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Abstract. End-stopped cells in cortical area V1, which combine out-
puts of complex cells tuned to different orientations, serve to detect line
and edge crossings (junctions) and points with a large curvature. In this
paper we study the importance of the multi-scale keypoint representa-
tion, i.e. retinotopic keypoint maps which are tuned to different spatial
frequencies (scale or Level-of-Detail). We show that this representation
provides important information for Focus-of-Attention (FoA) and object
detection. In particular, we show that hierarchically-structured saliency
maps for FoA can be obtained, and that combinations over scales in
conjunction with spatial symmetries can lead to face detection through
grouping operators that deal with keypoints at the eyes, nose and mouth,
especially when non-classical receptive field inhibition is employed. Al-
though a face detector can be based on feedforward and feedback loops
within area V1, such an operator must be embedded into dorsal and
ventral data streams to and from higher areas for obtaining translation-,
rotation- and scale-invariant face (object) detection.

1 Introduction

Our visual system is still a huge puzzle with a lot of missing pieces. Even in
the first processing layers in area V1 of the visual cortex there remain many
open gaps, despite the amount of knowledge already compiled, e.g. [3, 5, 25]. Re-
cently, models of cortical cells, i.e. simple, complex and end-stopped, have been
developed, e.g. [7]. In addition, several inhibition models [2, 17], keypoint detec-
tion [7, 12, 22] and line/edge detection schemes [2, 12, 14, 15], including disparity
models [6, 11], have become available. On the basis of these models and possible
processing schemes, it is now possible to create a cortical architecture for figure-
background segregation [16] and visual attention or Focus-of-Attention (FoA),
bottom-up and/or top-down [4, 8, 13], and even for object categorisation and
recognition.

In this paper we will focus exclusively on keypoints, for which Heitger et
al. [7] developed a single-scale basis model of single and double end-stopped cells.
Würtz and Lourens [22] and Rodrigues and du Buf [12] presented a “multi-scale”
approach: detection stabilisation is obtained by averaging keypoint positions over
a few neighbouring micro-scales. In [13] we introduced a truly multi-scale anal-
ysis: if there are simple and complex cells tuned to different spatial frequencies,
spanning an interval of multiple octaves, it can be expected that there are also
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end-stopped cells at all frequencies. We analysed the multi-scale keypoint repre-
sentation, from very fine to very coarse scales, in order to study its importance
and possibilities for developing a cortical architecture, with an emphasis on FoA.
In addition, we included a new aspect, i.e. the application of non-classical recep-
tive field (NCRF) inhibition to keypoint detection, in order to distinguish object
structure from surface textures.

A difficult and still challenging application, even in machine vision, is face
detection. Despite the impressive number of methods devised for faces and fa-
cial landmarks, which can be based on Gabor filters [18] or Gaussian derivative
filters [26], colour [27], attention [19], morphology [9], behaviouristic AI [10],
edges and keypoints [20], spiking neurons [1] and saliency maps [23], complicat-
ing factors that still remain are pose (frontal vs. profile), beards, moustaches
and glasses, facial expression and image conditions (lighting, resolution). De-
spite these complications, in this paper we will study the multi-scale keypoint
representation in the context of a possible cortical architecture. We add that (a)
we will not employ the multi-scale line/edge representation that also exists in
area V1, in order to emphasise the importance of the information provided by
keypoints, and (b) we will not solve complications referred to above, because
we will argue, in the Discussion, that low-level processing in area V1 needs to
embedded in to a much wider context, including short-time memory, and this
context is expected to solve many problems.

In Section 2 we present the models for end-stopped cells and non-classical
receptive field inhibition, followed by keypoint detection with NCRF inhibition
in Section 3, and the multi-scale keypoint representation with saliency maps in
Section 4. In Section 5 we present facial landmark detection, and conclude with
a discussion (Section 6).

2 End-stopped cells and NCRF inhibition

Gabor quadrature filters provide a model of cortical simple cells [24]. In the
spatial domain (x, y) they consist of a real cosine and an imaginary sine, both
with a Gaussian envelope. A receptive field (RF) is denoted by (see e.g. [2]):

gλ,σ,θ,ϕ(x, y) = exp
(
− x̃2 + γỹ2

2σ2

)
· cos(2π

x̃

λ
+ ϕ),

x̃ = x cos θ + y sin θ ; ỹ = y cos θ − x sin θ,

where the aspect ratio γ = 0.5 and σ determines the size of the RF. The spa-
tial frequency is 1/λ, λ being the wavelength. For the bandwidth σ/λ we use
0.56, which yields a half-response width of one octave. The angle θ determines
the orientation (we use 8 orientations), and ϕ the symmetry (0 or π/2). We
apply a linear scaling between fmin and fmax with, at the moment, hundreds of
contiguous scales.

Responses of even and odd simple cells, which correspond to real and imagi-
nary parts of a Gabor filter, are obtained by convolving the input image with the
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RF, and are denoted by RE
s,i(x, y) and RO

s,i(x, y), s being the scale, i the orienta-
tion (θi = iπ/(Nθ − 1)) and Nθ the number of orientations. In order to simplify
the notation, and because the same processing is done at all scales, we drop the
subscript s. The responses of complex cells are modelled by the modulus

Ci(x, y) = [{RE
i (x, y)}2 + {RO

i (x, y)}2]1/2.

There are two types of end-stopped cells [7, 22], i.e. single (S) and double (D). If
[·]+ denotes the suppression of negative values, and Ci = cos θi and Si = sin θi,
then

Si(x, y) = [Ci(x + dSi, y − dCi) − Ci(x − dSi, y + dCi)]
+ ;

Di(x, y) =
[
Ci(x, y) − 1

2
Ci(x + 2dSi, y − 2dCi) − 1

2
Ci(x − 2dSi, y + 2dCi)

]+

.

The distance d is scaled linearly with the filter scale s, i.e. d = 0.6s. All end-
stopped responses along straight lines and edges need to be suppressed, for which
we use tangential (T) and radial (R) inhibition:

IT (x, y) =
2Nθ−1∑

i=0

[−Ci mod Nθ
(x, y) + Ci mod Nθ

(x + dCi, y + dSi)]
+ ;

IR(x, y) =
2Nθ−1∑

i=0

[
Ci mod Nθ

(x, y) − 4 · C(i+Nθ/2) mod Nθ
(x +

d

2
Ci, y +

d

2
Si)

]+

,

where (i + Nθ/2) mod Nθ ⊥ i mod Nθ.
The model of non-classical receptive field (NCRF) inhibition is explained in

more detail in [2]. We will use two types: (a) anisotropic, in which only responses
obtained for the same preferred RF orientation contribute to the suppression,
and (b) isotropic, in which all responses over all orientations equally contribute
to the suppression.

The anisotropic NCRF (A-NCRF) model is computed by an inhibition term
tAs,σ,i for each orientation i, as a convolution of the complex cell responses Ci

with the weighting function wσ, with wσ(x, y) = [DoGσ(x, y)]+/‖[DoGσ]+‖1,
‖ · ‖1 being the L1 norm, and

DoGσ(x, y) =
1

2π(4σ)2
exp(−x2 + y2

2(4σ)2
) − 1

2πσ2
exp(−x2 + y2

2σ2
).

The operator bA
s,σ,i corresponds to the inhibition of Cs,i, i.e. bA

s,σ,i = [Cs,i −
αtAs,σ,i]

+, with α controlling the strength of the inhibition.
The isotropic NCRF (I-NCRF) model is obtained by computing the inhi-

bition term tIs,σ which does not dependent on orientation i. For this we con-
struct the maximum response map of the complex cells C̃s = max{Cs,i}, with
i = 0, ...Nθ − 1. The isotropic inhibition term tIs,σ is computed by the convolu-
tion of the maximum response map C̃s with the weighting function wσ, and the
isotropic operator is bI

s,σ = [C̃s − αtIs,σ]+.
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Fig. 1. Centre and right: keypoints without and with NCRF inhibition (face196).

3 Keypoint detection with NCRF inhibition

NCRF inhibition permits to suppress keypoints which are due to texture, i.e.
textured parts of an object surface. We experimented with the two types of
NCRF inhibition introduced above, but here we only present the best results
which were obtained by I-NCRF at the finest scale.

All responses of the end-stopped cells S(x, y) =
∑Nθ−1

i=0 Si(x, y) and D(x, y) =∑Nθ−1
i=0 Di(x, y) are inhibited by bI

s,σ, i.e. we use α = 1, and obtain the responses
S̃ and D̃ of S and D that are above a small threshold of bI

s,σ. Then we apply
I = IT + IR for obtaining the keypoint maps KS(x, y) = S̃(x, y) − gI(x, y)
and KD(x, y) = D̃(x, y) − gI(x, y), with g ≈ 1.0, and the final keypoint map
K(x, y) = max{KS(x, y), KD(x, y)}.

Figure 1 shows, from left to right, an input image and keypoints detected
(single, finest scale), before and after I-NCRF inhibition. After inhibition, only
contour-related keypoints remain. Almost all texture keypoints have been sup-
pressed, although some may still remain because of strong local contrast (see [13]).

4 Multiscale keypoint representation

Although NCRF inhibition can be applied at all scales, this will not be done
for two reasons: (a) we want to illustrate keypoint behaviour in scale space for
the application of FoA, and (b) at coarser scales, i.e. increased RF sizes, most
detail (texture) keypoints will be eliminated automatically. In the multi-scale
case, keypoints are detected the same way as done above, but now by using
KS

s (x, y) = Ss(x, y) − gIs(x, y) and KD
s (x, y) = Ds(x, y) − gIs(x, y).

An important aspect of a face detection scheme is Focus-of-Attention by
means of a saliency map, i.e. the possibility to draw attention to and to inspect,
serially or in parallel, the most important parts of faces, objects or scenes. In
terms of visual search, this includes overt attention and pop-out. If we assume
that retinotopic projection is maintained throughout the visual cortex, the ac-
tivities of all keypoint cells at the same position (x, y) can be easily summed over
scale s, which leads to a very compact, single-layer map. At the positions where
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Fig. 2. Keypoints at fine (a), medium (b) and coarse (c) scales, with saliency map (d).

keypoints are stable over many scales, this summation map, which could replace
or contribute to a saliency map [4], will show distinct peaks at centres of objects,
important sub-structures and contour landmarks. The height of the peaks (sum-
mation cell activity) can provide information about the relative importance. In
addition, this summation map, with some simple processing of the projected
trajectories of unstable keypoints, like a dynamic lowpass filtering related to
the scale and non-maximum suppression, might solve the segmentation prob-
lem: the object centre is linked to important sub-structures, and these are linked
to contour landmarks. This is shown in Fig. 2(d) by means of a 3D perspective
projection. Such a mapping or data stream is data-driven and bottom-up, and
could be combined with top-down processing from inferior temporal cortex (IT)
in order to actively probe the presence of certain objects in the visual field [8]. In
addition, the summation map with links between the peaks might be available
at higher brain areas where serial processing occurs for e.g. visual search.

In order to illustrate keypoint behaviour in the case of human faces we cre-
ated an almost continuous, linear, scale space. Figure 2 (“face196”), shows three
different scales from scale space: (a) fine scale with λ = 4, (b) medium scale
with λ = 20, and (c) coarse scale with λ = 40. At even coarser scales there will
remain only a single keypoint more or less in the centre of the face (not shown).
Most if not all faces show a distinct keypoint the middle of the line that connects
the two eyes, like in Fig. 2(b). Figure 2(d) shows the saliency map of the entire
scale space (λ = [4, 40]) with 288 different scales. Important peaks are found at
the eyes, nose and mouth, but also at the hairline and even the chin and neck.
For a detailed analysis of keypoint behaviour and stability we refer to [13].

5 Detection of facial landmarks

In Fig. 2(d) we can see the regions where important features are located, but it
is quite difficult to see which peaks correspond to important facial landmarks.
On the other hand, looking at Fig. 2(b) it is easy to see that some keypoints cor-
respond to landmarks that we pretend to find (in this study limited to eyes, nose
and mouth), but (a) there are many more keypoints and (b) at other scales (e.g.
Fig. 2(c)) they are located at other structures. Presumably, the visual system
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Fig. 3. Left to right: (a) facial landmarks, (b) eye landmarks, (c) impression of keypoint
scale space, and (d) saliency map with single-scale keypoints and NCRF inhibition.

uses a “global” saliency map in combination with “partial” ones obtained by
summing keypoints over smaller scale intervals, or even keypoints at individual
scales, in order to optimise detection. This process can be “steered” by higher
brain areas, which may contain prototype object maps with expected patterns
(with approximate distances of eyes and nose and mouth), which is part of the
fast “where path.” The actual “steering” may consist of excitation and inhibition
of pre-wired connections in keypoint scale space, i.e. grouping cells that combine
end-stopped cells in approximate areas and at certain scales, which is part of
the slower “what path.”

In our simulations we explored one possible scenario. We assume the existence
of very few layers of grouping cells, with dendritic fields in partial saliency maps
that map keypoints in specific scale intervals. The top layer with “face” cells
groups axons of “eyes” (plural!), “nose” and “mouth” grouping cells. The “eyes”
cells group axons of pairs of “eye” cells. Only the “eye,” “nose” and “mouth”
cells connect to the saliency maps, the “face” and “eyes” cells do not. The
scenario consists of detecting possible positions of eyes, linking two eyes, then
two eyes plus nose, and two eyes plus nose plus mouth. This is done dynamically
by activating synaptic connections in the partial saliency maps.

In our simulations, in which we experimented with faces of different sizes
(Fig. 5), we used 7 partial saliency maps, each covering 40 scales distributed
over Δλ = 5, but the scale intervals were overlapping 20 scales. The finest scale
was at λ = 4. The search process starts at the coarsest scale interval, because
there are much less candidate eye positions than there are at the finest scale
interval. A feedback loop will activate connections to finer scale intervals, until
at least one eye candidate is detected.

First, “eye” cells respond to significant peaks (non-maximum suppression and
thresholding) in the selected saliency map (in the case of “face196” λ = [13, 18],
see Fig. 4 (left)), as indicated by Fig. 3(b)-1, but only if there are also two stable
symmetric keypoints at the 40 finest scales (Fig. 3(b)-4). In order to reduce false
positives, the latter is done after NCRF inhibition (Fig. 3(d)). If not a single eye
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Fig. 4. Left: the saliency map of face196 (λ = [13, 18]); Right: result of face196.

cell responds, the scale interval of the saliency map is not appropriate and the
feedback loop will step through all saliency maps (Fig. 3(c)), until at least one
eye cell responds.

Second, “eyes” cells respond if two “eye” cells are active on an approximately
horizontal line (Fig. 3(a)-1), each “eyes” cell being a grouping cell with two
dendritic fields. If no eye pair is found, a new saliency map is selected (feedback
loop).

Third, when two eyes can be grouped, a “nose” cell is activated, its dendritic
field covering an area below the “eyes” cell in the saliency map (Fig. 3(a)-2). If
no peak is detected, a new saliency map is selected (feedback loop).

Fourth, if both “eyes” and “nose” cells respond, a “mouth” cell with two
dendritic fields at approximate positions of the two mouth corners (Fig. 3(a)-3)
is activated. If keypoints are found, a “face” cell will be excitated. If not, a new
saliency map is selected (feedback loop).

The process stops when one face has been detected, but in reality it might
continue at finer scale intervals (there may be more faces with different sizes in
the visual field). However, see the Discussion section. The result obtained in the
case of “face196” is shown in Fig. 4, where +, � and × symbols indicate detected
and used keypoints at eyes, nose and mouth corners (actual positions of face and
eyes cells are less important). More results are shown in Fig. 5, which includes a
correctly detected (!) fake face. Obviously, more features must be used, including
the multi-scale line/edge representation.

6 Discussion

As Rensink [21] pointed out, the detailed and rich impression of our visual sur-
round may not be caused by a rich representation in our “visual memory,” be-
cause the stable, physical surround already “acts” like memory. In addition,
focused attention is likely to deal with only one object at a time. His triadic ar-
chitecture therefore separates focused attention to coherent objects (System II)
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from nonattentional scene interpretation (Layout and Gist subsystems in Sys-
tem III), but both Systems are fed by low-level feature detectors, e.g. of edges,
in System I.

In this paper we showed that keypoints detected by end-stopped operators,
and in particular a few partial keypoint maps that cover overlapping scale inter-
vals, may provide very important information for object detection. Exploring a
very simple processing scheme, faces can be detected by grouping together ax-
ons of end-stopped cells at approximate retinotopic positions, and this leads to
robust detection in the case of different facial expressions. However, the simple
scheme explored only works if the eyes are open, if the view is frontal, and if
the faces are approximately vertical. For pose-, rotation- and occlusion-invariant
detection, the scheme must be fed by Rensink’s short-term Layout and Gist sub-
systems, but also the long-term Scene Schema system that is supposed to build
and store collections of object representations, for example non-frontal faces.

Owing to the impressive performance of current computers, it is now possi-
ble to test Rensink’s [21] triadic architecture in terms of e.g. Deco and Rolls’ [8]
cortical architecture. The ventral WHAT data stream (V1, V2, V4, IT) is sup-
posed to be involved in object recognition, independently of position and scaling.
The dorsal WHERE stream (V1, V2, MT, PP) is responsible for maintaining a
spatial map of an object’s location and/or the spatial relationship of an object’s
parts as well as moving the spatial allocation of attention. Both data streams
are bottom-up and top-down. Apart from input via V1, both streams receive
top-down input from a postulated short-term memory for shape features or ob-
jects in prefrontal cortex area 46, i.e. the more ventral part PF46v generates an
object-based attentional component, whereas the more dorsal part PF46d spec-
ifies the location. As for now, we do not know how PF46 works. It might be the
neurophysiological equivalent of the cognitive Scene Schema system mentioned
above, but apparently the WHAT and WHERE data streams are necessary for
obtaining view-independent object detection through cells with receptive fields
of 50 degrees or more [8]. However, instead of receiving input directly from sim-
ple cells, the data streams should receive input from feature extraction engines,
including end-stopped cells.

Acknowledgments: The images used are from the Psychological Image Col-
lection at Stirling University (http://pics.psych.stir.ac.uk/). Research is partly
financed by PRODEP III Medida 5, Action 5.3, and by the FCT program POSI,
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Fig. 5. Results obtained with different faces and expressions.


