the active role of corners and junctions in the
linking of contours greatly reduces problems associated with purely edge-based
methods.

Lindeberg (1998) presented a detailed study of the Gaussian-derivative scale-
space representation that can be used for a variety of early visual tasks.
Operations like feature detection, which includes keypoints, feature classifi-
cation and shape computation can be directly expressed in terms of (non-
linear) combinations of Gaussian derivatives at multiple scales. Hansen et al.
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(2001) developed a functional model of intra-cortical, recurrent, long-range
interactions in V1 and proposed that long-range connections implement a
multi-purpose preprocessing mechanism for main vision tasks, namely con-
tour enhancement and corner detection. Later, Hansen and Neumann (2002)
compared detected junctions based on the recurrent long-range interactions to
junctions as obtained by a purely feed-forward model of complex cells. They
also compared with two widely-used junction-detection schemes in computer
vision, which are based on Gaussian curvature and the structure tensor. Ruzon
and Tomasi (2001) used colour distributions to detect edges, junctions and cor-
ners, whereas Kovesi (2003) described corner and edge detection on the basis
of the phase-congruency model. Triggs (2004) demonstrated that keypoints
detected by the Förstner-Harris method are very stable when changing the
illumination.

In addition to all different views and ideas referred to above, we mention two
special projects. The first has no biological background, whereas the second
has some minor biological background. The SUSAN project (Smith and Brady,
1997) concerns an approach to edge and corner detection with structure-
preserving noise reduction. Non-linear filtering is used to define which parts
of the image are closely related to each individual pixel, where each pixel is
associated to a local image region which has about the same intensity (pixel
values). Feature detectors are based on the minimisation of these local im-
age regions, and the noise-reduction method uses the regions as smoothing
neighbourhoods. The SIFT project (Lowe, 2004) has seen many developments
along the years, for instance the extraction of distinctive image features from
scale-invariant keypoints. Distinctive, invariant image features can be used for
a reliable matching of different views of an object or a scene.

Most methods presented above have no direct biological background, and those
with a clear biological background (Heitger et al., 1992; Barth et al., 1998;
Hansen et al., 2001) are limited to one, fine scale. The only exceptions are the
papers by Lourens and Würtz referenced above, in which a few (fine) scales
are used for keypoint stabilisation. Furthermore, many methods are concerned
with low-level feature extraction, for example for solving problems related to
edge detection by employing keypoints. Extracted features are then used for
high-level object detection in images, for example. In this paper, we study
keypoint scale space, from the finest to very coarse scales, and show that this
space can be exploited in building biological—and computer—vision systems.

2 Basic cell models and NCRF inhibition

Gabor quadrature filters provide a model of cortical simple cells (Lee, 1996).
In the spatial domain (x, y) they consist of a real cosine and an imaginary
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sine, both with a Gaussian envelope. A receptive field (RF) is denoted by (see
for example Grigorescu et al. (2003))

Gλ,σ,θ,ϕ(x, y) = exp

(
− x̃2 + γỹ2

2σ2

)
· cos(2π

x̃

λ
+ ϕ), (1)

with x̃ = x cos θ + y sin θ and ỹ = y cos θ − x sin θ, the aspect ratio γ = 0.5
and σ determines the size of the RF. The spatial frequency is 1/λ, λ being
the wavelength. For the bandwidth σ/λ we use 0.56, which yields a half-
response width of one octave. The angle θ determines the orientation (we
use 8 orientations), and ϕ the symmetry (0 or π/2). We can apply a linear
scaling between fmin and fmax with hundreds of contiguous scales. Below, the
scale of analysis will be given in terms of λ expressed in pixels, where λ = 1
corresponds to 1 pixel. Most images shown in this paper have a size of 256×256
pixels.

Responses of even and odd simple cells, which correspond to real and imagi-
nary parts of a Gabor filter, are obtained by convolving the input image with
the RFs, and are denoted by RE

s,i(x, y) and RO
s,i(x, y), s being the scale, i the

orientation (θi = iπ/(Nθ − 1)) and Nθ the number of orientations (here 8).
Responses of complex cells are then modelled by the modulus

Cs,i(x, y) = [{RE
s,i(x, y)}2 + {RO

s,i(x, y)}2]1/2. (2)

There are two types of end-stopped cells (Heitger et al., 1992), single (S) and
double (D). If [·]+ denotes the suppression of negative values, and Ci = cos θi

and Si = sin θi, then

Ss,i(x, y) = [Cs,i(x + dSs,i, y − dCs,i) − Cs,i(x − dSs,i, y + dCs,i)]
+ (3)

and

Ds,i(x, y) =
[
Cs,i(x, y) − 1

2
Cs,i(x + 2dSs,i, y − 2dCs,i)

− 1

2
Cs,i(x − 2dSs,i, y + 2dCs,i)

]+
. (4)

The distance d is scaled linearly with the filter scale s (we use d = 0.6s).
Figure 1 shows end-stopped responses at three scales in the case of the traffic-
sign image shown in Fig. 2. These responses mark the triangle and arrow
etc. at a fine scale, but at coarser scales they are very diffuse due to the size of
the RFs. In the next step, all end-stopped responses along straight lines and
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Fig. 1. Single (top) and double (bottom) end-stopped responses at three scales
(λ = 4, 8, 16).

edges are suppressed, for which tangential (T) and radial (R) inhibition are
used:

IT
s (x, y) =

2Nθ−1∑
i=0

[−Cs,i mod Nθ
(x, y) + Cs,i mod Nθ

(x + dCs,i, y + dSs,i)]
+ (5)

and

IR
s (x, y) =

2Nθ−1∑
i=0

[Cs,i mod Nθ
(x, y)

− 4 · Cs,(i+Nθ/2) mod Nθ
(x +

d

2
Cs,i, y +

d

2
Ss,i)

]+

, (6)

where (i + Nθ/2) mod Nθ ⊥ i mod Nθ.

Non-classical receptive-field (NCRF) inhibition can be applied to suppress
keypoints in textured regions. Models of NCRF inhibition are explained in
more detail by Grigorescu et al. (2003). There are two inhibition types: (a)
anisotropic, in which only responses obtained for the same preferred RF orien-
tation contribute to the suppression, and (b) isotropic, in which all responses
over all orientations contribute equally to the suppression.

The anisotropic NCRF (A-NCRF) model is computed by an inhibition term
tAs,σ,i for each orientation i, as a convolution of the complex cell responses Cs,i
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with the weighting function wσ, with

wσ(x, y) = [DoGσ(x, y)]+/‖[DoGσ]+‖1, (7)

where ‖ · ‖1 is the L1 norm and

DoGσ(x, y) =
1

2π(4σ)2
exp(−x2 + y2

2(4σ)2
) − 1

2πσ2
exp(−x2 + y2

2σ2
). (8)

The operator bA
s,σ,i corresponds to the inhibition of Cs,i, i.e. bA

s,σ,i = [Cs,i −
αtAs,σ,i]

+, with α controlling the strength of the inhibition.

The isotropic NCRF (I-NCRF) model is obtained by computing the inhibi-
tion term tIs,σ which does not depend on orientation i. For this the maxi-

mum response map of the complex cells is constructed: C̃s = max{Cs,i}, with
i = 0, ...Nθ − 1. The isotropic inhibition term tIs,σ is computed by the convo-

lution of the maximum response map C̃s with the weighting function wσ, and
the isotropic operator is bI

s,σ = [C̃s − αtIs,σ]+.

3 Keypoint detection with NCRF inhibition at fine scale

As already mentioned, NCRF inhibition permits to suppress keypoints which
are due to texture, for example in textured parts of an object surface. We
experimented with the two types of NCRF inhibition introduced above, but
here we only present the best results which were obtained by I-NCRF at the
finest scale.

All responses of the end-stopped cells Ss(x, y) =
∑Nθ−1

i=0 Ss,i(x, y) and Ds(x, y) =∑Nθ−1
i=0 Ds,i(x, y) are inhibited by bI

s,σ, where α = 1 is used, and we ob-

tain the responses S̃ and D̃ of S and D that are above a small thresh-
old of bI

s,σ. Then we apply Is = IT
s + IR

s for obtaining the keypoint maps

K̃S
s (x, y) = S̃s(x, y) − gIs(x, y) and K̃D

s (x, y) = D̃s(x, y) − gIs(x, y), with
g ≈ 1.0, and the final keypoint map K̃s(x, y) = max{K̃S

s (x, y), K̃D
s (x, y)}. In

the last step, local maxima of K̃s(x, y) in x and y are detected.

Figure 2 shows, left to right, input images and keypoints detected at the finest
scale that will be used in this paper, λ = 4, before and after I-NCRF inhibition.
The face image (“face196”) is part of the Psychological Image Collection at
Stirling University (UK). As can be seen in Fig. 2, keypoint detection is very
precise and mostly contour-related keypoints remain after inhibition. Although
many texture-related keypoints have been suppressed, some may still appear
because of strong, local contrast; see also Rodrigues and du Buf (2005a).
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Fig. 2. Keypoints detected at the finest scale, without (centre) and with (right)
NCRF inhibition.

Detected keypoints provide important image information because they code
local image complexity, for example for FoA (see below), but we can go one step
further. Object detection and recognition is helped much if detected positions
are complemented by the type of complexity. In other words, it is useful to
classify keypoints according to the underlying vertex structure, such as K, L,
T, + etc. This is very difficult, because responses of simple and complex cells,
which code the underlying lines and edges at the vertices, are unreliable due to
response interference effects (du Buf, 1993). This implies that responses must
be analysed in a larger neighbourhood around each keypoint. This problem has
been solved by processing simple- and complex-cell responses in four cell layers,
each layer comprising various grouping and detection cells. This process is very
close to basic line and edge detection, see Rodrigues and du Buf (2004b), which
is beyond the scope of this paper.

Figure 3 (left) shows two central, pentagonal, dendritic fields (shaded) and
eight parallel ones around a keypoint, for directions 6 and 13. Grouping cells
with such fields are necessary for probing simple and complex cells for dom-
inant and sub-dominant orientations and then for symmetric or asymmetric
directions. Figure 3 illustrates the application of keypoint classification to two
traffic signs, at scale λ = 4. All keypoints of the “van” image have been de-
tected, but three directions are still missing (encircled). There, structures have
a size of 2 to 4 pixels, and we are at the very limit of what can be achieved
by using Gabor filters. Also present in the “van” image is a keypoint (small
diamond) that was detected near the top-right corner, but due to the lack
of structure in its neighbourhood no direction has been attributed. In other
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Fig. 3. Keypoint classification. Left: pentagonal dendritic fields of grouping cells that
probe simple and complex cells for (sub)dominant orientations and (a)symmetric
directions. Centre and right: detected keypoints with vertex structure.

words, this keypoint can be suppressed. It follows from Fig. 3 that detected
and classified keypoints provide important information for object recognition,
in this case the triangular sign with the arrow and the “van.” This informa-
tion must be complemented by lines and edges that are also extracted in area
V1. Currently, the keypoint classification scheme is being implemented and
optimised for application at arbitrary scale, but it is not yet clear whether
vertex structure provides useful information in addition to detected lines and
edges at coarse scales (Rodrigues and du Buf, 2004b).

4 Multi-scale keypoint representation

Although NCRF inhibition can be applied at any scale, we will not do this
for two reasons: (a) we want to study keypoint behaviour in scale space for
applications like FoA and facial landmark detection, and (b) in many cases
a coarser scale, or increased RF size, will automatically eliminate keypoints
in fine textures. In the multi-scale case keypoints are detected the same way
as done above, but now by using KS

s (x, y) = Ss(x, y) − gIs(x, y), KD
s (x, y) =

Ds(x, y) − gIs(x, y) and the final map Ks(x, y) = max{KS
s (x, y), KD

s (x, y)}.

For analysing keypoint stability we can create an almost continuous, linear,
scale space. In the case of Fig. 4, which shows projected trajectories of detected
keypoints over scale in the case of a square and a star object, we applied 288
scales with 4 ≤ λ ≤ 40. Figure 4 illustrates the general behaviour: at fine
scales contour keypoints are detected, at coarser scales their trajectories con-
verge, and at very coarse scales there is only one keypoint left near the centre
of the object. However, it can also be seen (star object) that there are scale
intervals where keypoints are unstable, even scales at which keypoints dis-
appear and other scales at which they appear. (Dis)appearing keypoints are
due to the size of the RFs in relation to the structure of the objects, analo-
gous to Gaussian scale space (Koenderink, 1984; Lindeberg, 1994). Unstable
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Fig. 4. Keypoint scale space, with finest scale at the bottom: (a) square, (b) pro-
jected 3D keypoint trajectories of square, (c) and (d) star and projected trajectories,
(e) micro-scale stability, (f) and (g) stability over at least 10 and 40 scales, respec-
tively.

keypoints can be eliminated by (a) requiring stability over a few neighbour-
ing micro-scales (Rodrigues and du Buf, 2004b), by keeping keypoints that
do not change position over 5 scales, the centre one and two above plus two
below (Fig. 4e), or (b) requiring stability over at least Ns neighbouring scales
(Figs 4f and 4g with Ns = 10 and 40, respectively). Such stabilisations are
obtained by employing grouping cells with linear dendritic fields of different
sizes over scale s. Assuming that keypoint cells are binary—they respond or
they don’t—grouping cells at all scales “sum” active keypoint cells, and if the
sum (count) is below the necessary sum they can inhibit the keypoint cells.
When keypoint cells may not be inhibited because of other processes, such
as the ones described in the following sections, the grouping cells can inhibit
gating cells which relay axons of keypoint cells.

The five leftmost columns in Fig. 5 illustrate that similar results are obtained
after blurring, adding noise, rotation and rescaling of an object, a tree leaf,
whereas the last two columns show results for other leaf shapes. In all cases,
important contour keypoints remain at medium scales, and texture keypoints
disappear without applying NCRF inhibition. In other words, NCRF inhibi-
tion is only useful for suppressing texture keypoints at the finest scales.
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Fig. 5. From left to right: ideal image, blurred, with added noise, rotated and
re-scaled leaf, plus two other leaves. Keypoints detected without NCRF inhibition,
at fine (2nd line) and medium scales (bottom two lines).

5 Object segregation

The “bandwidth” of the what and where subsystems is very limited, because
only one object can be attended at any time, which explains for example
change blindness (Rensink, 2000). Both subsystems are “fed,” bottom-up, by
representations in area V1, and are “steered,” top-down, from prefrontal (PF)
cortex with templates of expected objects and expected positions (Deco and
Rolls, 2004). The faster the bottom-up and top-down data streams converge,
the faster an object will be detected and recognised. Typically, objects are
recognised within 150–200 ms, and first category-specific activation of PF cor-
tex starts after about 100 ms (Bar, 2003). This implies that some information
propagates very rapidly from V1 to PF, such that the where system can se-
lect possible positions, after which the what system can test hypotheses. An
important aspect in this is segregation, i.e., the separation of objects and the
grouping of object features. Keypoints may play an important role in this
process.

We have seen (Fig. 4) that keypoint trajectories converge from the contours at
fine scales to the centres of objects at coarse scales. This implies that object
segregation by means of a coarse-to-fine-scale strategy is feasible. Figure 6
(top) shows an image with four objects, two tree leaves, a star and the van
from the traffic sign. Again, at very coarse scales the keypoints are located near
the centres of the objects. In the case of the elongated van, an even coarser
scale is required in order to obtain only one keypoint in the centre. Going from
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Fig. 6. Object segregation. Top: input image with four objects and detected key-
points at four scales (4 ≤ λ ≤ 50). Bottom: linking keypoints at a very coarse scale
(right) to the finest scale (centre), with the principle (left; DF means dendritic field).

coarse to fine scales, keypoints will indicate more and more detail, until the
finest scale is reached at which essential landmarks on contours remain.

At the coarsest level, each keypoint corresponds to one object. Each keypoint
at a coarse scale is related to one or more keypoints at one finer scale, which
can be slightly displaced. This relation is modelled by down-projection using
grouping cells with a circular dendritic field, the size of which defines the
region of influence. A responding keypoint cell activates a grouping cell. Only
if the grouping cell is also excitated by responding keypoint cells one level
lower, a grouping cell at the lower level is activated. This is repeated until the
finest scale. Figure 6 illustrates the principle (bottom-left) with cones and the
result (bottom-centre). The labels of the four keypoints at the coarsest scale,
represented by different symbols, have been attributed to the keypoints at
the finest scale. This coarse-to-fine-scale process permits to link all keypoints
belonging to the same object. Results shown were obtained with λ = [4, 50]
and Δλ = 4.

A process as described above is supposed to occur completely in area V1, al-
though information—including keypoints—at coarse scales propagates faster
than information at fine scales to inferior-temporal (IT) cortex (Bar, 2003).
This could imply that segregation is a dynamic effect or that it contributes
dynamically to high-level object categorisation, which starts with coarse scales
and is refined by adding finer scales. In any case, this process must be comple-
mented by the what subsystem, because if two or more objects are very close,
detected keypoints at very coarse scales will group the objects together and
they can only be separated by probing specific object templates at finer scales.
How this is done is not yet clear, because of feedback from higher areas like
MT (Hupe et al., 2001), but it is done within 80 ms after image onset, which is
late enough to allow contributions from higher visual areas (Zhaoping, 2003).
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6 Automatic scale selection

Apart from object segregation, other processes may play an important role
in the fast where and slower what subsystems. Concentrating on keypoints—
ignoring other features extracted in V1—there may be many scales and the
tremendous amount of information may not propagate in parallel and at once
to IT and PF cortex. It might be useful that keypoints which are most charac-
teristic for an object are extracted and that these propagate first, for example
for a rapid object categorisation. Above (Fig. 4) we have seen that different cri-
teria for spatial stability over scales lead to different keypoint selections. One
possibility is to select only one scale with the most characteristic keypoints.
In computer vision, a similar approach has been applied by Lindeberg (1998),
who selected the scale at which responses of Gaussian-derivative operators
were strongest.

Here, we propose that the scale is the one at which the maximum number of
stable keypoints is detected. This can be achieved with a few, simple processes,
in which we assume again that outputs of keypoint cells are binary. First, a
retinotopic map by means of grouping cells is created; see also below, i.e.
saliency maps for FoA. A diagram of keypoint, grouping and gating cells is
shown in Fig. 7. The grouping cells marked A have linear dendritic fields (solid
black lines) that connect to keypoint cells (solid dots; active cells are big dots).
These grouping cells sum all active keypoint cells at their position, over scale,
which yields a sort of histogram. Second, at each scale, active keypoint cells
activate gating cells (triangular synapses next to open circles). These cells gate
the outputs of grouping cells A (black dash-dotted axons) in the “histogram
map” at the same position. Third, at each scale, other grouping cells (marked
B) sum outputs of all gating cells. In other words, the latter grouping cells
“count” stable keypoints at all individual scales. Fourth, the grouping cell with
maximum activity is selected (winner takes all) and its axon activates other
gating cells that gate outputs of keypoint cells at its scale. The outputs of the
latter gating cells (Fig. 7, at top) provide the map which has the maximum
number of stable keypoints. In the first step of this process, a scale-stability
criterion as illustrated in Figs 4e, f or g can be included.

Figure 8 (top-left) shows the traffic-sign image with keypoints selected without
applying a scale-stability criterion, which resembles detection at a fine scale
after NCRF inhibition (Fig. 2, bottom-right). If stability over at least 20 scales
is applied, many keypoints will disappear but the most important ones will
remain (Fig. 8, top-centre and -right). In the case of the face image, important
keypoints at eyes, nose, mouth and contour remain, even those at the marks
on the forehead and cheekbone; compare Fig. 8 (top-right) with Fig. 2 (top-
right). Also shown in Fig. 8 (bottom) are keypoints obtained with the SUSAN
algorithm (Smith and Brady, 1997), the state-of-the-art, though limited to
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Fig. 7. Schematic diagram for automatic scale selection, with horizontally the po-
sition and vertically the scale. Keypoint cells are represented by solid dots (active
keypoint cells by big dots), grouping cells by big, open circles, and gating cells by
small open circles. Dendrites are shown by solid lines and axons by dash-dotted
lines. See text.

fine scale, in computer vision. Comparing the SUSAN results with ours, we
may conclude that advanced models of cortical processing can achieve similar,
if not better, results.

7 Focus-of-Attention by saliency maps

As mentioned above, the what and where subsystems are steered, top-down, on
the basis of expected objects and positions in PF cortex. However, there is one
complication that has not yet been mentioned: our eyes are constantly mov-
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Fig. 8. Top: results of automatic scale selection, without scale stability (left) and
with stability over 20 scales (centre and right). Bottom: results obtained with the
SUSAN algorithm (Smith and Brady, 1997).

ing in order to suppress static projections of blood vessels etc. in our retinas.
During a fixation, stable information propagates from the retinas via the LGN
to V1, where first features are extracted, and then, also during the next sac-
cade, to higher areas. Fixation points in regions where complex—and therefore
important—information can be found are much more important than points
in homogeneous regions. Focus-of-Attention, for guiding the where system in
parallel with steering our eyes, is thought to be driven by an attention compo-
nent in PF cortex because of overt attention: while strongly fixating our eyes
at one point, we can direct mental attention to points in the neighbourhood
(Parkhurst et al., 2002). For modelling FoA we need a map, called saliency
map, which indicates the most important points to be analysed (fixated). We
propose a simple scheme based on the multi-scale keypoint representation,
because keypoints code local image complexity.

As done in the previous section, activities of all keypoint cells at position
(x, y) are summed over scale s by grouping cells. These cells are the ones
marked A in Fig. 7. At positions where keypoints are stable over many scales,
this summation map will show distinct peaks at centres of objects, impor-
tant sub-structures and contour landmarks. The height of the peaks provides
information about their relative importance. In addition, such a summation
map, with some simple processing of the projected trajectories of unstable
keypoints, like low-pass filtering and non-maximum suppression, might also
contribute to solving the segregation problem: the object centre is linked to
important structures, and these are linked to contour landmarks. Such a data
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Fig. 9. Top, left to right: saliency maps in 2D and 3D of the traffic sign and star
object. Bottom: keypoints at fine, medium and coarse scales, plus saliency map.

stream is data-driven and bottom-up, and could be combined with top-down
processing from inferior-temporal cortex in order to actively probe the pres-
ence of objects in the visual field (Deco and Rolls, 2004). The summation
map with links between the peaks might be available at higher cortical levels,
where serial processing occurs for visual search, for example in the case when
no object “pops out” and all objects must be screened sequentially.

Figure 9 (bottom; face196) shows keypoints at three different scales: (a) λ = 4,
(b) λ = 20 and (c) λ = 40. We noticed that most if not all faces show a
distinct keypoint on the middle of the line that connects the two eyes, like in
Fig. 9b. Figure 9d shows the saliency map obtained on the basis of the entire
scale space (λ = [4, 40]) with 288 scales. Important peaks are found at the
eyes, nose and mouth, but also at the hairline and even the chin and neck.
The regions around the peaks were created by a very simple process: each
keypoint has a Region-of-Interest (RoI) that can be used to process—during
a fixation—other information inside the RoI, such as lines, edges, textures
and disparity. The RoI is small at fine scales and big at coarse scales. This is
modelled by assuming circular axonal fields of keypoint cells, of size 3 × 3 at
the finest scale (λ = 4) with linear scaling towards coarser scales. This means
that the grouping cells marked A in Fig. 7 receive more input, and that the
saliency map becomes a more diffuse “landscape” but still with high peaks.
The maps shown in Fig. 9 have been thresholded, but this was only done for
better displaying the structure of the maps, such that 3D projected views are
not cluttered. The top row of Fig. 9 shows saliency maps in the case of the
traffic-sign image (Fig. 2) and the star object (Fig. 4). In the former we can see
the asymmetric region created by the keypoints at the bottom of and at the
thin bar right to the arrow, in the latter the pentagonal structure of the star
with peaks at the convex and concave vertices of the contour, in the triangles
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and in the centre.

In Fig. 9d we can see the regions where important features are located, but it
is quite difficult to see which peaks correspond to important facial landmarks.
On the other hand, looking at Fig. 9b it is easy to see that some keypoints
correspond to landmarks that we pretend to find in the next section, in this
study limited to eyes, nose and mouth, but there are many more keypoints and
at other scales (Fig. 9c) they are detected at other structures. Presumably,
the visual system can use one “global” saliency map in combination with
“partial” ones obtained by summing keypoints over smaller scale intervals,
or even keypoints at individual scales, in order to optimise detection. This
process can be steered by higher brain areas, which may contain prototype
object maps with expected patterns, with approximate distances of eyes, nose
and mouth. This can be part of the fast “where” data stream. Actual steering
may consist of excitation and inhibition by pre-wired connections in keypoint
scale space. This can be modelled by assuming grouping and gating cells which
combine keypoint cells in approximate areas and at certain scales.

8 Application: face detection

In our simulations we explored one possible scenario, see also Rodrigues and
du Buf (2005b). We assume the existence of very few layers of grouping cells,
with dendritic fields in partial saliency maps that combine keypoints in specific
scale intervals. The top layer with “face” cells groups axons of “eyes” (plural!),
“nose” and “mouth” grouping cells. The “eyes” cells group axons of pairs of
“eye” cells. Only the “eye,” “nose” and “mouth” cells connect to the saliency
maps, the “face” and “eyes” cells do not. This scenario consists of detecting
possible positions of eyes, linking two eyes, then two eyes plus nose, and finally
two eyes plus nose plus mouth. This is done dynamically by activating synaptic
connections in the partial saliency maps, going from coarse to fine scales. We
note that we did not yet include characteristic keypoints at other positions,
like the one on the middle of the line that connects the two eyes (Fig. 9b).

We experimented with 30 faces—with different sizes and expressions—of the
Stirling set (Fig. 13), and we used 7 partial saliency maps, each covering 40
scales distributed over Δλ = 5, but the scale intervals were overlapping 20
scales. The finest scale was at λ = 4. Examples of partial saliency maps are
shown in Figs 10d and 11 (left). The search process starts at the coarsest scale
interval, because there are much less candidate eye positions than there are
at the finest scale interval, especially when a face is seen against a complex
background. This is simulated by a feedback loop that activates connections
to finer scale intervals, until at least one eye candidate is detected.
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Fig. 10. Left to right: (a) facial landmarks, (b) eye landmarks, (c) impression of
keypoint scale space, and (d) partial saliency map at fine scales (λ = [4, 9]) after
NCRF inhibition.

First, “eye” cells respond to significant peaks (non-maximum suppression and
thresholding) in the selected saliency map. In the case of “face196” this was
the map at λ = [13, 18], see Fig. 11 (left). This saliency map was the first one
selected, because a peak at the centre of an eye, as indicated by Fig. 10b-1,
may only be accepted if there also are two stable symmetric keypoints (eye
corners) at the 40 finest scales (λ = [4, 9]), see Fig. 10b-4 and Fig. 10d. In
order to reduce false positives, the latter is done after NCRF inhibition. If no
single eye cell responds, the scale interval of the saliency map is not appropri-
ate and the feedback loop will step through all saliency maps (Fig. 10c), until
at least one eye cell responds.
Second, an “eyes” cell responds if two “eye” cells are active on an approxi-
mately horizontal line (Fig. 10a-1). An “eyes” cell is a grouping cell with two,
symmetric, dendritic subfields. If no eye pair is detected, a new saliency map
is selected (feedback loop).
Third, when two eyes can be grouped, a “nose” cell is activated, its dendritic
field covering an area below the “eyes” and “eye” cells in the saliency map
(Fig. 10a-2). If no peak is detected, a new saliency map is selected (feedback
loop).
Fourth, if both “eyes” and “nose” cells respond, a “mouth” cell with two den-
dritic subfields at approximate positions of the two mouth corners (Fig. 10a-3)
is activated. If keypoints are found, one “face” cell will be excitated. If not, a
new saliency map is selected (feedback loop).

The process stops when one or no face has been detected, but in reality it
might continue at finer scale intervals because there may be more faces with
different sizes in the visual field (image). The result obtained in the case of
“face196” is shown in Fig. 11, where +, � and × symbols indicate detected
and used keypoints at eyes, nose and mouth corners (actual positions of face
and eyes cells are less important). More results are shown in Fig. 13. Of all
30 face images that we tested, one was problematic because of a very extreme
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Fig. 11. Left: partial saliency map of face196 (λ = [13, 18]). Right: keypoints used
by eye, nose and mouth detection cells.

expression, such that keypoints at mouth corners could not be grouped. In
two cases, only the central part of a face was within the image border, which
hampers detection of keypoints at eyes at coarse scales because of large filter
sizes. In many applications such problems can be avoided. Nevertheless, a
detection rate of 90% is encouraging in view of the extreme simplicity of the
method, and compares well to other methods, which can be very complex and
which must deal with the same problems (Yang et al., 2002).

Figure 13 also shows a correctly-detected face that was constructed by com-
bining different fruits. The reason that this “fake” face was detected is that
positions of facial landmarks as used in our model correspond to positions in
real faces—our own visual impression, at first, also tells that it is a face. This
effect is exploited in cartoons, even by the famous Italian painter Giuseppe
Arcimboldo in the 16th century. Obviously, more features must be used, in-
cluding the multi-scale line/edge representation in V1, but we must distinguish
between face detection and recognition. Detection is thought to take place by
means of keypoints and in the fast where system, after which additional fea-
tures are available in the slower what system for recognition, including objects
like fruits, in order to be able to distinguish between real and fake faces. In
any case, we explored only one possible scenario in which grouping cells re-
ceive input at expected positions of eyes, nose and mouth. Such grouping cells
might be located in V1, but also in V2 and V4, see Fig. 12 and Deco and Rolls’
(2004) multi-area cortical architecture. As a consequence, only one “face cell”
in V4 may be translation invariant, and therefore it may have a very large re-
ceptive field at the lowest (input) level. Figure 14 shows the result of applying
our coarse-to-fine-scale scenario to an image with a complex background. This
background leads to a huge number of keypoints, especially at the finest scales
(Fig. 14 centre), with the possibility that random and unrelated keypoints can
excitate “eye” and even “eyes” cells etc. However, this did not occur because
of the coarse-to-fine strategy, in which a peak in the saliency map at a coarse
scale (centre pupil) must be grouped with two keypoints at the finest scales
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Fig. 12. Instead of grouping keypoints at facial landmarks in area V1, such groupings
may actually be done in higher areas V2 and V4.

(eye corners). The additional groupings of keypoints at nose and mouth cor-
ners, at the coarser scales, increase selectivity. However, the result shown in
Fig. 14 concerns a first experiment to test the detection scenario. Many more
tests are required in order to validate and/or improve the method, including
the detection of multiple faces—with different positions and sizes, eventually
with partial occlusions—in images. This, and faces with different pose (frontal,
3/4 view, profile), requires the use of various templates in memory to steer the
detection by activating different grouping cells with different spatial relations
at different scales.

9 Discussion

As Rensink (2000) pointed out, the detailed and rich impression of our visual
surround may not be caused by a rich representation in our visual memory,
because the stable, physical surround already “acts” like memory. In addition,
focussed attention is likely to deal with only one object at a time. His triadic
architecture therefore separates focussed attention to coherent objects (System
II) from non-attentional scene interpretation (Layout and Gist subsystems in
System III), but both systems are fed by low-level feature detectors in System
I.

In this paper we showed that keypoints detected on the basis of end-stopped
operators, and in particular a few partial saliency maps that cover overlap-
ping scale intervals, provide very important information for object detection.
Exploring a very simple processing scheme, faces can be detected by grouping
together axons of keypoint cells at approximate retinotopic positions, and this
leads to robust detection in the case of different facial expressions. However,
the simple scheme explored only works if the eyes are open, if the view is
frontal, and if the faces are approximately vertical. For pose-, rotation- and
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occlusion-invariant detection, the scheme must be fed by Rensink’s short-term
Layout and Gist subsystems, but also the long-term Scene Schema system that
is supposed to build and store collections of object representations, for example
of non-frontal faces.

We also showed that keypoints may play an important role in other corti-
cal processes. A global saliency map provides ideal information for Focus-of-
Attention, because distinct peaks are found at structures with a high complex-
ity. This global saliency map can also be used for automatic scale selection,
such that stable keypoints which are most characteristic for an object can be
prepared for a first—but very fast—categorisation. Furthermore, it was shown
that linking keypoints from coarse to fine scales can contribute to object seg-
regation.

We focussed on the keypoint scale space in this paper. However, keypoint de-
tection can be complemented with multi-scale line and edge detection, which
is also supposed to occur in V1. It has already been shown that object seg-
regation and categorisation—for example for distinguishing dogs, horses and
cows—can also be achieved by only considering the line/edge scale space (Ro-
drigues and du Buf, 2006). This implies that the combination of detected
keypoints and detected lines and edges will lead to improved performance,
also enabling face recognition, but how all information can be combined in the
best way remains an open question.

Owing to the impressive performance of current computers, it is now possible
to test Rensink’s (2000) triadic model in terms of Deco and Rolls’ (2004) cor-
tical architecture. The ventral what data stream (V1, V2, V4, IT) is supposed
to be involved in object recognition, independently of position and scaling.
The dorsal where stream (V1, V2, MT, PP) is responsible for maintaining
a spatial map of an object’s location, the spatial relationship of an object’s
parts, as well as moving the spatial allocation of attention. Both data streams
are bottom-up and top-down. Apart from input via V1, both streams receive
top-down input from a postulated short-term memory for shape features or
templates in prefrontal cortical area 46, i.e., the more ventral area PF46v gen-
erates an object-based attentional component, whereas the more dorsal area
PF46d specifies the location. As for now, we do not know how PF46 works.
It might be the neurophysiological equivalent of the cognitive Scene Schema
system mentioned above, but apparently the what and where data streams are
necessary for obtaining view-independent object detection through cells with
receptive fields of 50 degrees or more (Deco and Rolls, 2004). However, instead
of receiving input directly from simple cells, the data streams should receive
input from feature extraction engines in V1 and beyond, including keypoint
cells!
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