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Abstract. In this paper is presented an higher-order model for static and free vibration 

analyses of magneto-electro-elastic plates, which allows the analysis of thin and thick plates. 

The finite element model is a single layer triangular plate/shell element with 24 degrees of 

freedom for the generalized mechanical displacements. Two degrees of freedom are introduced 

per each element layer, one corresponding to the electrical potential and the other for 

magnetic potential. Solutions are obtained for different laminations of the magneto-electro-

elastic plate, as well as for the purely elastic plate as a special case. 
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1 INTRODUCTION 
In the recent years the study of smart structures has attracted significant researchers. The 

use of smart materials, such as piezoelectric and/or piezomagnetic materials, in the form of 
layers or patches embedded and/or surface bonded on laminated composite structures, can 
provide the so-called adaptive structures. In these cases, the structure behaviour is not defined 
by not only geometry and material properties, but also electric and magnetic fields that are 
applied to the structures, because the piezomagnetic materials have the ability of converting 
energy from one form to the other (among magnetic, electric, and mechanical energies).  
Static and dynamic analysis of structures with piezoelectric material had been the objective of 
a considerable number of studies. However, magneto-electro-elastic structures only recently 
had been aim of investigation. Pan [1], and Pan and Heyliger [2], presented an exact solution 
for the analysis of simply supported magnet-electro-elastic laminated plates, regarding static 
and free vibration behaviour, respectively.  Wang et al. [3] developed a mixed analytical solu-
tion for magneto-electro-elastic plates. Lage et al. [4, 5] developed a partial mixed layerwise 
finite element model for the static and free vibration analysis of magneto-electro-elastic lami-
nated plate structures. Chen et al. [6] developed an analytical solution for free vibration prob-
lem of simply supported rectangular plates with general inhomogeneous material properties 
along the thickness direction. Ramirez et al. [7] present an approximate solution for the free 
vibration problem of two-dimensional magneto-electro-elastic laminates, by combining a dis-
crete layer approach with the Ritz method.  
In this paper we present a finite element model, based in the third-order shear deformation 
theory, for static and free vibration analyses of plate structures integrating piezoelec-
tric/piezomagnetic layers. This model using a higher order displacement field, allows to take 
into account transverse shear stresses, and is suitable for the analysis of highly anisotropic 
structures ranging from high to low length-to-thickness ratios. This approach leads to better 
displacements results when compared to classical Kirchoff or even first order shear deforma-
tion theories based models [8].  A simple and efficient three-node triangular fat plate element 
is used. The formulation introduces one electric potential and one magnetic potential degree 
of freedom for each piezoelectric and piezomagnetic layer of the finite element. Results ob-
tained with the proposed finite element model are presented and discussed for static and free 
vibration cases.  
2 THIRD-ORDER SHEAR DEFORMATION PLATE THEORY. DISPLACMENTS 

AND STRAINS. 
The assumed displacement field, for the numerical higher order finite element model, is a 

third order expansion in the thickness coordinate for the in-plane displacements and a constant 
transverse displacement, conjugated with the condition that the transverse shear stresses van-
ish on the top and bottom faces, which is equivalent to the requirement that the corresponding 
strains be zero on these surfaces [8].  
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where u v w0 0 0, ,    are displacements of a generic point in the middle plane of the laminate 
referred to the local axes - x,y,z directions, yx  , θθ  are the rotations of the normal to the mid-
dle plane, about the x axis (clockwise) and y axis  (anticlockwise), yw  , xw 00 ∂∂∂∂  are the 
slopes of the tangents of the deformed mid-surface in x,y directions, zθ  is the rotation about 
the local z axis, which does not enter in the formulation in the local coordinate system, and  21 h34c = , with h the total thickness of the laminate. 

 
The strains components associated with the displacements in equation (1) are conveniently 

represented as: 
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whereZZZZ  is an appropriate matrix containing powers of z .  
 
The components of the vector  εεεε are given by: 
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where 22 h4c =  

3 MAGNETO-ELECTRO-ELASTIC LAMINATES. CONSTITUTIVE EQUATIONS 
For an anisotropic magneto-electro-elastic solid, the constitutive equations for each layer, 

coupling mechanical, electrical and magnetic fields, are as follows [1] 
 H q -E e C         εεεε        σσσσ −=  
 H dE eD ++= ∈∈∈∈εεεε      T  (4)   
 H E dqB µµµµεεεε ++=      T  
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where [ ]Txyyyxx   = σσσσ is the elastic stress vector and [ ]Txyyyxx   = γεεε the elastic strain vec-
tor, [ ]Tzyx E E EE = the electric field vector, [ ]Tzyx H H HH = the magnetic field vector, 

[ ]Tzyx D D DD =  the electric displacement vector, [ ]Tzyx B B BB =  the magnetic induction 
vector, C  the elastic constitutive matrix, e  the piezoelectric matrix, q  the piezomagnetic 
matrix, d  the magnetoelectric matrix,∈ is the dielectric matrix, and µ  is the magnetic per-
meability matrix, in the element local coordinate system.  
 

For the third-order shear deformation plate theory those matrices take the following forms 
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The electric and the magnetic field vectors are the negative gradient of the electric and 
magnetic potentials, which are assumed to be applied and varying linearly in the thickness 
direction, i.e.  φ−∇=  E  
 { }TzE00=E  (6)  
 pz t/E φ−=                                                                                               
 ψ−∇=  H   
 { }TzH00=H  (7) 
 mz t/H ψ−=   

The constitutive Eq. (4) can be written in the synthetic form  
 εεεεσσσσ ˆˆˆ  C=  (8) 
where we define for magneto-electro-elasticity 
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4 FINITE ELEMENT FORMULATION 
The dynamic equations of a laminated composite plate can be derived from the Hamilton’s 

principle: 
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The non-conforming higher order triangular finite element model with three nodes and 
eight mechanical degrees of freedom per node, is used in this work. By assuming that c1=0 
and that sections before deformation remain plane after deformation and perpendicular to the 
middle surface, i.e. by neglecting the transverse shear deformation, a Kirchhoff laminated fi-
nite element model with 6 degrees of freedom per node (CPT) is also easily obtained. The in-
troduction of fictitious stiffness coefficients ZKθ , corresponding to rotations zθ , to eliminate 
the problem of a singular stiffness matrix, for which the elements are coplanar or near copla-
nar, is required. The element local displacements, slopes and rotations are expressed in terms 
of nodal variables through shape functions iN  given in terms of area co-ordinates iL , Zien-
kiewics [9]. The displacement field can be represented in matrix form as: 
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and the strain field as follows: 
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The electric and magnetic fields are given by: 
 φ−= φ  BE   
  (15) 
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where φB  and ψB  are given by 
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Entering the equations (11) to (15) into equation (10), we have 
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To the first and second terms of first member of Eq.(17), correspond, respectively, the 

element stiffness and mass matrices, which are defined by 
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To the third term of Eq.(17), corresponds the applied force vector, the mechanical force 
vector mecF , electric charge vector eleF , and magnetic charge vector magF . 

 
From Eq. (17), yields the element equilibrium equations. To solve general structures, local-

global transformations [9] are carried out for the element stiffness and mass matrices as well 
as for the load vector which are initially computed in the local coordinate system attached to 
the element. After the local-global transformations, the assembled system of equations for 
static analysis is 
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and for free vibration analysis is   
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where{ } { } { }ψφ  and  ,q  are respectively, in the global coordinate system , the generalized me-
chanical displacement, electric potential and magnetic potential vectors.  
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5 APPLICATIONS 
Simply-supported square plate with fixed ends. 

A simply-supported square plate with fixed ends, made of  piezoelectric material BaTiO3 
(called B) and magnetostrictive material CoFe2O4 (called F), with different stacking se-
quences, is analysed by the finite element method using the third order shear deformation the-
ory. The side dimension is L=1m and the thickness of each layer is h=0.1 m (case I) or 0.01m 
(case II). The properties of piezoelectric material are C11=C22=166 x 109 N/m2, C12=77 x 109 
N/m2, C66=44.5 x 109 N/m2, C44=C55=43 x 109 N/m2, e31=e32=-4.4 C/m2, e15=e24=11.6 C/m2 , 
∈11= ∈22=11.2 x 10-9  C2/ N m2, ∈33=12.6 x 10-9  C2/ N m2, µ 11= µ 22=5 x 10-6  N s2/ C2, 
µ 33=10 x 10-6 N s2/ C2 .The properties of the magnetostrictive material are C11=C22=286 x 109 
N/m2, C12=173 x 109 N/m2, C66=56.5 x 109 N/m2, C44=C55=45.3 x 109 N/m2,  q31=q32=580.3 
N/Am, q15=q24=550 N/Am, ∈11= ∈22=0.08 x 10-9  C2/ N m2,∈33=0.093 x 10-9  C2/ N m2 µ 11= 
µ 22=-590 x 10-6  N s2/ C2, µ 33=157 x 10-6 N s2/ C2. The mass density for both materials is 
ρ=1600 kg/m3. 
5.1 Static analysis 

In the static analysis is considered the plate of case I, with total thickness H=0.3 m, and 
stacking sequence (B/F/B), subjected to a sinusoidal mechanical traction applied at its top sur-
face a)ysin( )axsin(tz ππ= . The boundary conditions are as follows: 

( )z,y,xu = ( )z,y,xv = ( )z,y,xw =0          for   x=0 ; x=L and y=0 ; y=L 
0)2h,y,x()2h,y,x( =±ψ=±φ  

The present solution was obtained using a (8x8) element mesh (128 triangular elements). 
The results shown here are obtained for the node of coordinates x=0.75 m, y=0.25 m (dis-
placements), or for the gauss point nearest of this node (stresses) or for the element that con-
tains this gauss point (electric potential, magnetic potential, electric displacement and 
magnetic induction). A transverse displacement w= 5.40 x 10-12 m was obtained at mentioned 
node, while Lage et al. [4], that uses a partial mixed layerwise finite element model, and w is 
a cross-thickness variable, it take values 5.39 x 10-12 m < w < 5.87 x 10-12. The present cross–
thickness distribution of in-plane displacement u evaluated at the same node is shown in Fig. 
1, where is compared with results from Lage et al. [4].  

-0.15-0.1-0.0500.050.10.15
-2.E-12 -1.E-12 0.E+00 1.E-12 2.E-12displac. u (m)

thickness (m)
Lage et al.[4]

Present

 Fig. 1.  u displacement distribution across plate thickness 
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Also the present cross-thickness distributions of stresses are presented in Figs 2-3. Again, 

the present results are compared with those taken from the graphics of Lage et al. [4].  

-0.15-0.1-0.0500.050.10.15
-2.E+00 -1.E+00 0.E+00 1.E+00 2.E+00stress (Pa)

thickness (m)
Lage et al.[4]

Present

 Fig. 2.  xxσ  stress distribution across plate thickness 
-0.15-0.1-0.0500.050.10.15

-5.E-01 -4.E-01 -3.E-01 -2.E-01 -1.E-01 0.E+00stress (Pa)
thickness (m)

Lage et al. [4]Present
 Fig. 3.  xzσ  stress distribution across plate thickness 

-0.15-0.1-0.0500.050.10.15

0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04ele. potential (V)
thickness (m)

 Fig. 4.  Electric potential distribution across plate thickness 
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In Fig. 4-7, the cross-thickness distributions of electric and magnetic potentials as well as 
the electric displacement and the magnetic induction, evaluated at the element that contains 
the previous referred gauss point, are presented.   

-0.15-0.1-0.0500.050.10.15

-2.50E-07 -1.50E-07 -5.00E-08mag. potential (C/s)
thickness (m)

 Fig. 5.  Magnetic potential distribution across plate thickness 
 

-0.15-0.1-0.0500.050.10.15
-5.0E-12 -3.0E-12 -1.0E-12 1.0E-12 3.0E-12 5.0E-12Dz (C/m2)

thickness (m)
 Fig. 6.  Electric displacement Dz  distribution across plate thickness 

 

-0.15-0.1-0.0500.050.10.15
-4.0E-09 -2.0E-09 0.0E+00 2.0E-09 4.0E-09Bz (Wb/m2)

thickness (m)
 Fig. 7.  Magnetic induction Bz  distribution across plate thickness 
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5.2 Free-vibrations analysis 
The simple supported square plate of case II is analysed. The side is equal L=1 m but now 

the total thickness is H=0.04 m (each lamina with 0.01 m of thickness) and the stacking se-
quence is (B/F/F/B). The results obtained using a (6x6) element mesh (72 triangular elements) 
are shown in Table 1, and compared with those obtained in Lage et al [5]. Elastic plate means 
that the piezoelectric and magnetic properties are not considered - set to zero. A very good 
approximation is observed between the results obtained by using the layerwise and single 
layer models. 
 

                              elastic plate                    magneto-electro-elastic plate 
 

Mode             Present        Lage et al. [5]           Present       Lage et al. [5] 
1 2452.8 2498.5 2462.5 2542.9 
2 6226.9 6281.0 6251.0 6391.0 
3 6311.7 6281.0 6335.2 6391.0 
4 10295.5 10017.4 10331.7 10192.0 Table 1. Natural Frequencies (rad/s): L=1 m ; H=0.04 m for B/F/F/B plate 

Secondly the plate of case I with different stacking sequences is analysed. The results ob-
tained are given in Table 2. In Fig 8 are shown the first six mode shapes of (F/B/F) plate 
stacking sequence. 
  

                        elastic plate                                       magneto-electro-elastic plate 
 

Mode    B only       F only        B/F/B        F/B/F        B only       F only        B/F/B       F/B/F 
1 12600.01 14882.24 12751.45 14738.18 12631.77 14905.91 12783.17 14761.57 
2 24926.81 27965.02 25211.44 27664.41 24964.69 27987.31 25249.50 27686.12 
3 25147.20 28198.62 25433.88 27895.27 25185.42 28221.14 25472.28 27917.20 
4 34176.64 37478.54 34566.57 37048.92 34210.58 37496.29 34601.21 37065.91 
5 39204.94 42568.46 39657.88 42059.00 39234.02 42582.32 39687.79 42072.00 
6 39963.98 43475.44 40422.48 42960.06 39995.27 43490.76 40454.58 42974.49 Table 2. Natural Frequencies (rad/s) : L=1 m ; H=0.3 m – HSDT 

6 CONCLUSIONS 
In this paper a finite element model based on a higher-order plate theory is developed for 

the static and free vibration analyses of magneto-electro-elastic plates. This model allows to 
obtain in static analysis the through-thickness distributions of primary variables- mechanical 
displacements, electric potentials and magnetic potentials-as well as for electric displacements 
and magnetic inductions. Some results were compared with those obtained by Lage et al. [4] 
that use a partial mixed layerwise finite element model, and good agreement is found. It 
should be observed that the layerwise theory allows to the cross-thickness variation of the 
transversal displacement w, and the corresponding strain zzε , which is relevant in the stresses 
results, but essentially in the electric and magnetic potentials as well in electric displacement 
and magnetic induction. In the free vibration analysis, the results obtained by using the two 
different models, shown in Table 1, are of the same magnitude, but the quite difference be-
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tween the layerwise approach and the single layer formulation of the present model, justifies 
the discrepancies found between the results.    

 

 

 Figure 8. The first six mode shapes of F/B/F plate 
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