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Abstract. Composite structures incorporating piezoelectric sensors and actuators are 
increasingly becoming important due to the offer of potential benefits in a wide range of 
engineering applications such as vibration and noise suppression, shape control and 
precision positioning. This paper presents a finite element formulation based on the classical 
laminated plate theory for laminated structures with integrated piezoelectric layers or 
patches, acting as actuators. The finite element model is a single layer triangular 
nonconforming plate/shell element with 18 degrees of freedom for the generalized 
displacements, and one electrical potential degree of freedom for each piezoelectric element 
layer or patch, which are surface bonded on the laminate. An optimization of the patches 
position is performed to maximize the piezoelectric actuators efficiency as well as, the electric 
potential distribution is search to reach the specified structure transverse displacement 
distribution (shape control). A gradient based algorithm is used for this purpose. The model is 
applied in the optimization of illustrative laminated plate cases, and the results are presented 
and discussed. 
 
 
Keywords: Finite Elements, Piezoelectric Actuators, Optimization.   
 
 

mailto:jmoita@ualg.pt
mailto:jose@optimize.ufrj.br
mailto:cmmsoares@alfa.ist.utl.pt
mailto:carlosmotasoares@dem.ist.utl.pt


1. INTRODUCTION 
 
 Composite structures incorporating piezoelectric sensors and actuators are increasingly 
becoming important due to the offer of potential benefits in a wide range of engineering 
applications such as vibration and noise suppression, shape control and precision positioning. 
The optimal location of the piezoelectric patches, in order to maximize the piezoelectric 
actuators efficiency, is one of the tasks to be considered in the analysis of the piezolaminated 
structures. 
 A significant number of works in the fields of analysis, control and optimization in 
composite structures integrating piezoelectric material had been carried out. One of the 
pioneering works is due to Allik and Hughes (1970) who carried out the variational 
formulation and developed a solid finite element for vibration analysis. Tzou and Tseng 
(1990) presented a finite element formulation for plates and shells containing integrated 
distributed piezoelectric sensors and actuators applied to control advanced structures. In more 
recent works Chen et al. (1996) developed a finite element based on the first order 
displacement field for dynamic analysis of plates where the vibration active control is 
obtained with the actuators potential been given by an amplified signal of the sensors 
potential which arises an active damped system, and Samanta et al. (1996) developed an 
eight-nodded finite element for the active vibration control of laminated plates with 
piezoelectric layers acting as distributed sensors and actuators. The active control capability is 
studied using a simple algorithm with negative velocity feedback. Also Lam et al. (1997) and 
Moita et al. (2005) developed finite element models based on the classical laminated theory 
and higher order shear deformation theory, respectively, for the active control of composite 
plates containing piezoelectric sensors and actuators using the Newmark method, Bathe 
(1982), to calculate the dynamic response of laminated structures. Active vibration control is 
obtained through actuators potential, which is given by an amplified signal of the sensors 
potential.  

Most of past work in the area of adaptive structures has focused on the analysis of 
structures with sensors and actuators, and the corresponding associate control system. Very 
few works have focused on the development of methodologies for the optimization of 
laminated structures incorporating sensors and actuators, to enhance their performance. A 
model for the optimization of the induced-strain actuator location and configuration for active 
vibration control had been proposed by Liang et al. (1995). Batra and Liang (1997) used a 
three-dimensional linear theory of elasticity to find the optimal location of an actuator on a 
simple-supported rectangular laminated plate with embedded PZT layers. The optimal design 
is obtained by fixing the applied voltage and the size of the actuator and moving it around in 
order to find the maximum out-of-plane displacement. More recently, Franco Correia et al. 
(2000) presented refined finite element models based on higher order displacement fields 
applied to the optimal design of laminated composite plates with embedded or surface bonded 
piezoelectric actuators and sensors, and Achuthan et al. (2001) study the shape control of 
composite laminated beams with nonlinear piezoelectric patch actuators developing a finite 
element model.  

In the present work a discrete model based on the classical laminated plate theory is 
developed. A three-nodded flat triangular finite element is used, with 18 mechanical degrees 
of freedom and one electric degree of freedom per piezoelectric layer or patch of the finite 
element. The optimal placement of piezoelectric actuators patches as well as the electric 
potential distribution to perform the structure shape control is carried out using a gradient-
based algorithm methodology, in association with algorithm FAIPA, Herskovits et al. (2005). 
The model is applied in the optimization of illustrative laminated plate cases, and the results 
are presented and discussed. 



2. PIEZOELECTRIC LAMINATES. CONSTITUTIVE EQUATIONS. 
 
 Assuming that a piezoelectric composite plate consists of several layers, including the 
piezoelectric layers, the constitutive equation for an orthotropic layer of the laminate 
substrate, is 
 
  ε  σ  Q=  (1) 
  
and the constitutive equations of a deformable piezoelectric material, coupling the elastic and 
the electric fields are given by, Tiersten (1969) 
 
 E e Q   ε  σ −=  (2) 
 
 E peD      T += ε  (3) 
 
where [ ]T

xyyyxx   = σσσσ is the elastic stress vector and [ ]Txyyyxx   = γεεε  the elastic strain 
vector, which components are associated with the displacement field of the classical 
laminated plate theory, Q  the elastic constitutive matrix, e  the piezoelectric stress 

coefficients matrix, [ ]T
zyx E E E=E the electric field vector, [ ]T

zyx D D D=D  the electric 
displacement vector and p  the dielectric matrix, in the element local system (x,y,z) of the 
laminate.   ijp ,ije,ijQ are functions of ply angle α for the kth layer, and are given explicitly 

in Reddy (2004).  
 The electric field vector is the negative gradient of the electric potential φ , which is 
assumed to be applied in the thickness kt  direction, where it can vary linearly, i.e. 
 
 φ−∇=  E             ;           { }T

zE00=E  (4) 
 
where 
 
 kz t/E φ−=  (5) 
 
 The constitutive equations (2) and (3) can be written in the form 
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3. FINITE ELEMENT FORMULATION 
 
 The flat triangular finite element model has three nodes and six degrees of freedom per 
node, the displacements u v w0 0 0, ,   and rotations zyx , , θθθ . The introduction of fictitious 
stiffness coefficients zKθ , corresponding to rotations zθ , to eliminate the problem of a 
singular stiffness matrix, for which the elements are coplanar or near coplanar, is required.. 
The element local displacements, slopes and rotations are expressed in terms of nodal 



variables through shape functions iN given in terms of area co-ordinates, Zienckiewicz 

(1977).   The displacement field can be represented in matrix form as 
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and the strain field as follows 
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The electric field is given by 

 
 φ−= φ BE   (11) 
 
where φB  is the electric field – potential relations matrix given by 
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The static equations of a laminated composite plate can be derived from the virtual work 

principle, which is given as follows: 
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Entering the equations (7) to (11) into equation (13), we have 
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To the first and second terms of first member of Eq. (13), corresponds the element 

stiffness, which are defined by 
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To the third term of Eq. (13), corresponds the external mechanical force vector mec

extF  and 

the applied electric charge vector eleF . 
The element stiffness matrix as well as external load vector are initially computed in the 

local coordinate system attached to the element. To solve general structures, local - global 
transformations are needed, Zienckiewicz (1977). After these transformations the assembled 
system of equations for laminated structures with integrated piezoelectric layers or patches, 
acting as actuators, is: 
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This system of equations can be written in the following form: 

 
[ ]{ } { }  KF q  K u

mec
extuu φ−= φ    (17)  

 
[ ]{ } [ ]{ } { }  F  Kq K ele

u =φ+ φφφ   (18) 
  

In practice, voltage is specified as input to the actuators, and we than write: 
 

 [ ]{ } ( ){ } FF q  K Amec
extuu −=   (19) 

 where ( ){ } { }φ= φ K-F u
A  is an additional force due to the voltage applied to the actuators. 

 
4. OPTIMAL DESIGN 
 
 A general structural optimization problem can be stated as 
 
 { })(bΩmin  
  
 subject to:      n,...,1ibbb u

ii
l
i =≤≤  

                              m,...,1j0),(j =≤Ψ bq   (20) 



where )(bΩ  is the objective function, b is the vector of design variables ib , ),(j bqΨ  are the 

m inequality behavioral constraint equations, l
ib and u

ib  are respectively, the lower and upper 
limits of the design variables and n is the total number of design variables.   

If the objective function and/or the constraint equations are continuous functions of the 
design variables, mathematical programming techniques, Herskovits et al. (2005), requiring 
only the computation of )(bΩ , ),( bqjΨ  and their gradients, provides a general, flexible and 
efficient formulation for engineering design problems. Here the optimization problems are 
solved by using a feasible directions non-linear interior point algorithm FAIPA, Herskovits et 
al. (2005). 

In this work, first we search for the optimal core lamination sequence, which leads to the 
minimum strain energy of the plate 
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For the optimal location of the piezoelectric patches we consider that the patches can only 

assume the positions corresponding to the finite element mesh discretization. The optimal 
location of the piezoelectric actuator discrete patches is to be found in order to achieve 
maximum piezoelectric actuator performance.  The present approach assumes that the shape 
of plate structure is described by the transverse displacement w. Let 

idw and 
iaw , 

respectively, represent the desired transverse displacement and the actual transverse 
displacement corresponding to node i. In order to control the shape of the plate structure, we 
minimize an objective function defined by the mean-squared error between the desired and 
the achieved shape, defined by the transverse displacement w in a certain number of nodes, 
np: 
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The positional optimization is here obtained by referring the patch position by its 

thickness, i.e., we make the similitude between the position relevancy and the thickness of the 
piezoelectric patches  The derivative of objective function in order to general design variables 
are: 
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In static type situations, where the vectorial distance to the outer surface of piezoelectric 

patches are taken as the design variables, we have: 
 

[ ] { } [ ]{ }








∂
∂

−
∂

∂
=

∂

∂ − q
h

K
h
FK

h
w

0

uu

0

A
1

uu
0

ai  (25)  



Here the stiffness matrix is constant, and the force due to the voltage applied to the 
actuators was defined as ( ){ } [ ]{ }φ= φ  KF u

A  where 
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and its derivative with respect to the vectorial distance 0h  is given by: 
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Thus, finally we have 
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Also the optimal voltage distribution that minimizes de previous objective function can 

be evaluated. For this type of optimization, the design variables are the voltages of each 
piezoelectric patch.  As we have 
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and  
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the analytical sensitivity of component jq  of displacement vector is given by, Moita et al. 
(2000) 
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Thus, the analytical sensitivity of a specific displacement of vector{ }q , ja qw
i

= , is given by:   
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Thus the derivatives of objective function in order to the design variables are obtained as 

follows: 
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5. NUMERICAL APPLICATIONS 
 
5.1 Simply-supported square plate subjected to uniform distributed load. 
 
 A simply-supported square ( aa× ) laminated plate, having the initial lamination 
sequence of [ ]º0/º90/º0 , integrating piezoelectric actuator patches made of  PZT, bonded on 
upper surface,  is  considered.   The material properties of the substrate layers are:   

 GPa, 5.172E1 =  GPa, 6.9 E 2 = GPa 45.3G12 = ,  25.012 =ν . The material and piezoelectric 

properties of PZT are: GPa,  63EE 21 ==  GPa,  24G12 =  ,30.012 =ν =31e 2
32 C/m 86.22e −= , 

F/m 10 x 5.1p -8
33 = . The side dimension is a = 0.18 m and the thickness of the substrate 

layers and PZT are 0.002 m and 0.0001 m, respectively. The plate is modeled by a (6x6) 
element mesh, 72 triangular elements. The plate, Figure 1, is divided in 9 groups of elements, 
each one with 8 triangular elements. Each pair of contiguous triangular elements forms a 
piezoelectric patch. By using a feasible directions non-linear interior point algorithm, first we 
search for the optimal core lamination sequence, which leads to the minimum strain energy of 
the plate at any load level. The optimal lamination sequence is found to be[ ]º45/º45/º45 − , 
which is in close agreement with an available alternative analytical solution, Pederson (1987).  
 

 
 

Figure 1. Plate divided into 9 groups of elements. 



Next we pretend to investigate the optimal position of the piezoelectric actuators patches, 
in order to maximize the control of the plate deformation shape. The optimal positions of the 
patches are obtained as represented in Figure 2, i.e. the central plate elements. In order to 
control the shape of the plate, making use of all patches, the optimal voltage distribution is 
given in Table 1.  
 

 
 

Figure 2. Optimal patch locations 
 

Table.1. Optimal voltage distribution 
 

Group nº 1 2 3 4 5 6 7 8 9 

Voltage -169.1 -139.6 -186.6 -160.6 -139.6 -273.3 -366.4 -436.9 -531.5 
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Figure 3. Central line deflections. 
 

In Figure 3 are shown the central line deflection for mechanical load of 15000 N/m2 
(desired curve), the central line deflection for initial actuation with all the patches with same 
voltage (-180 V), and the achieved central line deflection obtained with the voltage 
distribution given in Table 1. 
 



5.2  Rectangular panel subjected to uniform distributed load. 
 

A rectangular plate made of S-Glass/Epoxy with the lamination sequence of [0º/45º/-
45º/0º] with  piezoceramic actuator patches PC5K (lead zirconate titanate), is considered. The 
plate is simply supported along the shorter sides and free at the longer sides, and is subjected 
to a uniformly distributed load of 1000 N/m2. The material properties of the S-Glass/Epoxy 
layers are  GPa, 55E1 =  GPa, 16 E2 = GPa 6.7G12 = ,  25.012 =ν . The thickness of outside 
layers is 1 mm each and the thickness of inside layers is 0.5 mm each. The material and 
electric properties of PC5K are  GPa,  24.60EE 21 ==  GPa,  23G12 =  ,31.012 =ν  =31e  

=32e - ,C/m 26.72 2 F/m 10 x 04.5p -8
33 = .  The thickness of the piezoceramic patches is 0.5 

mm. The plate is divided in 7 groups of elements.  Here two cases are considered: in the first 
one for each group of elements correspond an actuator patch, and for the second case only 
three actuator patches are bonded to the core of the laminated as represented in Figure 4.   
 

 
 

Figure  4. Rectangular panel with three piezoelectric actuator patches 
 

The shape of the plate is defined by the transversal displacements wi along the longer 
central line of the plate. The objective is to find the appropriate electric voltages that should 
be applied to the seven or three actuators patches in order to minimize the mean-squared error 
between the actual shape and the desired shape of the plate. The results obtained for the first 
case are shown in Figure 5 where the central line deflection corresponding to a mechanical 
load of 500 N/m2 (desired curve), and the achieved central line deflection obtained with the 
voltage distribution given in Table 2, are represented. 
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Figure 5. Central line deflections 



Table 2. Voltage distribution  
 

Group nº      1 2 3 4 5 6 7 

Voltage -115.1 -78.5 -167.0 -222.4 -167.0 -78.5 -115.1 
 

For the second case, in Figure 6 are shown the central line deflection corresponding to a 
mechanical load of 250 N/m2 (desired curve), and the achieved central line deflection obtained 
with the voltage distribution given in Table 3. 
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Figure 6. Central line deflections 

 
 

Table 3. Voltage distribution for three actuators patches 
 

Group nº 1 2 3 

Voltage -171.5 -289.8 -171.5 
                                                                                                                
     
6. CONCLUSIONS 
 
 The shape control capability of composite structures covered with piezoelectric layers or 
patches is investigated, using the finite element method. A finite element based on the 
Kirchhoff classical theory, has been used. The present model has been validated in Moita et 
al. (2000), where the solutions for deflection and sensed voltage in a bimorph beam, are 
compared with the solutions obtained by other authors. The core optimization had been 
performed in order to minimize the strain energy of the plate. Also the patch position and the 
structure shape optimizations had been performed in order to maximize the effect a defined 
set of actuators. In all of these optimizations a gradient-based algorithm had been used. From 
the Fig. 5 and Fig. 6 we can observe that the case of patches covering an entire layer give a 
much better shape control.    
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