

1. INTRODUCTION

Current research aims to understand the modelling
properties of the various Artificial Neural Networks
(ANN) architectures. New algorithms are being
developed to improve their fitness for modelling and
control applications. Different architectures can be
found in the literature, however, B-spline neural
networks offer definite advantages over more
commonly known neural networks, such as
multilayer perceptrons or radial basis function
networks. One of the most important advantage is its
suitability for on-line adaptive modelling and control
applications. Their grid-based structure makes them
transparent, which, in contrast to other networks,
means that it is easier to understand the knowledge
stored in these networks (this is an advantage that is
also applies to fuzzy rule-based models over
conventional neural networks). It is not surprising
that, at a high level, the basic information principles
of B-spline networks and fuzzy systems are the same.
So, under certain conditions, the low-level algorithms
are also identical. For fuzzy systems, the most
important task is to find the optimal rule base; this is
translated, in terms of BNNs in the determination of
the best topology and its parameters values. The rule

base might be given by a human expert or might be
given a priori by the linguistic description of the
modelled system. If neither is available, the system
has to be designed by other methods based on
numerical data.
Nature inspired some evolutionary optimisation
algorithms suitable for global optimisation of even
non-linear, high-dimensional, multimodal, and
discontinuous problems. The original genetic
algorithm (GA) was developed by Holland (Holland,
1992) and was based on the process of evolution of
biological organisms. Recently, approaches like
genetic programming and bacterial evolutionary
algorithm present an alternative to the former
algorithms. GP optimisation uses the same operators
as GA, though it requires an expression tree for gene
representation as a combination of functions. The
BEA is a simpler algorithm, and its operations were
inspired by the microbial evolution phenomenon.
The current paper focuses on a comparison between
the applicability of GP for BNN design and BEA for
the optimisation of the fuzzy rule base.
The layout of the paper is as follows: Section 2 and 3
introduce the topology of B-spline neural networks
and the Fuzzy Systems concept. In Section 4 and 5
GP for BNN and BEA for fuzzy rule extraction will

GENETIC PROGRAMMING AND BACTERIAL ALGORITHM FOR
NEURAL NETWORKS AND FUZZY SYSTEMS DESIGN

 C. Cabrita12, J. Botzheim3, A. E. Ruano12, L. T. Kóczy34

 1. ADEEC, FCT, Universidade do Algarve
Campus de Gambelas, 8000 Faro, Portugal

 2. Centro de Sistemas Inteligentes, Portugal
 3. Department of Telecommunication and Telematics,
 Budapest University of Technology and Economics.

4.Institute of Information Technology and Electrical Engineering,
Széchenyi István University, Győr, Hungary

emails: ccabrita@ualg.pt, botzheim@alpha.ttt.bme.hu, aruano@ualg.pt, koczy@ttt.bme.hu

Abstract – In the field of control systems it is common to use techniques based on model
adaptation to carry out control for plants for which mathematical analysis may be
intricate. Increasing interest in biologically inspired learning algorithms for control
techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this
line, this paper gives a perspective on the quality of results given by two different
biologically connected learning algorithms for the design of B-spline neural networks
(BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP)
for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for
fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the
GP algorithm is outlined, enabling the designer to obtain models more adequate for
their intended use. Copyright 2003 IFAC.

Keywords: constructive algorithms, B-splines, genetic programming, bacterial evolutionary
algorithm, fuzzy rule base;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61497768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be described. Results are presented in Section 6 and
conclusions are drawn in Section 7.

2. B-SPLINE NEURAL NETWORKS

B-spline neural networks belong to the class of
networks termed grid or lattice-based associative
memories networks (AMN). This type of networks is
composed of three layers: a normalised input space
layer, a basis functions layer and a linear weight
layer.

2.1. Normalised Input Layer

The normalised input layer can take different forms
but is usually a grid on which the basis functions are
defined. To define a grid, vectors of knots must be
defined, one for each input axis. There are usually a
different number of knots for each dimension, and
they are generally placed at different positions.
The interior knots, for the ith axis, are , , 1, ,i j ij rλ = L .

They are arranged in such a way that:
 min max

,1 ,2 , ii i i i r ix xλ λ λ< ≤ ≤ ≤ <L , (1)

where min
ix and max

ix are the minimum and maximum

values of the ith input, respectively.
At each extreme of each axis, a set of ki exterior
knots must be given which satisfy:
 ()

min
,0, 1i i ii k xλ λ− − ≤ ≤ =L (2)

 max
, 1 ,i i ii i r i r kx λ λ+ += ≤ ≤L (3)

These exterior knots are needed to generate the basis
functions that are close to the boundaries.
The jth interval of the ith input is denoted as Ii,j and is
defined as:

, 1 ,

,

, 1 ,

1, ,

1

i j i j i

i j

i j i j i

for j r
I

if j r

λ λ

λ λ
−

−

 = =
 = +

L
 (4)

This way, within the range of the ith input, there are
ri+1 intervals (possibly empty if the knots are
coincident), which means that there are

()
1

1
n

i
i

p r
=

= +′ ∏ n-dimensional cells in the grid.

2.2. The basis functions layer

The output of the hidden layer is determined by a set
of p basis functions defined on the n-dimensional
grid. The univariate B-spline basis function of order k
has a support, which is k intervals wide. Hence, each
input is assigned to k basis functions.
The jth univariate basis function of order k is denoted

()j
kN x , and it is defined by the following

relationships:

1
1 1

1 1

() () ()j k jj j j
k k k

j j k j j k

x x
N x N x N x

λ λ
λ λ λ λ

− −
− −

− − − +

 − −
= + − −

 (5)

 1

1
()

0
jj if x I

N x
otherwise

∈
=

 (6)

Multivariate basis functions are formed by taking the
tensor product of the univariate basis functions.
The number of basis functions of order ki defined on
an axis with ri interior knots is ri+ki. Therefore, the
total number of basis functions for a multivariate B-

spline is ()
1

n

i i
i

p r k
=

= +∏ .

This number depends exponentially on the size of the
input and because of this, B-splines are only
applicable for problems where the input dimension is
small (typically 5≤).

2.3. The weight layer

The output of an AMN is a linear combination of the
outputs of the basis functions. The linear coefficients
are the adjustable weights, and as the mapping is
linear, finding the weights is just a linear
optimisation problem. The output is therefore:

1

p
T

i i
i

y
=

= =∑a w a w , (7)

2.4. Sub-Modules

To overcome the “curse of dimensionality”, it is
common to employ, instead of a single module
covering all inputs, a linear sum of smaller sub-
modules, each one with a lower input dimensionality.
The output of such a network is:

 () ()
1

un

u u
u

y S
=

=∑x x (8)

where ()i iS x denotes the ith sub-model, and ix is the

set of input variables (i) which compose sub-model
i.

3. FUZZY SYSTEMS

The theory of fuzzy logic was first proposed by
Zadeh in the 1960s. His main idea was that most of
the phenomena of the real world could not be
described by two values, so he defined a function
which would assign fuzzy truth degrees between zero
and one to elements of a universal set. In 1973 he
pointed out that the new fuzzy concept could be
excellently used for describing very complex
problems with a system of fuzzy relations
represented by a fuzzy rule base [1].
A fuzzy rule base contains fuzzy rules that map the
multivariate fuzzy input set to the univariate output
set. Let’s denote a rule by Ri,:

Ri: IF (x1 is Ai1) AND (x2 is Ai2) AND
... AND (xn is Ain) THEN (y is Bi), (9)

where Aij and Bi are fuzzy sets, xj and y are the fuzzy
inputs and output, respectively.
The structure of a rule is the following:

IF Premise THEN Conclusion, (10)

where the premise consists of antecedents linked by
the AND operator.
To implement a rule set, each of the univariate fuzzy
linguistic statements – e.g. (xn is Ain) – needs to be
given and also the operators used to implement the
underlying fuzzy logic, such as AND, THEN, etc.,
need to be specified. Because no single
implementation is correct, many implementation
methods have been proposed (Harris et al., 1993).
A crisp input is presented to the network, and the
membership functions of the multivariate fuzzy input
linguistic variables are computed. The network
output is obtained by defuzzifying this information.

3.1. RELATIONS BETWEEN FUZZY SYSTEMS

AND B-SPLINE NETWORKS MODELS

In the simplest form, fuzzy systems calculate their
response by taking a linear combination of the input
membership functions, in an analogous way as
several neural networks. The relationships between
fuzzy and B-spline networks, have been addressed by
several authors (see, for example (Nelles, 2000;
Ruano et al., 2001)). In order to have a strict
equivalence between FS and BNN models, the FS
must satisfy some assumptions, which are outlined in
(Ruano et al., 2001). In the current work, the
structure of the Mamdani FS and BNN models are
not strictly equivalent, their main differences being:

• The linguistic terms of the rule antecedents
and consequents are not modelled by B-
splines, instead, by trapezoids.

• For the logic connectives such as the
conjunction and implication, the t-norm
used is not the algebraic product, but the
min operator;

Please note that it is not essential that the two
model’s structures are equivalent, since the main
objective of this work is the comparison of the
performance between two different optimisation
heuristics and not a structure comparison.

4. GENETIC PROGRAMMING

Genetic programming employs the main operators
used by a genetic algorithm in its search procedure.
The main difference, which, from our point of view
is beneficial for this type of neural networks, is that
the network parameters are not coded as bit strings,
but instead as a tree structure, composed of function
and terminal nodes, is employed. The tree structure,
as well as the characteristics of the nodes, evolves
from generation to generation.

4.1. Single Objective Genetic Programming

For the case of B-Spline construction, and referring
to the previous sections, sub-models must be added
(+), sub-models of higher dimensionality must be
created from smaller sub-modules (*), and sub-

models of higher dimensionality must be split into
lower dimensional sub-models (/). These are the set
of primitive functions that were implemented.
In contrast with the application of GP to other neural
networks, the node terminals do not represent only
each input variable, but also the spline order, the
number of interior knots, and their location.
An example of an expression tree for B-spline
networks is presented in the next figure.

Fig 1: A sample expression tree for B-spline
networks.

The evolutionary process involves the following
steps:

• The creation of an initial population, and the
determination of the size of the population;

• The evaluation of the candidates using
Bayes Information Criterion (Nelles, 2001),
and their fitness assignment;

• The application of genetic operations, such
as:
! Selection: Pairs of parent trees are selected

based on their fitness for reproduction;
! Crossover: A node in the tree is selected at

random and exchanging the associated sub-
trees produces a pair of offspring trees.

! Mutation: This is performed by either
replacing a node selected at random by a
sub-tree generated randomly or by changing
its type.

! Replacement: All parents are replaced by the
offspring (generational approach).

• The termination criterion, which is usually
the maximum number of generations
defined.

The evolution cycle is summarized in Figure 2.
Mutation on a function implies the replacement of
the tree node with a randomly generated sub-tree of
maximum length 2. Mutation on a terminal can be of
6 different types, which are:

1. Full replacement of the terminal.
2. Variable identification replacement.
3. Splines order replacement.
4. Random displacement of an interior knot.
5. Addition of N interior knots placed

randomly. N is fixed to 5.
6. Removal of N interior knots. In the absence

of interior knots, no operation is executed.

For simplification purposes, the terminal mutation
rates will be described as a vector
p_m_terminal=[%1 %2 %3 %4 %5 %6], where %i
designates the ith type mutation rate.

+

*

+

1 3 2
[-2 -1 0 0.1 0.8 1 2 3]

1 2 3
[-1 0 0.2 0.6 0.9 1 2]

3 1 2
[0 0.3 0.4 1]

2 2 2
[-1 0 0.5 0.7 1 2]

: Terminal node

: Function node

For a more detailed explanation, please see (Cabrita,
et al., 2001).

Initial Population
Creation

Candidates
evaluation

Fitness
assignment

n=N?

Generate new
population

show best
candidate

n=n+1

n=1

Fig 2: Flowchart for Genetic Programming.

4.2. Multi-objective genetic programming

GP can also be applied in a multi-objective strategy,
which is useful for B-spline networks design. For a
description on multi-objective optimisation, please
refer to (Fonseca, 1998).
In this approach, candidate evaluation consists not
only of the objective functions evaluation, but also of
a decision process based on priorities and goals
associated with every objective. At each generation,
fitness is assigned to the candidates according to the
result of that decision process. Non-dominated
solutions are recorded, and in the end, the decision
maker selects the best non-dominated solutions that
correspond to the preferred candidates.
Here, the following objectives have been considered:

• Mean Square of Absolute Error for training
and validation data (MSE/MSEv).

• Mean Square of Relative Error for training
and validation data (MSRE).

2_

2
1

()1
;

_

N pat
i i

i i

t y
MSRE

N pat y=

−
= ∑

• Mean of Relative Error Percentage for
training and validation data
(PMRE/PMREv).

_

1

100
.

_

N pat
i i

i i

t y
PMRE

N pat y=

−
= ∑

Some objectives may have greater priority than
others. Objectives with priority greater than 0,
together with the corresponding goals, act as
constraints that must be satisfied. Lower-priority
objectives are only taken into account as long as the
remaining ones have their goals satisfied.

5. BACTERIAL EVOLUTIONARY

ALGORITHM

A newer approach is the bacterial algorithm. This is
based on a process, which can be found in nature.
Bacteria can transfer genes to other bacteria. This
mechanism is used in the bacterial mutation and in
the gene transfer operation. The gene transfer

operation substitutes the GA’s crossover operation,
so the information can be transferred between
different individuals (Nawa and Furuhashi, 1999).

5.1. The encoding method

Referring now to Section 3, for a fuzzy system
design using BEA, the class of membership function
is restricted to a trapezoidal function, described by its
four breakpoints. The membership functions are
identified by the two indices i and j, so that, the
membership function Ai,j(xj) belongs to the ith rule
and the jth input variable. Bi(y) is the output
membership function of the ith rule and its shape is
the same as for Ai,j(xj) but it is described by different
breakpoints (Botzheim, 2001).

The encoding method of a fuzzy system with two
inputs and one output, can be observed in Fig. 3.

Fig 3: Fuzzy rules encoded in a chromosome.

For example, Rule 3 in Fig. 3 means:
 If x1 is A31 and x2 is A32 then y is B3 (11)

where A3,1 A3,2 and B3 mean the trapezoidal
membership function with the breakpoints values
shown in the previous figure.

5.2. The algorithm

Generating the initial population. First, the initial
bacteria population is created randomly. The
population consists of n chromosomes (the bacteria).
The initial number of rules in one chromosome is
Nmax. So, n(k+1)Nmax membership functions are
created, where k is the number of input variables in
the given problem, and each membership function
has four parameters.

Bacterial mutation The bacterial mutation is applied
to each chromosome one by one as in (Nawa and
Furuhashi, 1999). First, m -1 copies (clones) of the
rule base are generated. Then a certain part of the
chromosome is randomly selected and the parameters
of this selected part are randomly changed in each
clone (mutation). Next, all the clones and the original
bacterium are evaluated by the error criterion. The
best individual transfers the mutated part into the
other individuals. This cycle is repeated for the
remaining parts, until all parts of the chromosome
have been mutated and tested. At the end, the best
rule base is kept and the remaining m -1 are
discharged.

Gene transfer operation. The gene transfer operation
allows the recombination of genetic information
between two bacteria.

First, the population must be divided into two halves.
The better bacteria are called superior half, the other
bacteria are called inferior half.
One bacterium is randomly chosen from the superior
half, this will be the source bacterium, and another is
randomly chosen from the inferior half, this will be
the destination bacterium.
A “good” part from the source bacterium is chosen
and this part can overwrite a not-so-good part of the
destination bacterium or simple be added. A good
part can be a fuzzy rule with a high degree of
activation value. The activation value of a fuzzy rule
is calculated as follows:

 ()

1

1 P
j

i i
j

w w
P =

= ∑ (12)

where iw is the mean activation value of the thi rule,
)(j

iw is the activation value of the thi rule for the
thj pattern, P is the number of patterns. So the best

part of the source bacterium is the rule which has the
greatest mean activation value.

Gene transfer is repeated for infN times, where

infN is the number of “infections” per generation.

Stop condition. If the population satisfies a stop
condition or the maximum generation number is
reached, then the algorithm ends. Otherwise it returns
to the bacterial mutation step.

5.3. Definition of the error function

The error function used for training is defined as
follows:

max min

ˆ1
rel

patterns

y y
e

n I I

−
=

−∑ (13)

where Imax is the upper and Imin is the lower bound of
the interval of the output variable, so the error is
normalised by the length of the output interval rather
than the actual value of the output.

6. RESULTS

Three different examples have been experimented
with GP and BEA. Both algorithms were set to run
for 10 sessions of 40 generations and the results
obtained relate to the following specifications: Mean
Square of the absolute Error, Mean Square of the
Relative Error, Mean Relative Error Percentage,
and structure Complexity (number of basis functions)
for both training and validation data (using v
subscript). The training and validation sets contained
the same number of patterns and some of the patterns
were identical. 110 patterns were used for the pH
problem, 101 patterns for the ICT problem and 200
patterns for the six-dimensional generic function.
For GP, the population size is 10, the initial
population creation method is ramped-half-and-half,

the fitness assignment is exponential ranking with
selective pressure 5, and the crossover rate, the
mutation rate and the number of generations are 0.5,
0.8, 40, respectively. The terminal mutation rate is
[5% 10% 5% 10% 60% 10%].
For BEA, the population size and number of clones
are 10, the number of infections and rules is 5 and 7,
respectively.

6.1. pH problem

The aim of this example is to approximate the inverse
of a titration-like curve. This type of non-linearity
relates the pH (a measure of the activity of the
hydrogen ions in a solution) with the concentration (x)
of chemical substances.

6.2 Inverse Coordinate Transformation Problem
(ICT)

This example illustrates an inverse kinematic
transformation between 2 Cartesian coordinates and
one of the angles of a two-links manipulator.
For a more complete description on the above
examples refer to (Ruano et. al, 2001).

6.3 A sixth input generic function

This example is widely used as a target function and
the output is given by the following expression (see
Botzheim et. al, 2001):

 5 62()0.5

1 2 3 4 2 x xy x x x x e −= + + + (14)

6.4 Comparison between SOGP and Bacterial
Algorithm

The values shown from Table 1 to Table 4 refer to
results obtained from the 10 different sessions, and
show mean values of specifications for the best
candidates from each run, for the PH, ICT and sixth
input generic function, respectively.

Table 1: Results for the PH problem.

Alg MSE MSRE %MRE Comp MSEv %MREv

GP
BEA

3.3x10-7
5.8 x10-4

2.4x10-2

9.4 x10-2
2.4

12.5
69
28

2.710-2

7.6 x10-4
7.2
23.1

Table 2: Results for the ICT problem.

Alg MSE MSRE %MRE Comp MSEv %MREv

GP
BEA

8. x10-4
7.6 x10-1

2.7x1012

1.5 x1014
3.8x107

6.8 x107
34.3
56

1.2
1.3

3.7

21.2

Table 3: Results for the sixth input generic function.

Alg MSE MSRE %MRE Comp MSEv %MREv

GP
BEA

1.1
1.1

2.2x10-2

3.2 x10-2
9.8

10.1
25.7
168

1.5

5.0
11.1

16.8

From the previous tables, it can be observed that,
with the exception of the pH problem, GP optimising
the BNN results in better accuracy between the
desired output and estimated output, than the BEA

does for the FS rule extraction, for all the
specifications,. The results from the validation set
uphold the training values and sometimes, as is the
case of the ICT problem, present lower specification
values. It can also be seen that the complexity of the
structure is important, because it gives an idea about
the generalisation capabilities of the models: in
general, the lower is the complexity, the better the
generalisation capability.

6.5 Multi-objective GP approach

Supposedly the mean values for the training data for
GP, in Table 2 are not as good as expected. A way of
establishing a compromise between the training and
validation set specifications is using the multi-
objective approach for the ICT problem. It should be
stressed that this could also be done with any of the
other problems. 10 sessions were executed using the
parameters in Table 4. Every non-dominated solution
from every session was saved and in the end, the
decision maker showed the preferred solutions from
all the sessions based on the goal and priorities vector
shown in the 3rd and 4th column.

Table 4: Multi-objective parameters specification for ICT

Numb.
Individuals

Numb.
Generations

Priority
Vector

Goal
Vector

10 40 [1 2 2 0 0] [10-4 105 103 10-4 10-2]

1 2 3 4 5

C
O

S
T

OBJECTIVE NUMBER

Fig 4: Best trade-off curve for the ICT problem.

The results shown in Fig. 4 allow the designer to
deduce that it is possible to get good models
simultaneously, for the training and validation set, as
is the case. Please note that the values in the 3rd
column represent the position of the crosses, i.e,
approximately the values obtained for each objective.
The specifications for the training data have been
optimised and its values are much lower than the
goals set. One should emphasize that this is not
always the case because some other conflicting
objectives can be imposed, for e.g. the complexity of
the network (the preferred solution presented shows a
complexity value of 56) or the condition of the
model.

7. CONCLUSIONS

Two recent new methodologies for optimising the
structure of neural networks and fuzzy models were
subject to comparison. It was observed that the
output accuracy attained with the neural network
structure, optimized with GP, was better than the one
achieved with the fuzzy system, optimized by BEA.
One can deduce it might be from the fuzzy structure,
which is not identical to the BNN, however, from the
point of view of modelling, if the model from the NN
and FS are to be seen as a black box, then the GP has
better performance. Also, the facility to incorporate a
multi-objective approach in GP allows the designer
the freedom to obtain models more adequate to their
intended use.
As future work, it may be helpful to try and use GP
for FS optimisation or to use BEA to optimise a FS
whose structure is identical to the BNN, or to
optimise the BNN structure itself.

ACKNOWLEDGEMENTS

Research supported by the Nationals Scientific
Research Fund OTKA T034233 and T034212, a
Széchenyi University Research Grant 2002, the
National Research and Development Project Grant
2/0015/2002 and by the bilateral ICCTI-OMFB 4.1.1
research cooperation grant.

REFERENCES

Botzheim, J., Hámori, B., Kóczy, L. T., (2001) Extracting

trapezoidal membership functions of a fuzzy rule
system by bacterial algorithm, 7th Fuzzy Days,
Dortmund, Springer-Verlag, pp. 218-227

Cabrita, C., Fonseca, C. M., Ruano, A. E., (2001) Single
and multi-objective genetic programming design for
B-spline neural networks and neuro-fuzzy systems,
submitted to IFAC, Valencia.

Fonseca, C. M.,Fleming, P.J. (1998a) Multiobjective
optimization and multiple constraint handling with
evolutionary algorithms I: A unified formulation,
IEEE Transactions on SMC, Part A, 28, (1) 26-37

Harris, C.J., Moore C.G., Brown M. (1993) Intelligent
Control: Some Aspects of Fuzzy Logic and Neural
Networks, World Scientific Press, London &
Singapore.

Holland, J. H., (1992) Adaptation in Nature and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence, MIT
Press, Cambridge.

Nawa, N. E., Furuhashi, T., (1999) Fuzzy System
Parameters Discovery by Bacterial Evolutionary
Algorithm, IEEE Tr. Fuzzy Systems 7, pp. 608-616.

Nelles, O., (2000), Nonlinear Systems Identification with
Local Linear Neuro-Fuzzy Models, PhD. Thesis, TU
Darmstadt, Germany

Ruano A. E., C. Cabrita, J. V. Oliveira, L. T. Kóczy,
(2001) Supervised training algorithms for B-spline
neural networks and neuro-fuzzy systems, submitted to
International Journal of Systems Science

Zadeh, L. A., (1973) Outline of a new approach to the
analysis of complex systems and decision processes,
IEEE Tr. Systems, Man and Cybernetics 3, pp. 28-44.

