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Abstract. This paper deals with a finite element formulation based on the classical laminated 
plate theory, for active control of thin plate laminated structures with integrated piezoelectric 
layers, acting as sensors and actuators. The control is initialized through a previous 
optimization of the core of the laminated structure, in order to minimize the vibration 
amplitude. Also the optimization of the patches position is performed to maximize the 
piezoelectric actuator efficiency. The genetic algorithm is used for these purposes.  
The finite element model is a single layer triangular plate/shell element with 24 degrees of 
freedom for the generalized displacements, and one electrical potential degree of freedom for 
each piezoelectric element layer, which can be surface bonded or embedded on the laminate. 
To achieve a mechanism of active control of the structure dynamic response, a feedback 
control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate 
the dynamic response of the laminated structures the Newmark method is considered. The 
model is applied in the solution of an illustrative case and the results are presented and 
discussed. 

1.  INTRODUCTION 

Advanced reinforced composite structures incorporating piezoelectric sensors and 
actuators are increasingly becoming important due to the development of adaptive structures. 
These structures offer potential benefits in a wide range of engineering applications such as 
vibration and noise suppression, shape control and precision positioning.  

In the analysis of adaptive structures integrating piezoelectric material, one of the 
pioneering works is due to Allik and Hughes1 who developed a solid finite element for 
vibration analysis. Vibration control of composite beams with embedded or surface bonded 
piezoelectric material had been studied by Crawley and de Luis2. Tzou and Tseng3 presented a 
finite element formulation for plates and shells containing integrated distributed piezoelectric 
sensors and actuators applied to control advanced structures. Chen et al.4 developed a finite 
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element based on the first order displacement field for dynamic analysis of plates. Active 
control is obtained through actuators potential, which is given by an amplified signal of the 
sensors potential.  

Using a higher order shear deformation theory Samanta et al.5 developed an eight-nodded 
finite element for the active vibration control of laminated plates with piezoelectric layers 
acting as distributed sensors and actuators. The active control capability is studied using a 
simple algorithm with negative velocity feedback. Lam et al.6 and Moita et al.7 developed 
finite element models based on the classical laminated theory for the active control of 
composite plates containing piezoelectric sensors and actuators using the Newmark method, 
Bathe8, to calculate the dynamic response of laminated structures. Reviews of the modeling 
and the design of composite structures with adaptive capabilities are given in Franco Correia 
et al.9 and Benjeddou10.  

Batra and Liang11 used a three-dimensional linear theory of elasticity to find the optimal 
location of an actuator on a simple-supported rectangular laminated plate with embedded PZT 
layers. The optimal design is obtained by fixing the applied voltage and the size of the 
actuator and moving it around in order to find the maximum out-of-plane displacement. Liang 
et al.12 proposed a model for the optimization of the induced-strain actuator location and 
configuration for active vibration control. Correia et al.13 presented refined finite element 
models based on higher order displacement fields applied to the optimal design of laminated 
composite plates with embedded or surface bonded piezoelectric actuators and sensors.  

Most of past work in the area of adaptive structures has focused on the analysis of 
structures with sensors and actuators, and the corresponding associate control system. Very 
few works have focused on the development of methodologies for the optimization of 
laminated structures incorporating sensors and actuators, to enhance their performance. A 
review of the current work in design methodologies and applications of formal optimization 
methodologies for adaptive structures has been carried out by Padula14 and Frecker15.  

The finite element used in the present work is a flat three-nodded triangular element with 
24 mechanical degrees of freedom and one electric degree of freedom per piezoelectric layer 
of the finite element and is based on the third-order shear deformation laminate theory of 
Reddy16. An integrated control is considered in order to achieve an active damping 
mechanism, with the amplified electrical potential of the sensors being used as electric 
potential input to the actuators through a negative velocity feedback control. The governing 
equations are solved by the Newmark method, which is a direct method for time integration. 
Priory to the dynamic control, to minimize the free or forced vibration amplitude through 
active damping, an optimal lamination sequence of the structure core, as well as an optimal 
placement of piezoelectric actuators patches are carried out using structural optimization 
methodologies based on genetic17,18,19 and gradient-based algorithms20,21. 

2.  DISPLACEMENTS AND STRAIN FIELDS. 

The assumed displacement field, for the numerical higher order finite element model, is a 
third order expansion in the thickness coordinate for the in-plane displacements and a 
constant transverse displacement, conjugated with the condition that the transverse shear 
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stresses vanish on the top and bottom faces, which is equivalent to the requirement that the 
corresponding strains be zero on these surfaces16.  
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where u v w0 0 0, ,    are displacements of a generic point in the middle plane of the laminate 
referred to the local axes - x,y,z directions, yx  , θθ  are the rotations of the normal to the 
middle plane, about the x axis (clockwise) and y axis  (anticlockwise), yw  , xw 00 ∂∂∂∂  are 
the slopes of the tangents of the deformed mid-surface in x,y directions, zθ  is the rotation 
about the local z axis, which does not enter in the formulation in the local coordinate system, 
and  2

1 h34c = .  
The strains components associated with the displacements in equation (1) are conveniently 
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5. PIEZOELECTRIC LAMINATES. CONSTITUTIVE EQUATIONS. 

Assuming that a piezoelectric composite plate consists of several layers, including the 
piezoelectric layers, the constitutive equation for an orthotropic layer of the laminate 
substrate, is 

  ε  σ  Q=  (4) 

and the constitutive equations of a deformable piezoelectric material, coupling the elastic and 
the electric fields are given by, Tiersten22  

 E e Q   ε  σ −=   (5) 

 E p    e D T += ε   (6) 

where { }   T
yzxzxyyx ττσσσ=σ and { } T

yzxzxyyx  γγγεε=ε are the elastic 

stress and the elastic strain vectors, Q  the elastic constitutive matrix, e the piezoelectric stress 

coefficients matrix, [ ]Tzyx E E EE = the electric field vector, [ ]Tzyx D D DD = the electric 
displacement vector and p  the dielectric matrix, in the element local system (x,y,z) of the 
laminate. The  ijp ,ije ,ijQ are functions of ply angle α for the kth layer, and are given in 

Reddy16.  
The electric field vector is the negative gradient of the electric potential φ , which is 

assumed to be applied and varying linearly in the thickness kt  direction, i.e. 

φ−∇=  E  

 { }T
zE00=E   (7) 

where 
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Thus, we can define the strain vector for electro elasticity as follows: 
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6. FINITE ELEMENT FORMULATION.  

The non-conforming higher order triangular finite element model has three nodes and eight 
degrees of freedom per node, the displacements i0i0i0  w,  v, u , the slopes yw , xw 00 ∂∂∂∂ , 

and rotations ziyixi  , , θθθ . By assuming that c1=0 and that sections before deformation remain 
plane after deformation and perpendicular to the middle surface, i.e. by neglecting the 
transverse shear deformation, a Kirchhoff laminated finite element model with 6 degrees of 
freedom per node (CPT) is also easily obtained. The introduction of fictitious stiffness 
coefficients K Zθ , corresponding to rotations θz , to eliminate the problem of a singular 
stiffness matrix, for which the elements are coplanar or near coplanar, is required. The 
element local displacements, slopes and rotations are expressed in terms of nodal variables 
through shape functions iN  given in terms of area co-ordinates iL , Zienkiewics23. The 
displacement field can be represented in matrix form as: 
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and the strain field as follows: 
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The electric field is given by: 
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 φ−= φ  BE  (15) 

where φB  is the electric field – potential matrix, given by 
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The dynamic equations of a laminated composite plate can be derived from the Hamilton’s 
principle, which is given as follows: 
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Entering the equations (11) to (15) into equation (16), we have 
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To the first and second terms of first member of Eq. (18), corresponds the element stiffness 
and mass matrices, respectively, which are defined by: 
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in which the elements of the mechanical, piezoelectric and dielectric stiffnesses are given by: 
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where i, j = 1, 2, 6 and   l, m = 4,5  ;  n =1, 2, 3, 4, 5, 7,  N is the number of layers and pN is 
the number of layers or patches with piezoelectric material. 

To the third term of Eq. (18), correspond the applied electric charge vector eleF , and the  
external mechanical force vector, which is defined by: 

 ∫ +∫+=
V

c
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mec
ext   dS   dV FtNfNF TT   (25) 

where cF , t,f  are body, surface, and concentrated force vectors.  

The element stiffness and mass matrices as well as external load vector are initially 
computed in the local coordinate system attached to the element. To solve general structures, 
local - global transformations are needed, Zienckiewicz23. After these transformations the 
assembled system of equations is: 
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Assuming that piezoelectric sensors as well as actuators are bonded or embedded in the 
structure, the electric potential vector is subdivided in a sensor component ( )Sφ  and an 

actuator component ( )Aφ .  
The external applied electric charge at the sensors is zero. Separating the actuator and 

sensor components, the system of Eq. (24) take the following form: 
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From the last equation, the induced sensory electric potentials ( )S φ  are obtained as 
follows: 
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6.1 Dynamic analysis 

The sensor output can be obtained as follows, Reddy24. The charge output of each sensor, 
with poling in the z direction, can be expressed in terms of spatial integration of the electric 
displacement over its surface, taking into account that the converse piezoelectric effect is 
negligible. Thus we have: 
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From Eq. (5), the last equation can be written as follows 
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or in the discretized form 
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The current on the surface of the sensor is given by 
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When the piezoelectric sensor is used as strain rate sensor, the current can be converted 
into the open circuit sensor voltage output )S(φ as 
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where cG is the constant gain of the amplifier, which transforms the sensor current to voltage. 
The sensor output voltage can be feed back through an amplifier to the actuator with a 

change of polarity. Thus, we have for the actuator voltage 
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where iG  is the gain of the amplifier to provide feedback control.  
The actuator voltage written in the discretized form, is then given by 
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Use of Eq. (38) into Eq. (31) introduces an equivalent negative velocity feedback, and the 
motion equations become: 
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Considering Rayleigh type damping, we can write: 
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with 

 uuuuR KMC β+α=  (41)  

where α  and β are Rayleigh’s coefficients, to account for inherent structural damping, and 
the damping effect due to the active control is given by: 

 [ ] [ ](S)
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The solution of Eq. (40) is carried out using Newmark direct method of time integration, 
Bathe8. 

7. OPTIMAL DESIGN 

A general structural optimization problem can be stated as: 

{ })b( φmin             subject to: ndv,...,1ibbb u
ii

l
i =≤≤  

                                                                              m,...,1j       0)b,q(j =≤Ψ   (43) 

where )b( φ  is the objective function, b is the vector of design variables ib , )b,q(jΨ  are the 

m inequality behavioral constraint equations, l
ib and u

ib  are respectively, the lower and upper 
limits of the design variables and ndv is the total number of design variables.   

If the objective function and/or the constraint equations are continuous functions of the 
design variables, mathematical programming techniques20,21 requiring only the computation 
of )b( φ , )b,q(jΨ  and their gradients, provide a general, flexible and efficient formulation for 
engineering design problems.  

For discrete variable structural problems, a variety of methods including Genetic 
Algorithms18,19 can be used. Genetic Algorithms (GAs) are directed random search techniques 
used to look for parameters that provide a good solution to a problem. 

The inspiration for GAs came from nature and survival of the fittest. In a population, each 
individual has a set of characteristics that determine how well suited it is to the environment. 
Survival of the fittest implies that the ‘fitter’ individuals are more likely to survive and have a 
greater chance of passing their ‘good’ features to the next generation. In sexual reproduction, 
if the best features of each parent are inherited by their offspring, a new individual will be 
created that should have an improved probability of survival. This is the process of evolution. 

In nature the ‘blueprint’ of individuals is contained within their DNA. The DNA can be 
thought of as a string of genes, with each gene or combination of genes representing a 
particular feature. In GA terms, a candidate solution is often referred to as a chromosome, 
which is a sequence of encoded numbers. This is commonly referred to as a bit string if the 
numbers are binary encoded. The process involved in GA optimisation works as follows: 

1. Randomly generate an initial population of potential solutions. 
2. Evaluate the suitability or ‘fitness’ of each solution. 
3. Select two solutions based in favour of fitness. 
4. Crossover the solutions at a random point on the string to produce two new solutions. 
5. Mutate the new solutions based on a mutation probability. 
Go to 2. 

Selection is the procedure for choosing individuals (parents) on which to perform 
crossover in order to create new solutions. In tournament selection several individuals are 
chosen at random and the fittest becomes one of the parents. Along with mutation, crossover 
is the operator that creates new candidate solutions. A position is randomly chosen on the 
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string and the two parents are ‘crossed over’ at this point to create two new solutions. A 
crossover probability (Pc) is often given which enables a chance that the parents descend into 
the next generation unchanged. After crossover, each bit of the string has the potential to 
mutate, based on a mutation probability (Pm). In binary encoding mutation involves the 
flipping of a bit from 0 to 1 or vice versa. 

The GA used in this work was developed by Carroll17. This method uses a non-
conventional approach to optimise, the Micro-GA18. Instead of using mutation to refresh the 
genetic information of the population, a new population is randomly generated when 95% of 
all the individuals bits are equal to those of the fittest. The fittest individual is included in the 
new population. 

The main advantage of this method, in comparison with gradient-based methods, is the 
ability to overcome the premature convergence towards a local optimum. By other hand, a 
high number of objective function evaluations is usually required, which is especially relevant 
when the objective function evaluation is computationally expensive. 

In the next section an illustrative example of the forced response with active feedback 
control of a composite adaptive laminated plate is presented, where firstly, it is designed for 
maximum stiffness being the design variables the orientation angles of the reinforcement 
fibers in the orthotropic layers. Secondly, the optimal location of the piezoelectric actuator 
discrete patches is found in order to achieve maximum piezoelectric actuator performance. 

If we consider that because of manufacturing constraints, normally the fiber reinforcement 
directions assume discrete values in a limited set of different possible angles we can regard 
also this problem as a discrete design variable problem. In this case we solve this problem by 
using the genetic algorithm. The objective here is to maximize the elastic strain energy of the 
laminated composite or to minimize the elastic displacements in specific locations of the 
structure, being the design variables the orientation angles of the orthotropic axes in each 
layer. For the optimal location of the piezoelectric patches we consider that the patches can 
only assume the positions corresponding to the finite element mesh discretization. This is in 
essence a discrete variable optimization problem, which is solved by using the genetic 
method. In this case the objective function can be for example the maximization of the 
displacement in a specific point of the structure and the design variables are the discrete 
locations of the piezoelectric patches. 

As is pointed out before, the gradient-based method is also applied for the fiber angles 
optimization, if we consider these variables as continuous variables. This unconstrained 
problem is solved by using a feasible directions non-linear interior point algorithm, developed 
by Herskovits21.  

8. NUMERICAL APPLICATIONS 

8.1 Forced response with active feedback control of a simply-supported square plate, in 
free vibration and forced vibration under sinusoidal loading. 

A simply-supported square ( aa × ) laminated plate, having the initial lamination sequence 
of [ ]º0/º90/º0 , integrating piezoelectric actuator and sensor layers or patches made of  PZT, 
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bonded on upper and lower surfaces, is considered. The material properties of the substrate 
layers are  GPa, 5.172E1 =  GPa,  6.9 E2 = GPa 45.3GGG 231312 === , , 25.012 =ν ρ=1600 
kg/m3. The material and piezoelectric properties of  PZT are GPa,  63EE 21 ==  ,30.012 =ν  

GPa, 24GGG 231312 ===  ρ=7600 kg/m3, =31e 2
32 C/m 22.86 e = , F/m 10 x 5.1p -8

33 = . The 
side dimension is a = 0.18 m and the thickness of the substrate layers and PZT are 0.002 m 
and 0.0001 m, respectively. The plate is modeled by a (6x6) element mesh (72 triangular 
elements).  First we search for the optimal core lamination sequence, which leads to the 
maximum fundamental natural frequency of the plate, by using the genetic algorithm.  For the 
genetic problem, the design variables are chosen from a discrete set of possible ply angles 
defined as: { }º90,º75,º60,º45,º30,º15,º0Sdv ±±±±±= . The optimal lamination sequence is 
found to be [ ]º45/º45/º45 − . The same optimal design is obtained using gradient optimization.   

The amplitudes and the natural frequencies of the plate in free vibrations, enabled by an 
applied uniform distributed transverse load q = 10000 N/m2 and then suddenly removed, are 
shown in Figure 1 for both the initial and final lamination sequences. As expected, for the 
final design, there is a decreasing in the central amplitude and the fundamental natural 
frequency increases. 
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Figure 1. Central amplitudes for the initial and final lamination sequences.  

Next we pretend to investigate the optimal position of the piezoelectric actuators patches, 
in order to maximize the control of the plate, in this case measured by the amplitude of the 
deflection in the center of the plate, and compare it with the control obtained by using an 
entire piezoelectric layer. In this application, 4 actuators patches covering 8 triangular 
elements are introduced. The plate is modeled by a (6x6) element mesh (72 triangular 
elements). Using the genetic algorithm the optimal positions of the patches are obtained as 
represented in Figure 2 a), i.e. the central plate elements (Patches 1). In Figure 2 a) and b) 
two different patches positions are shown, and the corresponding central line deflections, as 
well as those obtained with an entire actuator layer, are shown in Figure 3.  
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Figure 4 illustrates the responses for central amplitude of the plate, and compares these 
responses in three different situations. The controlled responses, obtained using a time step 
∆t=0.000125 s in the Newmark method, with 8000GG ci = , clearly demonstrates the damping 
effect of the piezoelectric actuators on the free vibration of the plate with an applied uniform 
distributed transverse load q = 10000 N/m2, which was then suddenly removed. 
 
 

 

Figure 2 a). Patch locations – Patches 1. 

 

 

   

Figure 2 b). Patch locations – Patches 2. 
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Figure 3. Central line deflections. 

-0.00005

-0.00003

-0.00001

0.00001

0.00003

0.00005

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Time (seconds)

C
en

tra
l a

m
pl

itu
de

 (m
)

Uncontrolled Layer Pathes1 Patches2

 
Figure 4. Uncontrolled and controlled responses on the plate central amplitude. 

For an applied distributed transverse harmonic load  t  f  2sin  q)t( q π= with a magnitude 
N 10000q =  and frequency Hz, 10f =  Figure 5 shows the uncontrolled and controlled 

responses, where the effect of negative velocity feedback control, 7
ci 102.3GG ×= , is 

evident. For the same applied transverse harmonic load but now considering a frequency of 
Hz, 1050f =  which is very close to the first natural frequency, Figure 6 illustrates the 

uncontrolled and controlled responses for central deflection w. The controlled responses for 
gains 5

ci 10 x 0.32 GG =  and 5
ci 10 x 1.6 GG = , clearly demonstrates the action of the 

piezoelectric actuator layer, which increases the overall damping of the system. 
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Figure 5. Uncontrolled central deflection, f =10 Hz  
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Figure 6.  Effect of negative velocity feedback control on the central deflection 

9. CONCLUSIONS 

The active control capability of composite structures covered with piezoelectric layers or 
patches is investigated, using the finite element method. A finite element based on the 
Kirchhoff classical theory, has been developed. The present model has been validated in 
Moita et al.25, where the solutions for deflection and sensed voltage in a bimorph beam, are 
compared with the solutions obtained by other authors.  Here, the results obtained, show that 
the negative velocity feedback control algorithm used in this model is effective for an active 
damping control of vibration response. Also the core optimization had been performed in 
order to minimize the vibration amplitude and maximization of first natural frequency. For 
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this optimization the genetic and gradient-based algorithms had been used. The patch position 
optimization had been also performed in order to maximize the effect a defined set of 
actuators. For this optimization the genetic algorithm had been used.     
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