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1. Introduction

In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and
frictional dampings in (x, 7) € (0, L) X (0, c0),
pihuy—Eihju—ku+v+aw)+a (0 fi () =0,
P3h3ve—EshzvetkGutv+aw)+ax(t) 2 (v) =0, (1.1)
Phwy+EIw, o —ak(u+v+aw,) +as3() f3 (w,) =0,
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in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and
w represents the transverse displacement of the beam. The positive constants p;, h;, and E; (i = 1, 3)
are physical parameters representing, respectively, density, thickness, and Young’s modulus of the i-th
layer for i = 1,2,3 and ph = pihy + pahy + pshs. EI = E\ly + Esh, @ = by + (242), k = - (55),
where u is the Poisson ratio —1 < u < % The functions a;(¢), a,(), a3(t) are the time dependent of the
nonlinear frictional dampings f (u,), f> (v;), f5 (w;), respectively. For the system (1.1), we consider the

following Dirichlet-Neumann boundary conditions

w0, =u(L,t) =0, t € (0, c0),
v(0,1) =v(L,1) =0, t € (0,00),
w(0,1) = wy(0,1) =0, t € (0, ),
w(L,t) = wy(L,t) =0, t € (0, ),

(1.2)

and the initial conditions

u(x,0) = ug, u;(x,0) =u; in (0, L),
V(.x, 0) = Vo, vt(-xa 0) =W in (0’ L)a (13)
w(x, 0) = wy, wi(x,0) =w; in (0, L).

The system (1.1)—(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement,
and two wave equations for the longitudinal displacements of the top and bottom layers.

Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)—(1.3). We study
the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under
nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and
general energy decay rates for this system by using the multiplier approach. The results generalize
some earlier decay results on the Rao-Nakra sandwich beam equation.

First, let’s review some previous findings about multilayered sandwich beam models. By applying
the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control
and established the exponential stability as well as the exact controllability and observability of the
system. The author of [2] employed the multiplier approach to determine the precise controllability
of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen
and Imanuvilov [3, 4] investigated a multilayer plate system with locally distributed control in the
boundary and used Carleman estimations to determine the precise controllability results. Ozer and
Hansen [5, 6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback
stabilization and perfect controllability. One viscous damping effect on either the beam equation or one
of the wave equations was all that was taken into account by Liu et al. [7] when they established the
polynomial decay rate using the frequency domain technique. The semigroup created by the system
is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with
boundary damping only on one end for two displacements using the same methodology. One can find
additional results on the multilayer beam in [9—-15].

In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional
dampings, i.e., system (1.1)—(1.3). The main results are twofold:

(I) We establish an exponential decay of the system in the case of linear frictional dampings by using
the multiplier approach, and the decay result depends on the time-varying weights «;.
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(IT) We establish more general decay of the system in the case of nonlinear frictional dampings by using
the multiplier approach, and the decay result depends on the time-varying weights «; and the frictional
dampings f;. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich
beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we
introduce some notations and preliminary results. In Section 3, we state the theorem of the stability
and give a detailed proof.

2. Preliminaries

In this section, we present some materials needed in the proof of our results. Throughout this paper,
¢ and & are used to denote generic positive constants. We consider the following assumptions:

(H1) For (i = 1,2,3), the functions f; : R — R are C° nondecreasing satisfying, for ¢, c, > 0,

S+ f2(9)| < F'(sfi(s)) forall |s| < r,

2.1)
cils| < 1fi(s)] < cals] for all |s| > r;,

where F; : (0,00) — (0,00) (i = 1,2,3) are C' functions, which are linear or strictly increasing
and strictly convex C? functions on (0, ;] with F;(0) = F (0)=0.

(H2) For (i = 1,2,3), the time dependent functions «; : [0,00) — (0, c0) are C! functions satisfying
fow a;(H)dt = oo.

Remark 2.1. (1) Hypothesis (H1) implies that sf;(s) > 0O, for all s # 0. This condition (H1) was
introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and
continuity of f; guarantee the existence of the function F; with the properties stated in (H1).

(2) For more results on the convexity properties on the nonlinear frictional dampings and sharp
energy decay rates, we refer to the works by Boussouira and her co-authors [17-19].

3. Essential lemmas

The following lemmas will be of essential use in establishing our main results.

Lemma 3.1. [20] Let E : R* — R* be a nonincreasing function and y : R* — R* be a strictly
increasing C'-function, with y(t) — +00 as t — +oco. Assume that there exists ¢ > 0 such that

(o)

f’)/,(t)E(t)dt < cE(S), 1<S < +o00,

S

then there exist positive constants k and w such that
E(f) < ke™®.

Lemma 3.2. Let E : R* — R* be a differentiable and nonincreasing function and let y : R* — R be
a convex and increasing function such that y(0) = 0. Assume that

fm)((E(t)) dt < E(s), Vs2>0, 3.1
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then E satisfies the estimate
E@t) <y (h(t) + ¢ (E0), Vt>0,
where Y(t) = ftl ﬁdsfort > 0, and

E(0)
X(E(0))’

h(t)y=0, 0<t

IA

Yl + Y(E(0))

h (1) = ’
O=t+ e eEO))

(3.2)

Proof. Since E’(t) < 0, this implies E(0) < E(ty) forallt >ty > 0. If E(ty) = 0 for#y > 0, then E() =0
for all + > #, > 0, and there is nothing to prove in this case. As in [21], we assume that E(¢) > O for

t > 0 without loss of generality. Let
L(s) = f x (E@®)dt, ¥V s >0.

We have L(s) < E(s), ¥ s > 0. The functional L is positive, decreasing, and of class C' (0, co)

satisfying
—L'(s) = x (E(s)) > x (L(s)), ¥ s > 0.

Since the functional y is decreasing, we have

L'(s)
Y (L)) >1,¥Vs>0.

Integrating this differential equation over (0, ), we get

X (L(s) = -

x (L) > t+y(EW0)), Vt>0.

Since y is convex and y(0) = 0, we have

x(8) < sy(1), Yse[0,1] and x(s) = sy(1), Vs > 1.
We find lim,_ ¥(¢) = oo and [ (E(0)), o)) C Image (¢), then (3.3) imply that

L) <y ' (t+ y (E0))), V> 0.
Now, using the properties of y and E, we have

L(s)Zf/\((E(T))dTZ(t—s)X(E(t)),VtZSZO.

Since lim,_, y() = oo, x¥(0) = 0, and y is increasing, (3.4) and (3.5) imply that

-1
E() > ¢! ( e U+ Y (E0))

), Yit>0.
s€[0,1) r—s

(3.3)

(3.4)

(3.5)

(3.6)
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-1
(t + ¥ (E(0)))
Now, let £ > =0 and J(s) = d ti[’s , s €[0,1).

The function J is differentiable, then we have

J(s)= (=52 [y (s + W (EO) =t = sy (7 (s + w (EOD)]. (3.7)

Thus, J'(s) =0 & K(s) =tand J'(s) < 0 & K(s) < t, where

Y (1 + ¢ (E(0)))
x (W't + ¥ (E0)))

Since K(0) = X(b;(?g» and K is increasing (because ' is decreasing and s —
E(0)

nonincreasing thanks to the fact y is convex), for ¢ > TEQ)

. -1 _
jnf J (K7'@) = T (h@)).

Since & satisfies J’ (h(r)) = 0, we conclude from (3.6) our desired estimate (3.2). O

Kit)=1t+

S

%,s > 0 is

we have

We define the energy associated to the problem (1.1)—(1.3) by the following formula

1 L L L L
E®) =—[p1h1f utzdx+E1h1f uia’x+p3h3f vtzdx+E3h3f via’x
2 0 0 0 0
L L L
+phf wtzdx+EIf wixdx+kf (—u+v+aw,) dx| (3.8)
0 0 0

Lemma 3.3. The energy E(t) satisfies

L L L
E'(t) < —ai(0) f ufi (uy) dx — (1) f vifa (V) dx — as(1) f wif3 (W) dx <0. (3.9)
0 0 0

Proof. Multiplying (1.1); by u,, (1.1), by v, (1.1); by w, and integrating each of them by parts over
(0, L), we get the desired result. O

4. Stability result

In this section, we state and prove our main result. For this purpose, we establish some lemmas.
From now on, we denote by ¢ various positive constants, which may be different at different
occurrences. For simplicity, we consider the case a(f) = a;(t) = a,(t) = a3(?).

Lemma 4.1. (Case: F; is linear) For T > S > 0, the energy functional of the system (1.1)—(1.3)
satisfies

T
f a(t)E@)dt < cE(S). 4.1)
s

Proof. Multiplying (1.1), by au and integrating over (S, 7T) X (0, L), we obtain
T L
f a/(t)f ulpihiuy — Erhiu,, — k(—u+ v+ aw,) + a(t) f (u,)] dxdt = 0.
s 0
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Notice that

2
g = (Uu), — u;.

Using integration by parts and the boundary conditions, we get

T L T L T L
- f a(t) f plhlut2 dxdt + f a(t) f Elhlui dxdt — f a(t) f ku(—u+v+aw,)dxdt
s 0 s 0 S 0

L T T L
= —ph [a(r) f uu,dx] -~ f (1) f ufy (u,) dxdt. (4.2)
0 S S 0

Adding 2 fST a(r) fOL p1hiu?dxdt to both sides of the above equation, we have

T L T L T L
fa(t)fplhlutzdxdt+f a(t)f Elhluidxdt—f a(r)f ku(—u + v + aw,) dx dt
S 0 N 0 N 0

L T T L T L
= —p\ly [a'(t) f uu,dx] - f (1) f ufi (u) dxdt +2 f a(f) f pihldxdt. (4.3)
0 S S 0 S 0

Similarly, multiplying (1.1), by a(#)v and (1.1); by a(f)w, and integrating each of them over (S, T) X
(0, L), we obtain

T L T L T L
f a(t) f p3h3vt2 dxdt + f a(r) f E3h3v)2€ dxdt + f a(r) f kv(—u+v+aw,)dxdt
s 0 s 0 s 0

a

L T L T L
= —p3hs [ f a(r)vvtdx] - f a@*(f) f v (v,) dxdt +2 f a(f) f p3h3v? dx dt, (4.4)
0 S S 0 S 0

T L T L T L
f a/(t)f phwfdxdt+f a(t)f Elwixdxdt—f a(t)f kaw(—u + v+ aw,), dxdt
s 0 s 0 s 0
T

L T L T L
= —ph [ f a(t)wwtdx] —~ f () f wi (w,) dxdt +2 f a(t) f phw? dx dt. 4.5)
0 S S 0 S 0

Recalling the definition of E, and from (4.3)—(4.5), we get

and

T
2 f a()E(t)dt

’ L T L T I T

< —-pihy [a/(t) f uu,dx] — p3hs [a/(t) f vv,dx] — ph [a(t) f ww,dx]

0 s 0 s 0 s

T L T L T L
—f az(t)f ufi (ut)dxdt—f az(t)f vfz(vt)dxdt—f az(t)f wfs (w,) dxdt
s 0 S 0 S 0

T L T L T L
+2 f a(f) f prhyldxdt + 2 f a(f) f p3hsvidxdt +2 f a(f) f phwidxdt. (4.6)
S 0 S 0 S 0
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Now, using Young’s and Poincaré inequalities, we get for any &; > 0 (i = 1,2, 3),

L L 1 L 1 (t
f uudx < g; f Wdx + — uldx < & f Wdx + — f urdx < cE(1),
0 0 4e1 Jo 0 4e1 Jo

L L 1 L L 1 L
f 2z:dx < & f Zdx + — ztzdx <& f 2dx + — f ztzdx < cE(),
0 0 dey Jo 0 dey Jo

4.7)

L L 1 L L 1 L
f wwdx < &3 f wldx + — w,zdx < cpEs f wldx + — f wtzdx < cE(1),
0 0 des o 0 des Jo

which implies that

T

L
- [a(t) f Ui, dx] < ca(S)E(S) — ca(S)E(T) < cE(S),
0 N

L T
- [a(t) f vy, dx] < cE(S),
0 S

T

L
—[a(t)f ww,dx] < cE(S).
0

S

and

Using (H1), the fact that F is linear, Holder and Poincaré inequalities, we obtain

L L 3, pL z
a*(t) f ufi (u)dx < (1) ( f Iulde) ( f i () IZdX)
0 0 0

L % 1
Sa%uunz(a f u fi (ut)dx) < cEX(1) (—E'(0)° .
0

Applying Young’s inequality on the term E 3(1)(—E'(1))2, we obtain for & > 0

L
az(t)f ufi () dx < ca(t) (€E(f) — C.E'(1)) < cea(t)E(t) — C.E'(2),
0

which implies that

T L T
f a’(t) (f (—ufi (ut))dx) dt < csf a()E@)dt + C.E(S).
s 0 s
In the same way, we have
T L T
f (1) ( f (=vfp (vt))dx) dt < ce f a(E()dt + C.E(S),
s 0 s

and

T L T
f a*(1) (f (—wfs (Wt))dx) dt < csf a(t)E@)dt + C.E(S).
s 0 s
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(4.8)

4.9)

(4.10)

4.11)

(4.12)

12570-12587.



12577

Finally, using (H1), and the fact that F'; is linear, we find that

T L T L T
2f a(t)f plhlufdxdt < cf a/(t)f u fi (u;) dxdt < cf (—E’(t))dt < cE(S). (4.13)
s 0 s 0 s

Similarly, we get

T
2f oz(t)f p3h3v,dxdt<cE(S) and 2f a/(t)f phw,dxdt<cE(S) (4.14)
s

We combine the above estimates and take & small enough to get the estimate (4.1). m|

Lemma 4.2. (Case: F; are nonlinear) For T > S > 0, the energy functional of the system (1.1)—(1.3)
satisfies

T T
f a(OA (E(1)) dt < cA(E(S)) + ¢ f (t)L (Iu,|2+|uf1 (ur)|) dxd
S

T
+c f a(nXME) (|v,| +|vf2(v,)|)dxdt (4.15)
S E

T AE) )
te | an—— (Iv,l + vfs (w)|) dxdt,
s
where A is convex, increasing, and of class C'[0, 00) such that A(0) = 0.
Proof. We multiply (1.1), by a/(t)%u and integrate over (0, L) X (S, T) to get

T A(E T A(E
o1 f a(r)Q wrdxdt + Eih, f oz(t)L uldxdt
s E 0 s E Jo

T
f (I)& u( u+v+aw,)dxdt
s

- . (4.16)
2, A(E)
=—-pih a(t)— (uu,)t dxdt — a (I)T ufi (u,) dxdt
0
" A(E)
+2p1hy f a(f)—= dedz.
s E Jo
Also, we multiply (1.1), by a(#)=; AB)y, and integrate over (0, L) X (S, T) to get
T A T
p3hs f a(z)ﬁ vidxdt + Eshs f a(t)(—) vidxdt
s E 0 s 0
T AE)
f (t)— v( u+v+aw,)dxdt
S 4.17)

T T
. f am& f (o), dixdt — f <t)M v (vp) dxd

0

T AE)
+2p3h3 f a(t)——= | Vidxdt.
S E 0

Similarly, we multiply (1.1); by a(r)*w and integrate over (0, L) X (S, T) to get
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ph fs Ta(t)— f wldxdt + Eh f (l)— f w2 dxdt

+ ak f ' (t)— f wi(—u + v + aw,)dxdt

= —ph f (t)— f (ww,), dxdt — f (t)— f wi (w;) dxdt
+2ph f a/(t)— f widxdt.

Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16)

becomes . . .

A(E A(E

o1h f a(r)L wrdxdt + Eih, f a/(t)(—) f uldxdt
S E 0 S E 0

f (t)—f u(—u + v+ aw,)dxdt
s
= —p1h [a(r)—f uutdxl
T
+p1h1f f u,( (OB ()(A(E)) )dxdr
s Jo

T T L
+2p1hy f a(z)@ udxdt — f az(t)@ f ufy (u,) dxdt.
S 0 S E 0

. L . . .
Using the fact that fo uu,dx < cE(t), the properties of a(?), and the facts that the function s — % 18
nondecreasing and E is nonincreasing, we have

T T
f (t)@ uu,dxdt < cf a/'(t)@E(t)dt
s 0 s E

(4.18)

T (4.19)
< cA(E(S ))f ' (Hdt < cA(E(S)).
s
Similarly, we get
T
f a(t) (A( )) f uu,dxdt < E(S)f a(t) (A(E)) dt
0
< E(S)[ (t)—] - E(S)f
A(E(T)) AES)\ . AES) (7, (4.20)
< E(S)( T)———— ED) —a(S) ES) ) E(S) ES) Js o' (Hdt
ANE(T
< E(S)a(T) fE((T))) — A(E(S)) (a(T) = a($))
ACE(S))
< E(S)a(S) ES) + A(E(S))a(S) < cA(E(S)).
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Combining (4.19)—(4.20), we have

T A E L T A E L
pih f a(z)ﬁ uldxdt + E h, f a(r)L uldxdt
s E s E

0 0

T ACE) (E
— kf a(t)L u(—u + v+ aw,)dxdt
s E Jo

T L T L
< cA(E(S)) + 2011 f a(r)@ urdxdt — f az(z)@ f ufy (u,) dxdt.
S E S E 0

0

Similarly, we have

T A(E L T A(E L
p3h3 f a(z)L vidxdt + Eshs f a(t)ﬁ vidxdt
S E 0 S E 0

T A E L
+ kf a(t)(—) v(—u + v+ aw,)dxdt
S E Jo

T L T L
< cA(E(S)) + 203h3 f a(t)@ vdxdt — f oﬂ(t)@ f v (v,) dxdt,
s E Jo s E Jo

and

T A(E L T A(E L
ph f a(t)L widxdt + Eh f a(z)ﬁ w? dxdt
s E Jo s E Jo

T A E L
+ a/kf a/(t)g wi(—u+ v+ aw,)dxdt
s E Jo

T L T L
<cAES)) + 2phf a(t)@ wtzdxdt — f az(t)@ f wfs (w,) dxdt.
s E Jo s E Jo

Gathering all the above estimations by using (3.8), we obtain

T T 5 A(E) L 5
f a(OA (E(1)) dt < cAE(S)) + ¢ f A () —== f (|u,| +ufy (ut)l)dxdt
S S E 0

T L

+c f az(t)% (v + v fo (0)1) dxdt
S 0

() —— [ ) |) dxdt.

+cfs ()= (Iwd® + wfs (w)) ) dxdt

0

This completes the proof of the estimate (4.15).

In order to finalize the proof of our result, we let

A(s) = 260sF((e35),  Wils) = Fi(s2),

(4.21)

where F} and '] denote the dual functions of the convex functions F; and ¥;, respectively, in the sense

of Young (see Arnold [22], pp. 64).
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Lemma 4.3. Suppose F;(i = 1,2, 3) are nonlinear, then the following estimates

F (AES)) A(s) (Fl) (A(s)) 4.22)
and A
P ( \(/f)) < goA(V5), (4.23)

hold.

Proof. We prove for i = 1, and the remaining are similar. Since F| and ¥7 are the dual functions of the
convex functions F; and Wy, respectively, then

Fi(s) = s(F)7'(s) = Fi[(FDT'(9)] < s(FDT(9) (4.24)

and

EHOER AROER A RO EF ARE) (4.25)

Using (4.24) and the definition of A, we obtain (4.22).
For the proof of (4.23), we use (4.25) and the definitions of ¥ and A to obtain

i\/ﬁ)(\{f’) (A\(/?) < 220 VsF|(e55)(P}) ™" (280 VSF(e59))
= 260 VsF(5) (W)™ (W) (80 V) (4.26)
= 2&5sF)(g55)
= goA(Vs).
O

Now, we state and prove our main decay results.

2
Theorem 4.4. Let (uy, u;) X (z0,21) € [Hg(O, L) x L*(0, L)] . Assume that (H1) and (H2) hold, then
there exist positive constants k and c such that, for t large, the solution of the system (1.1)—(1.3) satisfies

E(t) < ke~ a($)ds if F; is linear, (4.27)

E@®) < w_] (h(a(r)) + ¥y (E0))), Vt=0, if F; are nonlinear, (4.28)

where &(1) = [ a(dr, y(t) = [ -sds, x(1) = cA), and

E(0)

hi®=0, O _—
® YE©)

IA

t

IA

!t + Y(E(0))

() = :
=1t G+ wEO))
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Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for y(¢) = fot a(s)ds. Consequently, the result
follows.

For the proof of (4.28), we re-estimate the terms of (4.15) as follows:

We consider the following partition of the domain (0, L):
Qr={xeO,L):|ulz&1}, Q={xe(0,L):ul <&}

So,

T A
[ 0= [ (1l + tafi o) s

T AE) ! (E)
f a(t)—= |u,|2dxdt+f a(t)—f lufi (u,) |dxdt
S E Q S Q

=1L+ 1.
Using the definition of €, condition (H1), and (3.9), we have

T
I < cf a(t)(T) u, fi (u,) dxdt
s = (4.29)

<c f (E)( E'(t))dt < cA(E(S)).
S

After applying Young’s inequality, and the condition (H1), we obtain

Izﬁsf (t)

The definition of €;, the condition (H1), (3.8), (3.9), and (4.30) lead to

T 2 T
I, < 8f a/(t)Al(?E)dt+ c(a)f a/(t)f u, fr(u,)dxdt
N N Q

dt+c(s)f a(t)f |f1(u,)| dt. (4.30)

4.31
T A2 (E) ( )
& a(t) dt + c(e)E(S).
s E
Using the definition of A, and the convexity of Fy, (4.31) becomes

T AXE

L < sf a(r) ( )dt + ceE(S)
s E
T
= 2eg, f A(OAE)F; (s5E(®)) dt + ceE(S)
S (4.32)

T
< 2egy f a(HA(E)F; (8(2)E(O)) dt + ceE(S)
S
T
< 2cegy f a(H)A(E)dt + ceE(S).
s
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Using Young’s inequality, Jensen’s inequality, condition (H1), and (3.8), we get

T AE T AE
[ oS 2 [ (ks wsa)asar < [ a2 [P i) d
S N Q

Q

r !
+ f a(r)A;E)uuui( f F;l(u,fl(ut))dx) dxdt
S Q)

T L
<L f a(z)A(E)F;l (l f u,fl(ut)dx)dt
S 0

E L

T L
+ f o ™E) VE LF;' (1 f utfl(u,)dx)dt.
s E L Jo

We apply the generalized Young inequality

AB < F*(A) + F(B)
E

A(E 1 [t A(E 1 (*
%F[l (Zfo utfl(u,)dx) <F| ((T)) + Zj; u, fi(u,)dx.

We then apply it to the second term of (4.33) with A = % VE and

B= \/LFI‘I (% I fl(ut)dx) to obtain

A(E 1 [t A(E 1 (*
%\/E LF[I(ZIO utfl(u,)dx)SF]‘((T)\/E)+LF1_1(ZIO u,fl(ut)a’x).

Combining (4.33)—(4.35), using (4.22), and (4.23), we arrive at

to the first term of (4.33) with A = & and B = Fl‘1 (% fOL u,fl(u,)a’x) to get

T AE) f )
— , D) dxd
fS o) = 92(|u| + lufi(uy))) dxdt

T T
< cf a(r) (F]“ (% \/E) + F} (%)) dt + cf a(t) f u, fi(u,)dxdt
s s Q
T F’ -1 (AE)
< Cf a(?) (80 " M
s E

Using the fact that s — (F 1)‘1(s) is nondecreasing, we deduce that, for 0 < gy < VE(0),

A(E)dt + cE(S).

T A(E) 5 T
f o= (I + laefi )l dxdt < ce fs a(HA(E)d! + cE(S).
S

O

Therefore, combining (4.15), (4.29), and (4.32), we find that

T A(E) L ) T
f a(t)T (lutl + |ufi (u,)l) dxdt < cA(E(S)) + cegg L a(H)AE)dt + ceE(S),
S

0

(4.33)

(4.34)

(4.35)

(4.36)
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and similarly,

T A(E) L s T
f o= 0 (|v,| +|vf2(v,)|)dxdtscA(E(S))+csso j; a()A(E)dt + ceE(S),
S

and

T AE) (* , T
f a(I)T ) (Iw,l + wa3(wt)|) dxdt < cA(E(S)) + C&SOL a(HA(E)dt + ceE(S),
s

Combining all the above estimations with choosing € and &, small enough, we arrive at
A(E(S))
E(S)

T
f a(HAN(E())dt < c(l + )E(S).
s

Using the facts that E is nonincreasing and s — % is nondecareasing, we can deduce that

+00
f a(HA(E(t))dt < cE(S).
s
Now, let E = E o @', where a(¢) = fot a(s)ds, then we deduce from this inequality that
f AE@))dt = f AE@™'(1)))dt
S S

= f a(mA(E(m)dn
&)

<cE (&‘1(5))
< cE(S).

Using Lemma 3.1 for E and y(s) = cA(s), we deduce from (3.1) the following estimate

E@) <y (1) + ¢ (E(0)))
which, using the definition of £ and the change of variables, gives (4.28). O

Remark 4.1. The stability result (4.28) is a decay result. Indeed,

y! (t + Y(E(0))

R @) =
D=1+ G+ wEO)
C

=+

2gocF’ (ség[/‘l(t + r))
c

2eo0cF’ (831//_1 (r))

>1t+d,

>t+

where F = min{F;} and i = 1,2, 3. Hence, lim,_,., h~'(f) = oo, which implies that lim,_,., h() = oo.
Using the convexity of F, we have

I : c : c
o= 4= zgosp/(ggs)zft ()

0

> c[In|s]]] = —clInt,

where F = min{F;} and i = 1,2, 3. Therefore, lim,_+ y(f) = oo, which leads to lim,_,., ' (¢) = 0.
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S. Examples

Example 1. Let fi(s) = s, (i = 1,2, 3), where m > 1, then the function F (F = min{F;}) is defined in

the neighborhood of zero by

m+1

F(s)=cs~
which gives, near zero,
cm+1) wn
x(s) = 757
So,
| 5 t% , if m>1,
Y(t) = Cf D =
¢ (m+ s —clnt, ifm=1,
then in the neighborhood of oo,
2
- ct i, ifm>1;
1) =
v o {ce", if m=1.

Using the fact that A(f) = ¢ as ¢ goes to infinity, we obtain from (4.27) and (4.28):

E(1) <

c(fats)ds) ", ifm>1;

ce‘fot

a(s)ds

2

ifm=1.

Example 2. Let fi(s) = s" V-Ins, (i = 1,2,3), where m > 1, then the function F is defined in the

F(s) = cs"T J—1In V5,

neighborhood of zero by

which gives, near zero,

m+1

x(s) =cs 2

Therefore,

SN

m+1

1

(- v3)

)

1
(o) = f

T

1

()

m—2

1

f W
=C "
1 (In7)2

C

m

t2

N

—Int

b

cV-1Int,

then in the neighborhood of oo,

AIMS Mathematics
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et T (lnt)_ﬁ , ifm>1;
y(0) =

ce”z, ifm=1.

Using the fact that h(7) = ¢ as f goes to infinity, we obtain

c(f a(s)ds)_% (n( a(s)ds))_ﬁ L ifm> 1
E(t) <

ce_(fot “(S)ds)z, ifm=1.
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