WJCMS

Wasit Journal of Computer and Mathematics Science

Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM e-ISSN: 2788-5879 p-ISSN: 2788-5879

Topological Spaces*F*₁**And** *F*₂

Jassim Saadoun Shuwaie^{1,*®} and Ali Khalaf Hussain^{2®}

¹Education College for Pure Sciences, Wasit University, Iraq ²Computer Sciences and information Technology College, Wasit University, Iraq

*Corresponding Author: Jassim Saadoun Shuwaie

DOI: https://doi.org/10.31185/wjcm.Vol1.Iss2.36 Received: February 2022; Accepted: April 2022; Available online: June 2022

ABSTRACT: In This work, we study F_1 space and F_2 space and about these two spaces, we proved various theorems and properties.

Keywords: F 1 space and F 2 space

1. INTRODUCTION

separation qualities are a standout amongst the most vital and fascinating concepts in topology. In 1963, N.levin [1] proposed concept of a semi-open set. S.N Maheshwari and R. Prasad [2], used semi-open sets to characterize and investigare new partition aphorisms known as semi-detachment aphorisms. In 1975, N Levine characterized the idea of new type of topological space called $T_{1/2}$ in 1970 [3] (i.e. the space where the closed sets and summed up sets classes meet). Maheshwari and et. al. [4] initiated the study of feebly open in 1978. Aaad Aziz Hussan Abdulla in [5] presented the idea of semi-feebly open (sf-open) set. "the goal of this study is to provide some characterizations of F_1 space and F_2 space".

2. BASIC DEFINITION

Definition 2.1 [6]

A subset A of a topological space (X,) is called feebly open (f-open) set if there exists an open set U such that $U \subseteq A \subseteq \overline{U}^s$.

Definition 2.2 [7]

Let (X,) be a topological space. A subset A of X is said to be g-closed

if $A \subseteq U$ whenever $A \subseteq U$ and U is open set.

Definition 2.3 [3]

Let (X,) be a topological space. A subset A of X is said to $T_{1/2}$ space if each g-closed set is closed set.

3. CHARACTERIZATION OF F_1 SPACE AND F_2 SPACE

Definition 3.1

Let (X, t) be a topological space. A subset A of X is said to be

(1) F^* -closed set if $A \subseteq U$ whenever $A \subseteq U$ and U is f-open set.

.(2) F^* -open set if the complement of A in X is F^* -closed set.

Example 3.2

Let $X = \{1, 2, 3\}, - = \{\emptyset, X, \{1\}, \{1, 2\}\}$ be a topology defined on *X*. Let $A = \{2, 3\}$, then $\overline{A} = \{2, 3\}$, thus the f-open sets contain *A* is only *X*.

Hence $A \subseteq X$, then A is F^* -closed set.

Proposition 3.3

Every closed set is F^* -closed set.

Remark 3.4

The converse [**Proposition (3.3**)] is not necessarily true as shown by the following example.

Example 3.5

Let $X = \{1, 2, 3\}$, $= \{X, \emptyset, \{1, 3\}\}$ be a topology defined on X. Let $A = \{1, 2\}$, then $\overline{A} = X$, thus the f-open sets contain A is only X.

It is clear A is F^* -closed set but not closed.

Proposition 3.6

Every F^* -closed set is g-closed set.

Remark 3.7

The converse [**Proposition** (3.6)] is not necessarily true as shown by the following example.

Example 3.8

Let $X = \{1, 2, 3\}$, $= \{X, \emptyset, \{1\}\}$ be a topology defined on *X*. Let $A = \{1, 3\}$, then $\overline{A} = X$, implies the f-open sets contain *A* is *X* and $\{1, 3\}$. It is clear $\overline{A} \notin \{1, 3\}$ Hence *A* is not *F**-closed set but *A* is g-closed set since the open sets

contain *A* is only $X, \overline{A} \subseteq X$.

Remark 3.9

g-closed set is F^* -closed set if every f-open set is open set.

Lemma 3.10

Let (X,) is a topological space, if every closed set is open set then

(1) every f-open set is f-closed set.

(2) every f-open (f-closed) set is open set (closed) set.

Theorem 3.11

Let (X,) be a topological space, then = f if and only if every subset of X is F^* -closed set, where f is the family of closed sets in X.

Proof.

 \implies Let = f and $A \subseteq X$ and $A \subseteq O$, where O is f-open set in X.

Since $A \subseteq O$, then $A \subseteq O$, but O = O.

Then $\overline{A} \subseteq O$, implies A is F^* - closed set. \Leftarrow Let every subset of X is F^* - closed set Assume that $O \in$ then O is f-open set Since $O \subseteq O$, O is F^* - closed set Hence $\overline{O} \subseteq O$ implies $\overline{O} = O$

Hence $O \subseteq O$ implies O = OTherefore $O \in f$

$$\subset f$$

Assume that $F \in f$, then $F^c \in$ Hence F^c is f-open set Since $F^c \subset X$, implies F^c is F^* - closed set But $F^c \subseteq F^c$ and F^c is f-open set So, $\overline{F^c} \subseteq F^c$, consequently $F^c \in f$ Therefore $F \in -$ Thus

(2)

(1)

Then by (1) and (2), we have = f. Remark 3.12 Let (X, -) is a topological space. If = f then every g-closed set is F^* -closed set. Theorem 3.13 Let (X, \cdot) be a topological space and $A \subseteq Y \subseteq X$ and Y open set in X. If A Is F^* - closed set in X then A is F^* - closed set in Y Proof. Let $A \subseteq O$, O is f-open in X Then $A \cap Y \subseteq O \cap Y$ Since *Y* is open set in *X*. Hence $O \cap Y$ is f-open in Y. Since A is F^* - closed set in X. So, $A \subseteq O$. Therefore $A \cap Y \subseteq O \cap Y$. But $A_Y = A \cap Y$, such that A_Y is closure of A in Y. Thus A is F^* - closed set in Y Theorem 3.14 If $A \subseteq Y \subseteq X$ such that Y is open and closed in X, A is F^* - closed set in *Y* then A is F^* - closed set in X Proof. Let $A \subseteq O$ and O is f-open in X Then $A \cap Y \subseteq O \cap Y$ Since $A \subseteq Y$ implies $A \subseteq O \cap Y$ But Y is open set in XHence $O \cap Y$ is f-open in Y Since A is F^* - closed set in Y Then $A_Y \subseteq O \cap Y$ We know $\overline{A}_{Y} = \overline{A} \cap Y$ Since $A \subseteq Y$ implies $\overline{A} \subseteq \overline{Y}$ But Y is closed set in XTherefore $A \subseteq Y$ So, $A \subset O \cap Y$ Then $A \subseteq O$ Thus A is F^* - closed set in X. **Definition 3.15** A topological space X is called F_1 space if and only if every g-closed set in X is F^* - closed set. Example 3.16 Let $X = \{1, 2, 3\}, - = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}$ be a topology defined on X. Then g-closed on X are $\{\emptyset, X, \{2\}, \{1, 2\}, \{2, 3\}\},\$ F^* - closed set on X are { \emptyset , X, {2}, {1, 2}, {2, 3}}. It is clear every g-closed set is F^* -closed set. **Proposition 3.17** Let X be a topological space, if X is $T_{\frac{1}{2}}$ space, then X is F_1 space. Proof. Assume that *A* is g-closed set in *X*. Since X is T_{\perp} space, implies A is closed set. Therefore, A^{2} is F^{*} - closed set [**Proposition (3.3**)]. Then X is F_1 space. Remark 3.18 The converse [Proposition (3.17)] is not necessarily true as shown in the Following example. Example 3.19

Let $X = \{1, 2, 3, 4\}, - = \{\emptyset, X, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$ be a topology defined on X. The closed sets are $\{\emptyset, X, \{1, 2, 3\}, \{3, 4\}, \{4\}\}$ g-closed sets are $\{\emptyset, X, \{2,3,4\}, \{1, 3, 4\}, \{2, 4\}, \{1, 4\}, \{1, 2, 4\}, \{3, 4\}, \{4\}\}$. F^* - closed sets are { $\emptyset, X, \{2,3,4\}, \{1, 3, 4\}, \{2, 4\}, \{1, 4\}, \{1, 2, 4\}, \{3, 4\}, \{4\}\}$. It is clear X is F_1 space since every g-closed set is F^* -closed set but not $T_{\frac{1}{2}}$ space since $\{2, 4\}$ is g-closed set but not closed set. Lemma 3.20 If $A \subseteq Y \subseteq X$ such that Y is closed in X, A is g- closed set in Y then A is g- closed set in X. Theorem 3.21 Let X be a F_1 topology space. If Y is an open and closed subspace then Y is F_1 space. Proof. Assume that A is g-closed set in YSince Y is a closed subspace, implies A is g-closed in X [Lemma (3.20)]. But X is F_1 space. Then A is F^* - closed set in X Since *Y* is an open subspace in *X* Thus A is F^* - closed in Y [Theorem (3.13)]. Then Y is F_1 space. Remark 3.22 F_1 space does not hereditary property. Theorem 3.23 If (X, \cdot) be F_1 space then every singleton is either F^* - closed or F^* - open. Proof. Let *X* be F_1 space Assume that $x \in X$ and $\{x\}$ is not F^* -closed set Since X is the only open set contain $\{x\}^c$ then $\{x\}^c \subseteq X$ Hence $\{x\}^c$ g-closed set. Since X is F_1 space then $\{x\}^c$ is F^* - closed set. Therefore, $\{x\}$ is F^* - open. **Definition 3.24** A topological space X is called F_2 space if and only if every f-open set in X is open set. Example 3.25 Let $X = \{1, 2, 3, 4\}, - = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ be a topology defined on X. The f-open sets are $\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}.$ It is clear every f-open set in X is open set. Then X is F_2 space. **Proposition 3.26** Every F_2 space is F_1 space. Proof. Assume that X is F_2 space Then every f-open set is open set. Therefore, every g-closed set is F^* - closed set [**Remark (3.9**)]. Thus X is F_1 space. Remark 3.27 Every F_1 space is F_2 if = f. Theorem 3.28 If (X, \cdot) be F_2 space then every f-closed set is f-open set. Proof. Assume that X is F_2 space Then - = fTherefore, f-open set = f-closed set [Lemma (3.10)].

Hence every f-closed set is f-open set.

Theorem 3.29

Let X be F_2 topological space, if Y is an open subspace then Y is F_2 space. Proof. Assume that A is f-open set in YSince Y is an open subspace, implies A is f-open set in XBut X is F_2 space, then A is open set in X Therefore, A is open set in YThen Y is F_2 space. Theorem 3.30 If Y is F_2 space and $f: X \longrightarrow Y$ be continuous function, open and surjective, then X is F_2 space. Proof. Assume that B is f-open set in XSince f is continuous, open and surjective, implies f(B) is f-open set in Y But Y is F_2 space, then (B) is open set in Y Since *f* is continuous, then $f^{-1}(f(B))$ is open set in *X*. But f is surjective, then $f^{-1}(f(B)) = B$ Therefore, X is F_2 space.

4. CONCLUSION

In this work, several properties of these two space were studied, and these properties, a relationship was drawn between $T_{1/2}$ space and F_1 space, there is also relationship between F_1 space and F_2 space.

FUNDING

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

- [1] N. Levine, "Semi "open sets and semi continuity in Topological spaces"," Amer. Math. Monthly, vol. 70, pp. 36-41, 1963.
- [2] S. N. Msheshwari and R. Prasad, "Some new separation axioms," Ann. Soc., Sci. Bruxelles, vol. 89, pp. 395–402, 1975.
- [3] N. Levine, "Generalized closed sets in topology," *Rend. Circ. Mat. Palermo*, vol. 19, no. 2, pp. 89–96, 1970.
 [4] S. N. Msheshwari and U. Tapi, "Feebly space," *Ann. Univ., Timisoara S. sti. Mat*, vol. 16, pp. 395–7402, 1978.
- [5] "On Semi Feebly open set and its properties," AlQadisiyah Journal of pure scince, vol. 25, no. 3, pp. 35-45, 2002.
- [6] D. S. Jankovic and I. L. Reidly, "On Semi-Separation Properties"," Indian J. Pure Appl. Math, vol. 16, no. 9, pp. 957–964, 1985.
- [7] S. G. Crossley, "Semi-closure," Texas J. Sci, vol. 22, pp. 99–112, 1971.