
ISIAC037 Main Menu

World Automation Congress
Fifth International Symposium on Intelligent

Automation and Control

Seville, Spain
June 28th-July 1st, 2004

B-Spline And Neuro-Fuzzy Models Design With
Function And Derivative Equalities

C. Cabrita and A. Ruano

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61498175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Cabrita, Centre for Intelligent Systems, Univ. Algarve, Portugal, Hccabrita@ualg.ptH

A. Ruano, Centre for Intelligent Systems, Univ. Algarve, Portugal, Haruano@ualg.ptH

KEYWORDS: constructive algorithms, B-Splines, neuro-fuzzy systems, genetic programming;

1. INTRODUCTION

Neural network and neuro-fuzzy models are nowadays a valid alternative to classical models used in
control systems, such as ARX and ARMAX models. However, the design of the structure of such models
for the particular problem at hand is stil l a complex problem, with several heuristics being proposed for
each type of neural and neuro-fuzzy model. Of special importance is the incorporation of a priori
knowledge into the design process, and this is related to the ultimate goal of the model within the control
structure. This paper focuses on the use of models for performing single or multi-objective optimization
on-line. If the models are to be updated on-line, then models that store information locally should be used.
For this reason, B-spline models are employed here, and, thanks to their functional equivalence, directly
applicable to Mamdani fuzzy models (satisfying some assumptions) and to Takagi-Kang-Sugeno (or
simply Takagi-Sugeno) models [1]. For this type of networks there is a known design heuristic, the
ASMOD algorithm [2]. More recently, the authors have proposed the use of genetic programming [3] as a
valid alternative for the design of such a type of models. In the present paper, both algorithms will be
updated for the specific use described above. If the user has an a priori knowledge of the location of the
minima of the function to be approximated, then this knowledge can be incorporated in the design
procedure, and assured that the resulting network satisfies user-defined function and derivative equalities.

2. B-SPLINE NEURAL NETWORKS

B-spline neural networks belong to the class of networks termed grid or lattice-based associative
memories networks (AMN). This type of networks is composed of three layers: a normalised input space
layer, a basis functions layer and a linear weight layer.

The normalised input space layer is usually a grid on which the basis functions are defined. In order to
define a grid in the input space, vectors of knots must be defined, one for each input axis. They are
arranged in such a way that:
 min max

,1 ,2 , ii i i i r ix xλ λ λ< ≤ ≤ ≤ <� , (1)

where min
ix and max

ix are the minimum and maximum values of the i th input, respectively.

The j th univariate basis function of order k is denoted ()j
kN x , and it is defined by the following

relationships:

 1
1 1

1 1

() () ()j k jj j j
k k k

j j k j j k

x x
N x N x N x

λ λ
λ λ λ λ

− −
− −

− − − +

� � � �− −
= +� � � �� � � �− −� � � �

, 1

1
()

0
jj if x I

N x
otherwise

∈�
= �
	

 (2)

B-SPLINE AND NEURO-FUZZY MODELS DESIGN WITH FUNCTION
AND DERIVATIVE EQUALITIES

Abstract: The design of neuro-fuzzy models is still a complex problem, as it
involves not only the determination of the model parameters, but also its
structure. Of special importance is the incorporation of a priori information in the
design process. In this paper two known design algorithms for B-spline models
will be updated to account for function and derivatives equality restrictions,
which are important when the neural model is used for performing single or
multi-objective optimization on-line.

The output of the hidden layer is determined by a set of p basis functions defined on the n-dimensional
grid. The shape, size and distribution of the basis functions are characteristics of the particular AMN
employed, and the support of each basis function is bounded.

The output of an AMN is a linear combination of the outputs of the basis functions. The linear
coefficients are the adjustable weights, and as the mapping is l inear, finding the weights is just a linear
optimization problem. The output is therefore:

1

p
T

i i
i

y
=

= =
 a w a w , (3)

where (), 1, ,i
i N x i p= =ka � . As only

1

n

i
i

p
=

′′ = ∏k are active at any one time, the calculation of (3) can be

reduced to:

 ()() ()
1

p

act i act i
i

y
′′

=

=
 a x w , (4)

where ()()act ia x denotes the i th active basis function for input x.

To overcome the “curse of dimensionality” , it is common to employ, instead of a single module
covering all inputs, a linear sum of smaller sub-modules, each one with a lower input dimensionality. The
output of such a network is:

 () ()
1

un

u u
u

y S
=

=
x x (5)

where ()i iS x denotes the i th sub-model, and ix is the set of input variables (i) which compose sub-

model i.
3. INCORPORATING EQUALITY RESTRICTIONS

Assuming that the network structure has been already discovered, the final design stage is to determine

the knot placement and the linear output vector. Denoting as
�

the vector of all the interior knots, and as z
the vector of the design parameters:

� �

=
 �
� �

w
z � (6)

In order to exploit the topology of the neural network by the training algorithm, and denoting the basis
function output matrix as A, then the network output vector is just:
 ()=y A � w (7)
 For any combination of the interior knots, the optimal value of the linear parameters is:
 ˆ ()+=w A � t (8)

Let us assume that, together with the minimization of (8), we want to add some equality restrictions
such as:
 () =y X y (9)

or

()

'()i
i

∂ =
∂
y X

y X
x

, (10)

where X denotes the m input points where the equalities should hold. Equalities of both types can be recast
as a l inear system of equations:
 Rwd=b (11)

Where rank(R)<k, k being the number of columns of A.

Let us assume that m restrictions should be satisfied. Typically, only a subset of all the linear weights
will be active for these restrictions. Let these weights be denoted as dependent (wd) on the values of the
other (wi) weights. Assuming, without loss of generality, that the dependent ones will be the first weights,
(8) can be recast as:

() ()11 1ˆ ˆ ˆ

ˆ ˆ
constr unconstr unconstr

unconstr
unconstr

T T
d d d

i
i

−− −� �� � − −

 �=
 �

 �� � � �

w w H R RH R Rw b
w w

, (12)

where ˆ unconstrw is given by (8), and 1 T
d d

− =H A A , dA being the column partition related with the

dependent weights.
The computation of R is straightforward for the case of function restrictions. It is slightly more
complicated for the case of derivative restrictions.

3.1. Derivative Restrictions

Considering un sub-modules, we shall denote by iu
S those sub-modules that depend on the input

variable x, and by uS those that do not depend on x. Therefore, performing the analysis for each individual
equality:

1 1

() () ()
iu u

i

n n

u u uu
u u

y S S
= =

= +

z X X
� � � � � �

 (13)

Obviously, the derivative of the 2nd sum is null. Therefore:

1

()() iu
i

n
uu

u

Sy

x x=

∂∂ =
∂ ∂

Xz
� � � (14)

Considering now the derivative of each sub-model, we assume, for the sake of simplicity, that only 2
input variables (x and y) intervene in this sub-model. We have:

 , ,
1 1 1 1

()
() () () ()

y y y yx x x x
i

y x y x

r k r kr k r k
u j i j iu

i j k k k i j k
i j j i

S
N y N x N y N x

x x x

+ ++ +

= = = =

∂ ∂ ∂= =
∂ ∂ ∂

X
w w� � � (15)

Using only the non-zero derivatives, we have:

1

1, ,
1

1 1 1

()
() (1) ()

y y x x
i

y x

i i i

r k r k
u i j i jj iu

k x k
j i x x k

S
N y k N x

x λ λ

+ + −
+

−
= = − +

∂ −
= −

∂ −

X w w

� � � (16)

Therefore, the derivative of a multidimensional sub-model is another multidimensional sub-model,
with the same number of uni-dimensional sub-models, all with the same order, except the one related with
the variable for which the derivative is taken, which has its order decreased by one unit. All the weights
are updated, according to:

 1, ,
,

1

(1)
i i i

i j i j
i j x

x x k

k
λ λ

+

− +

−
= −

−
w w

w (17)

In order to satisfy the restrictions, eq. (16) can be expressed in another form.

1

1

1

1 1,
1 11

1, ,1
1 1 1 1

1 ,
1

(1)
()

()
() ()

(1)
()

x x

x
y y y y x x x x

i i i kx

y yx x

x

i i kx

r k
ii
k i j

r k r k r k r ki x xu j ju
k k i i j i i jr k

j j i iix
k i j

i x x

k
N x

S
N y N y a a

x k
N x

λ λ

λ λ

− +

− +

+ −

− ++ + + − + −=

++ −
= = = =

−
=

� �− −� �−∂ � �� �= = −� �� �∂ − � �� �−
� �−� �

w
X

w w

w

� � �

1

1 1, 1 , 1 1,
1 2

() ()
y y x x

y x x x x

r k r k
j

k j i i i j r k r k j
j i

N y a a a a
+ + −

− + − + −
= =

� �
= − + −� �

� �

w w w (18)

where:

1

1

(1)
(), 1 1

x

i i kx

ii
i k x x

x x

k
a N x i r k

λ λ
− +

−
−= = + −

−
� (19)

Note that the complexity of (18) is misleading. As we know, there are only ki active splines in the i th
dimension. Therefore, for any one point, only kxky weights need to be considered, or in the case of more

than 2 input variables,
1

n

i
i

k
=

∏ weights are non-null.

To ensure (10), for just one restriction, we need to solve just 1 equation. Consider that our point l ies

in the intervals
ixI and

iyI . The active basis functions are ,
xs s ki i i +� �∈ � � and ,

xs s kj j j +� �∈ � � for the inputs x

and y considered.
1

1
, 1 ,

1

1 ,

()
' () ()

s x

s y
i s s

sy

s

s x s x

i k

j k
i i j i i i jju

i ix k
j j

i k i k j

a a aS
y N y

x
a

+ −
+ −

−
= +

=
+ − +

� �
− + − +∂ � �

= = � �∂ � �+� �

w w
z

w

(20)
Therefore the dependent weight can be any of ,i jw , within those limits. Assuming, without loss of

generality that the dependent weight is the first one, ,s si jw , it can be given as:

1

1
, 1 ,

21

1 , 1 ,
1 , 1

,
11

ˆ()
' () ()

ˆ ˆ()
ˆ

()

s x

s y
s s

s x
sy

s s s x s x s

s x s x s

s s s

y

i k
j k

i i j i i i jj i ki ix k
j j i i i j i k i k j

i k i k j i i

i j j
k

a a a
y N y

a a a
a

aN y a

+ −
+ −

−
+ −= +

= − + − +
+ − + = +

� �
− + −� �

− � � − +� �+� �= −

w w
z

w w
w

w

(21)

If there are more sub-modules that depend on the variable x, (21) can be updated to:

1
1

, 1 ,
11

1 , 1 ,
1 , 1

,
1

1 , 1 ,
1

ˆ()
' () ()

ˆ ˆ()
ˆ

()

ˆ ˆ()
()

s x

s y
s s

s x
sy

s s s x s x

s x s x s

s s s

sy

s

sy

i k
j k

i i j i i i jj i ki ix k
j j i i i j i k i k j

i k i k j i i
i j j

ik

i j i i i jj
i ik

a a a
y N y

a a a
a

aN y a

a a a
N y

+ −
+ −

−
+ −= +

= − + − +
+ − + = +

−
= +

� �
− + − +� �

− � � − +� �+� �= − −

− + −

−

w w
z

w w
w

w

w w
2

2
1 ,

1

ˆ

()

s x

i s yu

s

s x s x

s

y

i k
n j k

z j j
i k i k j

j
k

a

N y a

+ −
+

= =
+ − +

� �
+� �

� �
� �+� �

w

(22)

Usually, the most important restrictions are those that annul the gradient vector (totally or partially)
which means that the r.h.s in (21) or (22) is null. Considering that there are n inputs, and the aim is to
annul k out of these n derivatives, (20) can be recast in the form (11), where the dimension of R is k*k.

4. EVOLVING THE STRUCTURE

In the last section, the structure of the network is assumed fixed. In this section, the structure of the
network is evolved, by modifying a well known algorithm, ASMOD [2], and a recently proposed
alternative [3], using genetic algorithms. By lack of space, for a detailed description of these algorithms,
the reader is referred to the references described. The updated algorithms, that guarantee that restrictions
(9) and (10) are met, will be denoted as RBMOD and RBGEN, respectively. Common updates to both
algorithms are described below. It should be pointed out that specific updates to each algorithm were
required, but by lack of space, can not be described .

4.1. Initial Model Creation

In the presence of function or derivative restrictions, the initial model structure must satisfy some
features which will be referred next.

�� if there are function restrictions, all input variables must be present in the model;
�� For the sake of simplicity, the first variable in the model supplies the necessary basis functions that

satisfy the function restrictions;
�� In case of existence of derivative restrictions, each sub-model’ s variable subject to this kind of

restrictions must supply a sufficient amount of basis functions, probably requiring the addition of
interior knots;

�� A given variable subject to derivative restrictions, may not be subject to knots addition because there
exists another sub-model with the same variable;

�� The operation of adding knots requires that each extra knot be placed among (1 knot if the number to
insert is smaller or equal to the number of restriction patterns in the variable, 2 knots otherwise) the
restriction patterns. However, the number of extra knots needs not to be greater than the spline_order
among each each pair of restriction patterns;

�� An optimised model structure satisfies the number of restrictions as long as the number of input
restriction patterns contained in two adjacent interior knots does not overcome the variable order;

The extra number of interior knots required is computed from:

 N_knots=N_FunctionRestrictions+N_DerivativeRestrictions-OrderOfSpline (23)

4.2. Structure Pruning

Because this phase aims to simplify the model’s structure, it may occur that not every restriction is
fulfi lled. Therefore, there are some considerations to be accounted for:

Variable order reduction.
Neither function nor derivative restrictions: the variable order may be reduced or the variable can be
removed.
Derivative but no function restrictions or Derivative and function restrictions: the variable order can be
reduced as long as its order is greater than 2.
Function but no derivative restrictions: the variable order may be freely reduced, but the variable can not
be removed.

Splitting multi-variable sub-models.
This procedure is unchanged since the initial model consists of univariate sub-models only, corresponding
to an adequate structure.

Reducing number of interior knots.
The restrictions are satisfied as long as the number of interior knots generates as many basis functions as
the number of restrictions, however, no more than OrderOfSpline input patterns subject to restrictions can
be among two adjacent knots, should derivative restrictions exist.

5. RESULTS

In order to show some graphical results, we have chosen a problem composed of 2 input variables. This

function is defined as 2 2(,)f x y x y xy= − , which contains infinite global optimums for
1

2

1
(,)

4 y
x

f x y
=

= − .

The input data was generated within the interval [-1,1], at samples of 0.125.

The restrictions were imposed on the patterns, { }0 0(x ,y)= (-1,-0.5),(-0.5,-1),(0.5,1),(1,0.5) . Both

function and derivative restrictions were set on the former patterns, for every input variable, such

that
()

i

∂ =
∂
y X

0
x

.

For RBGEN, the terminal type mutation rate is: [5%, 5%, 20%, 40%, 30%].

Table 1: Parameters definition for the RBGEN algorithm.

Parameters N_ind N_ger Crossover
Rate

Mutation
Rate

N_ind 10 10 50% 0.8

We have run the two algorithms once, and the results are summarized in Table 2. We observe that

function aproximation is almost ideal, with the RBGEN generating a model of lower complexity than the
one achieved by RBMOD

Table 2: Final values for the best candidate.

Algorithm BIC ||w|| MSE Numb.
Candidates

Model Complex. Sub-Models

RBMOD -17674 27.8 3.3x10-28 110 108 1+2+[1x2]

RBGEN -19595 11.3 1.3x10-30 100 52 [1x2]

-1

-0.5

0

0.5

1
-1

-0.5
0

0.5
1

-4

-2

0

2

4

y

Output for the training Data

x

a) First iteration

-1

-0.5

0

0.5

1
-1

-0.5
0

0.5
1

-1

0

1

2

3

y

Output for the training Data

x

b) Last iteration

Figure 1: The output of the B-spline Network, for the test function for the best candidate, using RBMOD.

The red ‘* ’ points indicate the specified optima of the function.

By observing Figure 1 it can be verified how poor the initial solution is, in contrast to the final one, where
the number of interior knots added provided a broader margin for data fitting, showing the correct function
approximation and maintaining the restrictions required.

6. CONCLUSIONS

Two known algorithms have been updated to account for function and derivative restrictions. This

enables, when neuro-fuzzy models are to be used for on-line optimization, to incorporate a priori
information. Future work will address the application of these updated algorithms in practical applications.

REFERENCES

[1] Ruano, A.E., Cabrita, C., Oliveira, J.V., Kóczy, L.T., Supervised Training Algorithms for B-Spline

Neural Networks and Neuro-Fuzzy Systems, International Journal of Systems Science, 33, 8, 2002, pp.
689-711

[2] Weyer E., T. Kavli, The ASMOD Algorithm. Some New Theoretical and Experimental Results.
SINTEF Report STF31 A95024, Oslo, 1995.

[3] C. Cabrita, A. E. Ruano, C.M. Fonseca, Single and Multi-Objective Genetic Programming Design for
B-Spline Neural Networks and Neuro-Fuzzy Systems, IFAC Workshop on Advanced Fuzzy/Neural
Control 2001, (AFNC’01), Valencia, Spain, 15-16, 2001, pp. 93-98

