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1. INTRODUCTION 
 

Neural network and neuro-fuzzy models are nowadays a valid alternative to classical models used in 
control systems, such as ARX and ARMAX models. However, the design of the structure of such models 
for the particular problem at hand is stil l a complex problem, with several heuristics being proposed for 
each type of neural and neuro-fuzzy model. Of special importance is the incorporation of a priori 
knowledge into the design process, and this is related to the ultimate goal of the model within the control 
structure. This paper focuses on the use of models for performing single or multi-objective optimization 
on-line. If the models are to be updated on-line, then models that store information locally should be used. 
For this reason, B-spline models are employed here, and, thanks to their functional equivalence, directly 
applicable to Mamdani fuzzy models (satisfying some assumptions) and to Takagi-Kang-Sugeno (or 
simply Takagi-Sugeno) models [1]. For this type of networks there is a known design heuristic, the 
ASMOD algorithm [2]. More recently, the authors have proposed the use of genetic programming [3] as a 
valid alternative for the design of such a type of models. In the present paper, both algorithms will be 
updated for the specific use described above. If the user has an a priori knowledge of the location of the 
minima of the function to be approximated, then this knowledge can be incorporated in the design 
procedure, and assured that the resulting network satisfies user-defined function and derivative equalities.  
 

2. B-SPLINE NEURAL NETWORKS 
 

B-spline neural networks belong to the class of networks termed grid or lattice-based associative 
memories networks (AMN). This type of networks is composed of three layers: a normalised input space 
layer, a basis functions layer and a linear weight layer.  

The normalised input space layer is usually a grid on which the basis functions are defined. In order to 
define a grid in the input space, vectors of knots must be defined, one for each input axis. They are 
arranged in such a way that:  
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The j th univariate basis function of order k is denoted ( )j
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B-SPLINE AND NEURO-FUZZY MODELS DESIGN WITH FUNCTION 
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Abstract:  The design of neuro-fuzzy models is still a complex problem, as it 
involves not only the determination of the model parameters, but also its 
structure. Of special importance is the incorporation of a priori information in the 
design process. In this paper two known design algorithms for B-spline models 
will be updated to account for function and derivatives equality restrictions, 
which are important when the neural model is used for performing single or 
multi-objective optimization on-line. 



The output of the hidden layer is determined by a set of p basis functions defined on the n-dimensional 
grid. The shape, size and distribution of the basis functions are characteristics of the particular AMN 
employed, and the support of each basis function is bounded.  
 

The output of an AMN is a linear combination of the outputs of the basis functions. The linear 
coefficients are the adjustable weights, and as the mapping is l inear, finding the weights is just a linear 
optimization problem. The output is therefore: 
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where ( )( )act ia x  denotes the i th active basis function for input x. 

To overcome the “curse of dimensionality” , it is common to employ, instead of a single module 
covering all inputs, a linear sum of smaller sub-modules, each one with a lower input dimensionality. The 
output of such a network is: 
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where ( )i iS x denotes the i th sub-model, and ix  is the set of input variables ( i ) which compose sub-

model i. 
3. INCORPORATING EQUALITY RESTRICTIONS 

 
Assuming that the network structure has been already discovered, the final design stage is to determine 

the knot placement and the linear output vector. Denoting as 
�

the vector of all the interior knots, and as z 
the vector of the design parameters: 
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In order to exploit the topology of the neural network by the training algorithm, and denoting the basis 
function output matrix as A, then the network output vector is just: 
 ( )=y A � w  (7) 
 For any combination of the interior knots, the optimal value of the linear parameters is: 
 ˆ ( )+=w A � t  (8) 

Let us assume that, together with the minimization of (8), we want to add some equality restrictions 
such as: 
 ( ) =y X y  (9) 

or 

 
( )

'( )i
i

∂ =
∂
y X

y X
x

, (10) 

where X denotes the m input points where the equalities should hold. Equalities of both types can be recast 
as a l inear system of equations: 
 Rwd=b (11) 
 
Where rank(R)<k, k being the number of columns of A. 
 

Let us assume that m restrictions should be satisfied. Typically, only a subset of all the linear weights  
will be active for these restrictions. Let these weights be denoted as dependent (wd) on the values of the 
other (wi) weights. Assuming, without loss of generality, that the dependent ones will be the first weights, 
(8)  can be recast as: 
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where ˆ unconstrw is given by (8), and 1 T
d d

− =H A A , dA  being the column partition related with the 

dependent weights. 
The computation of R is straightforward for the case of function restrictions. It is slightly more 
complicated for the case of derivative restrictions. 
 
3.1. Derivative Restrictions 
 

Considering un  sub-modules, we shall denote by iu
S  those sub-modules that depend on the input 

variable x, and by uS  those that do not depend on x. Therefore, performing the analysis for each individual 
equality: 

 
1 1

( ) ( ) ( )
iu u

i

n n

u u uu
u u

y S S
= =

= +
 
z X X
� � � � � �

 (13) 

Obviously, the derivative of the 2nd sum is null. Therefore: 
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Considering now the derivative of each sub-model, we assume, for the sake of simplicity, that only 2 
input variables (x and y) intervene in this sub-model. We have: 
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Using only the non-zero derivatives, we have: 
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Therefore, the derivative of a multidimensional sub-model is another multidimensional sub-model, 
with the same number of uni-dimensional sub-models, all with the same order, except the one related with 
the variable for which the derivative is taken, which has its order decreased by one unit. All the weights 
are updated, according to: 
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In order to satisfy the restrictions, eq. (16)  can be expressed in another form. 
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where: 
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Note that the complexity of  (18) is misleading. As we know, there are only ki  active splines in the i th 
dimension. Therefore, for any one point, only kxky weights need to be considered, or in the case of more 

than 2 input variables, 
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To ensure  (10), for just one restriction, we need to solve just 1 equation. Consider that our point l ies 

in the intervals 
ixI  and 

iyI . The active basis functions are ,
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xs s kj j j +� �∈ � �  for the inputs x 
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(20) 
Therefore the dependent weight can be any of ,i jw , within those limits. Assuming, without loss of 

generality that the dependent weight is the first one, ,s si jw , it can be given as: 
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If there are more sub-modules that depend on the variable x, (21) can be updated to: 
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Usually, the most important restrictions are those that annul the gradient vector (totally or partially) 
which means that the r.h.s in (21) or (22) is null. Considering that there are n inputs, and the aim is to 
annul k out of these n derivatives, (20) can be recast in the form (11), where the dimension of R is k*k. 
 

4. EVOLVING THE STRUCTURE 
 

In the last section, the structure of the network is assumed fixed. In this section, the structure of the 
network is evolved, by modifying a well known algorithm, ASMOD [2], and a recently proposed 
alternative [3], using genetic algorithms. By lack of space, for a detailed description of these algorithms, 
the reader is referred to the references described. The updated algorithms, that guarantee that restrictions 
(9) and (10) are met, will be denoted as RBMOD and RBGEN, respectively. Common updates to both 
algorithms are described below. It should be pointed out that specific updates to each algorithm were 
required, but by lack of space, can not be described . 

 
4.1. Initial Model Creation 
 

In the presence of function or derivative restrictions, the initial model structure must satisfy some 
features which will be referred next.  



�� if there are function restrictions, all input variables must be present in the model; 
��  For the sake of simplicity, the first variable in the model supplies the necessary basis functions that 

satisfy the function restrictions; 
�� In case of existence of derivative restrictions, each sub-model’ s variable subject to this kind of 

restrictions must supply a sufficient amount of basis functions, probably requiring the addition of 
interior knots; 

��  A given variable subject to derivative restrictions, may not be subject to knots addition because there 
exists another sub-model with the same variable; 

��  The operation of adding knots requires that each extra knot be placed among (1 knot if the number to 
insert is smaller or equal to the number of restriction patterns in the variable, 2 knots otherwise) the 
restriction patterns. However, the number of extra knots needs not to be greater than the spline_order 
among each each pair of restriction patterns;  

�� An optimised model structure satisfies the number of restrictions as long as the number of input 
restriction patterns contained in two adjacent interior knots does not overcome the variable order; 

 
The extra number of interior knots required is computed from: 
 
 N_knots=N_FunctionRestrictions+N_DerivativeRestrictions-OrderOfSpline (23) 
 
4.2. Structure Pruning 
 

Because this phase aims to simplify the model’s structure, it may occur that not every restriction is 
fulfi lled. Therefore, there are some considerations to be accounted for: 
 
Variable order reduction. 
Neither function nor derivative restrictions: the variable order may be reduced or the variable can be 
removed. 
Derivative but no function restrictions or Derivative and function restrictions:  the variable order can be 
reduced as long as its order is greater than 2. 
Function but no derivative restrictions: the variable order may be freely reduced, but the variable can not 
be removed. 
 
Splitting multi-variable sub-models. 
This procedure is unchanged since the initial model consists of univariate sub-models only, corresponding 
to an adequate structure. 
 
Reducing number of interior knots. 
The restrictions are satisfied as long as the number of interior knots generates as many basis functions as 
the number of restrictions, however, no more than OrderOfSpline input patterns subject to restrictions can 
be among two adjacent knots, should derivative restrictions exist. 
 

5. RESULTS 
 

In order to show some graphical results, we have chosen a problem composed of 2 input variables. This 

function is defined as 2 2( , )f x y x y xy= − , which contains infinite global optimums for 
1
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1
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The input data was generated within the interval [-1,1], at samples of 0.125.  
 
The restrictions were imposed on the patterns, { }0 0(x ,y )= (-1,-0.5),(-0.5,-1),(0.5,1),(1,0.5) . Both 

function and derivative restrictions were set on the former patterns, for every input variable, such 

that
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∂
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0
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. 

For RBGEN, the terminal type mutation rate is: [5%, 5%, 20%, 40%, 30%].  



Table 1: Parameters definition for the RBGEN algorithm. 

Parameters N_ind N_ger Crossover 
Rate 

Mutation 
Rate 

N_ind 10 10 50% 0.8 
 
We have run the two algorithms once, and the results are summarized in Table 2. We observe that 

function aproximation is almost ideal, with the RBGEN generating a model of lower complexity than the 
one achieved by RBMOD  
 
Table 2: Final values for the best candidate. 

Algorithm BIC ||w|| MSE Numb. 
Candidates 

Model Complex. Sub-Models 

RBMOD -17674 27.8 3.3x10-28 110 108 1+2+[1x2] 

RBGEN -19595 11.3 1.3x10-30 100 52 [1x2] 
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Figure 1: The output of the B-spline Network, for the test function for the best candidate, using RBMOD. 

The red ‘* ’  points indicate the specified optima of the function. 
 
By observing Figure 1 it can be verified how poor the initial solution is, in contrast to the final one, where 
the number of interior knots added provided a broader margin for data fitting, showing the correct function 
approximation and maintaining the restrictions required. 

 
6. CONCLUSIONS 

 
Two known algorithms have been updated to account for function and derivative restrictions. This 

enables, when neuro-fuzzy models are to be used for on-line optimization, to incorporate a priori 
information. Future work will address the application of these updated algorithms in practical applications. 
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