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Abstract 
Lines and edges provide important information for object categorization and recognition. In addition, one 
brightness model is based on a symbolic interpretation of the cortical multi-scale line/edge representation. In 
this paper we present an improved scheme for line/edge extraction from simple and complex cells and we illus-
trate the multi-scale representation. This representation can be used for visual reconstruction, but also for non-
photorealistic rendering. Together with keypoints and a new model of disparity estimation, a 3D wireframe rep-
resentation of e.g. faces can be obtained in the future. 
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1. INTRODUCTION 
Computer graphics, for example (non-)photorealistic 
rendering (NPR), is closely related to visual perception. 
Trying to understand perception requires insight into 
low-level processes in the eyes and visual cortex. In ad-
dition, artistic rendering in the style of a certain painter 
requires insight into the painter's techniques (brushes, 
strokes, color palettes) and high-level cognitive processes 
[Zeki00, Livingstone00]. The latter relate to image inter-
pretation and certain effects, for example illusions like 
brightness and color induction, i.e. the opposite effects of 
simultaneous contrast (a high surround brightness pushes 
the center towards a lower level) and assimilation (a high 
surround may also pull up the center brightness), see [du 
Buf95].  
Because such opposite center-surround effects are not yet 
well understood, there is a need to develop e.g. bright-
ness models from which we can learn. Such models must 
be based on state-of-the-art models of visual representa-
tions in the primary cortex: area V1 and beyond. 
In this paper we present an improved model for line and 
edge detection, suitable for modeling brightness and 
NPR, concentrating on the multi-scale representation, 
curvature and visual reconstruction. This model is based 
on simple and complex cells in V1, and complements 
existing models for end-stopped cells [Heitger92], key-
points [Wütz00, Rodrigues04b], saliency for focus-of-
attention [Deco04, Rodrigues05a], inhibition 
[Grigorescu03, Petkov93] and disparity [Fleet91, Rodri-
gues04a]. Together, these models provide input for ob-
ject and face detection [Rodrigues05a, Rodrigues05b] if 
embedded into an architecture with ventral and dorsal 
data streams: the where and what systems [Deco04, Ren-
sink00]. 

2. CELL MODELS AND NCRF INHIBITION 
Gabor quadrature filters provide a model of cortical sim-
ple cells [Lee96]. In the spatial domain (x, y) they consist 
of a real cosine and an imaginary sine, both with a Gaus-
sian envelope. A receptive field (RF) is denoted by (see 
e.g. [Grigorescu03]):  
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;sincos~ θθ yxx +=  ,sincos~ θθ yxy −=  where the 
aspect ratio γ = 0.5 and σ determines the size of the RF. 
The spatial frequency is 1/λ, λ being the wavelength. For 
the bandwidth σ/λ we use 0.56, which yields a half-
response width of one octave. The angle θ determines the 
orientation (we use 8 orientations), and φ the phase sym-
metry (0 or π/2). We can apply a linear scaling between 

minf and maxf with a few discrete scales or hundreds of 
contiguous scales.  
The responses of even (Fig. 1(A)) and odd (Fig. 1(B)) 
simple cells, which correspond to the real and imaginary 
parts of a Gabor filter, are obtained by convolving the 
input image with the RF, and are denoted by E

isR ,  and 
O

isR , , s being the scale, i the orientation ( ))1( −= θπθ Nii  
and θN the number of orientations. The responses of 
complex cells (Fig. 1(C)) are modelled by the modulus  
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Non-classical receptive field (NCRF) inhibition (Fig. 
1(D)) can be used to suppress information in textured 
regions  [Grigorescu03]. There are  two  types:  (a) ani-
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sotropic, in which only responses obtained for the same 
preferred RF orientation contribute to the suppression, 
and (b) isotropic, in which all responses over all orienta-
tions equally contribute to the suppression.  

 

Figure 1: 3D and 2D cell representations (see text). 

The anisotropic non-classical receptive field inhibition 
(A-NCRF) model is computed by an inhibition term 

A
ist ,,σ for each orientation i,  

σσ wCt is
A
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as a convolution of the complex cell response isC ,  with 

the weighting function σw , with 1 .  being the 1L  norm 

and []+. denotes the suppression of negative values:  
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The operator A
isb ,,σ  corresponds to the inhibition of isC , , 

i.e. [ ]+−= A
isis

A
is tCb ,,,,, σσ α , with α controlling the 

strength of the inhibition. 
The isotropic NCRF (I-NCRF) model is obtained by 
computing the inhibition term I

st σ,  which does not de-
pend on orientation i. For this we construct the maximum 
response map of the complex cells { }iss CC ,max~

= , with 

1,...0 −= θNi . The isotropic inhibition term I
st σ,  is com-

puted as a convolution of the maximum response map 

sC~  with the weighting function σw , and the isotropic 

operator is [ ]+−= A
ss

I
is tCb σσ α ,,, . 

3. LINE/EDGE DETECTION METHOD 
Van Deemter and du Buf [Deemter96] presented a 
scheme   for  line  and  edge  detection  based  on  the 
responses of simple cells. A positive line is detected 
where ER shows a local maximum in the orthogonal fil-
ter orientation and OR  shows a zero crossing. In the case 
of an edge the even and odd responses must be swapped. 
This gives 4 possibilities for positive and negative 
events: local maxima/minima plus zero crossings. Rodri-
gues and du Buf [Rodrigues04b] combined the responses 
of simple and complex cells, i.e. simple cells serve to 
detect positions and event types, whereas complex cells 
are used to increase the confidence. Since the use of Ga-
bor modulus (complex cells) implies some loss of preci-
sion at vertices [du Buf93], increased precision  was ob-
tained by considering multiple scales. 
The two algorithms described above work reasonably 
well but there are still a few problems: (a) either one 
scale is used or only a very few scales for increasing con-
fidence, (b) some parameters must be optimized for spe-
cific input images or even as a function of scale, (c) de-
tection precision can be improved, and (d) detection con-
tinuity at highly curved lines/edges must be guaranteed. 
We present an improved algorithm with no free parame-
ters, truly multi-scale,  and  with  new  solutions  for  
problems (c) and (d). With respect to precision, simple 
and complex cells respond beyond line and edge ends, 
for example beyond the corners of a rectangle. In addi-
tion, at line or edge crossings, detection leads to continu-
ity of the dominant events and gaps in the sub-dominant 
events. These gaps must be reduced in order to recon-
struct continuity. Both problems can be solved by intro-
ducing new  inhibition schemes, like the radial and tan-
gential ones used in the case of  keypoint operators [Rod-
rigues04b]. 



Here we use lateral (L) and cross-orientation (C) inhibi-
tion, see Fig. 1(E,F), defined as: 
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where ( ) iNi ⊥+ 2/θ , with isis ,, cosC θ=& , isis ,, sinS θ=&  
and sd 6.0= . We can apply the inhibition to the com-
plex cell responses, with β  controls the strength of the 
inhibition (normally we use 0.1=β ),  
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Line/edge (event) detection is achieved by constructing a 
few cell layers on top of simple and complex cells. 
The first layer serves to select active regions and domi-
nant orientations. At each position responses of complex 
cells are summed 

∑
−

=

=
1

0
,

θN

i
iss CC

))
.       (9) 

and only at positions with sC
)

 not equal to zero an output 
cell is activated. At active output cells, the dominant ori-
entation is selected by gating one complex cell on the 
basis of non-maximum suppression of isC ,

)
. The gating is 

confirmed or corrected by an excitation/inhibition proc-
ess of dominant orientations in a local neighborhood. 
In the second layer, event type and position is determined 
on the basis of active output cells (1st layer) and gated 
simple and complex cells. A first cell complex checks 
simple cells E

isR , and O
isR , for a local maximum (or mini-

mum by rectification) using a dendritic field size of ±λ/4, 
λ  being the wavelength of the simple cells (Gabor filter). 
The active output cell is inhibited if there is no maximum 
or minimum. A second cell complex does exactly the 
same on the basis of complex cells. A third cell complex 
gates four types of zero-crossing cells on the basis of 
simple cells, again on ±λ/4. If there is no zero-crossing, 
the output cell is inhibited. If there is a zero-crossing, the 
active cell at the position of the zero-crossing cell deter-
mines event position and the active zero-crossing cell 
determines event type. 
In the third layer, the small loss of accuracy due to the 
use of complex cells in the second layer is compensated. 
This is done by correcting local event continuity, consid-
ering the information available in the second layer, but 
by using excitation of output cells by means of grouping 
cells that combine simple and complex cells tuned to the 
same and adjacent orientations, see Fig. 2. The latter 

process is an extension of linear grouping [Deemter96] 
and a simplification of using banana wavelets 
[Krüger97]. In the same layer event type is corrected in 
small neighborhoods, restoring type continuity, because 
the cell responses may be distorted by interference ef-
fects when two events are very close [du Buf93].  

 

Figure 2: Curvature continuity. 

Figure 3 shows four input images together with detection  
results (positive and negative lines and edges are coded 
by different gray levels). Detection accuracy is very good 
and there are many small events due to low-contrast tex-
tures (Fig. 3 does not show event amplitudes!) and the 
fact that there is no threshold value in the detection 
scheme. 
Figure 4 shows results obtained by standard edge-only (!) 
detection algorithms from computer vision in the case of 
the orange image with, from left to right: Canny, Nalwa, 
Bergholm and Iverson [Heath97] (for more results see 
http://marathon.csee.usf.edu/edge/edge_detection.html). 
Most events in textured regions can be suppressed by 
NCRF inhibition. Figure 5 shows results obtained by I-
NCRF at the finest filter scale. For more results obtained 
with NCRF we refer to [Grigorescu03], but we note that 
they developed contour (edge) detection algorithms, 
whereas we can distinguish between edges and lines with 
positive and negative polarities. This is necessary  for 
visual reconstruction; see below. 

4. MULTI-SCALE REPRESENTATION 
Here we focus on the multi-scale representation. Al-
though NCRF inhibition can be applied at each scale, we 
will not do this for two reasons: (a) we want to illustrate 
line/edge behavior in scale space for applications like 
face detection and recognition, also visual reconstruction, 
and (b) in many cases a coarser scale, i.e. increased RF 
size, will automatically eliminate texture detail. 
For illustrating scale space we can create an almost con-
tinuous, linear scaling with 320 scales between 

404 ≤≤ λ , but here we will present only a few scales in 
order to show complications. Figure 6 shows events de-
tected at five scales in the case of ideal, solid square and 
star objects. At fine scales (at left) the edges of the 
square are detected, as are most parts of the star, but not 
at the very tips of the star. This illustrates an important 
difference between normal image processing and devel-
oping cortical models. The latter must be able to con-
struct brightness maps, and at the tips of the star, where 
two edges converge, there are very fine lines. The same 



effect occurs at coarser scales, until entire triangles are 
detected as lines and even pairs of opposite triangles 
(right image). In the case of the square, we show me-
dium-scale results with little cross-orientation inhibition 
(edges will continue at the corners). Lines will be de-
tected at the diagonals, which will vanish at very coarse 
scales (also in case of the star object). 

 

Figure 3: Fine-scale line/edge detection (see text). 

Figure 7 shows the Fiona image with events detected at 
six scales, with decreasing amount of detail at coarser 
scales, and the result of a face detection algorithm that 
only exploits keypoint scale space [Rodrigues05b]. In the 
future, keypoints and lines/edges will be combined in 
order to also recognize faces in a database. 
Figure 8 shows image reconstructions. These are not 
based on a complete set of (bandpass) wavelets comple-
mented by one lowpass filter, a technique common in 
image coding, but on a virtual interpretation of lines and 

edges: our visual system does not reconstruct in the nor-
mal sense, i.e. there is no cortical layer in which cell ac-
tivity corresponds to input luminance. An active “line 
cell” is interpreted as a Gaussian intensity profile with a 
certain orientation, amplitude and scale, the size of the 
profile being coupled to the scale of the underlying sim-
ple and complex cells. In the same way an active “edge 
cell” is interpreted, but with a bipolar, Gaussian-
truncated error-function profile. As for image coding, 
this interpretation must be complemented with a lowpass 
filter, a process that happens to exist by means of retinal 
ganglion cells with light-sensitive dendritic fields NOT 
connected to rods and cones [Berson03]. 

 

Figure 4: Edges by Canny, Nalwa, Bergholm and 
Iverson algorithms. 

 

 

Figure 5: Line/edge detection with NCRF. 

In order to show reconstructions, we must sum the low-
pass ( σLP ) plus line ( sL ) and edge ( sE ) representa-
tions, using 
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in which γ  controlls the balance between lowpass and 
other information, and sW  the relative weighting of the 
different scales. In Fig. 8 we used γ = 0.5 , ss NW 1=  
and 16 equally-spaced scales 204 ≤≤ λ . As can be 
seen, reconstructions are quite good. Better results are 



obtained when using more filter scales, but optimization 
requires extensive experiments with different values for 
γ  and sW . 

 

Figure 6: Multi-scale representation of a square and a 
star, left to right λ={4, 12, 18, 24, 40} . 

 

 

Figure 7: Multi-scale event detection on Fiona. 

 

 

Figure 8: Reconstruction (see text). 

5. DISCUSSION 
In this paper we presented an improved scheme for line 
and edge detection, a scheme that can be used for creat-
ing a truly multi-scale image representation suitable for 
object detection/recognition and visual reconstruction. 
Faces can already be detected on the basis of the multi-
scale keypoint representation, i.e. by grouping keypoints 
at eyes, nose and mouth [Rodrigues05b], but lines and 
edges can (must!) complement keypoint information for 
developing robust face recognition algorithms, for which 
a cortical architecture of the what and where subsystems 
was explored by Deco and Rolls [Deco04]. 
For example, eyes, nose and mouth detectors can be 
complemented by a detector of the quasi-oval face out-
line, which is quite stable over many scales (Fig. 7). 
More information is available of course: eyebrows and 
quasi-elliptical mouth and eyes. 
With respect to visual reconstruction, the symbolic repre-
sentation with Gaussian line profiles and Gaussian-
truncated error-function edge profiles, in combination 
with a lowpass filter, yields a "rendering" that is suitable 
for extending our brightness model [du Buf95] from 1D 
to 2D, for example for modeling brightness illusions. 
Apart from "realistic" rendering in the case of brightness 
perception, non-photorealistic rendering can be obtained 
by selecting a few scales in combination with picking a 
few colors of the input image [Lam05]. Figure 9 shows 
an example of NPR in which the typical crayon effect 
was added by Corel’s Photo-Paint standard "impression-
ist" filter. In the future we plan to develop real brushes 
(instead of using the line and edge profiles) and use these 
along simulated strokes (detected line and edge posi-
tions) in order to simulate real oil paintings and water-
colors in certain styles, like Van Gogh and Turner. 



In the future we can develop 3D wireframe models of 
objects, including faces, because we already have an op-
timized scheme for keypoint extraction [Rodrigues05a], 
which link lines and edges at vertices, and an initial 
model for disparity (stereo) [Rodrigues04a] that can be 
used to attribute depth to keypoints and therefore also to 
lines and edges. Such extensions are very useful for ana-
lyzing automatically facial expressions and to simulate 
realistic speaking avatars. 

 

Figure 9: NPR rendering of Fiona 
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