
 

 

1. INTRODUCTION 
 
Current research aims to understand the modelling 
properties of the various Artificial Neural Networks 
(ANN) architectures. New algorithms are being 
developed to improve their fitness for modelling and 
control applications. Different architectures can be 
found in the literature, however, B-spline neural 
networks offer definite advantages over more 
commonly known neural networks, such as 
multilayer perceptrons or radial basis function 
networks. One of the most important advantage is its 
suitability for on-line adaptive modelling and control 
applications. Their grid-based structure makes them 
transparent, which, in contrast to other networks, 
means that it is easier to understand the knowledge 
stored in these networks (this is an advantage that is 
also applies to fuzzy rule-based models over 
conventional neural networks). It is not surprising 
that, at a high level, the basic information principles 
of B-spline networks and fuzzy systems are the same. 
So, under certain conditions, the low-level algorithms 
are also identical. For fuzzy systems, the most 
important task is to find the optimal rule base; this is 
translated, in terms of BNNs in the determination of 
the best topology and its parameters values. The rule 

base might be given by a human expert or might be 
given a priori by the linguistic description of the 
modelled system. If neither is available, the system 
has to be designed by other methods based on 
numerical data.  
Nature inspired some evolutionary optimisation 
algorithms suitable for global optimisation of even 
non-linear, high-dimensional, multimodal, and 
discontinuous problems. The original genetic 
algorithm (GA) was developed by Holland  (Holland, 
1992) and was based on the process of evolution of 
biological organisms. Recently, approaches like 
genetic programming and bacterial evolutionary 
algorithm present an alternative to the former 
algorithms. GP optimisation uses the same operators 
as GA, though it requires an expression tree for gene 
representation as a combination of functions. The 
BEA is a simpler algorithm, and its operations were 
inspired by the microbial evolution phenomenon.  
The current paper focuses on a comparison between 
the applicability of GP for BNN design and BEA for 
the optimisation of the fuzzy rule base.  
The layout of the paper is as follows: Section 2 and 3 
introduce the topology of B-spline neural networks 
and the Fuzzy Systems concept. In Section 4 and 5 
GP for BNN and BEA for fuzzy rule extraction will 
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be described. Results are presented in Section 6 and 
conclusions are drawn in Section 7. 
 

2. B-SPLINE NEURAL NETWORKS 
 
B-spline neural networks belong to the class of 
networks termed grid or lattice-based associative 
memories networks (AMN). This type of networks is 
composed of three layers: a normalised input space 
layer, a basis functions layer and a linear weight 
layer. 
 
2.1. Normalised Input Layer 
 
The normalised input layer can take different forms 
but is usually a grid on which the basis functions are 
defined. To define a grid, vectors of knots must be 
defined, one for each input axis. There are usually a 
different number of knots for each dimension, and 
they are generally placed at different positions. 
The interior knots, for the ith axis, are , , 1, ,i j ij rλ = L . 

They are arranged in such a way that:  
 min max

,1 ,2 , ii i i i r ix xλ λ λ< ≤ ≤ ≤ <L ,  (1) 

where min
ix  and max

ix  are the minimum and maximum 

values of the ith input, respectively. 
At each extreme of each axis, a set of ki exterior 
knots must be given which satisfy: 
 ( )
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These exterior knots are needed to generate the basis 
functions that are close to the boundaries.  
The jth interval of the ith input is denoted as Ii,j and is 
defined as:  
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This way, within the range of the ith input, there are 
ri+1 intervals (possibly empty if the knots are 
coincident), which means that there are 
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2.2. The basis functions layer 
 
The output of the hidden layer is determined by a set 
of p basis functions defined on the n-dimensional 
grid. The univariate B-spline basis function of order k 
has a support, which is k intervals wide. Hence, each 
input is assigned to k basis functions. 
The jth univariate basis function of order k is denoted 

( )j
kN x , and it is defined by the following 

relationships: 
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Multivariate basis functions are formed by taking the 
tensor product of the univariate basis functions.  
The number of basis functions of order ki defined on 
an axis with ri interior knots is ri+ki. Therefore, the 
total number of basis functions for a multivariate B-

spline is ( )
1

n

i i
i

p r k
=

= +∏ . 

This number depends exponentially on the size of the 
input and because of this, B-splines are only 
applicable for problems where the input dimension is 
small (typically 5≤ ). 

 
2.3. The weight layer 
 
The output of an AMN is a linear combination of the 
outputs of the basis functions. The linear coefficients 
are the adjustable weights, and as the mapping is 
linear, finding the weights is just a linear 
optimisation problem. The output is therefore: 
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2.4. Sub-Modules 
 
To overcome the “curse of dimensionality”, it is 
common to employ, instead of a single module 
covering all inputs, a linear sum of smaller sub-
modules, each one with a lower input dimensionality. 
The output of such a network is: 

 ( ) ( )
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where ( )i iS x denotes the ith sub-model, and ix  is the 

set of input variables ( i ) which compose sub-model 
i. 
 

3. FUZZY SYSTEMS 
 
The theory of fuzzy logic was first proposed by 
Zadeh in the 1960s. His main idea was that most of 
the phenomena of the real world could not be 
described by two values, so he defined a function 
which would assign fuzzy truth degrees between zero 
and one to elements of a universal set. In 1973 he 
pointed out that the new fuzzy concept could be 
excellently used for describing very complex 
problems with a system of fuzzy relations 
represented by a fuzzy rule base [1].  
A fuzzy rule base contains fuzzy rules that map the 
multivariate fuzzy input set to the univariate output 
set. Let’s denote a rule by Ri,: 
 
Ri: IF (x1 is Ai1) AND (x2 is Ai2) AND 
... AND (xn is Ain) THEN (y is Bi), (9) 
 
where Aij and Bi are fuzzy sets, xj and y are the fuzzy 
inputs and output, respectively.  
The structure of a rule is the following:  
 
IF Premise THEN Conclusion,  (10) 
 



where the premise consists of antecedents linked by 
the AND operator.  
To implement a rule set, each of the univariate fuzzy 
linguistic statements – e.g. (xn is Ain) – needs to be 
given and also the operators used to implement the 
underlying fuzzy logic, such as AND, THEN, etc., 
need to be specified. Because no single 
implementation is correct, many implementation 
methods have been proposed (Harris et al., 1993). 
A crisp input is presented to the network, and the 
membership functions of the multivariate fuzzy input 
linguistic variables are computed. The network 
output is obtained by defuzzifying this information.  
 
3.1. RELATIONS BETWEEN FUZZY SYSTEMS 

AND B-SPLINE NETWORKS MODELS 
 
In the simplest form, fuzzy systems calculate their 
response by taking a linear combination of the input 
membership functions, in an analogous way as 
several neural networks. The relationships between 
fuzzy and B-spline networks, have been addressed by 
several authors (see, for example (Nelles, 2000; 
Ruano et al., 2001)). In order to have a strict 
equivalence between FS and BNN models, the FS 
must satisfy some assumptions, which are outlined in 
(Ruano et al., 2001). In the current work, the 
structure of the Mamdani FS and BNN models are 
not strictly equivalent, their main differences being: 

•  The linguistic terms of the rule antecedents 
and consequents are not modelled by B-
splines, instead, by trapezoids.  

•  For the logic connectives such as the 
conjunction and implication, the t-norm 
used is not the algebraic product, but the 
min operator; 

Please note that it is not essential that the two 
model’s structures are equivalent, since the main 
objective of this work is the comparison of the 
performance between two different optimisation 
heuristics and not a structure comparison. 
 

4. GENETIC PROGRAMMING 
 
Genetic programming employs the main operators 
used by a genetic algorithm in its search procedure. 
The main difference, which, from our point of view 
is beneficial for this type of neural networks, is that 
the network parameters are not coded as bit strings, 
but instead as a tree structure, composed of function 
and terminal nodes, is employed. The tree structure, 
as well as the characteristics of the nodes, evolves 
from generation to generation.  
 
 
 
4.1. Single Objective Genetic Programming 
 
For the case of B-Spline construction, and referring 
to the previous sections, sub-models must be added 
(+), sub-models of higher dimensionality must be 
created from smaller sub-modules (*), and sub-

models of higher dimensionality must be split into 
lower dimensional sub-models (/). These are the set 
of primitive functions that were implemented. 
In contrast with the application of GP to other neural 
networks, the node terminals do not represent only 
each input variable, but also the spline order, the 
number of interior knots, and their location.  
An example of an expression tree for B-spline 
networks is presented in the next figure. 

Fig 1: A sample expression tree for B-spline 
networks. 

 
The evolutionary process involves the following 
steps: 

•  The creation of an initial population, and the 
determination of the size of the population; 

•  The evaluation of the candidates using 
Bayes Information Criterion (Nelles, 2001), 
and their fitness assignment; 

•  The application of genetic operations, such 
as:  
! Selection: Pairs of parent trees are selected 

based on their fitness for reproduction; 
! Crossover: A node in the tree is selected at 

random and exchanging the associated sub-
trees produces a pair of offspring trees. 

! Mutation: This is performed by either 
replacing a node selected at random by a 
sub-tree generated randomly or by changing 
its type. 

! Replacement: All parents are replaced by the 
offspring (generational approach). 

•  The termination criterion, which is usually 
the maximum number of generations 
defined. 

 
The evolution cycle is summarized in Figure 2. 
Mutation on a function implies the replacement of 
the tree node with a randomly generated sub-tree of 
maximum length 2. Mutation on a terminal can be of 
6 different types, which are: 

1. Full replacement of the terminal. 
2. Variable identification replacement. 
3. Splines order replacement. 
4. Random displacement of an interior knot. 
5. Addition of N interior knots placed 

randomly. N is fixed to 5. 
6. Removal of N interior knots. In the absence 

of interior knots, no operation is executed. 
 
For simplification purposes, the terminal mutation 
rates will be described as a vector 
p_m_terminal=[%1 %2 %3 %4 %5 %6], where %i 
designates the ith  type mutation rate.  

+ 

* 

+ 

1 3 2 
[-2 -1 0 0.1 0.8 1 2 3] 

1 2 3 
[-1 0 0.2 0.6 0.9 1 2] 

3 1 2 
[0 0.3 0.4 1] 

2 2 2 
[-1 0 0.5 0.7 1 2] 

:  Terminal node 

:  Function node 



For a more detailed explanation, please see (Cabrita, 
et al., 2001).  

Initial Population 
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Candidates 
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n=N?
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Fig 2: Flowchart for Genetic Programming. 

 
4.2. Multi-objective genetic programming  
 
GP can also be applied in a multi-objective strategy, 
which is useful for B-spline networks design. For a 
description on multi-objective optimisation, please 
refer to (Fonseca, 1998).  
In this approach, candidate evaluation consists not 
only of the objective functions evaluation, but also of 
a decision process based on priorities and goals 
associated with every objective. At each generation, 
fitness is assigned to the candidates according to the 
result of that decision process. Non-dominated 
solutions are recorded, and in the end, the decision 
maker selects the best non-dominated solutions that 
correspond to the preferred candidates. 
Here, the following objectives have been considered:  

•  Mean Square of Absolute Error for training 
and validation data (MSE/MSEv). 

•  Mean Square of Relative Error for training 
and validation data (MSRE). 
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•  Mean of Relative Error Percentage for 
training and validation data 
(PMRE/PMREv). 
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Some objectives may have greater priority than 
others. Objectives with priority greater than 0, 
together with the corresponding goals, act as 
constraints that must be satisfied. Lower-priority 
objectives are only taken into account as long as the 
remaining ones have their goals satisfied. 
 

5. BACTERIAL EVOLUTIONARY 

ALGORITHM 
 
A newer approach is the bacterial algorithm. This is 
based on a process, which can be found in nature. 
Bacteria can transfer genes to other bacteria. This 
mechanism is used in the bacterial mutation and in 
the gene transfer operation. The gene transfer 

operation substitutes the GA’s crossover operation, 
so the information can be transferred between 
different individuals (Nawa and Furuhashi, 1999).  
 
5.1. The encoding method 
 
Referring now to Section 3, for a fuzzy system 
design using BEA, the class of membership function 
is restricted to a trapezoidal function, described by its 
four breakpoints. The membership functions are 
identified by the two indices i and j, so that, the 
membership function Ai,j(xj) belongs to the ith rule 
and the jth input variable. Bi(y) is the output 
membership function of the ith rule and its shape is 
the same as for Ai,j(xj) but it is described by different 
breakpoints (Botzheim, 2001).  
 
The encoding method of a fuzzy system with two 
inputs and one output, can be observed in  Fig. 3. 

 
Fig 3: Fuzzy rules encoded in a chromosome. 
 
For example, Rule 3 in Fig. 3 means: 
 If x1 is A31 and x2 is A32 then y is B3  (11) 
 
where A3,1 A3,2 and B3 mean the trapezoidal 
membership function with the breakpoints values 
shown in the previous figure. 
 
5.2. The algorithm 
 
Generating the initial population. First, the initial 
bacteria population is created randomly. The 
population consists of n chromosomes (the bacteria). 
The initial number of rules in one chromosome is 
Nmax. So, n(k+1)Nmax membership functions are 
created, where k is the number of input variables in 
the given problem, and each membership function 
has four parameters.  
 
Bacterial mutation  The bacterial mutation is applied 
to each chromosome one by one as in (Nawa and 
Furuhashi, 1999). First, m -1 copies (clones) of the 
rule base are generated. Then a certain part of the 
chromosome is randomly selected and the parameters 
of this selected part are randomly changed in each 
clone (mutation). Next, all the clones and the original 
bacterium are evaluated by the error criterion. The 
best individual transfers the mutated part into the 
other individuals. This cycle is repeated for the 
remaining parts, until all parts of the chromosome 
have been mutated and tested. At the end, the best 
rule base is kept and the remaining m -1 are 
discharged.  
 
Gene transfer operation. The gene transfer operation 
allows the recombination of genetic information 
between two bacteria. 



First, the population must be divided into two halves. 
The better bacteria are called superior half, the other 
bacteria are called inferior half. 
One bacterium is randomly chosen from the superior 
half, this will be the source bacterium, and another is 
randomly chosen from the inferior half, this will be 
the destination bacterium. 
A “good” part from the source bacterium is chosen 
and this part can overwrite a not-so-good part of the 
destination bacterium or simple be added. A good 
part can be a fuzzy rule with a high degree of 
activation value. The activation value of a fuzzy rule 
is calculated as follows: 
 

 ( )

1

1 P
j

i i
j

w w
P =

= ∑  (12) 

where iw  is the mean activation value of the thi rule, 
)( j

iw is the activation value of the thi rule for the 
thj pattern, P is the number of patterns. So the best 

part of the source bacterium is the rule which has the 
greatest mean activation value. 
 

Gene transfer is repeated for infN times, where 

infN is the number of “infections” per generation. 
 

Stop condition. If the population satisfies a stop 
condition or the maximum generation number is 
reached, then the algorithm ends. Otherwise it returns 
to the bacterial mutation step. 
 
5.3. Definition of the error function 
 
The error function used for training is defined as 
follows: 

 
max min
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where Imax is the upper and Imin is the lower bound of 
the interval of the output variable, so the error is 
normalised by the length of the output interval rather 
than the actual value of the output. 
 

6. RESULTS 
 
Three different examples have been experimented 
with GP and BEA. Both algorithms were set to run 
for 10 sessions of 40 generations and the results 
obtained relate to the following specifications: Mean 
Square of the absolute Error, Mean Square of the 
Relative Error, Mean Relative Error Percentage, 
and structure Complexity (number of basis functions) 
for both training and validation data (using v 
subscript). The training and validation sets contained 
the same number of patterns and some of the patterns 
were identical. 110 patterns were used for the pH 
problem, 101 patterns for the ICT problem and 200 
patterns for the six-dimensional generic function. 
For GP, the population size is 10, the initial 
population creation method is ramped-half-and-half, 

the fitness assignment is exponential ranking with 
selective pressure 5, and the crossover rate, the 
mutation rate and the number of generations are 0.5, 
0.8, 40, respectively. The terminal mutation rate is 
[5% 10% 5% 10% 60% 10%]. 
For BEA, the population size and number of clones 
are 10, the number of infections and rules is 5 and 7, 
respectively. 
 
6.1. pH problem 
 

The aim of this example is to approximate the inverse 
of a titration-like curve. This type of non-linearity 
relates the pH (a measure of the activity of the 
hydrogen ions in a solution) with the concentration (x) 
of chemical substances.  
 

6.2 Inverse Coordinate Transformation Problem 
(ICT) 

 
This example illustrates an inverse kinematic 
transformation between 2 Cartesian coordinates and 
one of the angles of a two-links manipulator.  
For a more complete description on the above 
examples refer to (Ruano et. al, 2001). 
 

6.3 A sixth input generic function 
 
This example is widely used as a target function and 
the output is given by the following expression (see 
Botzheim et. al, 2001): 
 
 5 62( )0.5

1 2 3 4 2 x xy x x x x e −= + + +  (14) 
 
6.4 Comparison between SOGP and Bacterial 
Algorithm 
 
The values shown from Table 1 to Table 4 refer to 
results obtained from the 10 different sessions, and 
show mean values of specifications for the best 
candidates from each run, for the PH, ICT and sixth 
input generic function, respectively. 
 
Table 1: Results for the PH problem. 

Alg MSE MSRE %MRE Comp MSEv %MREv 

GP 
BEA 

3.3x10-7 
5.8 x10-4 

2.4x10-2 

9.4 x10-2 
2.4 

12.5 
69 
28 

2.710-2 

7.6 x10-4 
7.2 
23.1 

 
Table 2: Results for the ICT problem. 

Alg MSE MSRE %MRE Comp MSEv %MREv 

GP 
BEA 

8. x10-4 
7.6 x10-1 

2.7x1012 

1.5 x1014 
3.8x107 

6.8 x107 
34.3 
56 

1.2 
1.3 

3.7 

21.2 

 
Table 3: Results for the sixth input generic function. 

Alg MSE MSRE %MRE Comp MSEv %MREv 

GP 
BEA 

1.1 
1.1 

2.2x10-2 

3.2 x10-2 
9.8 

10.1 
25.7 
168 

1.5 

5.0 
11.1 

16.8 

 
From the previous tables, it can be observed that, 
with the exception of the pH problem, GP optimising 
the BNN results in better accuracy between the 
desired output and estimated output, than the BEA 



does for the FS rule extraction, for all the 
specifications,. The results from the validation set 
uphold the training values and sometimes, as is the 
case of the ICT problem, present lower specification 
values. It can also be seen that the complexity of the 
structure is important, because it gives an idea about 
the generalisation capabilities of the models: in 
general, the lower is the complexity, the better the 
generalisation capability. 
 
6.5 Multi-objective GP approach 
 
Supposedly the mean values for the training data for 
GP, in Table 2 are not as good as expected. A way of 
establishing a compromise between the training and 
validation set specifications is using the multi-
objective approach for the ICT problem. It should be 
stressed that this could also be done with any of the 
other problems. 10 sessions were executed using the 
parameters in Table 4. Every non-dominated solution 
from every session was saved and in the end, the 
decision maker showed the preferred solutions from 
all the sessions based on the goal and priorities vector 
shown in the 3rd and 4th column. 
 
Table 4: Multi-objective parameters specification for ICT 

Numb. 
Individuals 

Numb. 
Generations 

Priority 
Vector 

Goal 
Vector 

10 40 [1 2 2  0 0] [10-4 105 103 10-4 10-2] 

 
 

1 2 3 4 5

C
O

S
T

OBJECTIVE NUMBER  

 
Fig 4: Best trade-off curve for the ICT problem. 
 
The results shown in Fig. 4 allow the designer to 
deduce that it is possible to get good models 
simultaneously, for the training and validation set, as 
is the case. Please note that the values in the 3rd 
column represent the position of the crosses, i.e, 
approximately the values obtained for each objective. 
The specifications for the training data have been 
optimised and its values are much lower than the 
goals set. One should emphasize that this is not 
always the case because some other conflicting 
objectives can be imposed, for e.g. the complexity of 
the network (the preferred solution presented shows a 
complexity value of 56) or the condition of the 
model.  
 

7. CONCLUSIONS 
 
Two recent new methodologies for optimising the 
structure of neural networks and fuzzy models were 
subject to comparison. It was observed that the 
output accuracy attained with the neural network 
structure, optimized with GP, was better than the one 
achieved with the fuzzy system, optimized by BEA. 
One can deduce it might be from the fuzzy structure, 
which is not identical to the BNN, however, from the 
point of view of modelling, if the model from the NN 
and FS are to be seen as a black box, then the GP has 
better performance. Also, the facility to incorporate a 
multi-objective approach in GP allows the designer 
the freedom to obtain models more adequate to their 
intended use. 
As future work, it may be helpful to try and use GP 
for FS optimisation or to use BEA to optimise a FS 
whose structure is identical to the BNN, or to 
optimise the BNN structure itself. 
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