
 1 

Theoretical Study of the Mechanism of Exemestane Hydroxylation Catalyzed by Human Aromatase 

Enzyme 

 

Ignacio Viciano and  Sergio Martí* 

 

Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain. 

 

* to whom correspondence should be addressed 

 

smarti@uji.es 

  

mailto:smarti@uji.es


 2 

Abstract 

 

Human aromatase (CYP19A1) aromatizes the androgens to form estrogens via a three-step oxidative process. 

The estrogens are necessary in humans, mainly in women, because of the role they play in the sexual and 

reproductive development. However, these also are involved in the development and growth of hormone-

dependent breast cancer. Therefore, inhibition of the enzyme aromatase, by means of drugs known as aromatase 

inhibitors, is the frontline therapy for these types of cancers. Exemestane is a suicidal third-generation inhibitor 

of aromatase, currently used in the breast cancer treatment. In this study, the hydroxylation of exemestane 

catalyzed by aromatase has been studied by means of hybrid QM/MM methods. The Free Energy Perturbation 

calculations provided a free energy of activation for the hydrogen abstraction step (rate-limiting step) of 17 

kcal/mol. The results reveal that the hydroxylation of exemestane is not the inhibition stage suggesting a possible 

competitive mechanism between the inhibitor and the natural substrate androstenedione in the first catalytic 

subcycle of the enzyme. Furthermore, the analysis of the interaction energy for the substrate and the cofactor in 

the active site, shows that the role of the enzymatic environment during this reaction consists of a transition state 

stabilization by means of electrostatic effects. 
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1. Introduction 

 

The cytochromes P450 (CYP or P450) form a superfamily of heme-enzymes, which are made up by a large 

number of isoforms, and they are responsible for the oxidative metabolism of a broad variety of substrates, both 

endogenous and exogenous.
1-2

  These enzymes have the ability to activate dioxygen by means of their prosthetic 

group, an iron-heme porphyrin, in order to catalyze the oxidation of unactivated hydrocarbons. In this way, P450 

uses molecular oxygen to insert an oxygen atom into the C-H bond of their substrates, usually as a hydroxyl 

group, while the other oxygen is reduced to a water molecule.
3-6

 This process is known as monooxygenase 

reaction (that is the reason why P450s are called monooxygenases), and requires both molecular oxygen and 

NADPH as co-substrates. 

Human Aromatase (CYP19A1) is an isoform of this superfamily and is located in different tissues such as 

gonads, adrenal glands, ovaries, testes, placenta, ovaries, adipose tissue and in the brain.
7-8

 This enzyme, also 

known as estrogen biosynthetase, is responsible for the last (and key) step of the biosynthesis of steroid 

hormones from cholesterol. Specifically, aromatase is involved in the formation of C18-estrogens: estrone (E1), 

17-estradiol (E2) and 17,16-estriol (E3), from the C19-androgens: androstenedione (ASD), testosterone 

(TST) and 16-hydroxytestosterone (HTST), respectively.
9-10

 In fact, this is the only known enzyme involved in 

the biosynthesis of estrogens from androgens in vertebrates.
11

 This conversion consists of the aromatization of 

the A ring of the androgens, which occurs through a process of three consecutive oxidations of the angular C19-

methyl group of the androgens.
12-16

 In this catalytic process, each oxidation step consumes one mol of NADPH, 

one mol of molecular oxygen and requires of the presence of the cytochrome P450 reductase (CPR) as a source 

of electrons.
10, 17-22

 The overall process of aromatization of androgens via the enzyme aromatase has been 

depicted in Scheme 1.  

As can be observed in this scheme, the first and the second oxidation steps occur through two consecutive 

hydroxylations of the C19-methyl group of the androgen substrates. The first step produces 19-hydroxy-

androgens, while the second one leads to the formation of the 19-gem-diol species; the latter, is then dehydrated 

to the aldehyde intermediate (19-oxo-androgen). Finally, the third step consists of a lyase reaction, in which the 

C10-C19 bond of the androgens is cleaved, resulting in the aromatization of the phenolic A ring of the androgens, 

and expelling formic acid and a water molecule. The literature on this mechanism is very extensive since it has 

been studied by means of both experimental 
12-15, 23-31

 and theoretical techniques.
32-39

 However, the third 

oxidation step is still under discussion, in which has not yet reached a consensus. It must be noted that the 

purpose of this scientific paper is out of participating in this debate.  

As mentioned above, the first of the three consecutive oxydation steps of estrogens formation consists of the 

hydroxylation of the androgens to form 19-hydroxy-androgens. As can be seen in Scheme 2, this process 

proceeds through two distinct stages: Initially, a C-H bond of the C19 methyl group of the androgens is activated 

by means of the reactive species, an iron(IV) oxo-porphyrin cation radical also known as “Compound I” (Cpd I), 
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which subsequently abstracts the hydrogen atom to the substrate. In this way, an alkyl radical is generated on the 

C19-methyl group and the iron-hydroxo porphyrin complex is formed. Later, a reorientation of both the alkyl and 

OH groups is produced to facilitate the subsequent oxygen rebound step in which a new C-O bond is formed. In 

this step, the alkyl radical is recombined with the iron-bound hydroxyl radical to form the corresponding 

hydroxylated substrate and the iron(III) porphyrin complex.  

 

 

 

 Scheme 1. Proposed catalytic cycle for the aromatization of androgens into estrogens via the enzyme aromatase 

(CYP19A1). 

 

 

 

 

Scheme 2: Mechanism of hydroxylation by cytochrome P450. 
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Recently, the hydroxylation of the androgen ASD to 19-hydroxy-ASD via the enzyme aromatase was studied by 

our research group, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques.
40

 According 

to our findings, the mechanism discussed above, which is common for all cytochromes P450, is fully compatible 

with the androgen hydroxylation by aromatase enzyme. In this work, apart from calculating the free energy of 

the whole hydroxylation mechanism, an analysis of the decomposition of the interaction energy for substrate and 

cofactor was performed. This analysis revealed that the role of the enzyme aromatase during this catalytic 

subcycle consists of the TS stabilization achieved through both dispersive and polarization effects. 

The estrogens are important in humans because of the role they play in the sexual and reproductive development. 

Particularly the estrogens are essential for women, since these are the primary female sex hormones. In 

premenopausal women, the main source of estrogens is the ovary, which produces mostly E1. However, in 

postmenopausal women the source of estrogen production is attributed to the aromatization of adrenal and 

ovarian androgens (ASD and TST) to estrogens (E1 and E2) via the enzyme aromatase in peripheral tissues.
41

 

These steroid hormones, apart from being essential in the female sexual development, also play a significant role 

in the growth and proliferation of hormone-dependent breast cancer. This is because the estrogens bind to the 

estrogen receptor (ER), which activates the transcription of its target genes, thereby stimulating proliferation of 

human mammary cells. The complex estrogen-ER interacts with the DNA and may cause mutations due to the 

resulting increase in cell division, thus encouraging the development of breast cancer cells.
42-43

 Around two 

thirds of all cases of breast cancer are related with the type of hormone-dependent breast cancer,
44-46

 however, 

this ratio is increased up to 75% when we refer to postmenopausal breast cancer.
47

 For this reason, blocking the 

estrogen biosynthesis has proved to be a good strategy to combat the estrogen-dependent breast cancers, and has 

been a prime goal in the field of endocrinology. Therefore, inhibition of the enzyme aromatase, by means of 

drugs known as aromatase inhibitors (AIs), is the frontline therapy for these types of cancers.
10, 44, 48

 

The AIs can be classified, according to their structures into Type I (steroidal) and Type II (nonsteroidal) 

inhibitors.
49-50

 The former, such as exemestane (EXE) or formestane, have similar structure to natural substrate 

ASD and hence they act as pseudo substrates of aromatase. In such a way, these inhibitors irreversibly bind the 

enzyme active site and thus are considered as a mechanism-based inactivators or suicidal inhibitors. The latter, 

are mostly azole-based compounds, such as anastrozole or letrozole, which are triazole derivatives. These 

inhibitors compete reversibly with the natural substrate for binding the enzyme, thus interfering with the heme-

iron moiety of the cofactor.
41, 43, 51-52

 Currently the first-line therapy for advanced hormone dependent breast 

cancer is based on the third generation of AIs. This family of inhibitors consists of three compounds: 

anastrozole, letrozole and exemestane, which are marketed under the brand names ARIMIDEX
®
, FEMARA

®
 

and AROMASIN
®
 respectively.

41, 48
 

In recent times, the aromatase inhibition has been studied by means of different computational techniques, where 

several AIs have been tested.
10, 43, 51, 53-57

 In this paper, we have focused in particular on the EXE compound (6-

methylene-androsta-1,4-diene-3,17-dione) because of the resemblance it has with the natural substrate ASD 

(androst-4-ene-3,17-dione). EXE shares the steroidal backbone with ASD, however, the main differences that 
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exist between them are: i) a C6-substitued methylidene group located at the B-ring of EXE, and ii) a double bond 

between C1 and C2 carbons which is present at the A-ring of the EXE but not in the ASD (see Scheme 3 for 

comparison).  

 

 

Scheme 3: Structure of the androstenedione and exemestane substrates. 

 

On one hand, the ability to block enzyme activity by the exemestane has been attributed to the presence of this 

C1-C2 double bond.
41, 58

 On the other hand, it has been reported that the presence of the C6-methylidene improves 

the binding of the EXE in the active site, by means of a “hydrophobic clamp” comprised by the residues Thr-

310, Val-370 and Ser-478.
10

 In this way, the tight interaction between the C6-methylidene and the hydrophobic 

crevice might reduce the mobility of the Thr-310, thus interfering with the mechanism of formation of the Cpd I 

(in the absence of CPR), and not being the EXE hydroxylated.
10-11

  

 

Given the structural characteristics of EXE, it seems reasonable to assume that it shares the catalytic cycle with 

the natural substrate (ASD), at least in its early stages. Therefore, we have performed a theoretical QM/MM 

study of the hydroxylation of EXE substrate to 19-hydroxy-EXE catalyzed by the enzyme aromatase, with the 

aim of comparing this mechanism with which occurs during the first catalytic subcycle of the enzyme. With the 

present work, we attempt to address the following questions: (i) Is the hydroxylation of EXE compatible with 

that observed for the ASD, in terms of activation energy? (ii) Does the suicidal inhibition take place in this 

mechanistic step? (iii) How does the hydrophobic cleft affect to the activation energy of the process? 

2. Computational Methods 

 
System Setup 

 

The X-ray crystal structure of the human placental aromatase cytochrome P450, in complex with its natural 

substrate ASD (PDB code 3EQM),
11

 was used as the startup geometry in our simulations. The heme cofactor 
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existing in the original PDB file was altered to obtain the Iron-Oxo porphyrin Cpd I species, according to the 

atomic positions suggested in the literature.
11

 In addition, the substrate ASD accommodated in the active site of 

aromatase was modeled to EXE, being the latter retained in the same position than the crystallized ASD. To this 

end, a methylidene group (*=CH2) was substituted in the C6 carbon and the single bond between positions C1 

and C2 was modified to a double bond. All the hydrogen atoms were added using the fDYNAMO library,
59

 

according to the pKa values rendered by the empirical propKa program.
60

 Standard protonation states in solution 

were found with the exception of the residue Asp-309, which was protonated at pH 7, given that it exhibited a 

large pKa displacement (7.7). Histidine amino acids were protonated as follows: His-(62, 105, 111, 325 and 475) 

were singly protonated at  position, His-(109, 128, 402, 459 and 480) were singly protonated at δ position and 

His-171 was doubly protonated. A total of 3 counter ions (Cl
-
) were accommodated into optimal electrostatic 

positions with the aim of electroneutralize the system. The model was placed in a orthorhombic box of water 

molecules of 90x80x80 Å, erasing any water molecule whose oxygen atom lies less than 2.8 Å from any 

heteroatom. The resulting model consisted of 452 residues of amino acids, the Cpd I, the substrate EXE as well 

as 35 crystallographic water molecules, 3 counterions and 16553 water molecules of the solvation box.  

A QM/MM relaxation of the resulting model was accomplished, using the L-BFGS
61

 algorithm. With this 

purpose, the substrate molecule was described using the AM1
62 

semiempirical Hamiltonian, while the enzyme, 

the Cpd I and the counterions were described classically in terms of the OPLS-AA
63

 force field. All the water 

molecules, including the crystallographic ones, were treated using the TIP3P
64

 water potential. Finally, the 

equilibration of the resulting structure was performed by means of hybrid molecular dynamics (MD) at 300 K, 

using the Langevin–Verlet integrator and under the NVT ensemble. The MD was run for 200 picoseconds (ps) 

with a step size of 1 femtosecond (fs). The nonbonding interactions were applied in the calculations by means of 

periodic boundary conditions with the minimum image convention, using a force-switch function with a cutoff 

distance in the range 14.5-16 Å.  

  

QM/MM Calculations 

 

In order to study the reactivity of the enzyme aromatase with the substrate EXE, the potential energy surfaces 

(PES) were explored by means of QM/MM calculations. The strategy used to localize the TSs during the 

QM/MM calculations was the micro/macroiteration method.
65

 In this method, the full system is divided into two 

different subgroups: the control space, consisting of the atoms participating in the reaction, which are treated by 

means of quantum methods, and the complementary space that includes the rest of the system. In this way, the 

optimization of the system is performed as a combination of iterations in both subgroups, which allows taking 

advantage of efficient optimization algorithms. For each optimization step of the control space (based on the 

Baker
66-67

 algorithm), the complementary space remains completely relaxed (using the L-BFGS algorithm). 

Since the complementary space optimization (macroiterations) usually demands a large number of gradient 

calculations for each optimization step of the control space (microiteration), a dual QM:Charge/MM scheme
65, 68
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was adopted. In this procedure, the QM/MM potential energy of the system is evaluated using different 

expressions, depending on the coordinate space being optimized. In this way, the QM atoms are represented as 

frozen classical charges throughout the macroiterations, which accelerates the calculations. In addition, due to 

the complexity of the system, a truncation scheme was carried out during all the QM/MM simulations. 

Therefore, a list of interactions (comprising all atoms within 20 Å from both the Cpd I and the substrate EXE) is 

defined at the beginning of the simulations and is held constant during all of them. In such a way, all the residues 

further than this distance remained frozen during the simulations while all the residues included in the list were 

allowed to move. 

 Once the TSs were obtained and characterized, minimum energy paths (MEP) were mapped out in order to 

obtain all the stationary points involved in the reaction. Then, the Gibbs free energy was computed on these 

stationary points, under the rigid-rotor and the harmonic-oscillator (RRHO) approximations, taking into account 

both thermal corrections and zero point energy (ZPE). 

 The QM region of the model consisted of 123 atoms distributed among the EXE substrate, the Cpd I and the 

axial Cys-437 ligand (comprising the Sγ, the Cβ and two Hβ atoms), as can be seen in Figure 1. 

 

 

 

Figure 1. Atoms belonging to the QM model: Cys-437 residue, the substrate EXE and the cofactor Cpd I. The 

C6-methylidene of the exemestane has been highlighted with a red dashed line. 

 

The quantum atoms belonging to the QM region were described by means of the LACVP* basis set
69

 (named as 

B1), where the 6-31G(d) basis is used to describe all the atoms except the iron, which is represented by the 
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Lanl2dz effective core potential (ECP). Additionally, with the aim of calculate a more precise energies and 

frequency numbers, single-point calculations were performed using a larger basis set (B2) on the stationary 

points previously located with the B1 basis set. The new B2 basis set consists of the combination of the Lanl2tz+ 

ECP for the iron and the 6-311G(d,p) basis for the rest of the atoms. The level of theory employed during the 

QM calculations was the unrestricted Kohn-Sham formalism with the B3LYP
70-71

 density functional. The DFT 

and DFT/MM methodologies have been reported to adequately describe the ground states of both the doublet 

and the quartet for the Cpd I.
72-73

 In fact, B3LYP has become the widely accepted choice to treat the quantum 

calculations of the CYP enzymes, since it is well-known that this functional provides reasonable relative spin 

state energies as well as a number of other properties.
74-75

 As in the system setup, the rest of the enzyme as well 

as the water molecules (MM region) were described classically by means of the OPLS-AA and TIP3P force 

fields, respectively. In addition, the link atom formalism was adopted to satisfy the valence of the QM region, 

due to existence of a classical bond partitioning in the Cys-437 amino acid (Cα-Cβ bond). All the DFT 

calculations were carried out using the Gaussian03
76

 program, while the MD simulations and the MM 

calculations were performed with the fDYNAMO library. 

 

Free energy perturbation calculations 

 

In order to compute the free energies of activation of this enzymatic reaction, free energy perturbation (FEP) 

calculations were performed on the system. Since this method is based on statistical mechanics, the 

conformational space of the enzyme is taken into account in the calculations, thereby allowing us to obtain more 

accurate free energy surfaces. With this purpose, a series of windows (geometries with equally spaced energy) 

were chosen from the formerly mapped out reaction paths. Specifically, 67 windows were selected for the 

doublet spin state and 76 for the quartet state. During the FEP calculations, the QM region (including the link 

atom) of each window remained frozen. Every time a QM energy calculation was performed, 100 steps of 

classical MD were carried out (following the micro/macro scheme), under the same conditions used during the 

equilibration. This scheme was applied 200 times with a time step of 1 fs, giving rise to a total of 20 ps per 

window. Finally, in order to estimate the variation of free energy change, the coordinates of the QM region were 

shifted between consecutive windows (for the last 100 structures), using the following expression:   

 

∆𝐹𝑖→𝑗 = −𝑅𝑇 ln 〈𝑒
−(

𝐻𝑗−𝐻𝑖

𝑅𝑇
)
〉𝑖       (1) 

 

This equation is expressed as an average of potential QM/MM energy differences as denote the triangular 

brackets. The term Hi refers to the potential energy of the ith window of MD, meanwhile Hj corresponds to the 

potential energy calculated after swapping the coordinates of the atoms of the control space (j=i+1 for forward or 

j=i-1 for backwards). The average was carried out under the same geometry of the classical environment 
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corresponding to the ith window. Once the free energy barrier is computed using this equation, the ZPE 

correction term is added by means of QM/MM frequency calculations, performed on both the reactant and TS 

structures. 

3. Results and Discussion 

 

The results presented in this paper correspond to the hydroxylation of EXE substrate to 19-hydroxy-EXE 

catalyzed via the enzyme aromatase. This process is divided in two stages: an initial hydrogen abstraction 

process and a subsequent oxygen rebound step. At first, the reaction was studied at the active site of the enzyme 

in the doublet spin state, using the B3LYP[B1]:ESP/MM scheme discussed above. Then, the search of the 

transition states in the quartet state was performed from the optimized structures of the doublet, from which the 

entire PES was obtained. 

Table 1 shows the Gibbs free energies (G) obtained with the B2 basis set for the entire hydroxylation process, 

as well as the activation free energies obtained from FEP (F) only for the first hydrogen abstraction step. The 

FEP calculations were carried out with the B1 basis set and afterwards were corrected with the larger basis set 

B2. However, this correction was only applied to those energy terms that can be extracted from the average. 

With this purpose, equation 1 was rewritten in order to reduce the large amount of time consuming QM(B2) 

calculations: 

 

∆𝐹 ≈ −𝑅𝑇𝑙𝑛 〈𝑒−
∆𝐸𝐼𝑛𝑡

𝐵1

𝑅𝑇 〉 + 𝐸𝑣𝑎𝑐
𝐵2 + ∆𝑍𝑃𝐸𝐵2      (2) 

 

In Equation 2, the interaction energy term (∆𝐸𝐼𝑛𝑡
𝐵1 ) corresponds to that previously calculated with the B1 basis 

set, while both the gas phase energy (𝐸𝑣𝑎𝑐
𝐵2 ) and the ZPE (∆𝑍𝑃𝐸𝐵2) terms were estimated with the B2 basis set. 

As can be observed in Table 1 and Figure 2, the reactant species show Gibbs free energy values quite similar in 

both spin states, being the quartet 1.0 kcal/mol lower than the doublet state. The ΔG of activation for the 

hydrogen abstraction step (the rate-limiting step of the reaction) falls in the range of 18-19 kcal/mol, being in 

this case lower for the doublet than for the quartet. The intermediates generated in this step correspond with the 

iron-hydroxo complex and alkyl species and give place to the oxygen rebound process. The ΔG of activation for 

this step shows values of 1.7 kcal/mol for the doublet and 5.5 kcal/mol for the quartet, leading to the formation 

of the 19-hydroxy-EXE through a highly exergonic process (-42 and -47 kcal/mol for the doublet and quartet, 

respectively).  

The free energies were also calculated by means of FEP techniques, in order to include the flexibility of the 

enzymatic environment.  The values calculated with this methodology are reported in Table 1 and are depicted in 

Figure 3. As can be seen in Table 1, the ΔF energies obtained for the reactant species with the B1 basis set are 

almost degenerate (< 0.5 kcal/mol), being lower in the case of the quartet state. Indeed, when the B2 basis set is 
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considered, this difference is even lower, being both spin states virtually degenerated. The ΔF of activation for 

the hydrogen abstraction step obtained with the B1 basis falls in the range of 17-19 kcal/mol, being the barrier of 

the doublet state lower than for the quartet. However, these barriers decrease to values in the range of 15-18 

kcal/mol once the B2 basis has been considered. Interestingly, when the values calculated from PESs (ΔG) are 

compared with those calculated through FEP techniques (ΔF), it can be noted that the inclusion of the 

conformational space of the enzyme has not a significant impact on the activation barriers. Surprisingly, this 

trend is in clear contrast with that observed in a previous investigation including the ASD substrate,
40

 where the 

barriers calculated for the H-abstraction by means of FEP, were about 9 kcal/mol smaller in average than those 

calculated from the PES. In addition, our results indicate that the hydroxylation step is slower for the EXE than 

for the natural substrate ASD, since the barrier for the rate-limiting step of the reaction is 3.4 kcal/mol higher for 

the EXE (16.9 kcal/mol) than for the ASD (13.5 kcal/mol). It is worth mentioning that the ΔF values used in the 

comparison between both studies are those obtained for the doublet state with the B1 basis set. Indeed, this 

observation is in good agreement with the values derived from experimental results; specifically when compared 

to the data obtained from kinetic studies for the hydroxylation of both substrates. According to the kinetic 

parameters obtained experimentally for the EXE (global rate of 0.83·10
-3

 s
-1

)
77

 the free energy barrier for the 

entire inhibition process at 310 K is around 22.5 kcal/mol. Moreover, the whole aromatization process of the 

ASD presents a free energy barrier around 19.8 kcal/mol at the same temperature (experimental global rates of 

0.06 s
-1

 and 5.69 min
-1

)
27, 29

. The hydroxylation of ASD is in turn the rate-limiting step of the aromatization, and 

it is characterised by a free energy barrier of 18.2 kcal/mol (kcat of 1.0 s
-1

)
27

. Under the assumption that the 

hydroxylation of the EXE is also the rate-limiting step of the catalytic cycle, as is the case of the ASD, the free 

energy of activation for EXE would be around 2.4 kcal/mol higher than for the ASD. Although our reported 

activation barriers are underestimated (around 5 kcal/mol) when compared with the experimental values, the 

difference of the activation barrier that we have obtained between the EXE and ASD falls in the range 

experimentally observed. 

Furthermore, the hydroxylation of EXE is more exergonic than the hydroxylation of ASD (4.8 kcal/mol for the 

doublet and 3.3 kcal/mol for the quartet state, respectively). This observation suggests that EXE could act as a 

competitive inhibitor in the first catalytic subcycle of human aromatase. 

 

 

 

 

Table 1. Relative potential energies (Epot) and free energies obtained by means of RRHO (G) and Free 

Energy Perturbation (F) for the hydroxylation of EXE in doublet and quartet spin states. The FEP energy has 

been calculated only for the hydrogen abstraction step and the ZPE has been included in both G and F. The 
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basis set used (B1 or B2) is shown in parenthesis. The energies are expressed in kcal/mol and the imaginary 

frequencies (cm
-1

) associated with each TS obtained are also reported. 

 

 
ΔEpot (B2) ΔG (B2) ΔF (B1) ΔF (B2) 

2
R 1.5 1.0 0.40.0 0.0 

4
R 0.0 0.0 0.00.1 0.2 

2
TSH-abs 24.1 18.7 (1764i) 17.30.1 15.2 

4
TSH-abs 24.0 19.1 (1878i) 19.20.2 17.8 

2
I 14.7 11.7 14.50.2 10.8 

4
I 13.4 10.5 13.30.2 9.7 

2
TSreb 15.6 13.4 (171i) 

  
4
TSreb 18.4 16.0 (328i) 

  
2
P -43.2 -41.7 

  
4
P -47.6 -46.7 

  
 

 

 

Figure 2. Gibbs Free Energy profile (kcal/mol) for the hydroxylation of the EXE substrate. The structures 

corresponding to the QM part for each stationary point have been depicted. 
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Figure 3. Free Energy profile (kcal/mol) of the hydrogen abstraction step from the EXE substrate. This profile 

has been obtained by means of FEP techniques using the B1 basis set. The ZPE energy has not been included in 

the profile. 

The reaction process can be monitored through the values of spin density and the geometrical parameters of the 

structures obtained. The geometrical data obtained for the hydroxylation of EXE and the corresponding Mulliken 

atomic spin densities using the B2 basis set are reported in Tables S1 and S2 of the Supporting Information, 

respectively. Moreover, the evolution of the molecular orbitals occupancy along the hydroxylation process, for 

doublet and quartet states, has been depicted in Figure 4. 
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Figure 4. Evolution of the molecular orbitals occupancy along the hydroxylation of the EXE substrate, for 

doublet (S=1/2) and quartet (S=3/2) spin states. 

 

As can be observed in Figure 4 and in Table S2, the reactant species concentrate the entire spin density on the 

FeO moiety (local triplet) and on the a2u orbital of the porphyrin ring: (ρ(FeO)=2.12, ρ(Por+SCH3
-
)=-1.12) for 

doublet and (ρ(FeO)=2.04, ρ(Por+SCH3
-
)= 0.96) for quartet. Inasmuch the hydrogen abstraction takes place, the 

H19 atom along with the unpaired electron coming from the homolytic C-H cleavage are transferred from the C19 

to the oxygen of the Cpd I. During this process, the Fe-O bond is stretched (from ~1.6 Å to ~1.8 Å), while the 

Fe-S distance is slightly contracted (from ~2.6 Å to ~2.5 Å). At the same time, the distance between the donor 

(C19) and the acceptor (O) atoms becomes shorter when going from the reactive species to the transition 

structures (from 2.9 Å to 2.5 Å). It is noteworthy that the TS shows the maximum value of the angle C19-H19-O 

(~168 degrees), which is a value close to linearity, as expected for this type of hydrogen transfer mechanisms. 

However, the O-C19 distance again elongates as the formation of intermediate species occurs, thus taking similar 

values to those of the reactants (~2.9 Å). This step leads to the formation of an alkyl radical on this carbon 

(ρ(C19)~1.00) and of the iron-hydroxo complex (ρ(O-H19)<0.20) in the intermediate species. Interestingly, the 

iron-hydroxo complex was found in two different electromeric configurations for the quartet spin state as can be 

seen in Figure 4: 
4
Fe

III
Por

•+
 (ρ(Fe)=0.90, ρ(Por+SCH3

-
)=0.96) and 

4
Fe

IV
Por (ρ(Fe)=2.00, ρ(Por+SCH3

-
)=-0.17). 

Both electromers share the same geometry, but differ in the occupancy of their molecular orbitals.
75, 78

 However, 

in the case of the doublet state, only the configuration corresponding to 
2
Fe

III
Por

•+ 
was found (ρ(Fe)=1.00 and 

ρ(Por+SCH3
-
)=-1.08). It is worth pointing that despite of the fact that different electromers were found in the 

iron-hydroxo complex, all the configurations present in the intermediate species retain the radical character on 
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the C19 atom with a singly occupied orbital Φc (ρ(C19)= 1.00 (
2
Fe

III
Por

•+
), 1.03 (

4
Fe

III
Por

•+
), and 1.03 (

4
Fe

IV
Por)). 

The subsequent rebound step is preceded by a reorientation of the hydroxyl group, which is being prepared to 

form a new C19-O bond. This rotation process can be monitored through the change in the H19-O-Fe-Nα dihedral 

angle between the intermediate and the TS of the rebound step (around 55º for doublet and 45º for quartet). The 

rebinding of the hydroxyl group involves the shortening of the C19-O bond (from ~3.0 Å to ~2.6 Å in doublet 

and from ~3.0 Å to ~2.5 Å in quartet). This distance, in turn, decreases drastically from the TS to product species 

(~1.4 Å) giving place to the formation of the new C19-O bond as well as the penta-coordinated iron complex. 

During the rebound step, the radical character on C19 disappears leading to product species showing a closed 

shell porphyrin as well as unpaired electrons on the Fe(III) center: three in the quartet state and one in the 

doublet state (see Figure 4). All the spin density found in the products is concentrated on the iron atom 

(ρ(Fe)=2.69 and 1.30 for quartet and doublet, respectively) and partly in the porphyrin and the thiolate ligand 

(ρ(Por+SCH3
-
)=0.31 and -0.33 for quartet and doublet, respectively).  

 

The main interactions established among the EXE and the Cpd I with the surrounding amino acids of the active 

site are presented in Figures 5 and 6, and Table S1 of Supporting Information. As can be observed in Figure 5, 

there are several hydrogen bonds established among the propionate side chains attached to the heme group and 

the following residues: Arg (115, 145, 375 and 435) and Trp-141. These interactions are responsible for the 

efficient binding of the heme group in the active site, since they neutralize the excess of negative charge present 

in the heme-propionate side chains. Similarly, the residues: Ala-438, Gly-439 and Lys-440 stabilize the sulfur 

atom of the Cys-437, which is partially charged, by means of the interaction with three polar peptidic hydrogens. 

It has been reported that this interaction stabilizes the coordination of the thiolate with the heme group, and at the 

same time regulates the redox potential of the heme group, so that prevents the formation of a radical on the 

sulfur atom.
79

 

Regarding the interactions of the EXE substrate, it is noteworthy that it is enclosed in a mainly hydrophobic cleft 

formed by the residues: Ile-133 and Phe-134 from B-C loop, Phe-221 and Trp-224 from F-helix, Ile-305, Ala-

306, Asp-309 and Thr-310 from I-helix, Val-369, Val-370, Leu-372 and Val-373 from the K-β3 loop, Met-374 

from β3, Leu-477 and Ser-478 from the β8-β9 loop. EXE in turn forms two hydrogen bonds between its polar 

moieties (3-keto and 17-keto oxygens) and the residues Asp-309 (which is protonated) and Met-374, 

respectively. Some of the interactions discussed above can be seen in Figure 5.  

When comparing the interactions between the EXE and ASD substrates with the active site of aromatase, we see 

that the main difference lies in the interactions between the substituted C6 carbon and its nearest surrounding 

amino acids. It should be remembered that both substrates differ in the functional group substituted on C6, which 

is located in a quite exposed position, due to its proximity to the access channel to the aromatase active site. The 

EXE substrate has a methylidene group substituted in this position that makes it bulkiest than the same position 

in the ASD (which is not substituted), and hence it has more surface accessible to fit in the available space. A 

study based on docking techniques
10

 has proposed the existence of a “hydrophobic clamp” in the active site, 
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which comprise the residues Thr-310, Val-370 and Ser-478, and that it would be responsible for anchoring the 

C6-methylidene of EXE, thus improving the binding of the inhibitor. 

In our simulations, we have observed that the C6-methylidene interacts with the residues Phe-221, Thr-310, Ser-

478, Val-369, Val-370 and a water molecule (WM) (see Figure 6). The distances among the main atoms of the 

residues described above and the C20 atom of the EXE range from 3.2 Å to 4.9 Å (see Table S1 of the supporting 

information). Interestingly, we have observed a bridge of polar nature formed by the peptide carbonyl group of 

Asp-309, the WM, and the Hγ of the Ser-478, which is located in the vicinity of the access channel. This polar 

bridge is aligned with the methylidene group and would provide a binding region of electrostatic nature. It 

should be pointed out that we have observed the presence of a conformer of the Thr-310 residue, in which the 

Oγ1 hydroxyl moiety is located between the residue EXE and the heme group. The orientation of this residue 

also reveals an interaction of the Oγ1 atom with a C19-methyl hydrogen of the EXE substrate, whose average 

value is 2.7 Å (see Figure 5). Based on the short distance between both atoms (<2.9 Å), one could think that this 

interaction assists the orientation of the C19 atom, thus facilitating the hydrogen abstraction process. It is worth 

pointing that this disposition differs from that found in the original X-ray structure, in which the Cγ2 is located 

between the substrate and the heme group. However, it is necessary to mention that during the calculations that 

we performed with the ASD substrate, the orientation of Thr-310 was retained in the same position than in the 

original structure from X-ray. In order to check how stable the Thr-310 rotamer is, classical MD simulations 

were carried out for two different conformations: (a) the one obtained from the analysis of the PES, and (b) 

another one in which the Thr-310 was modified with the aim of reproducing the orientation found in the X-ray 

structure. Each MD was run for 30 nanoseconds (ns) with the program NAMD
80

 with a step size of 1 fs using the 

TIP3P water model and the OPLS-AA force field. The results of the MD calculations showed that the orientation 

of the Thr-310 remains unaltered in each of the simulations, which suggests that the two rotamers are 

representative of the conformational space of the protein. Indeed, the distance between the Oγ1 atom and the 

C19-methyl hydrogen of the EXE substrate shows an average value of 3.1±0.4 Å for the conformer (a), while this 

value is 4.9±0.3 Å for the conformer (b). On another note, the conformer (a) shows an average potential energy 

lower than the conformer (b); specifically, this energy is ~146 kcal/mol more negative in (a) than in (b)  for the 

last 1000 structures analyzed (see Figure S1 of the Supporting Information for more detail). Moreover, the 

activation energy for the hydrogen abstraction step was also calculated (with the B1 basis set) in the case of the 

conformer (b), giving place to a free energy barrier 3.5 kcal/mol higher than for the conformer (a). Further 

details regarding the energies and structures obtained in these calculations can be seen in the Table S3 and 

Figure S2 of the Supporting Information. 

Furthermore, the stability of the polar bridge, which was discussed above, was also checked from the MD 

simulations. Based on the analysis of 30,000 structures, we observed that this bridge is only present in around 

7% of the time of simulation. This finding can be partly explained by the fact that the residues involved in the 

bridge are found in a region quite exposed to solvent, and therefore, the water molecules are free to come in and 

go out through the access channel. Indeed, the Hγ1 atom belonging to the Ser-478 residue establishes hydrogen 
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bonds with the peptide carbonyl group of the residues: Ser-478, Val-369 and Asp-309, and with the Nε atom of 

the residue His-480. In any case, this polar bridge would introduce certain electrostatic character to the 

interaction between the methylidene group and the active site. 
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Figure 5. Snapshots corresponding to the TS structures obtained during the hydroxylation reaction of the EXE 

substrate: (a) for the hydrogen abstraction and (b) for the oxygen rebound step. The most relevant interactions 

among the substrate and the cofactor with the enzymatic environment have been depicted. 

 

Figure 6. Representation of the main interactions of the C6-methylidene group (highlighted in yellow dashed 

lines) with the surrounding amino acids. Notice that WM means water molecule. The solvent accessible surface 

in the vicinity of the methylidene group has been depicted and it has been colored according to the 

hydrophobicity (white for the polar interactions and red for hydrophobic interactions). 

 

Finally, the interaction energy between the enzymatic environment and the substrate/cofactor was calculated for 

the hydrogen abstraction step (rate limiting step) in both doublet and quartet spin states. This energy was 

obtained from the FEP windows corresponding to reactant and TS structures, and thus is expressed as an average 

value. Moreover, in order to unravel the source of the catalytic activity of aromatase during the chemical 

process, the interaction energy was further broken down into its constituent parts. Table 2 shows the results 
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obtained for the different contributions of the interaction energy, which are as follows:  i) the electrostatic term 

(Eelec), which corresponds to the interaction between the polarized wave function obtained for the 

substrate/cofactor and the MM charges representing the enzymatic environment; ii) the polarization energy 

(Epol), consisting of the energy associated with the deformation of the wave function obtained in gas-phase, 

when it is perturbed by the effect of including the enzyme environment; iii) the Lennard-Jones term (ELJ), 

representing the classical dispersive interaction between the QM and MM atoms. This interaction has been in 

turn broken down into the contributions coming from the atoms of the substrate (EXE) and from the cofactor 

(Cys+heme). Additionally, the gas-phase energy (Evac) obtained for each species is also presented in Table 2. 

Our results reveal that the electrostatic interaction term is the only responsible for the TS stabilization with 

respect to the reactant species, being ∆Eelec = -14.5 and -3.2 kcal/mol for the doublet and quartet, respectively. In 

contrast, it is observed that both the polarization and the Lennard-Jones terms lead to an unfavorable 

contribution to the activation energy. However, these contributions have different weight depending on the spin 

state being monitored, in such a way that ∆Epol and ∆ELJ show values of 4.0 and 7.9 kcal/mol in the case of the 

doublet, which are higher than those obtained in the case of the quartet (0.8 and 0.2 kcal/mol, respectively). In 

addition, when the ∆ELJ energy is decomposed in terms of substrate (∆ELJ (EXE)) and cofactor (∆ELJ 

(Cys+heme)), a different trend is also noted depending on the spin state. Interestingly, the latter gives rise to a 

destabilizing nature in the case of the doublet (6.5 kcal/mol), but slightly stabilizer in the case of the quartet state 

(-0.8 kcal/mol). Nevertheless, despite the fact that the different contributions to the activation energy for the 

doublet state are higher in magnitude than for the quartet, the global interaction energy of the activation process 

(the sum of all the different contributions), falls into the same range for both the doublet (-2.6 kcal/mol) and the 

quartet (-2.3 kcal/mol).  

Surprisingly, in a previous study that we performed on the same enzyme but with the natural substrate (ASD),
40

 

we showed that the stabilization of the transition state for the hydrogen abstraction step is achieved by means of 

Lennard-Jones and polarization effects. Since both substrates share the same steroidal backbone, it would be 

expected a similar behavior in this regard; however, in present study we observe that the electrostatic term is the 

only one that facilitates the binding of the transition state in the EXE substrate. In order to better clarify the 

source of this preferential electrostatic stabilization, we performed a decomposition "residue by residue" of the 

electrostatic interaction term (∆Eelec) involved in the activation energy. The results obtained are plotted in the 

Figure 7, and reveal that the residue Thr-310 participates in the stabilization of the TS. These findings suggest 

that the changing nature of the TS stabilization for the hydrogen abstraction step between both substrates is due 

to: i) the presence of a methylidene group substituted in the C6 of the EXE substrate and ii) the different 

orientation of the residue Thr-310 during the chemical reaction, which forms a hydrogen bond (Oγ1-H19) with 

the EXE substrate. 
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Table 2. Relative QM/MM energy decomposition terms for the hydrogen abstraction (rate-limiting step). The 

absolute values, along with the corresponding errors, are shown in brackets. The Lennard-Jones term has been in 

turn broken down into substrate (EXE) and cofactor (Cys+heme), and the gas-phase energies (∆Evac) have been 

also included. All the values are expressed in kcal/mol. 

 
∆Eelec ∆Epol ∆ELJ ∆ELJ (EXE) 

∆ELJ 

(Cys+heme) 
∆Evac 

2
R [-577.89.6] 0.0 [60.81.6] 0.0 [346.510.4] 0.0 0.0 0.0 0.0 

2
TS [-592.310.5] -14.5 [64.82.2] 4.0 [338.611.4] 7.9 1.4 6.5 25.4 

4
R [-576.19.0] 1.7 [60.51.6] -0.4 [348.810.4] -2.4 1.1 -3.5 -0.6 

4
TS [-579.311.1] -1.5 [61.22.0] 0.4 [348.711.7] -2.2 2.1 -4.3 25.9 
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Figure 7. Decomposition "residue by residue" of the activation energy for the electrostatic interaction term 

(∆Eelec) obtained for the doublet (a) and the quartet (b) spin states. Notice that only those residues contributing 

with an absolute value greater than 0.2 kcal/mol are labeled in the charts. 

4. Conclusions 

 

In the present work, the hydroxylation of the EXE substrate to 19-hydroxy-EXE, catalyzed by the enzyme 

aromatase, has been studied using hybrid QM/MM calculations and MD simulations. The aim of this study has 

been to compare the hydroxylation mechanism of this aromatase inhibitor, with that which occurs during the first 

catalytic subcycle of the natural substrate (ASD). To this end, the hydrogen abstraction-oxygen rebound 
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mechanism that takes place during hydroxylation of the ASD, has been also proposed as the mechanism for the 

hydroxylation of the EXE. With the results obtained, we have attempted to address different questions:  

(i) Is the hydroxylation of EXE compatible with that observed for the ASD, in terms of activation energy? 

According to the results derived from the analysis performed on the PES, the rate-limiting step during the 

hydroxylation reaction of EXE corresponds to the hydrogen abstraction process, as in the case of the 

hydroxylation of the ASD. In this step, the Cpd I oxidant species abstracts a hydrogen atom from the C19-methyl 

group of the substrate, leading to the formation of an alkyl radical on the C19 carbon as well as of the iron-

hydroxo complex. The activation barriers for this step, obtained through FEP techniques, show that it takes place 

through an endergonic process with activation barriers in the range of 16.9 kcal/mol (doublet) - 19.2 kcal/mol 

(quartet).  When comparing these results to those obtained for the natural substrate, it is found that the activation 

barriers obtained for the ASD (13.5 kcal/mol for both doublet and the quartet) are around 3-5 kcal/mol lower 

than for the EXE. According to these findings, the hydroxylation reaction for the inhibitor proceeds through a 

slower process than for the natural substrate. These results are consistent with the experimental studies, from 

which it may be estimated an activation barrier for hydroxylation of the EXE 2.4 kcal/mol higher than for the 

hydroxylation of the ASD. Therefore, we can conclude that although this process is slower for the inhibitor than 

for the natural substrate, the hydroxylation of the EXE proceeds via the hydrogen abstraction-oxygen rebound 

mechanism as in the case of ASD. 

(ii) Does the suicidal inhibition take place in this mechanistic step? 

Since the hydroxylation of the EXE substrate is compatible with the mechanism proposed above, and the 

activation barriers are in the range of values expected, everything suggests that this is not the stage where the 

inhibition of the aromatase takes place. It has been reported that the EXE is a mechanism-based inactivator or 

suicidal inhibitor, thus it should irreversibly bind the active site of the enzyme at some stage. However, this 

behavior could not be observed throughout the hydroxylation process. Therefore, we dismiss the first catalytic 

subcycle of aromatase as the stage of the inhibition, and thus, it probably will take place in subsequent catalytic 

subcycles. 

Furthermore, the fact that the products from the EXE hydroxylation show lower free energies than those 

obtained for the ASD suggests a competitive inhibition in the first subcycle of human aromatase.  

(iii) How does the hydrophobic cleft affect to the activation energy of the process? 

The examination of the different terms in which the activation energy can be decomposed, suggests that the 

electrostatic term is the only one involved in the stabilization of the transition state when compared with the 

reactant species. This finding obtained for the EXE substrate is not in accordance with that obtained for ASD, 

where the opposite behavior was observed. In the case of the latter, both the Lennard-Jones term and the 

polarization of the wave function are the responsible for such stabilization. Therefore, the role of the catalytic 

activity of aromatase during the hydroxylation of the EXE substrate lies in the stabilization of the TS by means 

of the electric field produced by the enzyme; while the role of this enzyme in the hydroxylation of the ASD 

consists of  a stabilization of the TS by means of both polarization and dispersive effects. 
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Further analysis has revealed that the difference of the source of the catalytic activity between both substrates 

lies in two reasons: i) the presence of a methylidene group substituted in the C6 of the EXE substrate, which 

mostly interacts with the surrounding amino acids of hydrophobic nature, and partly with a labile polar bridge 

that provides a binding region of electrostatic character. ii) The different orientation of the Thr-310 residue in 

both substrates. In the case of the EXE, the Oγ1 of this residue forms a hydrogen bond with a C19-methyl 

hydrogen, which could set the position of this group throughout the reaction, thereby facilitating the hydrogen 

abstraction by the Cpd I. 
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