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Abstract 
 
This paper deals with a third order shear deformation finite element model which is applied on 
the active resonance control of thin plate/shell laminated structures with integrated 
piezoelectric layers or patches, acting as sensors and actuators. The finite element model is a 
single layer triangular nonconforming plate/shell element with 24 degrees of freedom for the 
generalized displacements, and one electrical potential degree of freedom for each piezoelectric 
element layer, which are surface bonded on the laminate. 
The Newmark method is considered to calculate the dynamic response of the laminated 
structures, forced to vibrate in the first natural frequency. To achieve a mechanism of active 
control of the structure dynamic response, a feedback control algorithm is used, coupling the 
sensor and active piezoelectric layers. The model is applied to the solution of one illustrative 
case, and the results are presented and discussed. 
 
Keywords: High Order Theory, Laminated Structures, Sensors and Actuators. Dynamic 
Control. 
 
1. Introduction 
 
Advanced reinforced composite structures incorporating piezoelectric sensors and actuators are 
increasingly becoming important due to the development of smart structures. These structures 
offer potential benefits in a wide range of engineering applications such as vibration and noise 
suppression, shape control and precision positioning.   
Using a higher order shear deformation theory, Samanta et al. [1] developed an eight-noded 
finite element for the active vibration control of laminated plates with piezoelectric layers 
acting as distributed sensors and actuators. The active control capability is studied using a 
simple algorithm with negative velocity feedback. Lam et al. [2] and Moita et al. [3] developed 
a finite element model based on the classical laminated theory for the active control of 
composite plates containing piezoelectric sensors and actuators.  
In the development of the present work a higher order displacement field is used, which allows 
to taken into account transverse shear stresses and does not need the use of shear correction 
factors. The model is suitable for the analysis of highly anisotropic structures ranging from 
high to low length-to-thickness ratios. This approach leads to better displacements results when 
compared to classical Kirchoff or even first order shear deformation theories based models [4]. 
The finite element used is a flat three-noded triangular element with 24 mechanical degrees of 
freedom and one electric degree of freedom per  piezoelectric layer of  the finite element.   
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An  integrated control is considered, with the electrical potential of the sensors being used 
through feedback control as electric potential input of the actuators, in order to achieve an 
active damping mechanism. The governing equations are solved by the Newmark method [5] 
which is a direct method for time integration.   
 
2.   Displacement and Strain Fields 
 
The assumed displacement field, for the numerical higher order finite element model, is a third 
order expansion in the thickness coordinate for the in-plane displacements and a constant 
transverse displacement, conjugated with the condition that the transverse shear stresses vanish 
on the top and bottom faces, which is equivalent to the requirement that the corresponding 
strains be zero on these surfaces [4].  
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where u v w0 0 0, ,    are  displacements of a generic point in the middle plane of the laminate 
referred to the local axes - x,y,z  directions, θ θx y,   are the rotations of the normal to the middle 
plane, about the  x axis (clockwise) and y axis  (anticlockwise),  yw  , xw 00 ∂∂∂∂  are the 
slopes of the tangents of the deformed mid-surface in x,y directions, zθ  is the rotation about the 
local  z  axis, which does not enter in the formulation in the local coordinate system.  
 
The strains components associated with the displacements are given in Moita et al [6]. 
                   
3. Piezoelectric Laminates. Constitutive Equations. 
 
Assuming that a piezoelectric composite plate consists of several layers, including the 
piezoelectric layers, the constitutive equation for a deformable piezoelectric material, coupling 
the elastic and the electric fields are given by, Tiersten [7] 
 

E e Q   ε  σ −=                                                                                                                              (2) 
 

E peD      T += ε                                                                                                                           (3) 

where { }    T
yzxzxyyx ττσσσ=σ and { }T

yzxzxyyx   γγγεε=ε  are the elastic 

the stress and strain vectors, Q  the elastic constitutive matrix, e  the piezoelectric stress 

coefficients matrix, [ ]Tzyx E E EE = the electric field vector, [ ]Tzyx D D DD =  the electric 
displacement vector and p  the dielectric matrix, in the element local system (x,y,z) of the 
laminate. The   ijp ,ije,ijQ are functions of ply angle α for the kth layer, and are given for the 

finite element local referential  x,y,z, as in Reddy [4]. 
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The electric field vector is the negative gradient of the electric potential φ , which is assumed to 
be applied and varying linearly in the thickness kt  direction, i.e. 
 

φ−∇=  E            ;          { }T
zE00=E           ;           kz t/E φ−=                                           (4) 

 
4. Finite Element Formulation.  
 
The non-conforming high order triangular finite element model (HSDT) has three nodes and 
eight degrees of freedom per node, the displacements 

iii 000  w,  v, u , the slopes  
yw  , xw 00 ∂∂∂∂ , and rotations ziyixi  , , θθθ . By neglecting the transverse shear deformation, a 

Kirchhoff laminated finite element model with 6 degrees of freedom per node (CPT) is also 
easily obtained. The element local displacements , slopes and rotations are expressed in terms 
of nodal variables through shape functions iN  given in terms of area co-ordinates iL [8]. Thus 
the displacement and strain fields are given as in Moita et al [6], and the electric field is given 
by: 
 

φ−= φ BE                                                                                                                                   (5) 
 
The dynamic equations of a laminated composite plate can be derived from the Hamilton’s 
principle, which, in the discretized form, is given as follows 
 

) { } { } { } 0dt    dS   a  dS  a   dA  a  dA  ) dz 

  (   dA dz 
a

 
0

0   
0

0  
a

     

S S
c

T

V

Th
h

T

n

1=k
k

A

 Tt
t

N

1K A

mec

T

TmecT
h
h

TTT
k

1-k

2
1

k
1-k

=



∫ δφ∫+δ+δ+∫ δ+∫

∑ ρ∫∫







∑







∫ −








φ




















−


















φ∫ δ

=
φφ

 QFt Nf NN Z

N
pe

eQ
B

B
B

B

       (6) 

 
leading to the following sistem of equations 
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where 
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and mec
extF  can contain c , , Ftf , the  body, surface, and concentrated forces. 
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Assuming that piezoelectric sensors as well as actuators are bonded or embedded in the 
structure, the electric potential vector is subdivided in a sensor component ( )Sφ  and an actuator 

component ( )Aφ . Separating actuator and sensor components and considering that the external 
applied electric charge at the sensors is zero the system of Eq. (7) takes the form 
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4. Dynamic Analysis 
 
The sensor output can be obtained as follows, Reddy [9]. The charge output of each sensor, 
with poling in the z direction, can be expressed in terms of spatial integration of the electric 
displacement over its surface, taking into account that the converse piezoelectric effect is 
negligible. Thus we have 
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From Eq. (3), the last equation can be written in the discretized form as follows 
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The current on the surface of the sensor is given by dtdQ)t(I )S(=  and can be converted into 

the open circuit sensor voltage output )S(φ as dtdQG )S(
c

)S( =φ  where cG  is the constant 
gain of the amplifier, which transforms the sensor current to voltage. The sensor output voltage 
can be feed back through an amplifier to the actuator with a change of polarity. Thus, we have 
for the actuator voltage dtdQGG )S(

ci
)A( −=φ   where iG  is the gain of the amplifier to 

provide feedback control. The voltage of each actuator, written in the discretized form, is then 
given by 
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This way we introduce an equivalent negative velocity feedback control, the active damping. 
Considering Rayleigh type damping the motion equations become: 
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with [ ] [ ](S)
u

)A(
uciA K  K GGC φφ−= and uuuuR KMC β+α= , where α  and β are Rayleigh’s 

coefficients. 
 
5. Vibration control of a cantilever beam under sinusoidal loading. 
 
A cantilever graphite-epoxy composite beam [ ]sa /º0/º90/º90/º0/  made up of four-layer, 
equal thickness, symmetric cross-ply and two PVDF layers bonded to the upper (actuator a) 
and lower (sensor s) surfaces of the main structure, is considered. The mechanical and 
piezoelectric properties of the PVDF are GPa,  2EE 21 ==  GPa,  775.0G12 =   

GPa 775.0GG 2313 == , ,29.012 =ν  F/m,10 x 062.1p -10
33 = =31e =32e 2C/m 046.0 , 

ρ=1800 kg/m3, and mechanical properties of the graphite-epoxy are 
,GPa 98E1 = ,GPa 9.7E2 = GPa, 6.5G12 = GPa 72.4GG 2313 ==  ,28.012 =ν  ρ=1520 kg/m3, 

t=0.125x10-3 m. The applied transverse harmonic load    t,f  2sin   q)t( q π=  is a uniformly 

distributed load and has a magnitude of 2N/m 5.7q = . The beam dimension are length L=0.1 
m and width b=0.005 m, and is modeled by 10 triangular elements. For an applied transverse 
harmonic load with Hz, 10f =  Figure 1 illustrates, the uncontrolled and controlled responses 
for tip deflection w for the first mode of vibration, where the effect of negative velocity 
feedback control 12

ci 10x0.2GG = , is evident.  
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Figure 1.  Effect of negative velocity feedback control on the tip deflection. 

 
For an applied transverse harmonic load with Hz, 50f =  which is very close of the first natural 
frequency, a time step ∆t=0.002 s is used for the Newmark method. Using the HSDT present 
mode, Figure 2 illustrates the uncontrolled and controlled responses for tip deflection w, where 
the effect of negative velocity feedback control 10

ci 10 x 2GG =  is now much more evident.  
 
Conclusions 
 
The active control capability of composite structures covered with piezoelectric layers is 
investigated, using the finite element method. A finite element model has been developed for 
active control of thin laminated structures with piezoelectric sensor and actuator layers, based 
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on the third order shear deformation theory. The results obtained show that the negative 
velocity feedback control algorithm used in this model is effective for an active damping 
control of vibration response. 
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Figure 2.  Effect of negative velocity feedback control on the tip deflection at resonance 

frequency 
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