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Abstract

This paper deals with the geometrically non-linear analysis of thin plate/shell laminated structures with
embedded integrated piezoelectric actuators or sensors layers and/or patches. The modd is based on
the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with
arbitrary shape, general mechanical and eectrical loadings. The finite dement modd is a
nonconforming single layer triangular plate/shell dement with 18 degrees of freedom for the
generalized displacements and one eectrical potential degree of freedom for each piezodectric layer
or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to
solve incrementally and iteratively the equilibrium equations.The modd is applied in the solution of
four illustrative cases, and the results are compared and discussed with alternative solutions when
available.
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I ntroduction

In the recent years the study of smart structures has attracted significant researchers, due to ther
potential benefits in a wide range of applications, such as shape control, vibration suppression, noise
attenuation and damage detection. The use of smart materials, such as piezodectric materials, in the
form of layers or patches embedded and/or surface bonded on laminated composite structures, can
provide structures that combine the superior mechanical properties of composite materials and the
capability to sense and adapt their static and dynamic response. The piezodectric materials have the
property to generate eectrical charge under mechanical load or deformation, and the reverse, applying
an dectrical fidd to the material results in mechanical strains or stresses.

Many researchers considering mainly linear analysis have carried out the modeling of composite
structures containing piezolaminated sensors and actuators using the finite dement formulation. A
pioneering work is due to Allik and Hughes [1], which analysed the interactions between dectricity
and dasticity by developing a tetrahedral finite dement. Recent surveys can be found in Benjeddou
[2], Senthil et al. [3] and Franco Correia et al. [4]. Recently Yi et al. [5] has developed a 3D finite
element modd to carry out the non-linear dynamic response of laminated adaptive structures using an
updated Lagrangian formulation. A twenty-node solid eement including dectrical degrees of freedom
is developed to analyse structures with piezodectric sensors and actuators, and multipoint constraints
for dectrical degrees of freedom are used to simulate eectrodes. The numerical results show that the
deflection amplitude, vibration frequency and output voltage are significantly influenced by the large
deformation of structures. A fully non-linear theory and corresponding mode with integrated
piezodectric actuators and sensors accounting for geometric nonlinearities by using local stresses and
strains measures and an exact co-ordinate transformation has been developed by Pai et al. [6] and
applied to active control of plates. The modd includes shear deformation of anisotropic laminated
plates and assumes a higher order displacement field for in-plane displacements. Icardi et al. [7] also
presents a mathematical model with detailed investigation of 3-D stress field of multilayered adaptive
plates based on von Karman strain-displacement relations. Numerical results are presented for simply
supported cross-ply plates with top and bottom actuators in cylindrical bending under distributed
transverse loading.

In this paper we present a finite eement mode, based on classical plate theory, for static non-linear
analysis of plate/shdl structures with piezodectric sensors and actuators. A simple and efficient three-
node triangular piezolaminated plate/shel dement with 18 generalised displacement degrees of
freedom is used. The formulation introduces one eectric potential degree of freedom for each
piezodectric layer of the finite dement modd. To show the applicability of the proposed mode
illustrative numerical examples are presented and compared with alternative solutions when available.

1 Displacement and Strain Fields

The classical Kirchhoff theory is considered. The displacement components (Figure 1) of a generic
point in the laminated finite eement local axes (X,y,z) are assumed to be of the form:

u(x,y,2) = Ug (X,Y) - zqy
V(X,Y,2) =V (X,y) +Z0ay 1)
wW(X,y,2) =Wy (X,Y)

where (ug,vy,W,) arethe displacements of thepoint on thereference plane of the laminate, and
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Figure 1. Three node triangular finite dement with material (1,2,3) and geometric (x,y,z) coordinate

The present theory considers large displacements with small strains. The Green's strains components
associated with the displacement in equation (1) are given by:

A .2 .2 2]
oo =T, 1  1edliuey allveg  lWogy
ix  9x 2gTxe efxg efxay

eyy:ﬂvo-zﬂqx+1%[vogz+ﬂvogz+ﬂwogzg 2
Ty Wy 2&Tys ETvs EMy sy

o :aa1u0+ﬂv09+zad1?y+ﬂ?x'g+ efup Tup | Vo Vo, Two Twe 6
v TETy g BTy ixg Ex Ty ix fy 1x My

3. Piezoelectric L aminates. Constitutive Equations.

In a piezodectric material, the interaction between the mechanical and eectrical fidds is defined by
Maxwe| equations [8],

1 1
F =5 Cij € €~ €k & Ex - 5 P Ex E (©)
such that
TF TF
- : D=-— 4
Sij e, g (4)
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where E is the dectric field vector, D the dectric displacement vector, C the tensor of eagticity
moduli, € the strain tensor, S the stress tensor, e thetensor of piezoeectric moduli, and p the tensor
of didectric constants, in material axes 1,2,3.

Substituting equations (3) into (4), the constitutive equations of a deformable piezodectric medium are
obtained. The linear piezodectric constitutive equations coupling the eastic fidd and the dectric fied
can bewritten as [9]

E

:Gé-
=e' e +pE (5)

e

+ o

5
D

where S = [s xx Syy Sxy T is the dlastic stress vector and €= [exx eyy gxy]T the eastic strain vector, Q

the dastic constitutive matrix, € the piezodectric stress coefficients matrix, Ethe dectric fidd
vector, D the dectric displacement vector and p the didectric matrix in the dement local system
(x,y,z) of the laminate.

The transformation of vectors and matrices from the orthogonal material axes system (1,2,3) to the
local orthogonal system (x,y,z) of the laminate, in a state of plane stress, with transversal strains
neglected, yidds:

B g?n §12 9168

Q=& 922 926 a (6)
Q6 Qs2 Qest
€ 0 &yU

e= 0 ey (7)
& 0 exH
€ P 00

p= 2521 P2 O 3 (8)
€0 0 pPsxH

where éij are functions of ply angle a for the K™ layer, and are explicitly given in Reddy [9], and the

piezodectric and didectric coefficients in the system (x,y,z) axes are rdated with the corresponding
coefficients in the system (1,2,3) axes for the piezodectric layers through [9]:

& =excos’atepsena Pyy =pyy cos” a +py, sena
&y =egy sena+tepcos’a Py =Pysen’a+py cos’a ©)
€35 = (e3; - €3) Sena cosa ; P12 = (P11 - P2)sena cosa

P33 = Pa3

The dectric field vector is the negative gradient of the electric potential f , which is assumed to vary
linearly in the thickness ty direction, i.e.
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E =-Nf (10)
E={0 0 E}' (11)
where
E,=-f/t, (12)
Observing that [9]:
e=Qd (13)
with
€ 0 dyU
- _@ =
d= é) 0 9320 (14)
& 0 dsy

where d is the piezodectric strain coefficient matrix in the local system (x,y,z) of the laminate, the
equations (5) can also be written in the form:

pE (15)

E (16)
where the mechanical strains are given by the sum of its linear and non-linear parts.

Thelinear part can be written in the form:

et =g, +ze} (17)

. 1S40 éu1 +gN U A
S=i_y=é&; _ui - y-=Ce (18)
iDp &' pai -E ﬁ

Integrating the stress vector S through the laminate thickness, and substituting the vector S by the
first of eguations (15), where the stresses are obtained as in linear analysis [10], one obtains the
resultant forces and moments acting on the laminate:
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5 _INi_ @A Biiebii 6ACOy Ed
)& off) & etie] o9

where the dements of the mechanical stiffhess, for extensional, bending-extensional coupling and
bending are given by:

N _
Ajj = kﬁleij (hy -Nya)
N ~ - .
By = kgleii (hk2 - hk-lz)/ 2 (ij=1206) (20)
N _
Pi = kgilQii (hk3 - hk-13)/3

The dements of the piezodectric stiffness are:

A$ =& Qi dpy (hy -hys)
(i,mj=1,2,6) (21)

i (hk2 -hk_lz)/z

o8]
=
1
Qo
Ol

3
[oX]

where h is the laminate thickness and h, ,k,_, are the distances from the reference surface to the

upper and lower surfaces of the Kth layer, N is the number of layers, and NP is the number of layers
or patches with piezoelectric material.

Integrating the vector D through the thickness of piezodectric patch or layer, and substituting the
vector D by the second of equations (15), yidds:

5 - [aep |ienb
D_[A¢B ]}ééfv) [Ad{E} (22)
where
NP - .
A= kfc'il Pii (i -y ) (j=123) (23)

4. Finite element formulation.
4.1 Updated L agrangian for mulation.

The virtual work principleis used in conjugation with an updated L agrangian formulation to obtain the
governing eguations. A reference configuration is associated with time t, and the actualized
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configuration is associated with the current time t + Dt. The formulation of the dement follows the
development presented by Bathe [10]. The linearized equilibrium equations for a laminate finite
eement are:

N hk ~ . hk )
a 1. o od(ték)TCk (8p dz 'dAC+ od( )tskdztdAe_y
K=1t ta®hy tA®hy 1 [V)
N N hk N LA
="DIAe. 8 o od (tek) '$, dz 'da© (25)
k=1 tpe hy4
Substituting equations (16) and (18), into equation (25), we can write:
I T o T 1
N " je-i éQ eu je-i U -Vl VR i
a 1o odl %y 89 S 1% Vbartaats o 5d)% Y s, dztaa
k=1f t ye Mk - Eg e Pg (1" Eg t,ehc 10 g b
N h "'é'-ﬂT
=UDACLA 5 5d | K '8, dz 'dA® (26)
k=l ta® hgy - EE

By assuming that the loading is independent of the state of deformation, the term corresponding to the
external virtual work is given by:

A = o " gu dOV + o“D‘T du d°s+a|: du; +

0V S (27)
o'a df d°V + " RQ df dOS+aP df
Oy Os

where f is the body force, T the surface traction, F the concentrated force, g the body charge, Q the
surface charge and P the point charge.

In the present work a three node triangular flat plate element is used to carry out geometrically non-
linear analysis of general multilayered thin composite plate-shel type structures. As it is shown in
Figure 1, the element has three nodes and six degrees of freedom per node, the displacements uj vj w;

and rotations q,;,0y;,0, . It requires the introduction of fictitious stiffness coefficients K, ,

corresponding to rotationsq, , which does not enter in the formulation in the local coordinate system

(%,y,2)[11]. The dement local displacements u, v, w, are expressed in terms of nodal variables through
shape functions given in terms of area co-ordinates L;[11]:

3
dz.é, NidizNae (28)

Thus the membrane and bending strain vectors at any point, are expressed by the equations:
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3
8,=4B"d, =B™a, (29)
i=1

& =4BPd, =B"af (30)

where the sub-matrices N, ,B™ and B” are given by:

&; 0 0 0 0 Oou
e u
@0 L. O 0 0 0@
€0 0 4N oN; 3N;  Ou
L) SR VR AV AV (30)
e Ty Ty Ty @
e uNe N TN U
0 0
& f1x f1x ix 4
, N é 2. N M2, N. M2 .N. u
eIL | u o0 -— 1t 2270 2370 g
N TR S R LG L
[Bim]=go Lt vo0o0 OH;[Bib]:éO o -1 L 1 2 1 L0032
S Ty 2 é Ty Ty Ty a
oL 9L u é 2 2 2 a
et —L o000 0U 0 0 -oWaNi SN LTSN,
efy W ¢ 8 x Ty x Ty ixty @
Thedectric fied is given by
E=-Bff (33)

1 L T, — <z N
N he jag é™ o0 éQ eu @™ ouUjag
ai o odj é (0 &1 0 é (ai ydz 'dAa© +
K=1§ tAChkg lf% e0 Bge -pPleo B glfg
, T t _ .e
hk Ia nl u ‘S' U
T I A e o
taehcs 10 80 0F 10p, b
. T ot _
- N he jag &@&™ gu 'isg
PRAC-& o odiy e g [-y dz'dA®
Afg = f 3 ADK
k=l ta€ hey 1 e0 B g i k

To the first term of first member of equation (26) corresponds the linear stiffness matrix, which is
defined by
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&t k-u , T , \
e_@g w g N hg ¢égmb ouTéQ eu g™ ou tane
L—é<|_ KL Q=a 0 0 é (0 eq _u é fgdz dA (35)
gfu g KL taenn €0 B g & -Po,e0 Bg
where we have:
LN M T S o T L R L
Kuuza o oB QB dz 'dA , Kufza o o B e B dz "'dA
K=l taehy, K=l taChygg
(36)
L _ X et T 1 amb t L _ N Mo b T o t
Kiu=8&@ o o B & B"™ dz dA Kif=a o oB pB dz dA
K=1 taehi, K=l ta®hi,
The second term of the first member of equation (26), can be written in the form:
N Pk U 51
2+ adql aNL) te Ao tgae— . (& )T A€ OU t 4 e
a o od S, dz 'dA® = 0 \Si da— UL 2 TdA 37
i=1t e hy 4 (tek ) “ tAe( ”) 82’%%31' S, | S
where i,j =x,y and Ug =U,V,W
Considering the displacements on the reference surface only, the last equation can be written
5§, dSE @ u. Mgae= 5 AN [Ug.x AU x + Vo x Vg x +Wo , dWg ] +
tfe ij SZ@S’I SinH tA?e x1H0,x “Ho,x T Yo,x YV0,x 0,x “YVo,x
2N o [Ugx dugy + Vo, dvgy +Wo, dwg, |+ Ny[uqy dugy +Voy dVgy +Wo, dwoyy]} tda©
(38)
Thus the second term of the first member of equation (26), can be written in the form [12]:
N hy T T
a o @d(téEL) ‘s, dz 'dA® = ¢ da® (GTt G) a® 'dA® (39)
i:1tAe hk-l tAe
and the geometric stiffness matrix for the eement is then given by:
S S )
e_g<uu Kuflfl_ Q(Eu ou
s € u= e ] (40)
A S KS 7 X 0 O,
fu Rfrg 8 U
with
K,= oGl G 'da (41)
tAe
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where the non-linear strain-displacement matrix G, and the matrix of actual membrane forces t , are
given by:

i o o o o o
<4 x i
eﬂ—L' o 0 0 0 od Ny N, O 0 0 0u
gy L i My Ny 0 0 0 o0y
e0 o 0 0 0 €0 0 Ny Ny, 0 04
[c]=¢ 0;t=¢é 0 (42
éo L o o o o e0 0 Ny Ny 0 0y
g Ty N 3 go 0 0 0 Ny nyﬂ
< N TN i s < p
go 0 %X' %X' %X' OH g0 0 0 0 Ny Nyg
é 0 0 ﬂlNi ﬂ2Ni ﬂ3Ni OL:J
& v % W H

The first term of second member of equation (26), taken into accounting equation (28), and assuming
the eectric chargeis zero, can be written as:

A T T T T T
"BA= 5 da® N° p® %dA®+ gda® N®t® %ds®+da® F¢ (43)
ope Oge

where p®,t®, F® arethe surface distributed, side distributed and concentrated force vectors.

The external force vector is then defined
FS = o N° p° %dA®+ oN°'t° 0dS® +F¢ (44)
ope Ose
To the second term of second member of equation (26), corresponds the internal force, which is

defined by:

L
Fe =1Mny= o dac (45)
T':mtl\; ta®

Equation (26) is valid for any virtual displacement field, da® and df ©. Considering the relations
(35), (41), (44), (45), and introducing an iteration cycle, we have:

R A 0 R - ) “e)

Numerical integration is used, with 3 Gauss points for matrices K¢ and K¢ and force vectors

Fo: and RS . The dement geometry, as well as stiffness matrices and external load vector are
initially computed in the local coordinate system attached to the eement. To solve general structures,

10
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local - global transformations are needed [11]. After these transformations, the system incremental
equations in referential X,Y,Z are:

o (KL +K )Y (D)0 = P - 5 (Fin )Y @7

where DE]:{Dq Df(s)}T is the vector of incremental generalized displacements and eectrical
potentials, in the global coordinate system.

Assuming that piezodectric sensors as wdl as actuators are bonded or embedded in the structure, the
previous equation can be written in the following developed form:

M7 gL Loy kD t+’)tl ec 42t R L(A) oe (M)A t+2t, .
B g of | EECORSAE Mag
&LO KL(S)LJ g0 of 12f® ittt os ) 1R

ol fu ot g © % k/) . (Kff( 2t )) b vl 'm%

where A and S means actuator and sensor, respectively.

When we have actuators or sensors only, the system of equations (48) take the following forms,
respectively:

t+Dt (k-1) t+Dt t+Dt t+Dt
S (SRS A GO A o R T L At S ) B
(k1)
L LOU | N
?Kuu Kuf 3 @KE OUQ 1 Dg u t+l][F ] t+Dt[F ]
GeKL(S) kLtou*§ 580 op }Df(s% - Ved]™ i (50)
w8 fu ff 0 o

+

Dt. §
where F¥= K L:A) Df Ag is the force vector due to the voltage applied to the actuators.
1 u

The system of equations (50) can be decomposed, taking the form

t+D (k-) t+Dt t+Dt
t:Dt Ktu * KEU] {Dq}(k) =" {F&ntec}' t:Dt{Filnt} (51)
() = _ é”Dt[ L(s) K l)u T e Lo u( D (k) D[ o |

{ory = gt-Dt i H % 4Dt SKfu g {Da} t+Dt{Flnt }g (52)

Once the boundary conditions are introduced in the usual way, the system equations (49) or the system
equations (51) and (52) are solved incrementally and iteratively using the Newton-Raphson technique
[13].

11
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5. Numerical Applications
5.1 Linear analysis of a piezoelectric bimorph beam.

A linear analysis of a cantilevered piezoeectric bimorph beam, with two PVDF layers bonded together
and polarized in opposite directions, with the dimensions indicated in Figure 2, is considered. The
mechanical and piezod ectric properties of the PVDF are:

Eq =E,=2GPa, Gy, =1GPA ,n;, =0, €3 =e5, =0.046C/m?, py; =1.062x10™° F/m.

The top and bottom surfaces of the beam are subjected to an eectric potential of 1V. The deflections in
different locations of the beam, using a (5x2) dement mesh, are presented in Table 1, which are
compared with alternative solutions. The sensing voltage distribution of the bimorph beam for a
prescribed tip deflection of 10 mm, is also analysed. The present predictions, and solutions obtained by
other authors are shown in Table 2. Theresults arein good agreement with the alternative solutions.

Figure 2. Piezodectric bimorph beam.

Deflections x 10" m

Location y (mm) 20 40 60 80 100
Analytical solution

Suleman and Venkayya[12] 0.138 0.552 124 221 3.45
Q9-FSDT5P

Franco et al.[4] 0.138 0.552 1.24 211 3.45
FSDT4P

Suleman and Venkayya[12] 0.14 0.55 124 221 345
CPT

Present Solution 0.137 0.550 1.240 2.210 345
Experimental

Suleman and Venkayya[12] - - - - 3.45

Table 1. Deflections produced by a unit voltage.

12
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Sensed voltage (V)

Elements land 2 3and 4 5and 6 7 and 8 9and 10
Q9-FSDT5P
Franco et al. [4] 290 226 161 97 32
FSDT4P

Suleman e Venkayya [12] 290 - - - -

Present Solution (CPT) 295 229 163 98 32

Table2. Sensed voltage distribution for atip deflection of 10 mm.

5.2 Non-linear analysis of a piezoelectric bimorph beam.

The sensing voltage on the dements 1 and 2 of the same cantilevered piezodectric bimorph beam, is
now analysed considering non-linear deformation. In Table 3 are shown the results for different load
levels, where the load level 1.0 corresponds to the tip deflection of 10.0 mm in linear analysis. As
expected from Table 3 a dightly decrease in the tip deflection is observed for the non-linear modd,
then resulting a lower voltage.

Linear analysis Non-linear analysis
Sensed voltage Tip deflection Sensed voltage  Tip deflection
Loadrlrevel V) (mm) V) (mm)
0.2 59.00 2.00 59.00 2.00
0.4 118.00 4.00 117.76 3.99
0.6 177.00 6.00 176.42 5.98
0.8 236.00 8.00 234.91 7.94
1.0 295.00 10.00 293.08 9.89

Table 3. Sensed voltage on dements 1 and 2 for different load levels

5.3 Adaptive composite plate with surface bonded actuators

A simply-supported square (axa) laminated plate, with lamination sequence [p/ 45°/- 45°/45°/ p],
where p represents the piezodectric layers made of PXE-52, bonded on upper and lower surfaces, and
the r(:;[zhe” layers are made of S-glass/epoxy. The plate is subjected to a uniform distributed load of 10
KN/m".

The material properties of S-glassepoxy are :E; =55GPa, E, =16 GPa, G;, =7.6GPA,
ny, =0.28. The material and piezodectric properties of PXE-52 are, E; =E, =62.5GPa,

13
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Gy, =24GPa,ny, =0.3, dg; = ds, =-280x102 m/V, dgy =700x1072 MV, pay =3.45x108 F/m

-The side dimension is a = 0.1 m and the thickness of the layers S-glass/epoxy and PXE-52 are 0.0004
m and 0.0002 m respectively.

The central deflection of the plate in linear analysis, for the uniform distributed load of
po =10 kN/m? has the value of w=0.217 mm, using a (8x8) edement mesh. Next it are applied
voltages V, of 151.35 V and —151.35 V on the lower and upper piezoelectric layers, in order to
reduce the central deflection, produced by the mechanical load. The central deflection prediction of the
present model shown in Table 4, are in a very good agreement with the alternative linear solution
obtained by Franco et al [4], using a first order shear deformation piezolaminated 9 node plate
element, with Lagrangian C° shape functions to represent the generalized displacement fidd defined in
the reference surface, and a constant potential degree of freedom for each piezodectric layer within
each dement (Q9-FSDT5P modd).

Applied loads
10 kKN/n?? 10 kKN/n??
10 kN/nm? + +
151.35V /-151.35 V 151.94V /-151.94 V
a) b) a) b)

Central deflection
W, (mm) 0.217 0.218 0.01 0.01
a) Present solution (CPT) ; b) Franco et al. [4] (FSDT)

Table 4. Central deflection for different load casesin linear analysis.

The same plate is also analysed taking into account non-linear deformations, for different load levels,
defined by L =n (p,+V,). Due to the lack of alternative comparing results, in Table 5 a
convergence study is shown for non-linear central deflection at load level m=3. It can be observed

that for the meshes 8x8 and 10x10 the response is almost the same for the three cases of loading
considered.

Mesh Total number Mechanical load Electric load M echanical
of dements +

Electric loads
2x2 16 0.501x10° -0.550x10°3 -0.531x10°
4x4 32 0.608x10° -0.578x103 0.322x10°
6X6 72 0.618x10° -0.589x103 0.332x10°
8x8 128 0.621x10° -0.592x103 0.336x10°
10x10 200 0.622x10° -0.593x103 0.337x10°

Table 5. Convergence study for non-linear central deflection w, (m), at load level m=3.0

14
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5.4 Adaptive laminated cylindrical panel with surface bonded actuators.

A laminated cylindrical pand, Figure 3, with lamination seguence [p/90°/0° /90°/p], where p
represents the piezoeectric layers made of PXE-52, bonded on upper and lower surfaces, and the other
layers are made of S-glass/epoxy, is subjected to a concentrated central load. The pand is hinged in the
straight edges, and free in the curved edges. The properties of two materials and the layers thickness
are those indicated in previous application, and the geometry of the pand is: R=2540 mm, L=508 mm,
g=0.1rad. In Figure 4 are shown the load-displacement curves for two load cases, obtained with a
(8x8) element mesh. The mechanical load is defined by Feq=nr Fo with Fo = 30 N, and the dectric

load by V=m V, with V=250 V. Other researchers can use the present predictions to validate
aternative non-linear piezolaminated shell models.

m 1.6

12

0.8

04 - _ _

—&— mechanica+dectric loads
R Y —a&— mechanical load
q O 1 1 1 1 1
0 0.2 04 0.6 0.8 1 12 14
z w (mm)

Figure 4. Cylindrical pand. Figure 5. Load-displacement curves.

6. Conclusions

A finite dement modd based on the Kirchhoff classical theory has been developed for the
geometrically non-linear analysis of piezolaminated plates and shells, using update Lagrangian
formulation. The modd has been applied to linear and non-linear analyses of simple illustrative
problems. The results obtained in linear analysis are compared with alternative modds and an
excellent agreement is achieved. The results also show that the transverse displacements are
significantly influenced by the geometrically non-linear analysis. Due to the lack of available
examples in the open literature, others can use the shown illustrative applications as a benchmark for
comparing purposes.
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