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Hybrid lead halide perovskites have reached very large solar to electricity power 

conversion efficiencies, even in some cases exceeding 20%. The most extensively used 

perovskite-based solar cell configuration comprises CH3NH3PbI3 (MAPbI3) in 

combination with electron (TiO2) and hole 2,2′,7,7′-tetrakis(N,N-di-p-

methoxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD) selective contacts. The 

recognition that the solar cell performance is heavily affected by time scale of the 

measurement and preconditioning procedures has raised many concerns about the 

stability of the device and reliability for long time operation. Mechanisms at contacts 

originate observable current-voltage distortions. Two types of reactivity sources have 

been identified here: (i) weak Ti−I−Pb bonds that facilitate interfacial accommodation 

of moving iodine ions. This interaction produces a highly reversible capacitive current 

originated at the TiO2/MAPbI3 interface, and it does not alter steady-state photovoltaic 

features. (ii ) An irreversible redox peak only observable after positive poling at slow 

scan rates. It corresponds to the chemical reaction between spiro-OMeTAD+ and 

migrating I- which progressively reduces the hole transporting material conductivity and 

deteriorates solar cell performance.  
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1. Introduction 

Hybrid lead halide perovskites have reached very large solar to electricity power 

conversion efficiencies,[1-3] even in some cases exceeding 20%.[4] In the last two years a 

variety of configurations have been checked by modified cell structure, selective 

contacts and perovskite materials utilized.[5-9] The most extensively used perovskite-

based solar cell configuration comprises CH3NH3PbI3 (MAPbI3) or its analogous using 

chlorine precursor, CH3NH3PbI3-xClx, as absorber materials, in combination with 

electron (TiO2) and hole 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-

spirobifluorene (spiro-OMeTAD) selective contacts. In spite of the spectacular advances 

in cell efficiency many important aspects of the experimental observations on this 

system are not understood. Particularly intriguing is the hysteresis features in the 

response of the current density-voltage (VJ − ) curves[10-13] that have been related to a 

number of different explanations, as ferroelectric properties of the perovskite 

materials,[14-16] delayed electronic trapping processes,[17] or slow ion migration.[11, 18, 19] 

The recognition that the solar cell performance is heavily affected by time scale of the 

measurement and preconditioning procedures[9, 17, 20, 21] has raised many concerns about 

the stability of the device and reliability for long time operation.  

It has been recognized that interfaces between the absorber perovskite and the 

contacting transport layers play a central role on the solar cell operation and 

performance.[22] Details of the interfaces surely depend on the synthetic methods used 

and materials processing. Interfacial electronic properties as energy level alignment 

constitute a relevant piece of knowledge that can be addressed through photoemission 

spectroscopies.[23, 24]  From these works several recommendations for proper interface 

engineering are extracted. It is recognized that spiro-OMeTAD exhibits a non-optimum 

energy level alignment at interfaces with perovskite absorbers, while the TiO2 

conduction band is in relatively fair energy alignment.[23] The use of other contact 

materials of diverse electronic character (either n- or p-type, and insulating) have 

revealed that the Fermi level within MAPbI3 is strongly influenced by the substrate 

conductivity type.[24] In connection with the electronic interfacial properties, recent 

electrical measurements have shown that the potential drop concentrates near the 

TiO2/MAPbI3 contact forming a sort of p-n junction.[25, 26] But interfaces evolve during 

solar cell operation, presumably by the presence of moving ions, in such a way that the 

connection between photoemission spectroscopy findings and the reported 

VJ − distortions needs of complementary analysis. Moreover in-situ measurements 
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with solar cells under operation require of specific methods different from 

photoemission spectroscopies. Evolving reactivity and chemical degradation at 

interfaces can in turn be addressed by VJ −  analysis of selected structures in the light 

of electrochemically-inspired methods.[27, 28] 

Here we provide insights about time-dependent photovoltaic operation by discerning 

the locus of hysteresis response. We show that contact phenomena distort the VJ −  

curve. Using different cell structures, we differentiate for the first time the different 

types of interactions of the standard electrode contacts. They display qualitatively 

different sources of reactivity at the interface between MAPbI3 and the transporting 

layers. At TiO2 contact we obtain reversible capacitive currents. On the other hand 

irreversible ionic reaction occurs between mobile ions in MAPbI3 and spiro-OMeTAD 

organic hole extracting layer. Only the latter irreversible behavior may cause significant 

long term aging by reduction of spiro-OMeTAD conductivity, and it is therefore a key 

point for engineering of the solar cell towards long time robust operation. 

Recent experimental work shows a connection between capacitive current and 

hysteresis behavior in hybrid lead halide perovskites.[27] The microscopic phenomena 

responsible for capacitive dark currents is the ionic electrode polarization, similar to 

double layer capacitive effects, while the perovskite absorber layer behaves as a solid 

electrolyte able to interact with the contacting transport layers. However, it has not been 

determined which contact interface, either MAPbI3/TiO2, MAPbI3/spiro-OMeTAD, or 

both, originates the observed capacitive response even in dark conditions. In this study 

we report scans of current-voltage curves, both in solar cells of planar structure 

FTO/TiO2/MAPbI3/spiro-OMeTAD/Au (Figure 1a), and in planar perovskite layers 

with symmetric contacts of both types, electron and hole extracting electrodes. The 

purpose of the investigation is to differentiate which contact or part of the solar cell is 

causing specific hysteresis of irreversible features in current-voltage curves causing 

detrimental effects on the solar cell long time performance.   

 

2. Results and Discussion 

Figure 1b shows that capacitive currents dominate current-voltage response in the 

dark within the central voltage window. In addition one observes injection currents at 

positive voltages ( 5.0>  V) and leakage currents at negative bias ( 5.0−<  V). Here the 

diode convention (common in Electronics) is used: positive bias implies negative 

voltage at the cathode (ITO/TiO2) contact, in such a way that electrons are injected 
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through the cathode and holes through the anode (Au/ spiro-OMeTAD).  It is 

remarkable how the hysteresis disappears when approaching steady-state conditions, 

being highly reversible as the signal level is independent on the sweep direction.  

Positive poling (1 V during 5 min) alters the quasi steady-state response (low scan 

rate) as observed in Figure 1c. However, cycled negative poling does not produce any 

effect on previous signals obtained for positive poling experiments (see Figure S1). 

Figure 1c shows that a positive peak initially developed at ~ 3.02.0 −  V is enlarged for 

successive poling cycles. This additional signal is only partially compensated by a 

negative peak appearing at ~ 0.01.0 −− V.  In addition injection current at forward bias 

is reduced upon cycling (inset of Figure 1c). We conclude that polarization and slow 

scan rates produce a partially reversible peak with an incremental effect indicating stable 

chemical interactions and forward current reduction at large bias. We note that this last 

behaviour is different from the effect produced by bias pre-conditioning under 

illumination.[29] It causes a non-capacitive distortion of the current-voltage 

characteristics by ion-induced contact barrier modification.  
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Figure 1. a) Structure of the planar solar cells checked. Thin MAPbI3 layer (200 nm) is 
sandwiched between TiO2 and spiro-OMeTAD selective contacts. b) Dark currents 
measured at different scan rates both for positive and negative sweep. Three different 
mechanisms are identified: at 5.0>V  V operation currents caused by carrier injection, 

5.0−<V  V leakage currents, and central voltage interval shows the presence of scan-
rate dependent, capacitive currents. The slowest scan rate approaches steady-state 
response. c) Cycled experiments including positive poling during 5 min. Positive scan 
(no poling) reproduce steady-state behavior. Negative scans induce incremental redox 
peaks after successive cycles. The process is only partially reversible. In the inset: 
injection current at forward bias decreases with cycling.  
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Samples of symmetrical devices are useful to investigate separate electrode effects 

occurring in solar cells. As explained in the Experimental section, 500 µm-thick 

MAPbI3 pellets are prepared and sandwiched between contact electrodes comprising 

transport layers (see Figure S2 and S3 for XDR and SEM images). Symmetrical 

samples of structure FTO/TiO2/MAPbI3/TiO2/FTO (Figure 2a) and Au/spiro-

OMeTAD/MAPbI3/spiro-OMeTAD/Au (Figure 3a) are obtained. Figure 2c shows the 

response when two TiO2 contact layers are used. Perfect square-like signals clearly 

indicate the occurrence of capacitive currents comparable to those obtained for 

complete solar cells (0.1 µA for 250 mV s-1 scan rate) in Figure 1b. The fact that both 

solar cells and symmetrical devices yield similar current level, despite the huge 

difference in MAPbI3 layer thickness (200 nm for thin films and 500 µm for pellets), 

corroborates the interfacial origin of the response. Figure 2d shows a linear dependence 

between current level and scan rate which allows extracting capacitive values 

approximately equal to ~2 µF cm-2, again in good agreement with typical double layer 

capacitors (~10 µF cm-2). It is also observed that polarization does not induce any 

additional feature in the form of redox peaks (Figure S4). It is concluded that dark 

capacitive currents are originated by electrode polarization at TiO2/MAPbI3 interfaces. 
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Figure 2. a) Structure of MAPbI3 (500 µm) symmetric devices with TiO2 contact layers. 
b) Raman spectra illustrating the formation of Ti−I−Pb bonds upon reaction between 
MAI and PbI2. c) Capacitive currents exhibited by TiO2/MAPbI3/TiO2 samples. Perfect 
square-like, scan rate-dependent responses are obtained indicating electrode capacitance 
behavior. d) Current level at 0 V as a function of the scan rate. Linear slope corresponds 
to ~2 µF cm-2.  
 

The VJ −  response changes completely when Au/spiro-OMeTAD/MAPbI3/spiro-

OMeTad/Au samples (Figure 3a) are analyzed. Figure 3c shows that only ohmic 

currents are observed. Because of the thick perovskite layer used it is expected that 
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currents (presumably electronic leakage currents) are mainly governed by the bulk 

transport properties. In any case the response is observed to be scan-rate independent. In 

order to verify if additional signals are present, in similarity to redox peaks of Figure 1c, 

it is necessary to explore in detail low scan rate signals. Inset of Figure 3c shows in 

linear scale a current peak that slightly distorts the base ohmic behavior, only 

observable at 0.1 mV s-1. Therefore analysis of symmetrical devices using hole-

transporting layers suggests that MAPbI3 interacts with spiro-OMeTAD producing 

detectable signals. spiro-OMeTaAD is prepared without lithium salts to exclude Li+ 

migration and de-doping. Results of spiro-OMeTaAD layers processed with lithium 

bis(trifluoromethylsulphonyl)imide are shown in Figure S5 (SI). 

 

 
Figure 3.  a) Structure of MAPbI3 (500 µm) symmetric devices with spiro-OMeTAD 
contact layers. b) Absorption spectra of films of pristine and oxidized spiro-OMeTAD 
layers, and the reduction of the polaronic band (~500 nm) by reaction with a source of I-

. c) Current-voltage characteristics of spiro-OMeTAD/MAPbI3/spiro-OMeTaAD 
samples exhibiting ohmic, scan rate-independent behavior. At slowest scan rates (inset) 
MAPbI3 interacts with spiro-OMeTAD producing detectable signals. spiro-OMeTaAD 
is prepared without lithium salts to exclude Li+ migration and de-doping.        
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Our experiments have led us to separate two types of contact layer/perovskite 

interactions: either highly reversible one, producing the capacitive response originated 

at the TiO2/MAPbI3 interface, or in the form of a well-differentiate redox peak related to 

the spiro-OMeTAD/MAPbI3 contact. Reversibility indicates a weak chemical 

interaction as those occurring in polarized surfaces forming an interface charge of 

adsorbed ions. A computational study of the TiO2/MAPbI3 interface by De Angelis and 

coworkers,[30] indicates that TiO2/perovskite interaction occurs mainly through the 

binding of perovskite iodine atoms to under-coordinated Ti(IV) atoms of the TiO2 

surface. Moreover the two materials interact only weakly, as seen by the little 

hybridization found between the perovskite Pb s-p states and the Ti d orbitals 

constituting the TiO2 conduction band. As a result an electrical dipole is formed with 

~4.8 D per nm2
 of TiO2 surface. The identification of the TiO2/MAPbI3 chemical bonds 

along with evidences of easy iodine (defect) migration in perovskite-like materials[31, 32] 

suggests a mechanism able to explain the observation of capacitive currents of Figure 

1b and Figure 2c by the reversible and facile interfacial ionic accommodation promoted 

by moving I-.  

The direct reaction between MAPbI3 and commercially available TiO2 nanoparticles 

has been investigated here to verify the formation of Ti−I−Pb bonds. The perovskite 

material has been synthesized by mixing MAI and PbI2 (1:1) in DMF followed by 

solvent evaporation (see Experimental). By using Raman spectroscopy Ti−I−Pb bonds 

are identified in the product (Figure 2b). Sign of hydrolysis is not observed as the 

characteristic band at 215 cm-1 for PbI2 is not present.[33] When Raman spectra of the 

product are compared with reagents a new band at 137 cm-1 appears which suggests 

evidence for Ti−I−Pb bond generation without the presence of an applied bias as in the 

case of devices. The observed capacitive current is then understood by means of the 

diagram shown in Figure 4. At positive applied bias iodide migrates towards the spiro-

OMeTAD contact, a positive charge is generated at MAPbI3 interface in close contact to 

the TiO2 layer and charge is compensated by the injection and accumulations of 

electrons at TiO2. Finally, at negative bias I- is accumulated at MAPbI3 layer contacting 

TiO2. Ti−I−Pb bonds easily accommodate excess or defect ionic charge in a highly 

reversible way causing the capacitive currents. 
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Figure 4. Diagram representing iodide migration and chemical species present at the 
interfaces. a) At positive bias iodine ions are forced to migrate towards the hole 
selective contact where the reaction with spiro-OMeTAD+ occurs. Iodine defective 
layer is formed at the TiO2/MAPbI3 interface. b) At zero bias neutral case appears. c) At 
negative bias spiro-OMeTAD only partially returns to its oxidized, conductive state. 
Iodine ions accumulate at the TiO2.  

 

A totally different scenario is observed at the spiro-OMeTAD/MAPbI3 interfaces. 

Spiro-OMeTad requires  partial oxidation in order to work efficiently as a hole 

extraction layer.[34] Indeed, photooxidation readily takes place under illumination with 

oxidized spiro-OMeTAD+ concentrations observed above 10% during solar cell testing 

under ambient conditions. Partially oxidized spiro-OMeTAD molecules is known to 

increase hole conductivity of the layer.[35, 36] Here, iodide migration and reaction with 

spiro-OMeTAD layer is monitored by absorption measurements (Figure 3b). A pristine 

spiro-OMeTAD film only shows a characteristic band between 300-420 nm. After 

oxidation in the presence of oxygen the polaronic band corresponding to spiro-

OMeTAD+ at about 500 nm becomes evident. This polaronic species is stabilized by the 

presence of weakly coordinating anions as those present in the additives (TFSI) to 

maintain electroneutrality. However, if the film is treated with a source of  I- ions such 

as methylammonium iodide (MAI) the intensity of the polaronic band decreases 

dramatically. This result is not surprising as iodide ions are highly coordinating. In 

order to rule out the effect of  LiTFSI, similar experiments have been carried out in the 

absence of this additive (see Figure S6, SI). By reaction of spiro-OMeTAD in solution 

with oxidizing reagent containing a poorly nucleophilic anion (NOBF4), the polaronic 

band appears at 500 nm, again confirming that the band corresponds to the spiro-

OMeTAD polaron. Recovery of a neutral species with a higher extinction coefficient by 

further reaction with MAI is again observed. Overall, the chemical reaction can be 

expressed as in Scheme 1.  

IOMeTADIOMeTAD −−→+− + spirospiro -
 

(Scheme 1) 
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Although other reactions producing I2 evolution and neutral spiro-OMeTAD molecules 

cannot be discarded. As discussed previously, the redox peak in Figure 1c enlarges after 

each positive poling cycle. One can then imagine a situation as that drawn in Figure 4: 

at positive poling iodine ions migrate to the spiro-OMeTAD contact, and intercalate 

into the hole transport layer. This promotes reaction with previously oxidized spiro-

OMeTAD molecules. By this way spiro-OMeTAD returns to its neutral state reducing 

the p-doped character of the hole contact layer. Reaction shown in Scheme 1 occurs in a 

highly irreversible manner. This observation entails a progressive reduction in the 

conductive properties of the spiro-OMeTAD layer that finally produces a detrimental 

effect on the photovoltaic operation. This last mechanism agrees with the progressive 

reduction in the current at higher positive bias observed in the inset of Figure 1d. As 

spiro-OMeTAD layer conductivity is reduced injection current is limited upon cycling.    

 

3. Conclusion 

In summary two types of reactivity sources have been identified: (a) weak Ti−I−Pb 

bonds that facilitate interfacial accommodation of moving iodine ions. This interaction 

produces a highly reversible capacitive current originated at the TiO2/MAPbI3 interface. 

This mechanism does not alter steady-state photovoltaic features. (b) an irreversible 

redox peak only observable after positive poling at slow scan rates. It corresponds to the 

chemical reaction between spiro-OMeTAD+ and migrating I- which progressively 

reduces the hole transporting material conductivity and deteriorates solar cell 

performance. We remark that under operation, large photovoltage (~1 V) is expected to 

occur for perovskite solar cells. Positive voltage causes ion movement and as a 

consequence aging effects through contact layer reaction. It is therefore essential to 

draw attention to chemical interactions between absorber perovskite and contact layers 

if this technology aims to reach long term stability.  

 

4. Experimental Section 

Solar cells: Substrate preparation. Fluorine doped tin oxide (FTO) coated glass 

substrates (25 x 25 mm, Pilkington TEC15, ∼15Ω/sq resistance) were etched with zinc 

powder and HCl (2M) to obtain 0.224 cm2 of active electrode area. The substrates were 
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cleaned with soap (Hellmanex) and rinsed with milliQ water and ethanol. Then, the 

sheets were sonicated for 15 minutes in a solution of acetone: isopropanol (1:1 v/v), 

rinsed with ethanol and dried with compressed air. After that, a UV/ozone treatment 

was performed for 15 minutes. Then, a TiO2 blocking layer was deposited onto the 

substrates by spray pyrolysis at 450ºC, using a titanium diisopropoxide 

bis(acetylacetonate) (75% in isopropanol, Sigma-Aldrich) solution diluted in ethanol 

(1:39, v/v), with oxygen as carrier gas. After the spraying process the films were kept at 

450 ºC for 5 minutes.   

Mesoporous TiO2 layer. When needed, a mesoporous TiO2 layer was deposited by spin 

coating at 4000 rpm during 60 s using a TiO2 paste (Dyesol 18NRT, 20 nm average 

particle size) diluted in terpineol (1:3, weight ratio). After drying at 80 ºC, the TiO2 

layers were heated at 450 ºC for 30 min and cooled to room temperature. The thickness 

determined by Scanning Electron Microscopy was ~200 nm.  

Perovskite deposition. 100 µl of the perovskite precursor solution (2.64 mmol of 

CH3NH3I and 0.88 mmol of PbCl2 1 mL of DMF) was spin-coated inside the glove box 

at 2000 r.p.m. for 60 s. After the deposition, the substrate was kept at 100ºC for 10 min. 

Next, the substrates were heated at 100 ºC during 1 hour in an oven under air stream.  

Hole transport layer deposition. A ∼300-400 nm-thick of HTM was deposited on top of 

the perovskite substrates by spin coating at 4000 r.p.m for 30 s under air conditions, 

using 100 µL of spiro-OMeTAD solution. The spiro-OMeTAD solution was prepared 

by dissolving 72.3 mg of (2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-

spirobifluorene) and 28.8 µL of 4-tert-butylpyridine in 1 mL of chlorobenzene. When 

needed 17.5 µL of a stock solution of 520 mg/mL of lithium 

bis(trifluoromethylsulphonyl)imide in acetonitrile was also added to the spiro-

OMeTAD solution.  

Gold electrode deposition. The deposition of 60 nm of gold was performed by thermal 

evaporation under ultrahigh vacuum conditions, using a commercial MBraun vacuum 

chamber. Before beginning the evaporation the chamber was evacuated until pressure of 

1·10-6 mbar. 

Film preparation: FTO/TiO2 compact layer films. A compact TiO2 layer was deposited 

onto the cleaned substrates, by spray pyrolysis at 450ºC, using a titanium 
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diisopropoxide bis(acetylacetonate) (75% in isopropanol, Sigma-Aldrich) solution 

diluted in ethanol (1:39, v/v), with oxygen as carrier gas. After the spraying process the 

films were kept at 450 ºC for 5 minutes.  

FTO/spiro-OMeTAD films. A ∼300-400 nm-thick of HTM was deposited on top of the 

cleaned substrates by spin coating at 4000 r.p.m for 30 s under air conditions, using 100 

µL of spiro-OMeTAD solution. The spiro-OMeTAD solution was prepared by 

dissolving 72.3 mg of (2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-

spirobifluorene) and 28.8 µL of 4-tert-butylpyridine in 1 mL of chlorobenzene. When 

needed 17.5 µL of a stock solution of 520 mg/mL of lithium 

bis(trifluoromethylsulphonyl)imide in acetonitrile was also added to the spiro-

OMeTAD solution.  

CH3NH3PbI3 pellets: CH3NH3PbI3 was synthesised by evaporation of DMF in a solution 

containing stoichiometric amounts of lead iodide (1 .00 g, 1 eq) and methyl ammonium 

iodide (0.345 g, 1 eq). The mixture was placed in an open crystallization dish into a 

well-ventilated oven at 130 °C during 3 h, the mixture was stirred every 30 min. The 

black powder was characterized by XRD to confirm the pure perovskite 

crystallographic form (Figure S2, SI). Alternatively, SEM analysis shows aspect of 

perovskite powder (Figure S3, SI). Films were prepared by pressing at 6 ton 

CH3NH3PbI3 powder (0.25 g) into a 13 mm pellet die. Thickness of the pellet prepared 

in this manner range from 500-600 µm according to SEM (Figure S3, SI). 

Assembly of symmetric devices: Symmetric devices were prepared by placing a 

perovskite film between the outer contacts, either FTO/TiO2 or FTO/ spiro-OMeTAD, 

and the sandwich structure was clamped to ensure a good electrical contact. The 

contacts were created using crocodile clips.  

Solar cells characterization: The Incident Photon to Current Efficiency (IPCE) were 

performed using a Xenon lamp power source coupled with a monochromator controlled 

by a computer. Photocurrent was measured using an optical power meter 70310 from 

Oriel Instruments and a Si photodiode to calibrate the system. Current density-voltage 

(J-V) curves were performed under 1 sun illumination (100 mW cm-2) using a Xenon arc 

lamp simulator (Sun 2000, ABET Technologies) with an AM 1.5 G spectral filter and a 

Keithley 2400, previously calibrated with an NREL Si solar cell (Figure S7, SI). All the 
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measurements were performed with an opaque mask of 0.11 cm2 and without 

encapsulation. The dark current-voltage and chronoamperometric curves were obtained 

by the use of a potentiostat/galvanostat (Autolab PGSTAT20). The initial potential was 

established at 0 V whereas the voltage ranged from 1V to -1V. These experiments were 

carried out after the IPCE measurement and chronoamperometric experiments, in order 

to study their electrochemical behaviour previous and after the polarization of the solar 

cell. The chronoamperometric curves were performed applying a voltage of +1 V (or -1 

V) during 5 and 15 min. The dark conditions were obtained by coating the solar cells 

completely with an aluminium foil. The optical absorption spectra of the active layers 

were recorded by a Cary 500 Scan VARIAN spectrophotometer in the 300–2000 nm 

range using an integrating sphere. Oxidized spiro-OMeTAD films were generated by 

keeping deposited film in the dark under ambient conditions over a period of one 

month. The film was treated with a solution of methyl ammonium iodide (5 mM) in 

isopropanol. The absorption band corresponding to oxidized spiro-OMeTAD reduces its 

intensity indicating that a source of nucleophilic atoms such as iodide (I-) can react with 

oxidized spiro-OMeTAD to recover neutral species. For Raman experiments the 

perovskite material has been synthesized by mixing MAI and PbI2 (1:1) in DMF as 

solvent followed by solvent evaporation. Alternatively, the chemical reaction is carried 

out in ethanol, as poorly solubilizing solvent, with stirring at R.T. Relatively high 

energy (80 mW) and very low excitation times (1 s) are used together with a 

holographic filter with a cutoff edge at 70 cm−1. Raman spectroscopy measurements 

were carried out with a dispersive spectrometer NRS-3100 (Jasco).  
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Figure S1. Successive five scans with negative poling (-1 V, 5 min) showing no effect 

on the previous positive poling experiments. The negative peak appearing at positive 

poling is not observed here. 
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Figure S2. XRD pattern of CH3NH3PbI3 synthesised in this work. Simulated pattern has 

been calculated for the tetragonal phase obtained from a reported cif file [Journal of 

Physics: Condensed Matter 2014, 26, 284109]   

 

 



20 

 

Figure S3. SEM images of a) CH3NH3PbI3 prepared in the synthesis of this manuscript 

and b) A cross-section of a perovskite pellet used for symmetric devices that shows 

thickness and morphology. 

 

Figure S4. Current-voltage response of symmetric FTO/TiO2/MAPbI3/TiO2/FTO 

samples showing the invariance of the response after positive (1 V) and negative (-1 V) 

polarization during 300 s and 900 s. In all cases capacitive currents dominate the 

response. 

 

 

Figure S5. Current-voltage response of symmetric Au/spiro-OMeTAD/MAPbI3/spiro-

OMeTad/Au samples with spiro-OMeTAD processed with lithium 

bis(trifluoromethylsulphonyl)imide. 
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Figure S6. Absorption measurements of solutions containing spiro-OMeTAD (No 

LITFSI) at a concentration of 5µM in acetonitrile, oxidized solution using an equimolar 

concentration of NOBF4, and recovery of a neutral species by further reaction with 

MAI. 

 

Figure S7. Current-voltage response of representative cells (as those used in Figure 1). 

 Jsc (mA/cm-2) Voc (V) FF (%) PCE (%) 

Champion (measured)  14.69 0.960 73.10 10.31 

Average 14.25 0.926 67.86 8.96 
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