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Abstract: According to the latest statistics at the end of 2022, the total length of highways in China 
has reached 5.3548 million kilometers, with a maintenance mileage of 5.3503 million kilometers, 
accounting for 99.9% of the total maintenance coverage. Relying on inefficient manual pavement 
detection methods is difficult to meet the needs of large-scale detection. To tackle this issue, 
experiments were conducted to explore deep learning-based intelligent identification models, 
leveraging pavement distress data as the fundamental basis. The dataset encompasses pavement micro-
cracks, which hold particular significance for the purpose of pavement preventive maintenance. The 
two-stage model Faster R-CNN achieved a mean average precision (mAP) of 0.938, which surpassed 
the one-stage object detection algorithms YOLOv5 (mAP: 0.91) and YOLOv7 (mAP: 0.932). To 
balance model weight and detection performance, this study proposes a YOLO-based optimization 
method on the basis of YOLOv5. This method achieves comparable detection performance (mAP: 
0.93) to that of two-stage detectors, while exhibiting only a minimal increase in the number of 
parameters. Overall, the two-stage model demonstrated excellent detection performance when using a 
residual network (ResNet) as the backbone, whereas the YOLO algorithm of the one-stage detection 
model proved to be more suitable for practical engineering applications. 

Keywords: pavement engineering; pavement distress; object detection; optimization strategy; YOLO 
algorithms 
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1. Introduction  

As a result of vehicle load and natural factors such as temperature, pavement tends to manifest a 
series of distresses. Common pavement defects mainly include cracks, potholes, etc. The initial 
distresses affect road capacity and users’ road experience. The gradual development of the distress will 
bring irreparable damage to the overall structure of the road. Thus, timely pavement detection can 
greatly enhance driving comfort and reduce the total maintenance cost. Faced with the current vast 
highway traffic system, relying only on traditional manual inspection is completely insufficient to meet 
the needs of the industry. In contrast to the automated pavement detection approach, artificial visual 
detection is time-consuming and laborious, is subjective in its assessment of the deterioration of 
pavement, and has a certain impact on the traffic flow. Early pavement condition assessments used 
image data obtained from line-scanning or area-scanning cameras, such as the DHDV (Digital 
Highway Data Vehicle) detection system for American highways [1]. The appearance of CCD (Charge 
Coupled Device) digital imaging has significantly changed pavement crack detection.  

In general, pavement distress detection has undergone the image processing stage, the machine 
learning stage, and the current stage based on deep learning. Image processing can reduce the impact 
of noise such as illumination, and it can be roughly classified into threshold segmentation, edge 
detection, and region-based segmentation. Threshold segmentation [2] distinguishes foreground and 
background by judging whether the feature attributes meet the threshold standard. The threshold 
segmentation method contains single thresholding and variable thresholding [3]. Obtaining a credible 
threshold value is the key to this approach. Edge detection is used to determine the boundary of the 
object in the image by finding the place where the gray value jumps greatly, so as to segment different 
objects. Commonly used edge detection algorithms include Sobel [4], Prewitt [5], Roberts, Canny [6], 
etc. Different edge detection algorithms have different characteristics and ranges of applications. For 
example, the Sobel operator can effectively suppress noise, but the location of the edge is not 
accurate enough.  

Based on whether or not labeled data is used, machine learning can be categorized into two major 
methods, supervised learning and unsupervised learning. It can dig deep into features and accurately 
predict unknown data from existing data. Image processing techniques are commonly applied as 
preprocessing steps before feeding the data into machine learning models to enhance task completion. 
As an illustration, Marques et al. put forward a supervised learning algorithm based on a support vector 
machine (SVM) for automatic pavement crack detection [7]. The crack image was preprocessed to 
enhance the existing crack features, and the image was segmented into non-overlapping blocks to 
extract the feature vector of each block. However, automatic detection technology based on machine 
learning struggles to recognize objects with complex shapes and textures in images, and thus it is 
necessary to manually select suitable features and use pre-processing operations such as data cleaning.  

Deep learning is a special type of machine learning that employs multi-layered neural networks 
to process data. As a result, deep learning models usually require more data to train and tend to require 
higher computational resources than traditional machine learning models. Object detection is one 
direction of deep learning, and the task of pavement detection mainly includes distress location and 
classification. With the continuous improvement of big data availability and basic computing power, 
many structures of CNN (Convolutional Neural Networks) with excellent performance have been 
proposed, such as VGGnet [8], GoolgeNet [9], ResNet [10], etc. This method of automatic extraction 
of high-dimensional feature information by stacking the convolution layer, pooling layer, and nonlinear 
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activation layer has made a surprising breakthrough in the realm of computer vision.  
Object detection algorithms using deep learning can be classified into two categories: two-stage 

detection relying on candidate regions and one-stage detection based on regression. The two-stage 
algorithm generates the region proposal and then sends the region proposal to the classifier for 
classification and location correction. The typical two-stage algorithm R-CNN [11] integrates 
AlexNet [12] with selective search to complete the detection task in several independent steps. 
Through the continuous proposal and improvement of algorithms such as SPP-Net [13], Fast R-
CNN [14], and Faster R-CNN [15], an end-to-end two-stage object detection model paradigm has been 
formed. One-stage detection algorithms directly regress the predicted object from the image. Typical 
one-stage detection algorithms include RetinaNet [16], YOLO series algorithms [17–22], and SSD 
series algorithms [23,24]. One-stage object detection algorithms have advantages such as fast running 
speed and high inference efficiency and are therefore widely used. 

The YOLO series of object detection models, starting with the YOLOv1 algorithm in 2016, has 
since developed to the latest YOLOv7 model. The YOLOv5 model, released by Ultralytics, has a 
complete system architecture. YOLOv7 is currently the latest proposed network and has demonstrated 
state-of-the-art performance on the MS COCO dataset. Previously, Mandal et al. [25] established a 
real-time automatic pavement damage analysis system based on the YOLOv2 model and combined it 
with the distress analyzer. In this paper, the YOLO model is also applied to the field of pavement 
detection to further promote the application research of deep learning-based technology in automated 
pavement detection. First, the characteristics of the modules used in YOLOv5 and YOLOv7 are 
introduced, followed by an explanation of the overall structure of the models. The experiment aimed 
to explore an appropriate IOU loss function that accommodates the diverse characteristics of pavement 
distress. Additionally, the study attempted to optimize model performance by incorporating several 
mainstream attention mechanisms, namely simAM, CBAM, and SA. By analyzing the model 
parameters and detection results of YOLOv5 and YOLOv7, we conducted research on and discussed 
improvement strategies and proposed subsequent improvement strategies and research directions. 

2. Model structures 

The two-stage object detection model is not the focus of this chapter because of its long training 
time and difficulty in meeting the requirements of real-time detection. This section focuses on 
introducing the distinctive structures applied in YOLOv5 and YOLOv7 and analyzing the functional 
characteristics of each part. 

2.1. YOLOv5 model highlights 

Since the inception of the first generation of YOLO models in 2016, the model architecture has 
gradually matured and has been widely applied in industries such as agricultural pest recognition [26], 
marine water pollution, and transportation [27]. As depicted in Figure 1, the YOLOv5 model, 
introduced in 2020, is a powerful real-time object detection model. In this study, the YOLOv5s model 
with 16.0 GFlops and 270 layers was used. 
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Figure 1. The original structure of the YOLOv5. 

2.1.1. Focus module 

The Focus structure is a way of downsampling while maintaining information losslessly, and it is 
used to extract features in the input feature map. As indicated in Figure 2, this layer operates similarly 
to the scaling layer by dividing the input feature map into four sections and subsequently combining 
them in a particular sequence to generate a novel feature map. This design better utilizes the correlation 
between channels, has higher resolution and richer detail information, can better capture subtle features 
of the target, and has a significant effect on the detection of small targets. The feature maps of 3 
channels are transformed to 12, and the size is changed from H × W to H / 2 × W / 2. In the pursuit of 
efficiency, the Focus module has been replaced by a 6 × 6 convolutional kernel. 

  

Figure 2. Focus diagram and module structure. 

2.1.2. Improvement of SPP module to SPPF network module 

The SPP (Spatial Pyramid Pooling) structure is a network structure that facilitates multi-scale 
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feature fusion and is employed to extract features from input images. The main idea is to perform 
pooling on different receptive fields to preserve feature information at different levels. As shown in 
Figure 3, by concatenating features of different scales, a higher dimensional feature vector is obtained. 
This feature vector contains feature information of different scales and can better capture target details. 
The backbone network of YOLOv5 includes a CSPDarknet53 structure and an SPP structure. The 
CSPDarknet53 structure is utilized to capture low-level features, whereas the SPP is applied to capture 
high-level features and merge features of different scales. 

 

Figure 3. Spatial pyramid pooling structure. 

The SPPF module was introduced in the later version of YOLOv5 (6.0). This structure is 
equivalent to improving the parallel structure of the model into a serial processing mode (Figure 4). 
Two 5 × 5 pooling layers are serialized together equivalent to a 9 × 9 pooling layer. The calculation 
efficiency of the model is greatly improved after replacement. 

 

Figure 4. Spatial pyramid pooling fast structure. 

2.1.3. PAN structure 

Unlike the FPN used in YOLOv3, the neck part of YOLOv5 uses a PAN (Path Aggregation 
Network) structure [28], where features from different levels are fused through different paths. 
Illustrated in Figure 5, FPN utilizes a top-down methodology that combines high-level with low-level 
features via upsampling to obtain the feature map for subsequent prediction. This structure mainly 
transmits the strong semantic features of the high level and enhances the whole pyramid. However, it 
merely amplifies the semantic data and fails to transmit the positional information. The PAN structure 
mainly adds a bottom-up pyramid behind the FPN (feature pyramid network) to transfer the positioning 
characteristics of the lower level to augment the accuracy and robustness of the model. 
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(a)                       (b) 

Figure 5. YOLOv5 backbone network upgrade: (a) the original feature pyramid network 
(FPN), (b) path aggregation network (PAN). 

2.1.4. The setting of the loss function 

The loss of YOLOv5 is comprised of class loss, objectness loss, and location loss. Class loss uses 
BCE loss (Binary CrossEntropy Loss) to calculate the classification loss of positive samples only, 
while objectness loss utilizes BCE loss but calculates the loss of all samples. Location loss is used, and 
CIOU (Complete IoU) loss is used to calculate only the location loss of positive samples. Different 
weights are applied to objectness loss in the three prediction feature layers of the model. Small targets 
are prone to problems such as false detection and missing detection, so greater weights are assigned. 

𝐿௢௕௝  =  4.0 ൉  𝐿௢௕௝௦௠௔௟௟  +  1.0 ൉  𝐿௢௕௝௠௘ௗ௜௨௠  +  0.4 ൉  𝐿௢௕௝௟௔௥௚௘  

2.2. YOLOv7 model highlights 

In 2022, YOLOv7 was proposed (Figure 6). This model continues to follow the idea of the YOLO 
series, which considers the problem of object detection as a regression task and mainly introduces new 
modules of the E-ELAN module, SPPSPC module, and REP module. 

ELAN (Effective Long-Range Aggregation Network) modules are designed to allow deep 
networks to converge quickly and learn feature information efficiently. The SPPSPC (Spatial 
Pyramid Pooling and Fully Connected Spatial Pyramid Convolution) module uses the idea of a 
pyramid pool and residual link for feature fusion. The RepVGG network is proposed based on the 
VGG (Visual Geometry Group) network in the REP (Re-parameterization ) module. The RepVGG 
network has surpassed the ResNet, EffcientNet [29], and ResNeXt networks in both accuracy and 
speed. In the model training, the multi-branch model is used to strengthen the representation ability. 
In the actual test, the transformed single-line model is used to accelerate the reasoning speed and 
reduce memory consumption. 
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Figure 6. The original structure of the YOLOv7. 

3. Improvement strategy of pavement detector 

The experiment primarily focused on optimizing the dataset and model structure. It used data 
images that are more suitable for pavement preventive maintenance and improved the model structure 
accordingly. The YOLOv7 model, consisting of 407 layers, has a parameter size of 105.2 Gflops, 
which is much larger than that of the YOLOv5s model (16.0 Gflops). Considering the practical 
deployment of the model on mobile devices, YOLOv5 was chosen as the primary model for 
experimentation, improvement, and evaluation. 

3.1. Optimization strategy for the dataset 

To better meet the practical needs of pavement maintenance, the experiment collected a 
significant number of pavement cracks on newly constructed roads and combined data augmentation 
techniques to make the cracks more in line with the characteristics of pavement distress. Therefore, 
the model can be used for crack identification in road preventive maintenance, especially for cracks 
that are difficult to detect through manual inspection on newly constructed roads. As shown in Figure7, 
there are two types of crack distresses on asphalt pavement: one is longitudinal cracks caused by factors 
such as foundation settlement and traffic load, and the other is transverse cracks commonly caused by 
shrinkage stress exceeding tensile strength. This paper also collected images of early cracks on 
concrete pavement. 
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(a)              (b)              (c)              (d) 

Figure 7. Early minor pavement cracks (a: transverse crack on asphalt pavement, b: 
transverse crack on concrete pavement, c: longitudinal crack on asphalt pavement, d: 
longitudinal crack on concrete pavement). 

3.2. Attention mechanism 

The attention mechanism is a deep learning technique that helps models more accurately predict 
the categories and bounding boxes of objects in images. The primary function of the attention 
mechanism is to assist the model in highlighting vital characteristics in the image, which enhances the 
model's performance. The attention mechanism is a subnetwork that is encapsulated into a module 
during actual model improvement. 

3.2.1. CBAM attention mechanism 

The Convolutional Block Attention Module (CBAM) network was proposed in 2018 [30]. The 
innovation lies in that feature maps not only contain rich attention information in channels but also 
contain a significant amount of attention information between pixels in the feature map. Previous 
attention mechanisms only focused on attention information in channels, which wastes attention 
information in space. As shown in Figure 8, CBAM adjusts the weights of each channel in the feature 
map by building a Channel Attention Module (CAM) to learn the importance of each channel. By 
constructing a Spatial Attention Module (SAM) to learn the importance of each spatial position, the 
network places greater emphasis on spatial positional information and improves the quality of feature 
representation. These two sub-modules are combined to obtain more comprehensive and reliable 
attention information, providing more reasonable guidance for the allocation of computing resources. 

 

Figure 8. CBAM network structure. 
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3.2.2. Shuffle attention mechanism 

The shuffle attention (SA) module [31] groups channels into multiple sub-features to effectively 
establish a multi-branch structure, thereby parallel processing different branches. For the grouped sub-
features, SA utilizes channel shuffle network units to construct both channel attention and spatial 
attention simultaneously, fully leveraging their correlation to improve efficiency. As shown in Figure 9, 
the feature map (C * H * W) is segmented into G groups along the channel dimension. Each sub-

feature is further divided into two branch dimensions of 
େଶୋ * H * W, where one branch focuses on the 

inter-channel relationships and the other branch generates a spatial attention map. This processing 
enables the model to give better attention to both the target and its spatial position. Afterward, sub-
branches are processed, aggregated, and then subjected to a channel shuffle operation similar to that 
of ShufflenetV2. This enables inter-group information interaction between channels. Currently, 
computer vision research mainly focuses on capturing pixel-level pairwise relationships and channel 
dependencies, i.e., spatial attention and channel attention. The SA module addresses the issue of 
increased computational costs resulting from the fusion of these two mechanisms by combining both 
types of attention using a channel shuffle operation. 

 

Figure 9. Shuffle attention (SA) network structure. 

Compared with CBAM, which integrates both spatial and channel attention structures in its 
module, the SA module achieves higher efficiency by borrowing the lightweight unit design from 
ShufflenetV2. In this study, both SA and CBAM modules were applied to pavement defect detection 
from pavement data for comparison. 

3.2.3. SimAM attention mechanism 

To allow the neural network to learn distinguishable neurons fully, the authors suggest inferring 
three-dimensional weights from the current neuron. Compared with most 1D channel attention 
mechanisms or 2D spatial attention mechanisms, the SimAM attention mechanism infers the 3D 
weights of a feature map using an energy function that does not require adding parameters to the 
original network [32]. In neuroscience, active neurons can affect neighboring neurons’ activities, 
indicating that neurons with obvious spatial inhibition effects should be more important in visual 
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processing. Based on the findings in neuroscience, an energy function defining what each neuron 
should possess is determined, and the energy function in Eq (1) is obtained through optimization by 
regularization. 𝑒௧(𝑤௧, 𝑏௧, 𝑦, 𝑥௜)  =  ଵெିଵ ∑ (−1 − (𝑤௧𝑥௜ + 𝑏௧))ଶ +  (1 − (𝑤௧ + 𝑏௧))ଶ  +  𝜆𝑤௧ଶெିଵ௜ୀଵ     (1) 

Theoretical analysis suggests that each channel has an energy function, with t representing the 
neuron and λ serving as a hyperparameter. The result obtained through analysis is as follows: 𝑤௧  =  − ଶ(௧ିఓ೟)(௧ିఓ೟ )మାଶఋ೟మାଶఒ                              (2) 

𝑏௧  =  − ଵଶ (𝑡 + 𝜇௧)𝜔௧                               (3) 𝜇௧ and 𝜎௧ଶ are as follows: 𝜇௧ = ଵெିଵ ∑ 𝑥௜   ெିଵ௜ୀଵ                                 (4) 

  𝜎௧ଶ = ଵெିଵ ∑ (𝑥௜ − 𝑢௧)ଶெିଵ௜ୀଵ                               (5) 

The minimum energy is calculated by using the following equations: 𝑒௧∗  =  ସ( ఙ೟మାఒ )(௧ ିఓ)మାଶఙమାଶఒ                              (6) 

𝜇 =  ଵெ ∑ 𝑥௜ெ௜ୀଵ ,  𝜎ଶ = ଵெ ∑ (𝑥௜ − 𝜇 )ଶெ௜ୀଵ                       (7) 

The module ends with a sigmoid function that does not affect the relative importance between neurons. 𝑋෨ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ଵா)⨀𝑋                                (8) 

Unlike the aforementioned attention mechanism, SimAM directly evaluates the importance of 
independent neurons, assigning higher weights to important neurons without augmenting the number 
of model parameters. 

3.3. Loss function 

The loss function can help the model more accurately predict the category and bounding box of 
objects in an image, directly affecting the performance of the model. Traditional object detection 
regression losses characterize the four variables of rectangular boxes, meaning that these four variables 
are independent of each other. Considering their correlations, the IOU is introduced to the regression 
loss [33]. IOU only focuses on the overlapping area, while GIoU [34] better reflects the degree of 
overlap between the predicted box and the ground truth by solving the ratio of the intersection area 
and the union area of the two bounding boxes. DIoU [35] considers the distance factor between the 
predicted and ground truth boxes on the basis of GIoU, directly minimizing the distance between the 
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two boxes and greatly speeding up the convergence rate of the model. The loss function of the DIOU 
(𝐿஽ூை௎) is calculated as follows: DIOU = IOU − ஡మ(ୠ,ୠౝ౪)େమ                              (9) Lୈ୍୓୙ = 1 − DIOU                               (10) 

CIOU considers that the aspect ratio in bounding box regression increases the scale loss of the 
detection box, thus making the aspect ratio of the predicted box more consistent with the ground 
truth [36]. Lେ୍୓୙ = 1 − IoU + ஡మ൫ୠ,ୠౝ౪൯ୡమ + αv                        (11) 

α = ୴ଵି୍୭୙ା୴                                   (12) 

 v = ସ஠మ ቀarctan ୵ౝ౪୦ౝ౪  −  arctan ୵୦ ቁଶ
                        (13) 

Taking into account that the definition of v in CIOU reflects the difference in aspect ratio between 
the ground truth box and predicted box, rather than the actual width and height, it is considered that 
the design of CIOU loss for aspect ratio loss is not reasonable. The CIOU loss may optimize the 
similarity measure in a way that is not suitable, which prevents the model from smoothly transitioning 
from (w,h) to (wgt, hgt). As a result, EIOU [37] is optimized by dividing the loss function into IOU 
loss, distance loss, and orientation loss. L୉୍୓୙ = L୍୓୙ + Lୢ୧ୱ + Lୟୱ୮                            (14) 

L୉୍୓୙ = 1 − IoU + ஡మ൫ୠ,ୠౝ౪൯(୵ౙ)మା(୦ౙ)మ + ஡మ൫୵,୵ౝ౪൯(୵ౙ)మ + ஡మ൫୦,୦ౝ౪൯(୦ౙ)మ                 (15) 

In addition, imbalanced training samples are a common problem in experiments, as there are 
significantly fewer high-quality samples with small regression errors than there are low-quality 
samples. Therefore, actual training needs to focus on learning the contributions of high-quality samples. 
In regression problems, outliers (samples with large differences between predicted values and true 
label values, i.e., low-quality samples) may cause the model’s training process to be unstable and even 
result in overfitting. In practical applications, some techniques are typically used, such as replacing 
the MSE loss function with SmoothL1 loss. Dynamic R-CNN re-weights the bounding boxes based 
on the SmoothL1 loss [38], but this improvement only strengthens the contribution of high-quality 
samples and does not weaken the influence of low-quality samples on the gradient. The Focal loss, 
which was introduced in this experiment, dynamically reduces the weights of easily distinguishable 
samples during the training process through a dynamic scaling factor, thereby quickly focusing on the 
difficult-to-distinguish samples. 

L(୤) = ቊ− ୟ୶మ(ଶ୪୬(ஒ୶)ିଵ)ସ , 0 < x ≤ 1;  1/e ≤ β ≤ 1,−αln(β)x +  C, x > 1;   1/e ≤ β ≤ 1                  (16) 
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C is a constant. To ensure that L(୤) in Eq (16) is continuous at x = 1, C = (2αlnβ + α)/4. In practical 

applications, Focal-EIOU does not directly replace x in the equation with EIOU Loss. To avoid small 
gradient problems caused by EIOU that affect parameter optimization, the value of IOU was used to 
re-weight it, and the expression is as follows: 𝐿ி௢௖௔௟ିாூை௎ = 𝐼𝑂𝑈ఊ𝐿ாூை௎                          (17) 

This section is mainly based on the pavement distress images to optimize the loss function suitable 
for pavement distress characteristics through training model performance. The Focal loss idea is not 
only used for the improvement of EIOU but also analyzed with CIOU to study the influence of the loss 
function. By optimizing the loss function, the model parameters can be optimized to better fit the 
training data. 

4. Experiment research 

4.1. Data set preparation 

The data used for model training was collected from various road sections. By merging it with 
the publicly available dataset, Crack Forest, a total of 7710 images depicting pavement defects are 
obtained. To enhance the robustness of the model, data augmentation techniques were utilized to 
extend the dataset, including angle rotation, horizontal flip, and vertical flip. The data was divided into 
the training set, validation set, and test set in a ratio of 6:2:2 before being fed into the model.  
LabelImg was used to label the distresses. According to Figure 10, four types of distresses were labeled 
based on the collected pavement data: transverse cracks, longitudinal cracks, alligator cracks, and 
potholes. The dataset incorporates the mentioned pavement micro-cracks. 

 

Figure 10. Raw images: (a) transverse crack, (b) longitudinal crack, (c) alligator crack, (d) pothole. 

4.2. Evaluation metrics 

To explain the metrics, it is necessary to introduce the concept of Intersection over Union (IOU), 
where the IOU value represents the ratio of the intersection between the ground truth and predicted 
bounding boxes to their union. In other words, a higher IOU value indicates a closer agreement 
between the prediction and the actual annotation. Generally, the IOU threshold can be adjusted; when 
the IOU value between the predicted and ground truth bounding boxes exceeds the threshold, the 
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prediction is categorized as True Positive (TP); otherwise, it is classified as False Positive (FP) if the 
IOU value falls between 0 and the threshold. Figure 11 illustrates this process, taking a threshold 
of 0.5 as an example. 

 

Figure 11. Interpretation of the TP, FP, FN, TN. 𝐼𝑂𝑈 = ்௉்௉ାி௉ାிே > 0.5, the predicted result is TP. 𝐼𝑂𝑈 = ்௉்௉ାி௉ାிே < 0.5, the predicted result is FP. 

Precision (the abbreviation “P” will be referred to later) represents the ratio of the predicted result that 
is correct: 

Precision =
𝑇𝑃𝑇𝑃 + 𝐹𝑃 

Recall (the abbreviation “R” will be referred to later) refers to the proportion of correctly predicted 
instances to the ground truth annotations: 

Recall =
𝑇𝑃𝑇𝑃 + 𝐹𝑁 

Multiple sets of P and R can be obtained by adjusting different IOU thresholds. The P-R curve is 
plotted with the vertical coordinate P and the horizontal coordinate R. The area enclosed by the curve 
and the coordinate axis is the AP (Average Precision). The calculation of AP involves the computation 
of the area under the precision-recall curve, which provides a measure of the balance between precision 
and recall values and ranges from 0 to 1. The AP of each type of distress is summed and averaged to 
obtain the mAP (mean Average Precision). The mAP is obtained by aggregating the AP scores across 
all categories, thereby providing a comprehensive performance evaluation metric for the model across 
different classes. 

4.3. Model training and result description 

4.3.1. Model operating environment 

The experimental setup featured Windows 10 as the operating system, an Intel(R) Core (TM) i9-
10885H CPU@2.40GHz, and an NVIDIA Quadro RTX 5000 with Max-Q Design GPU having a 
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memory capacity of 16 GB. After testing, it was found that setting the parameter batch size to 16 
achieved the desired result. The deep learning framework used was Pytorch 1.10.0, with CUDA 11.3. 

4.3.2. Results and analysis 

The model training utilized pre-trained weights. The training of Faster R-CNN consisted of two 
stages. In the first stage, the backbone network was frozen, and only the parameters of the feature 
extraction network were updated. This stage involved training for 50 epochs. Subsequently, the entire 
model was trained in the second stage, also for 50 epochs. The figure below illustrates the trend of the 
mAP curve during the model training process, indicating that the curve gradually stabilizes around 
epoch 80. 

  

(a)                                  (b) 

Figure 12. mAP curve: (a) Resnet, (b) VGG. 

The experimental data for the two-stage object detection algorithm Faster R-CNN are presented 
in Table 1. 

Table 1. Comparison data of the different algorithms. 

 

AP (%) 

mAP (%) 
Model weight 

file size Transverse crack 
Longitudinal 

crack 
Alligator crack Pothole 

faster-rcnn-

resnet50 
88.38 88.57 98.44 99.87 93.81 108 M 

faster-rcnn-vgg 87.17 86.27 97.99 100 92.86 521 M 

YOLOv4 83.85 83.71 85.41 73.69 81.66 245 M 

YOLOv5 86.8 89.4 89.0 98.9 91.0 13.7 M 

YOLOv7 88.8 86.6 99.4 98.1 93.2 284 M 

The experiments demonstrate that the two-stage object detection algorithm exhibits better 
performance. Models employing ResNet as the backbone network outperform utilizing the VGG 
architecture. Although the YOLOv5 object detection algorithm may have slightly inferior detection 
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effectiveness, it possesses a significant advantage in terms of lightweight design compared to Faster 
R-CNN-VGG and YOLOv7. The YOLOv5 models occupy much less memory, with a size not 
exceeding 20MB. On the other hand, YOLOv7 has a higher parameter count (105 Gflops) compared 
to YOLOv5 (16.5 Gflops). YOLOv3, an earlier version of this algorithm, was applied in the industrial 
domain. YOLOv4, built upon its foundations and optimized, has achieved significant improvements. 
However, this model performs poorly in detecting pothole distress during experiments, resulting in an 
overall detection performance that falls short of expectations. Therefore, future improvements are 
inclined toward deploying models that cater to real-time detection requirements. 

To better understand the impact of the various improvement measures on network performance, 
subsequent improvement experiments were conducted, focusing on attention mechanism and loss 
function optimization. The models were compared based on these enhancements, and the results are 
presented in Table 2. The model resulting from the incorporation of the CBAM module and replacing 
the boundary box positioning loss (Lbbox) with the Focal CIOU loss function was designated as V5-
CBAM-FC. The YOLOv5 model integrates the Shuffle Attention (SA) module and is improved based 
on the Focal EIOU (FE) technique, resulting in the designated name V5-SA-FE. This naming 
convention was consistently followed throughout the table to ensure uniformity and clarity in the 
presentation of the models. 

Three types of attention mechanisms (CBAM, simAM, Shuffle Attention) and different IOU loss 
functions (CIOU, EIOU, Focal CIOU, Focal EIOU) were applied in this experiment. The number of 
layers in the YOLOv7 model is approximately 1.5 times that of the YOLOv5 model, so no more 
structural layers were added. The batch size is uniformly configured as 16 for both the training and 
testing phases. 

Table 2. Comparisons of model improvement effects. 

Number Model Parameter Precision Recall mAP@0.5 Inference 

1 V5-CBAM-C 

7063284 

0.93173 0.89127 0.93027 27.9 ms 

2 V5-CBAM-E 0.9051 0.89314 0.9259 28.5 ms 

3 V5-CBAM-FC 0.91093 0.88488 0.92326 28.4 ms 

4 V5-CBAM-FE 0.89782 0.89902 0.92341 28.3 ms 

5 V5-SimAM-C 

7030417 

0.93228 0.88278 0.92915 28.0 ms 

6 V5-SimAM-E 0.92882 0.89015 0.92859 28.3 ms 

7 V5-SimAM-FC 0.9382 0.88251 0.92838 28.3 ms 

8 V5-SimAM-FE 0.92386 0.86795 0.91748 28.3 ms 

9 V5-SA-C 

7030609 

0.90892 0.91812 0.93057 28.8 ms 

10 V5-SA-E 0.9005 0.8954 0.92339 29.1 ms 

11 V5-SA-FC 0.9243 0.89179 0.93233 29.0 ms 

12 V5-SA-FE 0.90062 0.88479 0.92327 29.1 ms 

13 V7-C 37622682 0.9165 0.9134 0.93280 60.0 ms 

14 V5-C 7020913 0.90826 0.89626 0.92407 27.0 ms 

Overall, adding attention mechanisms can improve the performance of the original model to 
varying degrees. However, the SimAM attention mechanism is not very effective, despite the fact that 
this module avoids excessive adjustments to the model structure by influencing weights through energy 
functions. Both the CBAM and SA attention mechanisms perform significantly better than the original 
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model (V5-C) and achieve nearly the same level of mAP as YOLOv7. From the perspective of the IOU 
loss function, EIOU is not generally suitable for pavement crack distresses, but the Focal loss idea 
proposed by the authors can improve CIOU. In combination with the SA attention mechanism, the 
mAP of the model has been improved by 0.826% compared with the original. 

In terms of model inference speed, the YOLOv5-based improved models are significantly more 
suitable for real-time detection, with detection speeds about twice that of YOLOv7. The YOLOv7 
model has a parameter size about five times larger than the YOLOv5 model, which is not conducive 
to model deployment. The best-performing models among the above are V5-CBAM-C and V5-SA-
FC. The model using the SA attention mechanism achieves mAP@0.5 of 0.93233, achieving a good 
balance between precision and recall. 

To further demonstrate the effectiveness of the model improvements, the experiment evaluated 
the accuracy of models with different attention mechanisms and predicted the performance of the 
models on specific categories, as shown in Figure 13. Tests have shown that the SimAM attention 
mechanism exhibits significantly superior performance on pothole distress, but the performance on 
crack distresses is not outstanding. The added attention mechanism modules have all improved the 
original model. Testing provides a reliable guarantee for the practical application of the model. In 
future experiments, different combinations of attention mechanisms will be attempted to improve 
detection accuracy for different distress types. 

  

  

Figure 13. YOLOv5 confusion matrix of different attention mechanisms: (a) CBAM, (b) 
SA, (c) SimAM, (d) original model. 
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5. Discussion 

5.1. Further discussion based on pavement detection 

The data set of pavement distresses includes longitudinal cracks, transverse cracks, alligator 
cracks, and potholes. It is not difficult to find that in the target characteristics, the length and width of 
crack distresses are relatively large, and the marking frame is slender, while the size changes of mesh 
cracks and pits are not obvious. Replacing traditional convolution operation fixed sampling position 
with deformable convolution might have unexpected effects. YOLOv3 and YOLOv4 introduced the 
BN layer, high-resolution classifier, multi-scale training, and other methods into the model structure, 
which improved the accuracy and recall rate. In this experiment, YOLOv5 and YOLOv7 with high 
precision and high speed were compared to explore the improvement method of the applicable model 
for pavement distress detection. The results show that YOLOv7 does have some improvement based 
on YOLOv5, but it is much worse than YOLOv5 in terms of model weight. The weight file of YOLOv4 
(245.8M) is about ten times larger than that of YOLOv5. The weight file of the best.py model trained 
by YOLOv7 reaches 284 M. Therefore, the focus of promoting this technology and deploying it on 
mobile devices is to carry out lightweight processing such as pruning and distillation on the model. 
Besides enhancing the IOU loss and incorporating attention mechanisms, the effectiveness of new 
training strategies and transfer learning methods has been notable. Notably, studies focusing on 
improving the YOLOv3 model have successfully employed a straightforward semi-supervised label 
distillation (SSLD) technique to acquire pre-trained models [39]. This implementation demonstrates 
the advantages of SSLD in the domain of model pre-training. 

Furthermore, the performance of the model largely depends on the quality of the dataset, so other 
approaches need to be considered in the research. To address the challenges in data collection and 
pavement distress identification techniques, Ma et al. employed a road-surface generative adversarial 
network for image generation [40]. They proposed an optimized YOLO-MF model based on YOLOv3, 
which achieved accurate crack tracking and counting through accelerated algorithms and median flow 
algorithms. Therefore, future research should focus more on addressing the issue of poor pavement 
distress detection in complex environments during actual detection. Previous studies have addressed 
the challenges of noise interference and redundant information extraction in practical applications by 
employing the YOLO model and an omni-scale network (OSNet) to achieve accurate localization of 
pavement defects [41]. The utilization of unmanned aerial vehicles (UAVs) for detection purposes has 
emerged as a mainstream direction [42], which is expected to gain even greater practical significance 
in the future. 

5.2. The use of attention mechanisms 

By emphasizing the salient aspects of the target, the attention mechanism offers a means to 
augment the model’s focus and minimize the impact of extraneous factors, ultimately enhancing the 
discriminative power of the network. In practical applications, incorporating attention mechanisms 
such as SE, ECA, CBAM, and SK is currently a mainstream technique. The recognition of diverse 
objects necessitates continuous exploration of appropriate augmentation methods and attention 
modules. Yao et al. developed the Pyramid Region Attention Module (PRAM) to achieve precise 
extraction of crack information [43], enabling efficient global multi-scale context integration and 
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capturing long-range dependencies with reduced computational cost. Li et al. improved the YOLOv5 
model for rice field spike detection by introducing the CBAM attention mechanism to solve the 
problem of gradient disappearance during training [44]. The recall rate of the improved algorithm 
reached 98.1%, and the mAP reached 94.3%, effectively solving the problem of missing small object 
detection, which meets the needs of crop detection and counting. For pedestrian detection, the AS-
YOLO improved model was proposed based on YOLOv4 [45]. The introduction of residual networks 
and SE attention mechanisms with small parameters improved the model’s performance by 2.02% in 
terms of mAP compared with YOLOv4, while increasing the detection speed by 16.63%. This provided 
good technical support for pedestrian behavior analysis. In the field of autonomous driving, researchers 
have added channel attention mechanisms and spatial attention mechanisms to YOLOv3 to correctly 
conduct pavement object detection, and the improved model performance is significantly better than 
the YOLOv3 algorithm [46]. In addition, attention mechanisms have found extensive application in 
the domain of semantic segmentation [47], face recognition [48], medical image processing [49], 3D 
vision [50], and other fields.  

For pavement defects with large-scale changes and data sets containing strong noise interference, 
experiments have shown that not all attention mechanisms can improve the detection performance of 
distresses, and additional research is needed to explore attention mechanisms that can recognize the 
characteristics of such distress targets. The attention mechanism in this study is added to the model 
backbone. In the context of relevant studies, Yao et al. conducted extensive experimental research to 
investigate the impact of attention module placement, quantity, and integration methods on model 
performance [51]. Their research findings revealed a 6.7% improvement in performance within the 
enhanced model. This study explored the impact of attention mechanisms on distress category 
detection, but further research is needed on whether the combined use of different attention 
mechanisms will affect the model performance. 

5.3. Optimization of IOU loss function 

IOU loss is usually used to calculate the matching degree between the network’s output bounding 
boxes and the annotated boxes. It has various advantages such as scale invariance, relatively smooth 
gradients, and diagonal ratio invariance. During model training, the IOU loss function in object 
detection can also be used as an important component of the backpropagation algorithm. This 
experiment mainly introduced the idea of Focal loss to strengthen the learning of difficult-to-
distinguish samples. It is found that this idea does not achieve a good effect in the combination of all 
attention mechanisms, such as the combination of the CBAM attention mechanism even leading to the 
degradation of model performance. In line with studies focusing on pavement defects, Du et al. 
endeavored to address the challenge of class imbalance in YOLOv5 by implementing Varifocal Loss 
as a solution [52]. To expedite convergence and enhance the detection capability of potholes under wet 
and dry conditions, Wang et al. [53] considered the IOU loss of the YOLOv3 model, which comprises 
class, confidence, and localization losses. They introduced the CIOU loss, which incorporates aspect 
ratio considerations, by accounting for the proportion consistency factor between predicted and ground 
truth boxes. This approach strengthens the model’s ability to detect potholes on pavement. Nie et al. [54] 
provided a detailed explanation of the IOU loss utilized in their road crack detection model based on 
YOLOv3. By optimizing the loss function, the issue of gradient vanishing can be alleviated, resulting 
in accelerated model convergence and improved training efficiency [55]. 
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The improvement effect should be related to the characteristics of the distress data, and the 
pavement distresses are not difficult to distinguish. SIOU was also applied to the YOLOv5 model, but 
the effect of mAP@0.5 at only 0.92545 was not significant. Considering that the data of the training 
model are not entirely high-quality samples and that the penalty on the geometric factor is reduced 
when the prediction frame and the real frame coincide well, this newly proposed loss of WIOU was 
applied to the model, but the model performance was much worse than before (mAP@0.5:0.92194). 
It is still necessary to explore the loss of adapting to the characteristics of pavement distress in the 
actual model application, and the latest ideas introduced into the model improvement cannot always 
achieve ideal results. 

6. Conclusions 

This article compares the advanced single-stage object detection models YOLOv5 and YOLOv7, 
introducing the widely used two-stage object detection algorithm Faster R-CNN for reference and 
comparison. A new crack detection method based on the YOLOv5 model is proposed, which 
combines a new attention mechanism and an improved IOU loss function. The experiment involved 7710 
data instances, which were partitioned in a ratio of 6:2:2 to form the training, validation, and testing 
sets, respectively. 

The study focused on locating and classifying four types of pavement distresses: longitudinal 
cracks, transverse cracks, alligator cracks, and potholes. The YOLOv7 model does indeed have better 
performance than YOLOv5, but in terms of parameter comparisons, YOLOv7 (105.2 GFLOPs) has 
over six times the number of parameters of YOLOv5 (16.5 GFLOPs). In terms of inference speed, 
YOLOv7 (49.7 ms) falls significantly behind YOLOv5 (17.7 ms). The experiment involved comparing 
CBAM, SA, and simAM added at the same positions in the network backbone, using the YOLOv5 
model as the baseline. The concept of focal loss was also introduced, and Focal CIOU, Focal EIOU, 
EIOU, and CIOU were individually tested. It was observed that the combination of Focal CIOU and 
the SA attention module yielded the best testing performance. As a kind of defect automatic recognition 
model based on deep learning, the model provides an effective auxiliary means for pavement 
maintenance. Meanwhile, the experiment further verified the effectiveness of automated pavement 
detection and different improvement strategies. This advances research in computer vision-based 
pavement defect detection and enables further exploration of possibilities for optimizing real-time 
detection models. The experiment included additional early distress images of asphalt and concrete 
pavement, making it applicable for distress detection before preventive maintenance of newly 
constructed roads. However, it is limited by the lack of specifically collected data for weather 
conditions such as rain or snow, which makes it more challenging to recognize distresses in more 
complex detection scenarios. In the future, there will be a greater emphasis on quantitative research 
regarding pavement distress, aiming to assess the extent of pavement damage [56] and predict the 
health condition of pavement [57].  
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