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ABSTRACT: A three-dimensional primitive equation model and its application to a tidal estuary is described. 
The model solves the primitive equations for incompressible fluids with Boussinesq and hydrostatic 
approximations. The discretization is based on the finite volume method and allows a general vertical 
coordinate. The computational code is implemented in such a way that different vertical coordinates can be 
used in different parts of the domain. The model was designed to be able to simulate the flow both in the open 
ocean and in coastal and estuarine zones and can be coupled in a simple way to ecological models. The model 
was implemented successfully in several estuarine and coastal areas. Results are show for the Sado estuary in 
Portugal to illustrate model accuracy and potential. Quantitative validation is based on field data (water levels 
and velocities) while qualitative verification is based on the analysis of secondary flows. 
 

1 INTRODUCTION 

During the last two decades advances achieved in 
both data acquisition and modeling enabled the 
identification of the principal 3D features present in 
marine environments. First-order effects are well 
understood and can be accurately modeled. 
Attention is nowadays moving to nonlinear 
interactions and to second-order effects such as 
higher order tides, internal and lateral variability, 
zero frequency components, etc. Simulation of these 
processes requires increasingly fine resolution both 
in horizontal and vertical directions. To maintain 
affordable simulation times, method's to describe 
vertical distributions and transport must be 
improved. In optimal discretizations dependent 
variables vary mainly along space coordinates 
(Deleersnijder & Wolanski, 1990). 

In shallow areas topographic features play a major 
role controlling the flow, while in the deep ocean  
the density field is a major driving force. Sigma type 
coordinates  (Phillips 1957) optimize topographic 
representation, allowing the same number of grid 
points whatever is the local depth. This 
discretization is quite advantageous for the 
simulation of barotropic flows. In this case the flow 
closely follows gridlines and vertical advective 
exchanges between cells are minimized, vertical 
advection being implicitly represented mostly by the 
grid deformation. 

When a clear thermocline is present and a nearly 
horizontal mixing layer exists, the flow does not 
follow the bottom topography and the usual sigma 
coordinate produces ill-behaved results. Since in 
most situations the thermocline is close to horizontal 
some authors (e.g. Deleersnijder & Beckers 1992, 
Santos 1995) use a double sigma coordinate, 
splitting the water column into an upper nearly 
horizontal and a lower terrain following sub-
domains. 

Isopycnic coordinate models use the density as the 
vertical coordinate (Bleck & Boudra 1986, 
Oberhuber 1993). As a consequence, the mesh is 
aligned with constant density lines. Longitudinal 
transport plus a grid deformation represent most 
advection. These models can thus minimize 
numerical diffusion and preserve water mass 
properties when the flow is fully governed by 
density gradients, but are not adequate to study 
barotropic flows or whenever topography plays a 
major role in the flow. 

Cartesian coordinate models are a compromise 
between former types. Layers are horizontal and 
have the same thickness whole over the domain 
(Bryan 1969). There is no optimization, but the 
model can be used in every domain if enough 
computational power is available. Few information 
is needed to represent the bathymetry and thus 
simpler codes can be generated. 

In real domains the relative importance of 
topographical effect, density forcing, inertia and bed 
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shear stress is different from point to point and 
therefore there is no unique optimal vertical 
coordinate for the whole domain. Instead, different 
discretizations should be implemented for different 
regions. 

Most circulation models are based on finite-
difference or finite-element methods. A less popular 
method is the finite volume approximation, 
apparently introduced in three-dimensional fluid 
dynamics by Rizz and Inouye in 1973 (Hirsch 1992). 
This method possesses some characteristics of both 
the finite-differences and the finite-element methods 
(Vinokur 1989). In this approach the discrete form 
of the governing equations are applied 
macroscopically to the cell control volume in the 
form of flux divergence (Adcroft et al. 1997). As a 
consequence this method automatically guarantees 
the conservation of transported properties. 

In this paper a new primitive equations model 
using the finite volume method is presented. The 
model solves the equations in the real domain 
without any space transformation. The geometry 
information is carried in the areas and volumes 
needed to calculate the fluxes. The cells can have 
any initial shape and suffer any time deformation 
allowing any vertical discretisation.  

This flexible architecture is equivalent to a generic 
vertical coordinate. With this approach the same 
code can resolve any vertical discretization 
including the ability to use simultaneously different 
discretizations in different zones of the domain. 

2 GOVERNING EQUATIONS 

The model resolves the three-dimensional primitive 
equations in rectangular coordinates for 
incompressible flows. Hydrostatic equilibrium is 
assumed as well as Boussinesq approximation. The 
mass and momentum evolution equations are: 
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Where u, v and w are the velocity vector 
components in x, y and z directions respectively, � is 
the free surface elevation, � the Coriolis parameter, 
Ah and Av the turbulent viscosity in the horizontal 
and vertical directions and ps is the atmospheric 
pressure. � is the volumic mass and �’ its anomaly 
(� = �0 + �’). The volumic mass is calculated as a 
function of temperature and salinity by the 
constitutive law (Leendertsee & Liu, 1978): 
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The computed flow field transports salinity, 
temperature and any other tracer using the equation: 
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Where � stands for S, T or the tracer and SST is the 
source-sink term for the property in question. kh and 
kv are the horizontal and vertical diffusivities 
respectively. 

3 FINITE VOLUME DISCRETIZATION 

Equations 1-4, 6 are solved by the finite volume 
method. In this approach the equations are solved in 
the real space integrated over each cell (Versteeg & 
Malalasekera 1995). The cell can have any shape 
since in integral form only the fluxes between 
adjacent cells are computed. In this way a complete 
separation between the physical variables and the 
geometry is accomplished for all mesh types (Hirsch 
1992). This is not the case when finite differences 
are used because the mesh information is included in 
the equations via the Jacobean of the coordinate 



transformation. In the finite volume method the 
geometry information is stored in the areas, volumes 
and faces normal directions. This information is 
actualized in each time step as a function of the 
mesh type. The computational effort necessary to do 
this is comparable to that used in solving the 
Jacobean of the transformation (Vinokur 1989) and 
the method is much more flexible. 

In the present application the computational cells 
have some restrictions in their form and this fact is 
used to alleviate the storage and computational 
requirements of the model. The vertices possess only 
one degree of freedom: Along the vertical direction, 
being fixed in the horizontal plane as depicted in 
Figure 1. The u,v and w velocity cells are staggered 
in an Arakawa-C manner. 

 
Figure 1. Cell geometry and nomenclature. 

3.1 Time discretization 
The model uses a semi-implicit ADI algorithm 

with two time levels per iteration. Two time schemes 
are currently implemented: the 4 equations S21 
scheme (Abbott et al. 1973) and the 6 equations 
(Leendertse 1967). The time marching procedure for 
each discretization is depicted in figures 2-3. As 
usual in ADI schemes u (along x direction) is 
calculated implicitly in the first time level while in 
the second time level y becomes the implicit 
direction for both elevation and velocity. 
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Figure 2. A.D.I. S21 4 equation Abbot scheme. 

The free surface elevation is computed through 
integration of equation 1 over the water column. In 
each time step velocity components are used in the 
instant represented in figure 2. This means that in 
each time step one velocity component is eliminated 
in the free surface elevation equation, using its 
(discretized) evolution equation. 

The Leendertse scheme is more efficient in the 
simulation of flows with intertidal regions because 
the boundary condition is calculated for both 
directions in each time step. The S21 scheme is 
more efficient in deep regions. In practice, for 
shallow domains, the larger time step admitted by 
the Leendertse scheme is almost lost due to its 
longer computational time. 
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Figure 3. A.D.I. 6 equation Leendertsee scheme. 

The vertical velocity component is also calculated 
by continuity. The integration is however performed 
over each cell volume. Since the grid lines are 
allowed to move along the vertical direction the 
computation of the vertical velocity field and the 
redefinition of the geometry are interrelated and are 
calculated in conjunction. 

The ADI schemes produce tri-diagonal matrixes 
that can be efficiently solved by the Thomas 
algorithm. The two components of the horizontal 
velocity are globally centered in t+1/2 leading to a 
second order time accuracy. 

In the finite volume method the natural choice of 
dependent variables are the water fluxes instead of 
the velocities. With this in mind the Uflux, Vflux, 
and Wflux will be used in the discretized form of 
equations 1-4, 6. 

3.2 Sea level calculation 
Using the finite volume approach, the discretized 

equations are obtained through integration on the 
water column of the continuity equation both in 
space and time. Considering a position i,j in the 
horizontal, the integration of equation 1 along the 
water column followed by integration in time from t 
to t+1/2 gives, with the aid of the divergence Gauss 
theorem: 
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Vij is the volume of the water column from the 
surface to the bottom below position i,j, sc is the 
envelope surface of the water column and n�  is the 
outward normal to sc. The surface integral computes 
the fluxes both in the horizontal and vertical surfaces 
of the envelope. 

The absolute vertical velocity of the water on the 
free surface can be considered as the sum of the 
velocity of the surface and the relative velocity: 

s r . Considering the water flux trough the 
free surface null the vertical flux from equation 7 
can be seen to represent the volume change of the 
water column between t and t+1/2. The discretized 
form of the continuity equation integrated over the 
water column becomes: 
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AH = DUX � DVY is the projected area of the cell on 
the horizontal plane. The time integration is 
performed in conformity with the time discretization 
and the fluxes Uflux, Vflux are determined implicitly 
by the momentum equations. 

3.3 Discretization of the momentum equation 
The momentum equation 2 is now integrated for 

each cell volume i,j,k. 
The time derivative term must be integrated over 

the control volume that is also variable in time. This 
can be easily done with the aid of the Leibnitz rule 
that, for volume integrals read: 
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where  is the outward normal to the exterior 
surface S of the cell volume V and  is the velocity 
of that surface relative to a fixed referential. The 
first term of equation 2 becomes: 
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�

where u  is the volume of the u-cell. In the last term 
s  represent the velocities of the top and bottom 

cell faces and is determined by the vertical 
movement of the vertices as a function of the 
particular coordinate system in use. The other terms 
of the surface integral are not present since the cell 
adopted in this model do not admit horizontal 
movement of the lateral faces. 

V
W

The advective term of equation 2 is integrated 
with the aid of the Gauss theorem, applied to the 
volume in some instant of time between t and t+1: 
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The last term in 10 and 11 can be added 
producing: 
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where Wr is the vertical velocity of the fluid 
measured relative to the top and bottom surfaces and 
Wr � Ah = Wflux is the water flux trough that 
surface. This term can be viewed as the advective 
fluxes entering the moving cell, the particular 
discretisation of this advective term depends on the 
scheme in use. 

The other terms in equation 2 are discretized in a 
similar manner. The final form of the u momentum 
equation is: 
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Fx are the x components of the forces applied to the 
fluid mass due to barotropic, baroclinic, coriolis, 
horizontal and vertical diffusion effects. 

For stability reasons the vertical transport and 
barotropic pressure must be implicit, all the other 
terms in equation 13 are calculated explicitly. 
Because The new level is computed before the 



velocity the calculation of the barotropic term is in 
fact explicit in the equations without compromising 
stability properties. 

3.4 Processes in the vertical direction 
For some coordinate systems the volume Vu

t+1 is 
dependent on the hydrodynamic variables and is not 
known in the instant t+1 during the calculation of 
the horizontal velocities. For this reason the 
geometry changes are accounted during the 
computation of the vertical velocities. 

The vertical velocity in each cell is calculated by 
continuity integrating equation 1 in the cell volume 
and in time as done for equation 7: 
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The surface integral extends to all exterior cell 
surfaces. The fluxes resulting from its discretization 
must be the same used in the momentum and 
elevation equations in order to ensure conservation. 

The cell volume in time t+1/2 depends on the 
vertical coordinate in use: For sigma coordinate the 
volume is a function of time through �  and can be 
readily calculated. For isopycnic coordinate the 
mesh moves as a function of the density field that 
have not been calculated yet, finally for the 
lagrangean coordinate the mesh moves as a function 
of the vertical velocity itself and the procedure 
should be iterative. 

In order to implement generic coordinates the 
vertical velocity is calculated in two steps. In the 
first step the value w*

r is predicted assuming that the 
volume remains constant: 
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The w*
r value is then used, if needed, for the 

redefinition of the mesh geometry. The value of the 
vertical velocity is then corrected using the volume 
variation: 
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After evaluation of the hydrodynamic field the 
salinity and temperature variables are computed by 
integration of equation 6. In this equation the 
volume variation is now already known and can be 
used explicitly. 

4 INITIAL AND BOUNDARY CONDITIONS 

Equations 1-4, 6 form an initial-boundary value 
problem requiring initial conditions in the whole 
domain and boundary conditions in the subsequent 
instants of time. 

The initial conditions are of the Dirichlet type 
being easily implemented. 

Five types of boundaries can be present in one 
application: free-surface, bottom, lateral closed 
boundary, lateral opened boundary and moving 
boundary. 

4.1 Free surface condition 
In the free-surface boundary the water flux across 
the surface is assumed null 

0
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and the wind stress is imposed 
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The first condition is imposed directly in the 
continuity equation. The wind stress is imposed 
explicitly in the momentum equation. 

4.2 Bottom boundary condition 
The conditions in the bottom boundary are similar to 
the free surface conditions. The water flux is also 
assumed null and a quadratic law is used to calculate 
the bottom stress: 
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For stability reasons the bottom stress must be 
calculated implicitly in the momentum equation of 
the bottom cell. This is accomplished by a procedure 
proposed by Backhaus (1983), where the horizontal 
velocity of the bottom cell is used to compute vh and 
the stress on the top surface of the bottom cell is 
considered explicitly. 

4.3 closed boundaries 
In this boundaries the domain is limited by land. The 
area of that surface is much smaller than the bottom 
surface. Also, the horizontal resolution of this 
mesoscale model is larger than the characteristic 
dimension of the lateral boundary layer. For that 



reasons a impermeable, free slip condition has been 
adopted in the lateral surfaces: 

�

�

�v
n
� 0  (20) 

� �v n� � 0  (21) 

Using the finite volume method this is accomplished 
in a direct way specifying zero water fluxes and zero 
momentum diffusive fluxes for the cell faces in 
contact with land. 

4.4 Lateral open boundaries 
The open boundaries are introduced artificially in 
order to confine the computation domain to the 
region of interest. This procedure saves computation 
resources but must be used with care in order to 
limit the influence of the boundary condition on the 
domain results. 

The condition to impose depends on the region 
where or the reason why the border has been set. In 
this model three types has been implemented: 
Imposed water flow, usually applied to rivers, 
Imposed free surface elevation, used in the 
boundaries influenced by the tide and Von Neumann 
boundary condition used to impose the values of 
salinity and temperature. 

The values of S and T used in this last condition 
are computed as a function of the external imposed 
values and the interior domain values. If the flow is 
leaving the domain the external value is equal to the 
fluid property inside the domain. If the fluid, on the 
contrary, is entering the domain, the external value 
of the property is computed using a dilution length 
condition. In this formulation the outgoing fluid is 
considered to mix completely with the exterior fluid 
along a specified distance 

If the flow is stationary this condition is 
equivalent to the usual restoring time condition 
where a restoring time after which complete mix 
occur is considered. 

4.5 Moving boundaries 
Moving boundaries are closed boundaries whose 

position varies with time. This type of situation 
arises in domains with inter-tidal zones, in this case 
the uncovered cells must be tracked and a condition 
similar to equations 20 and 21 is imposed to the 
surrounding covered cells. For computational 
reasons the condition � � -h can not be used to 
decide if a cell is uncovered. Instead, a criteria based 
on figure 4 is used. 

 
Figure 4. Conditions for uncovered cells 

HMIN is the depth below which the cell is 
considered uncovered; thus conserving a thin sheet 
of water above the uncovered cell. The cells of 
position i,j are considered uncovered when at least 
one of the two situations is true: 

  and �  (22) HMINH ij � HMINhijij ���
�1

or 

  and �  (23) HMINH ij �
�1 HMINhijij ���

�1

where H = h + � is the total depth. The second 
condition of case 22 covers the cell with water when 
the wave propagates from the left to the right and the 
second condition of case 23 covers the cell when the 
wave propagates from the right to the left. The noise 
formed by the abrupt variations in velocity of the 
uncovered cells are controlled with a careful choice 
of HMIN (Leendertse 1970, Stelling 1983) 

5 RESULTS 

A major application of the model (MOHID3D) 
presented in this paper is in the Sado Estuary, 
Portugal. The Hydrodynamical results presented are 
the first phase of an environmental study, made by 
HIDROMOD Lda for the Setubal's Port 
Administration - APSS. The study's main objective 
is to predict the environmental effects of dredging 
works planned in the estuary. 

Sado Estuary, the second largest estuary in 
Portugal, is located some 50 Km south of Lisbon. 
The estuary comprises two main geographic regions 
as depicted in figure 5 (Rodrigues 1992): 

1. The outer estuary - Region I - , with complex 
geometry, a surface area of about 140 km2 and a 
mean depth of 10 meters, and 

2. The inner estuary - Region II - that comprise 
Alcácer's channel approximately 20 km long and 
about 1 meter deep. 

Sado River flows into the estuary through the 
Alcácer channel. This river is characterized by 



particularly high flow rates during very wet winters, 
when the discharge can reach 250 m3/s,  while in dry 
season flow rates of 1-3 m3/s are usually recorded. 

 
Figure 5 Sado's estuary bathymetry 

5.1 Model validation 
Tidal data and velocities measured in summer are 
available to validate the results. Because in Summer 
the river flow rate is small a barotropic simulation 
was carried out. A  120 � 158 points horizontal mesh 
with 200 meters constant horizontal step is used. 
Vertical discretization is based on a sigma 
coordinate with 6 layers. 

The water level is imposed at the sea boundary 
using 22 harmon1ic constants from the Sesimbra 
tide gauge, out of the estuary (Sobral 1977). These 
values were obtained from 6 months data records 
and phases were corrected to represent correctly the 
values at the open boundary. 

Model results are compared with field data at 6 
water level stations (1 to 6 in figure 5) and 7 current 
meter stations (7 to 13). Each current meter station 
comprises a current meter located 1 meter below the 
surface and another one located about 3 meters 
above the bottom (Ribeiro & Neves 1982). 

Values from July 1980 were used in the validation 
procedure because more data were available for that 
period. 

In figure 6 the water level data of station 6, 
located in the interior of the estuary is compared 
with model results for the period 13 – 21 July 1980. 
As can be seen, the  agreement is very good even for 
that location. Near the mouth of the estuary the 
agreement is even better, as should be expected. 

 
Figure 6. Water level time series in station 6. 

Velocity values from the model were also 
compared with field data. For this purpose model 
results were interpolated to obtain velocities at the 
same vertical positions as current meters. 

The vertical velocity profile is of logarithmic 
shape for most of the tidal cycle. Tide reversion 
occurs earlier near the bottom putting into evidence 
inertial effects. 

In figure 7 field data and model results are 
compared for station 11. Since only short period 
velocity records were available it was not possible to 
decompose the data into their constituents. Instead, 
the raw data were used in this comparison. 
In stations located in the upper estuary where 
topography is more complex the agreement decreses. 
This fact can be explained by inaccuracies in the 
bathymetry, that is not measured as often as in the 
navigation areas. 

As can be seen there is good agreement both for 
water slack instants and velocity values. A better 
agreement is obtained near the surface. This is 
because the bottom current meter was suspended 
from the boat and the measuring depth was not 
constant. 

5.2 Qualitative verification 
3D simulation of estuarine hydrodynamics opens 
new perspectives in the study of estuarine currents. 
Secondary flows in curves and slopes can be 
visualized, as well as the vertical structure of 
velocity profile and residual circulation. 
The residual flow for a neap-spring half period is 
presented in figure 8. 



  

Figure 7. Velocity modulus time series in station 11. 

Two residual circulation structures can be identified 
near the mouth. A clockwise eddy can be observed 
in the interior and a counterclockwise one on the 
outside. Along the main channel a strong transport 
towards the ocean can be identified. This pattern 
agrees with a physical model and field data for the 
region (LNEC 1989) and is a very valuable tool to 
explain the sediment dynamics near the estuarine 
mouth. 

 
Figure 8. Residual circulation for a neap-spring cycle. 

As expected in a barotropic simulation, the larger 
vertical velocities are found in regions with strong 
flow curvature or with sharp topography gradients. 
In figure 9 a vertical cut through a region of large 

bathymetry variation can be seen. The cut is located 
outside the estuary's mouth in a steep region 
adjacent to the ocean (white strip at the end of the 
navigation channel in the figure). 

 

 
Figure 9. Vertical recirculation in a steep region. 

A recirculation zone behind the step can be 
identified in the ebb period. This recirculation must 
be responsible for the steepness of the slope, since 
during both flood and ebb in its lower part the flow 
tend to be slopeward. 

6 FUTURE WORK 

The model proved to simulate accuratly real 
barotropic flows. For this type of flow sigma 
coordinates are the most adequate since topography 
pays a major role. 

In the next phase of this project the model will be 
run in baroclinic mode with different vertical 
discretizations and the influence of vertical 
discretization will be analyzed. 
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