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Abstract

Fainterly rendering has been linked to computer vision, but we propose to link it to human vision because perception
and painting are two processes that are interwoven. Recent progress in developing computational models allows
to establish this link. We show that completely automatic rendering can be obtained by applying four image
representations in the visual system: (1) colour constancy can be used to correct colours, (2) coarse background
brightness in combination with colour coding in cytochrome-oxidase blobs can be used to create a background
with a big brush, (3) the multi-scale line and edge representation provides a very natural way to render finer
brush strokes, and (4) the multi-scale keypoint representation serves to create saliency maps for Focus-of-Attention,
and FoA can be used to render important structures. Basic processes are described, renderings are shown, and

important ideas for future research are discussed.
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1. INTRODUCTION

We combine two different research areas in this paper:
non-photorealistic rendering (NPR), in particular painterly
rendering of images or photographs by means of dis-
crete brush strokes; and visual perception, in particu-
lar computational models that have been—or are being—
developed for colour and brightness perception and Focus-
of-Attention. Painterly rendering has been combined with
computer vision [14, 21, 36], but, in our view, it should
be linked to human vision because painting is intrinsically
related to the way we perceive the external world, i.e. real
scenes or photographs.

NPR is a research area which aims at transforming input
images (photographs, data) into output images which re-
semble the input, but an artistic impression can be created.
For a recent NPR taxonomy and survey of stroke-based
rendering techniques see [18, 37]. In this paper we ad-
dress painterly rendering in the sense of Hertzmann [17],
i.e., completely automatic creation of paintings by using
brush strokes of different sizes. Since painters often select
fine brushes in regions with important detail structures, we
can combine painterly rendering with stylisation and ab-
straction as introduced by DeCarlo and Santella [6], but
with automatic selection of the regions. In addition, since
painters often exaggerate colours, we apply a method for
transforming dull colours into more vivid ones.

The goal of this paper is to show how we can apply mod-
els of visual perception. Painters have learned to observe
and to select important structures to be painted, and do

this quasi-automatically or intuitively. Rendering schemes
must be developed that do the same, which requires good
insight into our visual system and processes in the vi-
sual cortex. In this paper we illustrate painterly render-
ing based on cortical image representations. In view of the
many aspects involved, like disparity (stereo, depth), mo-
tion and texture perception, we will concentrate on only
three aspects for which state-of-the-art models are avail-
able: colour constancy, brightness perception on the basis
of multi-scale line/edge representations, and saliency maps
for Focus-of-Attention based on keypoint representations.
Future extensions may involve texture perception for ren-
dering realistic textures, simulating the hand of a painter
while painting fine, repetitive textures, and motion percep-
tion for creating animations from video; see also Discus-
sion.

This paper is organised as follows: Section 2 introduces
basic concepts. Sections 3, 4 and 5 deal with bright-
ness perception and line/edge interpretation, Focus-of-
Attention and keypoints, and colour constancy. Rendering
procedures are explained and illustrated in Section 6, and
we conclude with a discussion in Section 7.

2 From perception to rendering

In area V1, which is the input layer of the visual cortex,
there are simple and complex cells which are tuned to dif-
ferent spatial frequencies (scales) and orientations. Sim-
ple cells are often modelled by means of complex Gabor
functions, with a real cosine component and an imaginary
sine component, both Gaussian windowed, and complex
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cells are then modelled by the modulus, see [9]. Many
of these cells are also tuned to disparity (stereo, depth)
because of the neighbouring, periodic left-right hyper-
columns, e.g. [19, 28]. All these cells provide input for
grouping cells that code line and edge information and that
attribute depth. There also are end-stopped cells that, to-
gether with complicated inhibition processes, allow to ex-
tract keypoints (singularities, vertices and points of high
curvature). Recently, models of simple, complex and end-
stopped cells have been developed, e.g. [16]. In addi-
tion, several inhibition models [15, 27], keypoint detection
[16, 32] and line/edge detection schemes [12, 15, 32, 38],
including disparity models [13, 31], have become avail-
able. On the basis of these models and neural process-
ing schemes, it is now possible to create a cortical ar-
chitecture for e.g. figure-ground segregation [20, 40] and
Focus-of-Attention (FoA) [25], including object detection
and recognition with both bottom-up and top-down data
streams in the ventral what and dorsal where subsystems
[7, 29, 34]. A detailed introduction of all these processes
is beyond the scope of this paper.

In the following sections we will explain a few processes
and show how perception models can be employed in NPR.
These models cover four aspects:

1. Brightness perception based on the multi-scale
line/edge representation provides a very natural way
for painterly rendering [17], with brush sizes that are
coupled to the scale of image analysis, from coarse
(global structures) to fine (local detail). Many painters
start with big brushes in order to create a background
with coarse regions, after which smaller brushes are
used to paint small structures. Here we will not go
into special techniques like clair-obscur and will only
apply wet-on-dry, i.e. a new (wet) brush stroke will
substitute previously applied (dry) strokes.

2. A global background level of brightness cannot be
coded by cortical simple and complex cells if these
are modelled by bandpass Gabor filters with a zero—
or very small, residual—DC component. However,
apart from the rods and cones, the common pho-
toreceptors, retinal ganglion cells have been identi-
fied that have no (in)direct connection to rods and
cones; their dendrites act as photoreceptors [1]. These
ganglion cells transfer global luminance information
to central brain regions, for controlling the circadian
clock (solar day) and the eyes’ iris muscles (pupil
size). Because of their projections on ventral and dor-
sal areas of the LGN (lateral geniculate nucleus), it
is assumed that they also project on the cytochrome-
oxidase (CO) blobs in the cortical hypercolumns,
where colour information from the retinal cones is
processed [19]. This way, colour coding in CO blobs
is complemented with a global brightness level, and
this representation will be used to paint a background
with very large brush strokes. We will not devote a
separate section to this aspect, because the solution is
extremely simple; see Section 6.

Figure 1. Brightness induction effects (left)
and model predictions (right).

3. Colour constancy, which means that the colours of a
scene or image are perceived with little influence of
the illumination spectrum (colours of light sources),
can be obtained by applying the retinex theory [23]
or the more recent ACE (Automatic Colour Equalisa-
tion) model [30]. The ACE model can be applied to
create more vivid colours, an effect that can be ob-
served in many paintings.

4. Focus-of-Attention by means of the multi-scale key-
point representation and saliency maps can be used to
guide the rendering such that line/edge-based brush
strokes are only applied in image regions with a cer-
tain complexity. This aspect is related to image styli-
sation and abstraction [6], but automatic generation
of saliency maps eliminates the need to record eye
movements, i.e. fixation points, of persons who are
actually looking at the image to be rendered.

There is a relation between colour constancy and bright-
ness perception. However, this relation is very complex
and not sufficiently covered in the literature concerning
computational models. Therefore we will not go into de-
tail. Another aspect will be ignored too: DeCarlo and San-
tella [6] employed the contrast sensitivity function (CSF)
of sinewave gratings to suppress fixation points in regions
with low contrast. We will not do this for two reasons:
(1) A CSF depends on retinal eccentricity, the size of the
gratings and background luminance, and can only be mea-
sured under very controlled experimental conditions and
with very trained observers. (2) The sinewave CSF may
only be used in the case of sinusoidal patterns. CSFs in the
case of other gratings (squarewave, trapezoidal) are dif-
ferent, and all CSFs of periodic gratings differ completely



Figure 2. Event maps at four scales.

from threshold curves of aperiodic patterns like blobs or
discs [8]. Nevertheless, in NPR it may make sense to sup-
press very low-contrast patterns, but a unified detection
model that can be applied to all patterns remains a Holy
Grail of visual psychophysics [3, 10].

Below, we illustrate the application of the perception mod-
els, without going into the mathematics of the models, but
with first results created by painterly rendering. In the next
three sections we explain the brightness model, keypoints
and FoA, and the ACE model.

3 Lines, edges and brightness

Figure 1 (left) shows two brightness induction effects,
i.e. simultaneous brightness contrast (top) and assimila-
tion (bottom). All nine circles have the same level of grey
(pixel value), as have the six grey bars, which means that
under homogeneous illumination they should appear equal
in brightness. However, it can be seen that in simultaneous
brightness contrast the background pushes the brightness
of the circles in the opposite direction: grey circles against
a dark background become brighter. On the other hand, in
assimilation the black flanking bars pull the brightness of
the grey bars in the same direction. Figure 1 shows correct
model predictions.

For explaining the model predictions, it is necessary to as-
sume that our visual system reconstructs, more or less, the
input image. For example, image reconstruction can be
based on one lowpass filter plus a complete set of bandpass
wavelet filters such that the frequency domain is evenly
covered. This is the basis of many image coding schemes,
and could be used in the visual cortex because simple
cells in V1 are often modelled by complex Gabor wavelets
(bandpass filters) [16], and lowpass information is avail-
able through the special retinal ganglion cells with pho-

Figure 3. Symbolic line/edge interpretations
at the four scales.

toreceptive dendrites [1]. Activities of all cells could be
combined by summing them in one cell layer that would
provide a brightness map. But then there is a big problem:
it is necessary to create another observer of this map in our
brain.

The solution is simple: instead of summing all cell ac-
tivities, we can assume that the visual system extracts
lines and edges from simple- and complex-cell responses,
which is necessary for object recognition, and that re-
sponding “line cells” and “edge cells” are interpreted sym-
bolically. For example, responding line cells along a bar
signal that there is a line with a certain position, orien-
tation, amplitude and scale, the latter being interpreted
by a Gaussian cross-profile which is coupled to the scale
of the underlying simple and complex cells. The same
way a responding edge cell is interpreted, but with a bipo-
lar, Gaussian-truncated, error-function profile. This multi-
scale symbolic interpretation, in combination with lowpass
information—the special retinal ganglion cells with pho-
toreceptive dendrites—forms the basis for the model pre-
dictions shown in Fig. 1 and image reconstruction shown
below. In addition, this brightness model is one of the very
few that can predict Mach bands seen at ramp edges but not
at ideal step edges [26]: the crucial idea is that simple-cell
responses do not allow to distinguish between ramp edges
and lines, which explains why bright and dark lines are
seen at ramp edges [9]. The model was shown to be able
to predict more brightness illusions, but was first tested in
1D [11] and is currently being extended to 2D.

Figures 2, 3 and 4 illustrate visual reconstruction. Figure
2 shows event maps at four scales, i.e., detected positions
of positive and negative lines and edges, coded by grey



Figure 4. Visual reconstruction (top-right)
based on lowpass filtering (top-left) and
line/edge interpretations (bottom).

level and superimposed on a low-contrast version of the
input image (the “lake” input image is shown in B/W in
Fig. 6 and in colour in Figs 7 and 12). The actual detec-
tion process, with solutions to solve problems related to
stability, completeness and curvature, has been described
elsewhere [33]. Figure 3 shows symbolic line/edge inter-
pretations at the same four scales. Figure 4 illustrates the
reconstruction process by summing lowpass information
(top-left) and combined interpretations with real event am-
plitudes at the four scales (only two scales are shown at the
bottom) and the result (top-right). Using more filter scales
leads to better reconstructions and the relative weighting of
all information is very important in developing brightness
models. The basic idea for NPR follows from Figs 2 and 3:
event positions form strokes and the size of the profiles de-
termines brush size, in the case of edges two parallel brush
strokes.

4 Keypoints, saliency and FoA

Responses of end-stopped cells in V1 are very fuzzy and
require optimised inhibition processes in order to detect,
with high precision, keypoints at singularities like edge
crossings. Recently, the original, single-scale model [16]
has been further stabilised and extended to arbitrary scale,
and the multi-scale keypoint representation has been used
to detect faces [34].

Figure 5 shows detected keypoints in the case of the same
image (Figs 6 and 12) and at the same scales as used in
Figs 2 and 3. In general, keypoints are stable over certain
scale intervals: over fine scales at fine image detail, over
medium scales at coarser structures, etc. For a detailed
analysis of keypoint behaviour in scale space we refer to

Figure 5. Keypoint maps at the four scales.

[34]. If we assume that detected keypoints are summed
over all scales, which is a retinotopic (neighbourhood-
preserving) projection by grouping cells in a saliency map,
keypoints which are stable over many scales will result
in large, distinct peaks. In other words, since keypoints
are related to local image complexity, such a saliency map
codes complexity at different scales, and different saliency
maps can be created at fine, medium and coarse scales, in-
dicating interesting points at those scales. Figure 6 shows,
apart from the input image (B/W), such a map as a normal
image and in projected view. The regions around the peaks
were created by assuming that each peak has a certain
Region-of-Interest (Rol): keypoints at a certain scale in-
herit the “size” of the underlying simple and complex cells,
as was the case of the line/edge profiles in the previous sec-
tion. Retinotopic projections over scale intervals therefore
result in distinct peaks (actual positions) plus Rols that are
coupled to scale (in Fig. 6 we only show one map obtained
after summing over many scales).

Because saliency maps code complexity in terms of po-
sition and Rol, such maps provide ideal information for
Focus-of-Attention, a process used to steer our eyes and
mental attention [25]: to plan saccadic eye movements be-
tween fixation points (the peaks), and during fixation the
stable information in the Rol (lines/edges, disparity) has
time to be processed in V1 and, also during the next sac-
cade, to propagate to area V2 and higher cortical areas.
Here our point is that saliency maps can be used in NPR
in order to control the rendering, using brushes of a certain
size only inside the Rols around the peaks. This eliminates
the need to record eye movements [6].

5 Colour constancy

Colour constancy is the effect that the colours of a scene
or image are perceived with little influence of the colour of



Figure 6. Input image (B/W) and a saliency
map for FOA.

the light source. The retinex theory [23] explains this by
assuming that local colour depends on the surrounding re-
gion or even the entire image. The recent ACE (Automatic
Colour Equalisation) model [30] achieves this in two pro-
cessing steps in the RGB channels: First, chromatic and
spatial adjustment of each pixel is applied by subtracting
R, G and B values of all pixels, thereby employing a non-
linear saturation function to the differences and weighting
the contributions of all pixels by a Euclidean distance func-
tion. Second, dynamic tone reproduction scaling serves to
rescale, linearly but with clamping, the R, G and B values
of all pixels to use the available range, normally from O to
255 (8 bits) in 24-bit images. Figure 7 shows the “lake”
and “seals” images before (left) and after (right) applying
the ACE model. As can be seen, contrast and colour ranges
have been stretched, and the colours are more balanced.
This effect is ideal for automatic, unsupervised NPR on
the basis of unprocessed photographs (we note that con-
trast stretching, although not on the basis of a perception
model, can be easily achieved by packages like Adobe’s
Photoshop, Corel’s Paint Shop Pro and GNU’s GIMP).

6 Painterly rendering

The models described above are employed in a sequence
of processing steps. Two steps can be seen as options:
(1) If the colours of an image are very pleasing because
they convey a certain mood, for example a sunset with red-
dish colours against a dark landscape and sky, the ACE
model may change the mood drastically and it may be bet-
ter to skip colour equalisation. (2) Stylisation by means
of saliency maps leads to less brush strokes in regions

Figure 7. Colour correction by the ACE model
(right).

where there are no or few keypoints, for example along
long edges between homogeneous regions. Application of
stylisation may therefore suppress important structures and
the user can decide to experiment with and without styli-
sation. Below we will illustrate a few effects and option
selections, but the normal procedure is the following:

First, the ACE model is applied to the input image. Sec-
ond, a background image is created. In order to obtain the
effect of a painted undergound, a large brush size of 16 by
32 pixels, for example, is applied: (A) A position and an
orientation are selected randomly. (B) Three colours are
picked in the ACE image, at the actual position (the centre
of the stroke) and at the two end points. (C) If the colour
at one of the end points deviates significantly from the av-
erage of the other two colours, the stroke will not be ap-
plied. The reason is simple: the orientation of this stroke is
such that it covers two distinct regions, and a wrong colour
would be introduced in one region in which no line/edge
information may be available. This colour may not be cor-
rected by line/edge-related brush strokes, for example in
homogeneous regions like the sky or in water. (D) If the
three colours do not deviate significantly, they are aver-
aged, the stroke will be painted, and we continue with step
A. (E) This procedure is repeated until the entire image (all
pixels) has been covered, counting the number of painted
strokes, and then the same number of strokes will be ap-
plied again using the same procedure. This repetition with
random positions and orientations will cover many previ-
ously painted strokes such that only parts remain visible,
which yields more realistic results. Figure 8 shows created
backgrounds in the case of the colour-corrected “lake” and
“seals” images shown in Fig. 7. The strokes which were
painted last are clearly visible because they are complete.



Figure 8. Created background images: lake
(top) and seals (bottom).

Finally, detected lines and edges (event type, position,
scale) are rendered, scale by scale, by continuous brush
strokes with colours that are picked in the colour-corrected
image. This is accomplished in seven steps:

1. Detected events are checked for continuity, sepa-
rated, and continuous sequences of (xz,y) positions
are stored in lists. Lists that contain more than 16 po-
sitions are divided into separate lists. If there are a
few more positions, like 18, we keep the entire list,
but a list of 21 will be separated into two lists of 10
and 11. This is done to prevent rendering very long
strokes with one and the same colour, which are of-
ten detected at coarse scales. In the future, the num-
ber of positions (16, 18) will be varied such that lists
(strokes) will be shorter at fine scales.

2. Each list is filtered in order to transfer discrete lat-

Figure 9. Polygon (triangle) construction us-
ing lines perpendicular to average left-right
slopes.

tice positions into smooth strokes with coordinates in
floating point. The filtering applied consists of itera-
tively moving each point in the direction of the line
defined by the point’s four neighbouring points, two
on each side, until movements become very small
[24]. As a result, strokes are slightly “randomised,”
as if they were painted by hand.

3. The centre point of each list is determined by count-
ing. If this point is within a Rol of the saliency map at
the list’s scale, the entire list will be rendered as one
stroke. If not, a new list will be processed. As men-
tioned above, the selection can be skipped if stylisa-
tion leads to incomplete structures.

4. Through each point, a perpendicular line is computed
on the basis of the average of the slopes of the two
lines that connect the point with its two neighbours,
see Fig. 9.

5. Point pairs are used to create polygons by (a) using
the perpendicular lines and (b) a distance to the points
that depends on brush size. In the case of rendering
an edge, two but connected polygons are created, one
on each side.

6. Colours are picked in the colour-corrected image: a
line stroke is rendered by averaging the colours at all
the list’s positions, and an edge stroke by two colours
that are the averages of the colours at symmetric po-
sitions off the centre list on the perpendicular lines.

7. All polygons (or triangles) are rendered using
OpenGL, with texture (opacity) mapping in the al-
pha channel. Below we will illustrate two mappings:
gradual opacity maps for creating clean, ellipsoidal-
like strokes (as were used in Fig. 8), and real, digitised
strokes composed of randomly-selected heads, bodies
and tails.

Figure 10 shows discretised and painted strokes at four
scales and Fig. 11 the combination with the background,
using coarse-to-fine-scale colour replacement which sim-
ulates painting wet-on-dry (at the moment, all individual
brush strokes replace previously rendered positions). It can
be seen that adding finer scales leads to many local correc-
tions, i.e. to more realistic detail. Final results are shown in
Figs 12 (lake) and 13 (seals). These results were obtained
by using only five scales, from medium to fine, and clean,



Figure 10. Discrete strokes at the four scales.

artificial strokes. The middle images were created without
saliency maps, the bottom ones with saliency maps. The
difference is clearly visible in the case of the seals image,
but not in the case of the lake image (only two positions at
the edge between the sky and the landscape).

Figure 14 shows the background and final result in the
case of the lake image when rendered with real, digitised
strokes (compare with Figs 8 and 12). These strokes are
composed of randomly-combined heads, bodies and tails
from digitised oil-painted strokes, see Fig. 15, which are
used to control colour opacity. As can be seen, the use of
real brush strokes changes our impression of the “paint-
ings.” Figures 16 to 18 show more examples, i.e. with real
(16) and clean (17,18) brush strokes. Finally, Fig. 19 shows
results without (top) and with the application of colour
equalisation. Two different parameter selections (mini-
mum contrast, middle; maximum contrast, bottom) of the
ACE model yield more vivid colours, for example the blue
in the sky, but the mood of the reddish sunset has been lost.
This is an example of a case where it may be better not to
apply colour equalisation.

7 Discussion

We have seen that perception models can provide a solid
basis for NPR, specifically for painterly rendering. Colours
can be corrected to cover the available dynamic range, such
that unprocessed photographs are optimised and colours
become more vivid. Coarse brightness and colour cod-
ing can be used to create a painted background with very
large brush strokes, thereby avoiding painting across edges
with different colours. The symbolic line/edge interpreta-
tion translates directly into brush strokes, and adding more
scales (finer brushes) leads to more realistic renderings.
Saliency maps can be used to steer the rendering by paint-

Figure 11. Rendering coarse to fine scale.

ing lines and edges only in regions with sufficient com-
plexity. As mentioned in the Introduction, our goal is com-
pletely automatic painterly rendering by using human vi-
sion. Although all processing steps can be selected, there
are a few options that the user can (de)select. The most
important options, with possible solutions or alternatives,
are:

1. Colour correction by the ACE model often leads to
brighter, more vivid colours, especially after exper-
imenting with ACE’s own parameters (different sat-
uration and distance functions), but sometimes this
effect is not desired. If the colours of the input im-
age convey a desired mood or effect, for example, the
ACE model can be skipped. Automatically applying
ACE or not, or selecting its parameters, requires a pri-
ori knowledge or years of research into local/global
colour histograms and their relation to subjective in-
terpretations of many observers. The user is always
free to edit the colour gamut with standard techniques,
like decreasing saturation in the case of preparing a
watercolour rendering (transfer RGB space to HSV,
reduce saturation and then transfer back to RGB).

2. Stylisation by selecting brush strokes on the basis
of keypoints and their ROIs may interrupt long lines
and edges if no vertices or other structures like tex-
tures are present, and the painted background may be
too random to convey continuity. The approach pre-
sented here is only one of many possibilities, because
saliency maps at different scales can be used or com-
bined in other ways. In addition, postprocessing of
detected lines, edges and keypoints could be used to
detect long and important structures. This solution
might replace the use of image segmentation in con-
junction with edge detection [6].



Figure 12. Input image (top) and rendering Figure 13. Input image (top) and rendering
without (middle) and with (bottom) saliency. without (middle) and with (bottom) saliency.



Figure 14. Rendering with real brush strokes.

3. Many line/edge scales can be selected: the more
scales are used, the more realistic the rendering will
be (from NPR to nPR to PR), which may not be desir-
able. Our impression is that, apart from the big brush
strokes to render the background, only very few scales
may lead to best results, but this requires many exper-
iments with many images and renderings and subjec-
tive ratings of many observers. In addition, in order to
improve the painterly effect, the few selected scales
could be applied two or more times by overpainting
already painted strokes using interpolations of stroke
lists. Although such a process better resembles the
technique applied by real artists, finer brushes may be
necessary in some cases, for example when painting
(small) faces. The multi-scale keypoint representa-
tion has already been used to detect faces [34], and
detected faces and their positions plus sizes could be
used to control scale selection, but many other objects
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Figure 15. Examples of heads, bodies and
tails.

may require the same processing. This aspect is per-
haps the most difficult one, because it relates to cogni-
tive image interpretation and distinction between im-
portant and unimportant objects to be painted or to be
left out.

Renderings shown here are first results produced to test
the methods in an integrated framework. We intentionally
did not present results obtained with different styles, in or-
der to illustrate possibilities but also problems of the basic
approach. Experiments with different styles and compar-
isons with renderings based on computer vision will be re-
ported in forthcoming papers. Apart from improvements
and future research as mentioned above, there are many
other possibilities that can be explored to enhance artistic
effects: (1) to test different ways of picking colours, for
example only at one (two) central position(s) of a stroke,
instead of by averaging colours under an entire stroke as
done here, (2) to discretise and/or randomise positions, ori-
entations, lengths and colours, for simulating styles like
impressionism, expressionism or cubism, and (3) to re-
place the brush strokes by a library of strokes created by
using different brush types, e.g. [39]. The latter aspect in-
cludes mixing painting wet-on-dry and wet-in-wet for sim-
ulating different types of oil paintings and watercolours,
in addition to using opacity maps—possibly also bump or
normal mapping—for simulating the texture of a canvas or
paper in combination with different media like oil, crayon
and charcoal.

A bigger challenge is to find new applications that may
foster new styles in contemporary visual arts. An example
is symbolic pointillism that exploits Gestalt laws of cogni-
tive psychology [22]. Instead of combining segmentation
and single-scale edge-detection methods in stylisation and
abstraction [6], our line and edge representation could be
used for the same purpose, i.e., the creation of cartoon-like
effects. In addition to rendering important edges on top
of large, homogeneous regions, regions could be hatched
(textured) such that an impression of 3D shape is obtained.
This requires a cortical model for solving the shape-from-
shading problem, which could be combined with a dis-
parity model in the case of using a stereo camera, and
could lead to automatic production of etchings. Such an
approach can complement suggestive contours based on



radial curvature, in both still images and animations [5].
Texture segmentation is often based on complex Gabor fil-
ters (simple cells). For example, analysis of the symmetry
order for separating linear, rectangular and hexagonal pat-
terns can be achieved by complex moments but also by a
simple cortical model [2, 35]. Within segmented regions,
the symmetry order along with detected orientations at dif-
ferent scales can be used to render realistic textures [39].
A good model of motion perception could be used to solve
problems in creating animations from video. Instead of
rendering frame by frame, effects of moving objects and
a panning and tilting camera can be combined to create a
stable background, adding moving objects and new infor-
mation at the image borders in a consistent way [4]. Ad-
ditional perception models and rendering techniques may
be employed in the future, because we just started looking
through the eyes of the painter!
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