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Abstract. Empirical studies concerning face recognition suggest that
faces may be stored in memory by a few canonical representations. Mod-
els of visual perception are based on image representations in cortical
area V1 and beyond, which contain many cell layers for feature extrac-
tion. Simple, complex and end-stopped cells provide input for line, edge
and keypoint detection. Detected events provide a rich, multi-scale ob-
ject representation, and this representation can be stored in memory in
order to identify objects. In this paper, the above context is applied to
face recognition. The multi-scale line/edge representation is explored in
conjunction with keypoint-based saliency maps for Focus-of-Attention.
Recognition rates of up to 96% were achieved by combining frontal and
3/4 views, and recognition was quite robust against partial occlusions.

1 Introduction

Currently, one of the most investigated topics of image analysis is face detection
and recognition [23, 24]. There are several reasons for this trend, such as the
wide range of commercial vigilance and law-enforcement applications. Although
state-of-the-art recognition systems have reached a certain level of maturity,
their accuracy is still limited when imposed conditions are not perfect: all pos-
sible combinations of illumination changes, pose (frontal vs. profile), beards,
moustaches, glasses, caps, different facial expressions and partial occlusions are
problematic. The robustness of commercial systems is still far away from that of
the human visual system. For this reason, the development of models of visual
perception and their application to real-world problems like face recognition is
important and, eventually, could lead to a breakthrough.

In cortical area V1 there are simple and complex cells, which are tuned to
different spatial frequencies (scales) and orientations, but also disparity (depth)
because of the neighbouring left-right hypercolumns [12]. These cells provide
input for grouping cells that code line and edge information and that attribute
depth information. In V1 there also are end-stopped cells that, together with
complicated inhibition processes, allow to extract keypoints (singularities, ver-
tices and points of high curvature). Recently, models of simple, complex and
end-stopped cells have been developed, e.g. [8], providing input for keypoint
detection [8, 20] and line/edge detection [10, 22], including disparity extraction
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[9, 20]. On the basis of these models and neural processing schemes, it is now
possible to create a cortical architecture for figure-ground segregation [22, 25]
and Focus-of-Attention (FoA) [4, 21], including object categorisation [18, 22] and
face/object recognition [11, 13, 17, 19].

In this paper, we will focus on a cortical model for face recognition. This
model employs the multi-scale line/edge representation based on simple and
complex cells in area V1. We will also employ the multi-scale keypoint repre-
sentation in V1, in order to study the possible importance of saliency maps
for Focus-of-Attention (FoA). The rest of this paper is organised as follows: In
Section 2 the line and edge representation is explained, and in Section 3 the
extraction of keypoints and construction of saliency maps. Section 4 explains
the face recognition model. Experimental results are reported in Section 5, and
we conclude with a discussion in Section 6.

2 Line/edge representation and image reconstruction

In order to explain the face recognition model, it is necessary to illustrate how
our visual system can reconstruct, more or less, the input image. Image recon-
struction can be based on one lowpass filter plus a complete set of bandpass
wavelet filters, such that the frequency domain is evenly covered. This concept
is the basis of many image coding schemes; it could also be used in the visual
cortex because simple cells in V1 are often modelled by complex Gabor wavelets.
These are bandpass filters [8], and lowpass information is available through spe-
cial retinal ganglion cells with photoreceptive dendrites [2]. Activities of all cells
could be combined by summing them in one cell layer that would provide a re-
construction or brightness map. But then there is a big problem: it is necessary
to create yet another observer of this map in our brain.

The solution is simple: instead of summing all cell activities, we can assume
that the visual system extracts lines and edges from simple- and complex-cell
responses, which is necessary for object recognition, and that responding “line
cells” and “edge cells” are interpreted symbolically. For example, responding line
cells along a bar signal that there is a line with a certain position, orientation,
amplitude and scale, the latter being interpreted by a Gaussian cross-profile
which is coupled to the scale of the underlying simple and complex cells. The
same way a responding edge cell is interpreted, but with a bipolar, Gaussian-
truncated, error-function profile.

Responses of even and odd simple cells, corresponding to the real and imag-
inary parts of a Gabor filter, are denoted by RE

s,i(x, y) and RO
s,i(x, y), i being

the orientation (we use 8 orientations). The scale s will be given by λ, the wave-
length of the Gabor filters, in pixels. Responses of complex cells are modelled
by the modulus Cs,i(x, y).

The basic scheme for line and edge detection is based on responses of simple
cells: a positive (negative) line is detected where RE shows a local maximum
(minimum) and RO shows a zero crossing. In the case of edges the even and odd
responses are swapped. This gives 4 possibilities for positive and negative events.
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Fig. 1. Top: multi-scale line/edge coding of Kirsty, from fine (left) to coarse (right)
scale. Bottom: results with multi-scale stabilisation.

The improved scheme [22] consists of combining responses of simple and complex
cells, i.e., simple cells serve to detect positions and event types, whereas complex
cells are used to increase the confidence. Lateral and cross-orientation inhibition
is used to suppress spurious cell responses beyond line and edge terminations,
and assemblies of grouping cells serve to improve event continuity in the case
of curved events. In the case of multi-scale detection, all processes are linearly
scaled with λ, the “size” of the simple and complex cells.

Figure 1 (top row) shows the multi-scale line and edge coding at four scales
λ = {4, 12, 20, 28}; the same scales will be used below for the purpose of il-
lustration. Different levels of grey, from white to black, are used to show de-
tected events: positive/negative lines and positive/negative edges, respectively
(see Fig. 2, top-right, for the input image). The bottom row in Fig. 1 shows
detected events after applying a multi-scale stability criterion; see Section 4.
Stabilisation leads to the elimination of events which are not stable over neigh-
bouring scales, and therefore to less but more reliable events. As can be seen in
Fig. 1, at fine scales many small events have been detected, whereas at coarser
scales more global structures remain that convey a “sketchy” impression. Similar
representations can be obtained by other multi-scale approaches [14].

One brightness model [5] is based on the symbolic line/edge interpretation
referred to above. It is one of the very few models that can explain Mach bands
[6, 16]. This model was tested in 1D and is now being extended to 2D. Here,
we will not go into more detail; we will only illustrate the symbolic interpreta-
tion/reconstruction process in 2D that will be exploited in face recognition. The
left part of Fig. 2 shows, top to bottom, symbolic edge and line representations
at fine (left) and coarse (right) scales. The rightmost column illustrates visual
reconstruction of the Kirsty image; from top to bottom: input image, lowpass-
filtered image, the summation of symbolic line/edge representations (the sum
of all images in the left part), and the final reconstruction. The use of more
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Fig. 2. Left part: multi-scale line/edge representation. Rightmost column: reconstruc-
tion of the Kirsty image (see text).

scales leads to better reconstructions, but the relative weighting of the lowpass
and scale components is still under investigation. Summarising, the multi-scale
line/edge representation allows to reconstruct the input image, and this repre-
sentation will be used in face recognition.

3 Keypoints and saliency maps for FoA

Another important part of the model is based on responses of end-stopped cells
in V1, which are very fuzzy and require optimised inhibition processes in order
to detect keypoints at singularities. Recently, the original, single-scale model [8]
has been further stabilised and extended to arbitrary scale, and the multi-scale
keypoint representation has been used to detect facial landmarks and faces [21].
If we assume that detected keypoints are summed over all scales, which is a
retinotopic (neighbourhood-preserving) projection by grouping cells, a saliency
map can be created [21]: keypoints which are stable over many scales will result in
large and distinct peaks. In other words, since keypoints are related to local image
complexity, such a saliency map codes local complexity. In addition, different
saliency maps can be created at different scale intervals, from fine to coarse
scales, indicating interesting points at those scales with associated Regions-of-
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Fig. 3. Top row: keypoints detected at the four scales. Middle row: four partial saliency
maps and the global map using g = 1. Bottom row: the same using g = 0.25. For
explanation see text.

Interest (RoIs). Such information is very important in steering our eyes, because
fixation points in complex regions (eyes, nose, mouth) are much more important
than those in more homogeneous regions (forehead, cheeks).

There are two types of end-stopped cells: single and double. Responses of
these are denoted by Ss,i(x, y) and Ds,i(x, y), which correspond to the first
and second derivatives of the responses of complex cells Cs,i(x, y). A final key-
point map K at scale s is obtained by Ks(x, y) = max{∑Nθ−1

i=0 Ss,i(x, y) −
gI(x, y),

∑Nθ−1
i=0 Ds,i(x, y) − gI(x, y)}, in which I corresponds to the summa-

tion of tangential and radial inhibition and normally g ≈ 1.0; see [21]. Figure 3
(top row) shows detected keypoints at fine (left) and coarse (right) scales.

Regions surrounding the peaks can be created by assuming that each keypoint
has a certain RoI, the size of which is coupled to the scale (size) of the underlying
simple and complex cells [21]. A global saliency map obtained by summing over
all scales codes image complexity at all scales. Likewise, partial saliency maps can
be constructed that code complexity at specific scale intervals. Figure 3 (middle
row) shows, left to right, four partial saliency maps from fine to coarse scales,
obtained by assuming 8 neighbouring scales at the centre scale (top row), plus
the global saliency map, for g = 1.0. The bottom row shows the same in the case
that g = 0.25. Summarising, less tangential and radial inhibition leads to more
“complete” saliency maps, and in the global map we can “see” the structure of
the input image (Fig. 3 bottom-right), in particular the regions around the eyes,
nose, mouth etc. Actually, these regions correspond to the regions that contain
many fixation points as measured by tracking the eyes of a person who is looking
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at a face [15]. Below, in face recognition, these regions will be used to “gate”
detected lines and edges, and we will experiment with different options.

4 Face recognition model

As was explained above, the multi-scale line/edge representation will be ex-
ploited, because this characterises facial features, and saliency maps will be
used for Focus-of-Attention, i.e., to “gate” detected lines and edges in asso-
ciated Regions-of-Interest. This resembles the bottom-up data streams in the
where (FoA) and what (lines/edges) subsystems. However, it is a simplification
because processing is limited to cortical area V1, whereas in reality the two sub-
systems contain higher-level feature extractions in areas V2, V4 etc. [11]. The
same way, top-down data streams are simplified by assuming that stored face
templates in memory are limited to lines and edges, and that a few canonical
views1 (frontal, 3/4) are normalised in terms of position, size and rotation (faces
are expected to be vertical; for translation, size and rotation invariance see [4]).

In our experiments we use 8 primary scales λ1 = {4, 8, 12, 16, 20, 24, 28, 32}
with Δλ1 = 4. Each primary scale is supplemented by 8 secondary scales with
Δλ2 = 0.125, such that, for example, λ2,λ1=4 = {4.125, 4.250, ..., 5.000}. These
secondary scales are used for stabilisation and the construction of partial saliency
maps. The model consists of the following steps:

(A) Multi-scale line/edge detection and stabilisation. To select the
most relevant facial features, detected events must be stable over at least 5 scales
in a group of 9 (1 primary plus the 8 secondary); see Fig. 1 bottom row.

(B) Construction of four symbolic representation maps. At each
primary scale, stable events (positions) are expanded by Gaussian cross-profiles
(lines) and bipolar, Gaussian-truncated error-function profiles (edges), the sizes
of which being coupled to the scale of the underlying simple and complex cells;
see Fig. 2. Responses of complex cells are used to determine the amplitudes of
the profiles. As a result, each face image is represented by 4 maps at each of the
8 primary scales.

(C) Construction of saliency maps. Two types of maps are created: (1)
one global saliency map (GSM), combining all keypoints at all 72 scales, and (2)
eight partial saliency maps (PSM) at the primary and its secondary scales; see
Fig. 3. The GSM can be used to gate all representation maps (point B above) at
all scales, whereas PSMs are used to gate the maps at the same primary scales.

(D) Recognition process. We assume that templates (views) of faces are
stored in memory and that these have been built through experience. Template
images of all persons are randomly selected from all available images: either
one frontal view or two views, i.e. one frontal plus one 3/4 view; see also [3].
Each template in memory is represented by 32 line/edge maps (point B above).
Two recognition schemes will be tested, in which representations of input images
(database) are compared with those in memory (templates):

1 We will not go into the view-based vs. mental-rotation discussion.
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Scheme 1: At each scale, events in the 4 representation maps of the input
image are compared with those in the corresponding maps of a template. Co-
occurrences are summed by grouping cells, which is a sort of event-type- and
scale-specific correlation. Then, the outputs of the 4 event-type grouping cells
are summed by another grouping cell (correlation over all event types). This
results in 8 correlation factors. These factors are compared, scale by scale, over
all templates in memory, and the template with the maximum number of co-
occurrences over the 8 scales will be selected (in the case of equal co-occurrences
we simply select the second template).

Scheme 2: Instead of comparing representations scale by scale, the global
co-occurrence is determined by more levels of grouping cells, i.e., first over maps
of specific event types, then over event types and finally over scales. The template
with the maximum is selected by non-maximum suppression.

The above schemes are simplifications, because in real vision the system
starts with a first categorisation, for example on the basis of the colour of the
hair. After having a first gist (a group of possible templates), the system will
dynamically optimise the recognition process by changing parameters. In view
of the tremendous amount of data already involved in our simple experiments,
this cannot (yet) be simulated.2 We only simulate event selections by employ-
ing global and partial saliency maps obtained with different inhibition constants
g in keypoint detection: the higher g, the more precise detection will be and,
consequently, less line/edge events will be available for categorisation and/or
recognition. The reason for this choice is the fact that coarse-scale information
from area V1 propagates to IT (inferior-temporal) cortex first, for a very coarse
first categorisation, after which information at increasingly finer scales arrive at
IT [1]. This means that the system starts with coarse line/edge representations
and partial saliency maps at those scales, to be simulated with g = 1.0, then re-
fines the search with partial maps with g = 0.25, and can finish recognition with
a fine-scale and/or global saliency map, also with g = 0.25. Figure 4 illustrates
information available for recognition.

5 Experimental results

From the Psychological Image Collection at Stirling University (UK), we selected
100 face images of 26 persons in frontal or frontal-to-3/4 view, with different
facial expressions. From those, 13 persons are seen against a dark background,
with a total of 53 images, of which 40 images are in frontal view, 11 images are in
(very near) 3/4 view (4 persons), and 2 frontal images with added Gaussian and
speckle noise (one person). The other 13 persons (47 images) are seen against a
light background, in frontal or near-frontal view. For typical examples see Fig. 6.
All persons are represented with at least 3 different facial expressions.

All recognition tests involved the entire set of 100 images, although results
will also be specified in terms of the subsets of 53 and 47 images in order to
2 Hundred images of 256 × 256 pixels, with 72 scales and at each scale 4 event and 9

saliency maps, require more than 24 GBytes of storage.
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Fig. 4. Combined event representations gated by different saliency maps, from top to
bottom: PSM with g = 1.0, PSM with g = 0.25, GSM with g = 0.25 and all detected
events.

analyse the influence of the different backgrounds. For each person we used
two different types of templates: (1) only one frontal view, and (2) two views,
frontal and 3/4, but only in the case of 4 persons with images in frontal and 3/4
views. In all cases, template images were selected randomly. In order to study
robustness with respect to occlusions, a second set of tests was conducted in
which partially occluded representations of input images were matched against
complete representations of templates.

Table 1 presents the results obtained by using partial saliency maps (“PSM”)
with g = 1.0 and 0.25, global saliency maps (“GSM”) with g = 0.25, and all
detected events, i.e. without applying saliency maps. We present the results
by testing all images (“all”), and specify (split) these in the case of a dark
(“black)” or light (“white”) background. The penultimate column (“scales”)
lists the percentage of correct scales that lead to correct recognition in the case
of “all” and scheme 1, where 100% corresponds to 800 because of 8 scales and
100 images. The last column (“base line”) lists the number of all 100 images
that have been recognised with absolute certainty, i.e. when scheme 1 and 2 and
all scales point at the same person.

Comparing columns “all,” “black” and “white,” there are significant differ-
ences because dark and blond hair against dark and light backgrounds cause
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templates only frontal view

recogn. scheme 2 2 2 1 1 1 1 base
images all black white all black white scales line

PSM g = 1.0 86.0 83.0 89.4 87.0 83.0 91.5 82.8 61
PSM g = 0.25 89.0 86.8 91.5 88.0 86.8 89.4 83.0 63
GSM g = 0.25 90.0 90.6 89.4 89.0 90.6 89.4 85.9 70
all events 91.0 90.6 91.5 89.0 86.8 91.5 85.5 71

templates frontal plus 3/4 view

PSM g = 1.0 94.0 98.1 89.4 94.0 96.2 91.5 88.6 67
PSM g = 0.25 95.0 98.1 91.5 93.0 96.2 89.4 89.1 69
GSM g = 0.25 95.0 100.0 89.4 95.0 100.0 89.4 92.5 79
all events 96.0 100.0 91.5 96.0 100.0 91.5 91.8 81

Table 1. Results obtained without occlusions.

different events, or even no events, at the hairline. Although the “all” results are
reasonably close to the best results, separation of different backgrounds can lead
to better but also worse results. This aspect certainly requires more research.
Using no saliency maps, i.e. all detected events, yields best results, which was ex-
pected. Also expected was the increasing rates in the four lines, because the use
of different saliency maps implies more or less information available for recogni-
tion, see Fig. 4.

Best results were obtained when using two templates with frontal and 3/4
views. Using all events, both recognition schemes resulted in 96%, whereas 81
was the base line with absolute certainty. The difference of 15% is due to relative
ranking with some uncertainty. In future research it will make sense to increase
the base line, especially when larger databases with more variations are consid-
ered. The increasing base line (67, 69, 79, 81) implies that a system simulating
dynamic processing may have an easier task: after the first step, 67 of 100 images
have been identified and the remaining 33 must be scrutinised in step 2.

Our best result of 96.0% is a little bit better than the 94.0% obtained by
Petkov et al. [17] and 93.8% by Hotta et al. [13], and very close to the 96.3%
reported by Ekenel and Sankur [7], despite the fact that in all studies the number
of tested faces and the databases were different.

Partial occlusions: We tested the 5 occlusions as shown in Fig. 5, using
all 100 images and applying recognition scheme 2 with templates that combine
frontal and 3/4 views. Because of the tremendous amount of storage space and
CPU time, representations were not re-computed (500 images!) but the occlu-
sions were applied to the already computed representations, thereby suppressing
event information. This is an approximation of real occlusions, but it indicates
the relative importance of different facial regions in the recognition scheme. Ta-
ble 2 presents results in terms of “rate (base line),” which must be compared
with the bottom part of Table 1, i.e. the first and last columns.

In the case of PSM with g = 0.25, the base line of 69 (Tab. 1) drops to 54
with the most severe occlusion 4 (eyes, nose and mouth). In the “all events”
case, instead of 81 only 64 was obtained. But this is the base line: still 54 or 64
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Fig. 5. Occlusions 1 to 5 from left to right.

frontal plus 3/4 views; recogn. scheme 2

occlusion type 1 2 3 4 5

PSM g = 0.25 95.0 (68) 96.0 (66) 92.0 (62) 83.0 (54) 93.0 (66)
all events 96.0 (80) 95.0 (74) 96.0 (67) 93.0 (64) 97.0 (75)

Table 2. Results obtained with partial occlusions.

of all 100 images are classified with absolute certainty. The maximum rate for
this occlusion (all events, 93%) is very close to the maximum without occlusion
(Tab. 1, 96%), and slightly worse if compared to the other occlusions. This shows
that the multi-scale representation, in particular the shape of the head and hair
at the coarser scales, is very robust and contributes most in the recognition.
The reason for this can be seen in Fig. 1: the stable and “sketchy” information
without too much detail at coarse scales.

6 Discussion

The line/edge representation at coarser scales provides a stable abstraction of
facial features (Figs 1,2). This explains, at least partly, the generalisation that
allows to classify faces with noise, glasses, relatively normal expressions and
views (Fig. 6). The main problems were: (1) a change of hairstyle and extreme
expression (Fig. 2 top-right with long hair was recognised, but not Fig. 6 bottom-
right with short hair and big smile); and (2) insufficient image normalisation
(Fig. 6: the bottom images in the 2nd, 3rd and 4th columns were problematic
because of different pose; however, the last image on the 3rd row was recognised!).
These four images (2nd to 5th at the bottom of Fig. 6) were the only ones which
were not recognised; hence, the overall recognition rate of 96 in 100.

The problem of insufficient normalisation can be solved because faces can be
detected by grouping keypoints at eyes, nose and mouth [21]. By using detected
keypoints at the two eyes and mouth corners, images can be morphed such
that the central part of a face is normalised in terms of size and position. This
procedure can also guarantee that templates in memory are really representative.
However, similar solutions for hairlines and non-frontal views must be developed;
see also [3]. As for now, correct recognition in the case of a drastic change of
hairstyle and expression remains a Holy Grail.

Despite the problems and possible solutions mentioned above, our results
obtained with a completely new approach are very encouraging. We expect sig-
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Fig. 6. Examples of images of eight persons.

nificant improvements by implementing a dynamic system, in which successive
tests are performed with each time more complete information available, as il-
lustrated in Fig. 4, such that all effort can be spent on scrutinising the images
which have not yet been identified with absolute certainty. This procedure may
simulate the processing in the bottom-up and top-down data streams in the
what and where subsystems of our visual system. However, before departing on
this track, logistic problems related to storage space and CPU time on a new,
multi-processor computer system must be solved first.
Acknowledgements: This investigation is partly financed by PRODEP III Me-
dida 5, Action 5.3, and by the FCT program POSI, framework QCA III. The
Stirling images are available at http://pics.psych.stir.ac.uk/
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