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Introduction 
 
      In the recent years the study of smart structures has attracted significant researchers, due to 
their potential benefits in a wide range of applications, such as shape control, vibration 
suppression, noise attenuation and damage detection. The applications in aerospace industry are 
of great relevance, such as in active control of airplane wings, helicopter blade rotor, space 
antenna. The use of smart materials, such as piezoelectric materials, in the form of layers or 
patches embedded and/or surface bonded on laminated composite structures, can provide 
structures that combine the superior mechanical properties of composite materials and the 
capability to sense and adapt their static and dynamic response, becoming adaptive structures. 
The piezoelectric materials have the property of generate electrical charge under mechanical load 
or deformation, and the reverse, applying an electrical field to the material results in mechanical 
strain or stresses.  
    Many researchers considering mainly linear analysis have carried out the modeling of 
composite structures containing piezolaminated sensors and actuators using the finite element 
formulation. A pioneering work is due to Allik and Hughes (1970) which analyzed the 
interactions between electricity and elasticity by developing a tetrahedral element.  Recent 
surveys can be found in Benjeddou (2000), Senthil  et al. (1999) and Franco Correia et al. (2000). 
Recently Yi  et al. (2000) has developed a 3D finite element model to carry out the non-linear 
dynamic response of structures with piezoelectric laminae. 
      In this paper we present a finite element model, based on classical plate theory, for static non-
linear analysis of plate/shell structures with piezoelectric sensors and actuators. A simple and 
efficient three-node triangular fat plate element is used. The formulation introduces one electric 
potential degree of freedom for each piezoelectric layer of the finite element. To show the 
applicability of the proposed model two illustrative numerical examples are presented and 
compared with alternative solutions.  
 
 
Classical Plate Theory. Displacements and Strains. 
 
      The classical Kirchhoff plate theory is considered. The displacement field is given by:  
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where )w,v,u( 000  are the displacements of the point on the reference plane of the laminate, and 
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ywx ∂∂−=θ  and xwy ∂∂=θ  are the rotations about the Cartesian  x  and  y  axes respectively. 

      The present theory considers large displacements with small strains. The Green’s strains 
components associated with displacement field of eq (1), are given (Reddy, 1999):  
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Piezoelectric Laminates. Constitutive Equations 
 
      The piezoelectric constitutive equations, coupling mechanical and electrical fields, for a 
laminate, can be written as, Allik and Hughes (1970): 
 
         E e Q   ε  σ −=   

         E peD      T += ε                 (3) 

 

where [ ]Txyyyxx   = σσσσ is the elastic stress vector and [ ]Txyyyxx   = γεεε the elastic strain 

vector, Q  the elastic constitutive matrix, e  the piezoelectric stress coefficient matrix, E the 

electric field vector, D  the electric displacement vector and p  is the dielectric matrix. The 

electric field vector is the negative gradient of the electric potential, which is assumed to be 

applied and varying linearly in the thickness direction, i.e. 

 

         φ−∇=  E                                                       (4) 
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Finite Element Formulation 
 



      The finite element used here is a three-node triangular flat plate element with six mechanical 
degrees of freedom per node, three displacements and three rotations of the displacement field of 
Kirchhoff theory, and one additional degree of freedom for each piezoelectric layer. The element 
local displacements are expressed in terms of nodal displacements through shape functions given 
in terms of area co-ordinates, hence:   
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      For non-linear analysis, using an updated lagrangian formulation, Bathe (1982), we obtain:  
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      The equilibrium equations in non-linear analysis of laminated structures with piezoelectric 
actuators, using an updated lagrangian formulation, can be written as: 
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ttact  is an additional force vector due to the electrical potential applied 

to the actuators. 

 

 

      In case of piezoelectric sensors the equilibrium equations are: 
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Numerical Applications 
 
1. Linear analysis of a piezoelectric bimorph beam. 

A linear analysis of a cantilivered piezoelectric bimorph beam, with two PVDF layers bonded 
together and polarized in opposite directions, with the dimensions indicated in Figure 2, is 
considered. The mechanical and piezoelectric properties of the PVDF  are: 

 GPa, 2EE 21 == GPA 1G12 = , F/m  10 x 062.1p ,C/m 046.0ee  ,0 -10
33

2
323112 ====ν

.The top and bottom surfaces of the beam are subjected to an electric potential of  1V. The 
deflections  in diferrent locations of the beam, using a (5x2) element mesh, are presented in Table 
1, which are compared with alternative solutions. The sensing voltage distribution of the bimorph 
beam for a prescribed tip deflection of 10 mm, is also analysed. The present predictions, and 
solutions obtained by other authors are shown in Table 2. The results are in good agreement with 
the alternative solutions. 
 

 

Figure 2.  Piezoelectric bimorph beam. 

Deflections  x  10-7 m 

Location  y  (mm)                         20                  40                 60               80                 100 

Analytical solution 
Suleman and Venkayya [12]     0.138            0.552            1.24            2.21               3.45 
 Q9-FSDT5P 
Franco et al.[4]                           0.138            0.552            1.24            2.11               3.45 
 FSDT4P 
Suleman and Venkayya [12]     0.14              0.55              1.24            2.21               3.45                       
          CPT                                                                                                                                            
Present Solution                         0.137            0.550            1.240          2.210             3.45         
 Experimental                            
Suleman and Venkayya [12]      -                    -                     -                 -                   3.45 
 
                                                 Table 1.  Deflections produced by a unit voltage. 



Sensed voltage  (V) 

            Elements                   1 and 2        3 and 4        5 and 6        7 and 8        9 and 10 

Q9-FSDT5P 
Franco et al. [4]                       290              226             161                97                32 
 FSDT4P 
Suleman e Venkayya [12]       290               -                  -                    -                   -     
  
Present Solution (CPT)           295              229             163                98                32 
                    Table 2.  Sensed voltage distribution for a tip deflection of 10 mm. 

 

2.Adaptive composite plate with surface bonded actuators 

      A simply-supported square plate (axa), a=0.1 m, with two surface bonded piezoelectric layers 
PXE-52 is subjected to a uniform mechanical load of p0=10 kN/m2, and electrical potential of 
151.35 V/-151.35 V. The lamination sequence of the plate is [ ]p/º45/º45/º45/p − , where p 
represents the PXE-52 piezoelectric layers of thickness t=0.0002 m, and the three inside layers 
are made from S-glass/epoxy, with thickness t=0.0004 m. The properties of the PXE-52 are 

 GPa, 5.62 EE 21 == GPa 24G12 = ,  ,3.012 =ν ,m/V 10 x 280dd -12
3231 −== 33d = 700x10- 12  

m/V, =33p 3.45x10-8 F/m, and for the S-glass/epoxy are  GPa, 55E1 =  GPa,  16 E2 =  6.7G12 =  
GPa,  28.012 =ν . The results for different load cases, considering linear (L) and non-linear (NL) 
behavior of the plate, are presented in Figure 1.  
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                      Figure 1. Load-displacement curves for different load cases.  



Conclusions 
 
      The result obtained for mechanical load only ( .1=µ , in Figure 1), in linear analysis, was 
compared with Franco et al., (1999), and an excellent agreement had been achieved. On other 
hand we observe that almost the same curves had been obtained for the cases of linear and non-
linear analyses. The reason is because the range of mechanical and electrical loads is small.  
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