
Fast segmentation of 3D data using an octree
J. Rodrigues1, R.E. Loke2 and J.M.H. du Buf2

1 Escola Superior Tecnologia, University of Algarve
Campus da Penha, 8000 Faro, Portugal

email: jrodrig@ualg.pt
2 Vision Laboratory, University of Algarve
Campus de Gambelas, 8000 Faro, Portugal

email: �loke,dubuf�@ualg.pt

Abstract: The algorithm developed uses an octree pyra-
mid in which noise is reduced at the expense of the spa-
tial resolution. At a certain level an unsupervised clus-
tering without spatial connectivity constraints is applied.
After the classification, isolated voxels and insignificant
regions are removed by assigning them to their neigh-
bours. The spatial resolution is then increased by the
downprojection of the regions, level by level. At each
level the uncertainty of the boundary voxels is minimised
by a dynamic selection and classification of these, using
an adaptive 3D filtering. The algorithm is tested using
different data sets, including NMR data.

Keywords: 3D segmentation; boundary refinement; oc-
tree; NMR data

1. INTRODUCTION

Image segmentation is a well-established topic in image
processing. All recent text books give a good overview
of the different techniques, but mainly for the 2D case al-
though many schemes can be directly extended to three
image dimensions. However, in some cases the complex-
ity of the algorithm poses a problem in terms of CPU
time when huge volumetric data sets are to be processed,
in which segmentation is only a first step and further pro-
cessing, at least an interactive visualisation, is necessary.
In this paper we extend a well-established 2D method to
3D with the aim of obtaining a good segmentation quality
while saving as much CPU time as possible.

Spann and Wilson [2] have shown that in a 2D segmen-
tation the application of a quadtree is very useful be-
cause of the smoothing: the noise reduction improves
class separation such that at a certain tree level a clus-
tering and classification yield correct initial classes. The
coarse resolution at that level is improved by a level-by-
level downprojection in which the boundary pixels are
reclassified on the basis of the information available at
the lower tree levels. Subsequently, Schroeter and Bigün
[1] experimented with different clustering algorithms and
improved the boundary refinement in the downprojection
by applying adaptive filtering. All clustering algorithms
considered gave more or less the same results and the fi-
nal segmentation quality was excellent. Hence, we stud-
ied an extension of the algorithm from 2D to 3D while
trying to make it as fast as possible in view of the sizes

Figure 1. Octree construction by averaging nonoverlap-
ping blocks of eight voxels.

of 3D data sets. In the following sections the algorithm
will be presented in detail and experimental results will
be shown.

2. PYRAMID CONSTRUCTION

The 3D pyramid used is the octree (Fig. 1), in which non-
overlapping blocks of 2x2x2 voxels of the image I�i� j�k�
of size N3

0 , with N0 � 2m, are averaged. This results in
an image of size N3

1 with N1 � 2m�1 one level above the
basis. We note that we use equal dimensions in x, y and
z equal to a power of two, but the dimensions can be dif-
ferent as long as they are even. Mathematically

I�i� j�k;L� �
1
8

1

∑
a�0

1

∑
b�0

1

∑
c�0

I�2i�a�2 j�b�2k� c;L�1��

where 0� L� Lmax and I�i� j�k;0� � I�i� j�k�. In practice
we do not construct the octree until the highest level but
go only a few levels above the basis L� 0. The number of
necessary levels depends on the application and can only
be determined by experiment.

3. CLUSTERING AND CLASSIFICATION

The second step is the application of a clustering algo-
rithm at a certain pyramid level Lmax, using in our case a
local centroid clustering directly based on the voxel val-
ues; see [2]. The convergence of this algorithm is dif-
ficult to prove, but in practice it has been observed that
it converges with a small number of iterations (typically
10-20). This algorithm allows to find the class centres.
The sensitivity of the clustering depends on the peaks
in the original histogram and the window size utilised.
Sensitivity is bigger for small windows and consequently
more classes can be found, but as we increase the window
size, sensitivity decreases, the algorithm becomes more
robust to the noise, allowing only to find the significant

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61498115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 2. An isolated voxel (d), an isolated insignificant
region (a) and two connected insignificant regions (b,c).

classes. This dependence can be removed by applying
the algorithm with a set of increasing window sizes until
the number of classes stabilises. For the creation of the
label image at Lmax a minimum-distance classification is
applied, which results in the label image Iγ�i� j�k;Lmax�.
This method is simple and fast but it can create single-
voxel and insignificant regions that must be corrected in
the restoration of the spatial connectivity.

4. RESTORATION OF THE SPATIAL CON-
NECTIVITY

Because of the application of a minimum-distance classi-
fication without any spatial connectivity constraints, there
is the possibility of creating isolated voxels and sets of
voxels which form insignificant regions within significant
ones. A voxel at position �i� j�k� is considered to be iso-
lated (Fig. 2d) if in Iγ�i� j�k;Lmax� its label is different
from all the labels in its N26 neighbourhood. An isolated
voxel is assigned the class most representative from all
classes in its N26. If there are classes with an equal num-
ber of voxels in N26, the voxel is assigned the class that
has the minimum label distance from its own label.

A region is considered to be insignificant (Fig. 2a,b,c),
when it does not count a sufficient number of connected
voxels in the 26-connected sense. The voxels within such
regions are assigned the neighbouring classes and/or as-
signed between themselves (Fig. 2b,c) by a deterministic
process in a single pass through the volume. This scan-
ning process starts at the first coordinate of the volume
(upper-left corner in Fig. 2), it passes through all voxels
and ends at the last coordinate (lower-right corner). Once
a region is determined to be insignificant, like Ra with na

voxels in Fig. 2, its voxels will be reclassified following
the scanning order, as if they were isolated voxels.

In the case of region b in Fig. 2, which is adjacent to re-
gion c, there exists the possibility of assigning its voxels
the label of region c. After finishing the reclassification
of all voxels belonging to region b, if region c proves to
be insignificant it will be processed in the same way as
were regions a and b. This method can provoke a gain of
voxels in adjacent insignificant regions, which could be-
come significant, but an alternative solution (multi-pass
method) without this problem would be more expensive

in terms of CPU time. Such multi-pass solutions must be
considered in applications where no or smaller system-
atic biases towards the right or left etc must be achieved,
and can be easily implemented.

Figure 3. Two boundary voxels at level L with the defini-
tion of the boundary regions β1, β2 and α after the down-
projection to L�1.

5. BOUNDARY REFINEMENT

The last step, boundary refinement, consists of mapping
the label image Iγ from the level Lmax to level 0. This is
accomplished by the downprojection of the labels within
the regions to level Lmax � 1, in combination with the
analysis of the voxels around the boundaries in the origi-
nal data tree I available at level Lmax�1. This process is
repeated level by level until L� 0. Assume that we are at
level L and are going to level L�1.

(A) In Iγ�i� j�k;L� the boundary voxels are determined. A
voxel is considered to be a boundary voxel if there is at
least one different label in its N26 neighbourhood.

(B) The image Iγ�i� j�k;L� 1� is obtained by the down-
projection of the label of each parent voxel, that is not a
boundary voxel, to its 8 children, i.e. Iγ�i� j�k;L� 1� �
Iγ�i�2� j�2�k�2;L�, with / being an integer division.

(C) The children that belong to the projected boundary
form the region β at level L�1 (Fig. 3) will be reclassified
using 3D butterfly filters in several orientations.

The boundary region β is divided into two: β 1 that corre-
sponds to the 8 voxels originating from the left voxel at
level L and β2 originating from the right voxel at level L.
We also define the centre boundary region α that contains
only those voxels from β that connect β1 with β2. In or-
der not to process all 16 voxels belonging to the β region,
we process only the 8 α voxels; the other 8 voxels are as-
signed their two parent’s labels to save CPU time. This is
a simple example because the boundary orientation cor-
responds with an axis of the 3D volume. In practice the
boundary can be in any orientation and a neighbourhood
can be more complex (vertices between three or more re-
gions). Hence, we extract all candidate orientations at
level L (Fig. 4a) to select the combinations of α voxels at



Table 1. The list of voxels belonging to region α at tree
level L�1 as a function of the boundary positions at level
L.

Boundary Voxels
position in α

at L at L�1

1 A
2 A+B
3 B
4 A+C
5 A+B+C+D
6 B+D
7 C
8 C+D
9 D
10 A+E
11 A+B+E+F
12 B+F
13 A+C+E+G
14 B+D+F+H
15 C+G
16 C+D+G+H
17 D+H
18 E
19 E+F
20 F
21 E+G
22 E+F+G+H
23 F+H
24 G
25 G+H
26 H

(a)

(b)

Figure 4. The N26 neighbourhood at level L (a) and the
voxels in the boundary region α at level L�1 (b).

level L�1 (Fig. 4b) by using Table 1.

The next step is to reclassify the α voxels by applying a
3D butterfly filter in all candidate orientations of these,
but applying the (rotated) filter(s) to the data tree at level
L� 1. The filter format and weights are given by the
3x3x3 mask in the y-axis orientation as shown in Fig.
5 (a). For other orientations the filter weights are de-
termined by a rotation and redistribution. This filter is
an extension of the 2D one presented in [1]. We con-
sider the 13 orientations a to n as shown in Fig. 5 (b).
The weights r and rr of the filter masks are given by
rr � �1� r��n and r � 0 for d � 0, r � �d � 2��6 for
2 � d � 8, and r � 1 for d � 8, with the dissimilarity

given by d � �µ1�µ2��
�

σ2
1�σ2

2. Here n equals the

number of weights differing from 0 and r, and µ i and σ2
i

are the local mean and variance in the image I�i� j�k;L�
of the two most representative classes in the 26-vicinity
of the boundary voxel in Iγ�i� j�k;L�.

Table 2. The filter orientations as a function of the voxel
in the boundary region.

Voxel in α Filter orientations
A a b d e j l n
B b c e f l m n
C d e g h l m n
D e f h i j l n
E e f h i j l n
F d e g h l m n
G b c e f l m n
H a b d e j l n

(a)

(b)

Figure 5. Filter mask coefficients (a) and filter orienta-
tions a to n (b).

For each α voxel, all the 13 filter orientatons can be ap-



plied simultaneously to the image I�i� j�k;L � 1�. The
left and right halves of the filter masks as shown in Fig. 5
(a) are applied separately, which prevents from smooth-
ing across the boundary, yielding the two convolution
sums S1�i� j�k;L� 1� and S2�i� j�k;L� 1� for each ori-
entation and each mask; this results in a set of values Si,
i� 13Nc�Nc�1�with Nc being the number of representa-
tive classes. We then calculate all the Euclidean distances
between the Si values and the mean µn of the representa-
tive classes, i.e., �µn�Si�. Finally, each boundary voxel
in Iγ�i� j�k;L�1� receives the label from the representa-
tive class that has the minimum Euclidean distance. We
then decrease the value of L by 1 and repeat the procedure
until we reach the bottom of the pyramid.

A further speedup is based on the geometry of the masks
and the 13 filter orientations. The orientations that point
away from a voxel to be reclassified have no or little ef-
fect to that voxel. Hence, we consider only the filter ori-
entations that are adjacent to the boundary orientations.
Therefore only 7 filter orientations according to Table 2,
which leads to a total of i� 7Nc�Nc�1� filter sums, need
to be processed.

Figure 6. Planar sections through the artificial volume:
(a) data with noise, (b) after the segmentation and (c)
segmentation boundaries in the original data. The left,
middle and right columns correspond to sections Sxy, Syz
and Szx, respectively. Sections d, e and f show a central
section through the cone in the original data, at tree level
L � 2 and the reconstruction at level L � 0, respectively.

6. EXPERIMENTAL RESULTS

The algorithm was tested using different data sets: an ar-
tificial volume as well as NMR data. We created a vol-

(a)

(b)

(c)

Figure 7. A slice through 3D NMR data (a), the segmen-
tation result (b), and a selected structure visualised in 3D
(c).

ume of 128�128�128 voxels, the voxel values ranging
from 0 to 255, which was composed of 10 regions com-
prising 4 parallelepipeds that divide the volume in layers,
4 cubes in the different layers, plus 1 sphere and 1 cone.
The difference of the voxel values between the different
regions is 25. Figure 6 shows three orthogonal sections of
the volume: (a) with σnoise � 25, (b) the final segmen-
tation and (c) the segmentation boundaries in the noisy
volume. Figure 6 also shows a central section through
the noisy cone (d), the lower resolution at L � 2 (e), and
the restored resolution after the segmentation (f). As can
be seen, the boundary quality is quite good and only a
few voxels at the cone tip have been lost due to the noise.



Results obtained on a NMR data volume of size
128�140�88 are shown in Fig. 7. Figure 7a is one plane
in the original data set of a knee, Fig. 7b shows the cor-
responding segmentation result. The white area to the
right is called suprapatellar bursa. This “object” was se-
lected by connected component labelling and visualised
with OpenGL using Gouraud shading (Fig. 7c). This ob-
ject shows a hole and we verified by displaying the orig-
inal data by means of a movie that this hole is part of the
data and not caused by the segmentation algorithm (e.g.
by eliminating very thin structures). The computation
time on an SGI Origin 200 server is 0.700 seconds for the
pyramid construction, 0.290 for the clustering and classi-
fication and 60.950 for the boundary refinement. For the
refinement all 4 available CPUs were used.

The results presented in this paper show that our method
is very robust, not only in the presence of outliers, but
also in the presence of other types of noise. We can ob-
serve that in some occasions inaccuracies appear at the re-
gion boundaries, but these are at most 2 voxels wide (Fig.
6). In general, the boundaries are accurate. The biggest
limitation of the method is the disappearance of the ini-
tial small regions due to the construction of the pyramid.
This is a topic for future research.

In order to demonstrate the quality of the algorithm in
terms of CPU time, we implemented a very simple alter-
native algorithm that consists of three steps: (1) Smooth-
ing the data in the volume with an algorithm that pre-
serves boundaries by applying 10 iterations of the Adap-
tive Gaussian Weighting Filter (AGWF) of size 3�3�3.
(2) Finding the classes by a local centroid clustering and
the regions by a minimum-distance classification. (3) Re-
moving insignificant regions which contain up to 27 con-
nected voxels. The AGWF was chosen because it is well
documented and tested in the literature, both in terms of
CPU time and characteristics [e.g. 3]. The second and
third steps are similar to those explained in section 3 and
4. The results obtained with this alternative method show
completely misclassified boundaries. Furthermore, the
application of only one single iteration of the AGWF is a
factor of 2.7 slower than applying our entire segmentation
algorithm.

7. CONCLUSIONS

We presented an algorithm for a fast and unsupervised
3D segmentation which avoids a priori knowledge of the
classes. However, it is not completely unsupervised be-
cause it is necessary to select the level Lmax in the octree
at which the clustering is done. This level depends on the
characteristics of the data volume at hand and can only be
determined by means of experiments. Experiments have
shown that the strategy of eliminating insignificant re-
gions (� 27 voxels) only at the pyramid level Lmax proved
to be optimal, because the voxels misclassified at that
level disappear as well as their propagation through the
pyramid. Finally, we have shown that an extension of the
Schroeter and Bigün [1] 2D method to 3D is relatively
straightforward and not expensive in CPU time even in

the case of large volumetric data sets. In other words,
a more sophisticated processing of the boundary voxels
would improve the quality while still keeping the CPU
time acceptable (in the order of a few minutes on an SGI
Origin 200, using a single CPU, for the data sets shown
here).

8. ACKNOWLEDGEMENTS

The NMR data visualised in this study are part of
the Chapel Hill Volume Rendering Test Data Set
(ftp://cs.unc.edu/pub/projects/image) of SoftLab Soft-
ware Systems Laboratory, Department of Computer Sci-
ence, University of North Carolina, Chapel Hill, NC,
USA.

REFERENCES

[1] Schroeter, P. and Bigün, J. (1995) Hierarchical
image segmentation by multi-dimensional clustering
and orientation-adaptive boundary refinement. Pattern
Recognition, Vol 28, No 5, pp. 695-709.
[2] Spann, M. and Wilson, R. (1985) A quad-tree ap-
proach to image segmentation which combines statistical
and spatial information. Pattern Recognition, Vol 18, No
3/4, pp. 257-269.
[3] du Buf, J.M.H. and Campbell, T.G. (1990) A quan-
titative comparison of edge-preserving smoothing tech-
niques. Signal Processing, Vol 21, pp. 289-301.


