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1Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical
University, Fuzhou, China, 2Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of
Fujian Medical University, Fuzhou, China
Objective: To construct and validate radiomics models for hepatocellular

carcinoma (HCC) grade predictions based on contrast-enhanced CT (CECT).

Methods: Patients with pathologically confirmed HCC after surgery and

underwent CECT at our institution between January 2016 and December 2020

were enrolled and randomly divided into training and validation datasets. With

tumor segmentation and feature extraction, radiomic models were constructed

using univariate analysis, followed by least absolute shrinkage and selection

operator (LASSO) regression. In addition, combined models with clinical factors

and radiomics scores (Radscore) were constructed using logistic regression.

Finally, all models were evaluated using the receiver operating characteristic

(ROC) curve with the area under the curve (AUC), calibration curve, and decision

curve analysis (DCA).

Results: In total 242 patients were enrolled in this study, of whom 170 and 72

formed the training and validation datasets, respectively. The arterial phase and

portal venous phase (AP+VP) radiomics model were evaluated as the best for

predicting HCC pathological grade among all the models built in our study (AUC =

0.981 in the training dataset; AUC=0.842 in the validation dataset) andwas used to

build a nomogram. Furthermore, the calibration curve and DCA indicated that the

AP+VP radiomics model had a satisfactory prediction efficiency.

Conclusions: Low- and high-grade HCC can be distinguished with good

diagnostic performance using a CECT-based radiomics model.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common type of

primary hepatic malignant tumor (1) and the third leading cause of

cancer-related deaths worldwide (2). HCC is a very heterogeneous

tumor that has reduced the efficacy of clinical treatments (3, 4). The

pathological grade is associated with tumor heterogeneity and the

selection of different therapeutic schedules. For example, the

Edmondson-Steiner grade is an important prognostic factor for

curative resection of HCCs (5), while poor differentiation is a risk

factor for tumor seeding or intrahepatic dissemination after

radiofrequency ablation(RFA) for HCC (6). In addition, previous

studies have found that one of the most important factors

influencing intrahepatic recurrence is pathological grading (7).

Thus, to optimize treatment and evaluate prognosis, accurate

pathological grading of HCC is crucial. However, pathological

grades are difficult to predict preoperatively based on clinical and

serological indicators. Therefore, a noninvasive method for

predicting the pathological grades of HCC is urgently needed.

Radiomics has been commonly used in clinical studies, for the

conversion of medical images into high-dimensional features that

can be mined quantitatively (8), and for the determination of the

heterogeneity of the tumor (9, 10). Few radiomic analyses have

aimed to identify the pathological grade of poorly differentiated

HCCs (11–13). However, these studies have several shortcomings

such as the lack of validation cohorts, the use of subjective features

to build models, and the lack of clinical models for comparison.

Additionally, based on previous findings, there were differences in

the CT enhancement patterns of HCC depending on cellular

differentiation (14, 15). Therefore, we surmised that enhanced CT

images might have a more positive role than ordinary CT scan

images in predicting the level of HCC tumor differentiation.

Recent studies have shown that tumor characteristics and

serological indicators affect cancer progression and prognosis

(16). Clinical indicators such as tumor size, derived neutrophil-

to-lymphocyte ratio (dNLR), and lymphocyte-to-monocyte ratio

(LMR) have been used to predict the HCC differentiation grade, but

their efficiency has been unsatisfactory (17, 18). Therefore, we

attempted to use CT radiomics features and inflammatory

biomarkers (e.g., platelets, neutrophils and lymphocytes) to

construct a combined model and evaluate its efficiency.

We designed this study to construct and validate radiomics

models for HCC-grade prediction based on contrast-enhanced CT

(CECT). We also compared the radiomics models and radiomics-

clinical combined models using validation data to explore the best

plan for prediction.
2 Materials and methods

2.1 Patients

Following the Declaration of Helsinki, the study protocol was

approved by the Ethics Committee of the First Affiliated Hospital of

Fujian Medical University. This study enrolled patients that are
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pathologically diagnosed with HCC after surgery at the First

Affiliated Hospital of Fujian Medical University between January

2016 and December 2020. The inclusion criteria were as follows:

(1) pathological diagnosis with HCC after the first partial

hepatectomy and (2) liver CECT no more than 1 month before

surgery. The exclusion criteria were: (1) combined with other

malignant tumors; (2) preoperative anti-tumor treatments; (3)

enhanced CT in other hospitals and could not obtain DICOM

image data; (4) spontaneous tumor rupture and hemorrhage; (5)

lack of detailed clinical and pathological data; (6) complicated with

active inflammatory or infective disease and hematologic disorder; (7)

poor image quality for apparent artifacts. A flowchart of the patient

screening is shown in Figure 1.
2.2 Clinicopathological characteristics

Preoperative clinical data were collected from the picture

archiving and communication system (PACS), including

demographic characteristics (age and gender) and laboratory tests

including hepatitis B surface antigen (HBsAg), alpha-fetoprotein

(AFP), alanine aminotransferase (ALT), aspartate aminotransferase

(AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect

bilirubin (IBIL), blood urea nitrogen (BUN), serum creatinine

(Scr), total cholesterol (TC), triglyceride (TG), red blood cell count

(RBC), neutrophil count (NEU), lymphocyte count (LYMPH), and

platelet count (PLT). The neutrophil-to-lymphocyte ratio (NLR),

platelet-lymphocyte ratio (PLR), and systemic immune

inflammation index (SII) were calculated as follows:

NLR = neutrophil count=lymphocyte count;

PLR = platelet count=lymphocyte count;

SII  =  platelet count �  neutrophil count=lymphocyte count

(17, 19).

Pathological data were retrieved from the Pathology

Information Management System, and pathological grades were

recorded according to the Edmondson-Steiner grading system. The

patients were divided into low-grade (Edmondson-Steiner grade I

or II) and high-grade (Edmondson-Steiner grade III or IV) groups

(20). A patient may have more than one tumor, and each tumor

may have a different degree of pathological differentiation;

therefore, the pathological grade mentioned in the study was

determined by the largest tumor (21).
2.3 Image acquisitions

All examinations were performed using a Toshiba Aquilion One

320-slice spiral CT or a Toshiba Aquilion Prime 80-slice spiral CT.

Three-phase enhanced images were obtained for all patients. The CT

parameters were as follows: tube voltage, 120 kV; tube current, 230

mAs; rotation time, 0.35 s; slice interval, 0 mm; and slice thickness,

5 mm. The nonionic contrast agent indophenol (370 mg/mL) was
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injected through the elbow vein at a dose of 1.5 mL/kg and a flow rate

of 3.0 ml/s. Arterial phase (AP) and portal venous phase (VP) images

were acquired 30 and 60 s after injection, respectively.
2.4 Image processing and
feature extraction

Figure 2 illustrates the radiomics workflow. The PACS was used

to retrieve the AP and VP CECT images. Using a 3D Slicer (version

4.9.0; http://www.slicer.org), reader 1 manually delineated all

regions of interest (ROIs) on each transverse section of the AP

and VP images. Reader 2 segmented the ROIs for 50 CT images at

random. Two weeks later, reader 1 performed segmentation again

to assess reproducibility. A patient may have had more than one

tumor, but each ROI was only delineated from the largest tumor.

After tumor segmentation using the Pyradiomics package

(version 3.0.1, https://pyradiomics.readthedocs.io/en/3.0.1/),

radiomic features were extracted from both AP and VP images

(normalized was true, resampled voxel size was 1 × 1 × 1 mm3, the

gray level was discretized by a fixed bin width of 25, and the sigma

values of image reconstruction were 1.0, 2.0, 3.0, 4.0, and 5.0).

Radiomic features were extracted from original and filtered images,

including first-order, shape, gray-level dependence matrix (GLDM),

gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), gray-level size zone matrix (GLSZM),

neighboring gray-tone difference matrix (NGTDM), wavelet

features, and Laplacian of Gaussian filtered (LoG) features.

Utilizing inter- and intra-class correlation coefficients (ICCs)

calculated from reader 1 and reader 2 segmentation data, we

evaluated the inter-observer reliability and reproducibility of

feature extraction (22). Only features with an ICC > 0.75 were

included in further analysis.
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2.5 Radiomics feature selection and
Radscore calculation

Patients were divided into the training and validation datasets at

a 7:3 ratio. The training dataset was used for model construction,

whereas the validation dataset was used for the performance

evaluation of the constructed models.

Three steps were required to reduce the features selected from

the ROIs and complete the radiomics model construction. First,

only features with inter- and intra-observer ICCs greater than 0.75

were retained for the following analysis. Second, after univariate

analysis, many irrelevant features (P-value > 0.05) were excluded.

Third, following 10-fold cross-validation, we used the least absolute

shrinkage and selection operator (LASSO) regularization to verify

the penalty coefficient. LASSO was also used to predict HCC

pathological grades with robust and non-redundant features

alongside their corresponding coefficients before surgery. Using

the selected features and their coefficients, we calculated three

personalized radiomics scores (Radscores) for each patient: AP-

Radscore, VP-Radscore, and AP+VP-Radscore.
2.6 Model construction and evaluation

Demographic characteristics and laboratory data in the low-

and high-grade groups were compared using univariate analysis.

Only clinical factors with a P-value< 0.05 were selected for clinical

model building by multiple-factor (logistic regression) analysis.

Furthermore, clinical factors from the clinical model were

combined with Radscores from the radiomics model to develop a

combined model and nomogram.

The model performance was assessed using training and

validation datasets. The evaluation process was as follows: (1) the
FIGURE 1

Flow chart of enrolled patients.
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area under the curve (AUC) value as well as sensitivity, specificity,

accuracy, and 95% confidence intervals (CI) were evaluated for both

training and validation datasets; (2) the receiver operating

characteristic (ROC) curve and the AUC value were used to

assess the predictive effectiveness of different models in both

datasets; (3) the calibration curve was used to assess the

nomogram calibration; and (4) the decision curve analysis (DCA)

assessed the clinical efficiency of each model.
2.7 Statistical analysis

R (version 3.6.2) and SPSS software (version 24.0) were used for

the statistical analysis. Continuous variables in the study were

expressed as median (interquartile range) or mean ± standard

deviation, while categorical variables were expressed as numbers

and percentages. The Shapiro-Wilk test was used to evaluate the

normality of the distribution. Variables that differed significantly

between the training and validation datasets were detected using two-

sample t-tests, U-tests, or chi-squared tests. Model construction was

completed using LASSO regression or logistic regression. The “rms”

and “rmda” packages of R were used to construct calibration and

DCA, respectively. Statistical significance was set at P< 0.05.
3 Results

3.1 Clinicopathological characteristics

The 242 enrolled patients were randomly divided into training

(n = 170) and validation (n = 72) datasets. The training dataset

consists of 147 men and 23 women. Their ages were 60 (50.75–

65.25) years for the high-grade patients and 59 (50.00–66.75) years
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for the low-grade patients. Correspondingly, 64 men and 8 women

comprised the validation dataset; their ages were 56.11 ± 13.14 years

for the high-grade patients and 58.24 ± 10.41 years for the low-

grade patients. The clinicopathological characteristics of the

training dataset did not differ significantly from those of the

validation dataset (P > 0.05). The clinicopathological

characteristics of the patients are listed in Table 1.
3.2 Clinical model construction
and evaluation

HBsAg, AST, AFP, NEU, NLR, and SII reached statistical

significance in the univariate analysis (P< 0.05). Logistic

regression analysis indicated that AFP, NEU, and HBsAg were

independent preoperative predictors for HCC pathological grade

(Table 2) used to construct the clinical model. The clinical model

had unsatisfactory AUC values (0.700 for the training dataset and

0.526 for the validation dataset). Therefore, this clinical model is not

a suitable tool for pathological grade prediction.
3.3 Radiomics model construction
and evaluation

In total, 2632 radiomic features were extracted (1316 from the

AP images and 1316 from the VP images). First, after evaluating

intra-observer and inter-observer reliability, 951 AP features, 928

VP features, and 1879 combined AP and VP (AP+VP) features with

ICC > 0.75 in both intra- and inter-observer reliability, were

preliminarily retained. Second, the univariate analysis selected 404

AP, 369 VP, and 773 AP+VP features for further regression

analysis. Finally, 14, 19, and 24 features were selected for
FIGURE 2

The workflow of building and validating models.
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constructing the AP, VP, and AP+VP radiomics models,

respectively, after LASSO regression analysis (Figure 3). In both

the training and validation datasets, the AP+VP model had a better

prediction performance (AUC = 0.981 and 0.842, respectively) than

the AP (AUC = 0.890 and 0.773, respectively) and VP (AUC = 0.944

and 0.833, respectively) models. The radiomic features of the 3

radiomics models are listed in Table 3.
3.4 Combined model construction
and evaluation

Using logistic regression, combined models (AP+clinical, VP

+clinical, and AP+VP+clinical) were built using the factors from the

clinical model and Radscores. In both the training and validation

datasets, the AP+VP+clinical model (AUC = 0.985 and 0.829,

respectively) performed better than the AP+clinical (AUC = 0.904

and 0.740, respectively) and VP+clinical models (AUC = 0.950 and

0.821, respectively).
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3.5 Model comparison and
nomogram construction

In Figure 4, all seven models are shown along with their ROC

curves. The detailed prediction performances of the seven models are

presented in Table 4. Although a higher AUC value was observed for

the AP+VP+clinical model (AUC = 0.985) than for the AP+VP

model (AUC = 0.981) in the training dataset, the AP+VP model

performed better in the validation dataset (AUC = 0.842).

The AP+VP model was used to establish a nomogram to predict

the pathological grade of HCC because of its superior performance

during model evaluation (Figure 5). The nomogram calibration

curves in the training and validation datasets demonstrated good

calibration (Figure 6). In the Hosmer-Lemeshow test, the nomogram

suggested a satisfactory fit because of the non-significant results (P >

0.05). The DCA presented in Figure 7 shows a higher overall net

benefit of the AP+VP model in predicting the HCC pathological

grade compared with the clinical model across most of the range of

reasonable threshold probabilities.
TABLE 1 Patients’ characteristics in the training and validation datasets.

Characteristics Training dataset (n=170) Test dataset (n=72) Pinter

Low-grade High-grade Pintra Low-grade High-grade Pintra

Age 59(50.00~66.75) 60.00(50.75~65.25) 0.926 58.24 ± 10.41 56.11 ± 13.14 0.447 0.720

Gender

male 83(83.00) 64(91.43) 0.114 32(86.49) 32(91.43) 0.770 0.607

female 17(17.00) 6(8.57) 5(13.51) 3(8.57)

Smoke

No 62(62.00) 44(62.86) 0.910 24(64.86) 19(54.29) 0.360 0.701

Yes 38(38.00) 26(37.14) 13(35.14) 16(45.71)

Drink

No 71(71.00) 51(72.86) 0.791 24(64.86) 26(74.29) 0.386 0.716

Yes 29(29.00) 19(27.14) 13(35.14) 9(25.71)

High blood pressure

No 73(73.00) 56(80.00) 0.294 26(70.27) 26 (74.29) 0.704 0.549

Yes 27(27.00) 14(20.00) 11(29.73) 9(25.71)

Diabetes

No 85(85.00) 59(84.29) 0.899 31(83.78) 30(85.71) 0.820 0.997

Yes 15(15.00) 11(15.71) 6(16.22) 5(14.29)

Liver cirrhosis

Absent 55(55.00) 41(58.57) 0.644 17(45.95) 20(57.14) 0.342 0.468

Present 45(45.00) 29(41.43) 20(54.05) 15 (42.86)

HBsAg

Negative 20(20.00) 4(5.71) 0.008 5(13.51) 6(17.14) 0.669 0.815

(Continued)
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4 Discussion

HCC is a highly heterogeneous cancer with a poor prognosis

(23). The heterogeneity and poor prognosis of HCC are associated

with tumor pathological grade. For example, low-grade HCCs have

lower rates of recurrence and mortality than high-grade HCCs (24),

and a high pathological grade is also associated with portal vein

invasion in HCCs (25–27), which affects the selection of surgical

timing and protocols. Thus, the pathological grade of HCC is

important when selecting treatment options. However, definitive

diagnosis of the HCC pathological grade is still difficult by non-

invasive means. To solve this problem, we constructed a radiomics

prediction model for the pathological grade of HCC and

successfully confirmed its efficiency.

Previous studies have provided a variety of ways to differentiate

between high- and low-grade HCC. Li et al. (17) developed a

nomogram that included inflammatory biomarkers for predicting

the histological grade of HCC, and the nomogram was confirmed to

be reliable, with an AUC value of 0.727. Zhang et al. (28) developed

a prediction model (AUC = 0.942) to distinguish patients with

HCCs of different pathological grades based on metabolomic

biomarkers. Our study identified AFP, NEU, and HBsAg levels as
Frontiers in Oncology 06
independent predictors of the differential diagnoses of low- and

high-grade HCC. Interestingly, we found that neutrophil count is a

strong pathological grade predictor of HCC among inflammatory

biomarkers, which is consistent with previous studies (18).

Peripheral blood NEU count is higher in patients with poorly

differentiated HCC; however, the underlying mechanism is
TABLE 1 Continued

Characteristics Training dataset (n=170) Test dataset (n=72) Pinter

Low-grade High-grade Pintra Low-grade High-grade Pintra

HBsAg

Positive 80(80.00) 66(94.29) 32(86.49) 29(82.86)

AFP

≤200 64(64.00) 33(47.14) 0.029 25(67.57) 18(51.43) 0.163 0.701

>200 36(36.00) 37(52.86) 12(32.43) 17(48.57)

TBIL 13.80(10.40~18.68) 16.25(11.65~23.35) 0.233 18.60(11.75~27.00) 15.20(8.50~19.00) 0.049 0.582

DBIL 5.05(3.60~6.95) 5.30(4.25~6.90) 0.352 6.60 (4.00~9.65) 5.10(3.30~6.20) 0.064 0.369

IBIL 8.50(6.40~12.10) 10.15(7.73~13.08) 0.223 12.60(7.05~16.90) 9.30(5.10~12.90) 0.043 0.653

ALT 32.00(21.00~48.00) 40.00(24.00~60.25) 0.085 41.00(21.00~68.50) 28.00(19.00~49.00) 0.029 0.610

AST 33.00(24.00~52.00) 41.50(27.75~58.50) 0.034 38.00(28.50~78.00) 36.00(28.00~42.00) 0.156 0.318

BUN 5.08(4.50~6.00) 4.75(4.02~5.98) 0.193 5.05 (4.36~6.12) 5.17 (4.53~5.76) 0.748 0.426

Scr 66.95(61.48~77.15) 66.25(56.43~75.00) 0.326 70.20(61.00~77.10) 66.00(59.20~73.80) 0.267 0.949

TC 4.28(3.81~4.96) 4.46(3.92~4.89) 0.530 4.43 (3.81~4.95) 4.24(3.87~5.12) 0.673 0.929

TG 0.92(0.74~1.30) 0.92(0.72~1.22) 0.516 0.96 (0.79~1.33) 0.97(0.78~1.59) 0.844 0.185

RBC 4.43(4.19~4.91) 6.60(4.33~4.90) 0.134 4.50 (4.09~4.80) 4.64(4.34~4.91) 0.226 0.878

NEU 3.02(2.49~3.98) 3.84(2.80~5.17) 0.004 2.79 (2.07~4.39) 3.12(2.06~4.17) 0.809 0.143

LYMPH 1.67(1.39~2.16) 1.67(1.27~2.09) 0.266 1.43 ± 0.45 1.84 ± 0.73 0.005 0.099

PLT 180.5(129.25~221.75) 185.00(141.75~231.50) 0.391 182.00(121.00~243.50) 189.00(159.00~244.00) 0.171 0.336

NLR 1.81(1.40~2.32) 2.33(1.76~3.09) <0.001 1.97 (1.32~3.27) 2.07(1.40~2.82) 0.924 0.860

PLR 99.43(75.70~131.33) 110.2(84.63~150.09) 0.132 118.27(88.26~159.47) 117.68(93.73~147.93) 0.973 0.056

SII 313.5(217.87~497.31) 440.30(273.17~707.15) 0.007 329.12(187.83~621.22) 460.14(254.46~581.32) 0.186 0.779
frontie
Pintra is the result of univariate analyses between the Low-grade and High-grade groups while Pinter represents whether a significant difference exists between the training and validation datasets.
TABLE 2 Multivariate analysis of the preoperative clinical data.

Characteristics
Coefficient P

value
OR 95% CI

of OR

HBsAg 1.418 0.018 4.129 (1.279,13.328)

AFP 0.716 0.034 2.047 (1.056,3.969)

AST -0.002 0.593 0.998 (0.993,1.004)

NEU 0.356 0.018 1.427 (1.063,1.917)

NLR -0.191 0.175 0.826 (0.627,1.088)

SII 0.001 0.477 1.001 (0.999,1.002)

Constant -3.007 <0.001 0.049 -
Clinical=-3.007 + 1.418*HBsAg+0.716*AFP (define AFP≦200 as 0, AFP>200 as
1)+0.356*NEU.
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difficult to understand. One possible explanation is that neutrophils

produce a significant amount of circulating vascular endothelial

growth factor, which promotes tumor progression and angiogenesis

(29). Previous research has shown that an abnormal HBsAg level

may be a signal for poorly differentiated HCCs (18, 30). Wu et al.

(31) found a close association between AFP levels and poorly

differentiated HCCs. These findings support our results. However,

published studies have shown that HCC patients with high- and

low-grade disease did not significantly differ in their serological

characteristics (21, 32), which might explain why the clinical model

performed poorly, with an AUC value of 0.526 in the

validation dataset.
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Radiomics is a new branch of science that involves extracting

quantitative features from images through different mathematical

algorithms to improve image analysis and diagnostic performance

(33). Our study's ROC curves indicated that the AP+VP model

(without laboratory indices) was the best model for pathological

grade prediction; therefore, radiomic features can be regarded as

more important than other indices. As high-dimensional features,

wavelet texture features cannot be easily deciphered by humans but

can be used to detect tumor heterogeneity (34, 35), whereas LoG-

filtered texture features enhance image grayscale contrast and can

also reflect tumor heterogeneity (36, 37). Tumor heterogeneity

reflected by wavelet texture features and LoG-filtered texture
B

C D

E F

A

FIGURE 3

Radiomics feature selection of AP, VP and AP+VP using LASSO regression. Using a minimum criterion, 10-fold cross-validation was employed to
select the tuning parameter (lambda) in the LASSO models for AP (A), VP (C) and AP+VP (E). Profiles of LASSO coefficients of radiomic features of AP
(B), VP (D) and AP+VP (F). There is a y-axis for coefficient value, a lower x-axis for log (lambda) and a top x-axis for the number of non-zero
coefficients. Based on 10-fold cross-validation, the vertical line was drawn at the optimal value of lambda. AP arterial phase, VP venous phase.
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features explains why 12 wavelet texture features and 8 LoG-filtered

texture features played leading roles in pathological grade

prediction among the 24 features contained in the AP+VP model.

Two different studies with 101 and 46 patients with HCCs

attempted preoperative prediction of the histological grading of

HCC using MRI texture features. However, these studies did not
Frontiers in Oncology 08
consider the predictive value of serum inflammatory biomarkers,

and their case numbers were too limited to reserve a validation

group (38, 39). Few studies have also aimed at predicting the

pathological grade by using CT radiomics. For example, Chen

et al. (21) used a support vector machine (SVM) to predict the

HCC pathological grade based on CECT radiomics signatures;
TABLE 3 Features contained in radiomics models.

Radiomics model Feature

AP model AP_log.sigma.2.0.mm.3D_glszm_ZoneEntropy
AP_wavelet.LHH_glcm_JointEntropy
AP_original_glszm_LowGrayLevelZoneEmphasis
AP_original_glszm_SmallAreaLowGrayLevelEmphasis
AP_log.sigma.1.0.mm.3D_gldm_DependenceEntropy
AP_log.sigma.1.0.mm.3D_gldm_LowGrayLevelEmphasis
AP_log.sigma.5.0.mm.3D_glszm_SmallAreaHighGrayLevelEmphasis
AP_wavelet.LLH_firstorder_Uniformity
AP_wavelet.LLH_glcm_Contrast
AP_wavelet.LHL_glszm_LargeAreaHighGrayLevelEmphasis
AP_wavelet.HLL_glcm_InverseVariance
AP_wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis
AP_wavelet.LLL_glcm_Idn
AP_wavelet.LLL_glcm_MCC

VP model VP_log.sigma.2.0.mm.3D_glszm_ZoneEntropy
VP_original_shape_Maximum2DDiameterSlice
VP_wavelet.LLH_glszm_ZoneEntropy
VP_original_glrlm_LowGrayLevelRunEmphasis
VP_log.sigma.1.0.mm.3D_glszm_ZoneEntropy
VP_log.sigma.1.0.mm.3D_gldm_DependenceEntropy
VP_log.sigma.1.0.mm.3D_gldm_DependenceNonUniformityNormalized
VP_log.sigma.3.0.mm.3D_ngtdm_Contrast
VP_log.sigma.5.0.mm.3D_glszm_HighGrayLevelZoneEmphasis
VP_log.sigma.5.0.mm.3D_glszm_LargeAreaHighGrayLevelEmphasis
VP_wavelet.LLH_glrlm_ShortRunEmphasis
VP_wavelet.LHL_glcm_Idn
VP_wavelet.LHH_glcm_Autocorrelation
VP_wavelet.HLL_glszm_LargeAreaEmphasis
VP_wavelet.HLL_glszm_SmallAreaLowGrayLevelEmphasis
VP_wavelet.HLH_glszm_GrayLevelNonUniformity
VP_wavelet.LLL_firstorder_MeanAbsoluteDeviation
VP_wavelet.LLL_glcm_MCC
VP_wavelet.LLL_ngtdm_Contrast

AP+VP model AP_log.sigma.2.0.mm.3D_glszm_ZoneEntropy
AP_original_glszm_LowGrayLevelZoneEmphasis
AP_original_gldm_LargeDependenceLowGrayLevelEmphasis
AP_log.sigma.1.0.mm.3D_glcm_Contrast
AP_log.sigma.5.0.mm.3D_glszm_SmallAreaHighGrayLevelEmphasis
AP_wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis
AP_wavelet.HLL_gldm_DependenceEntropy
AP_wavelet.HLH_glszm_GrayLevelNonUniformity
AP_wavelet.HHH_firstorder_Variance
AP_wavelet.LLL_glcm_Idn
VP_original_shape_Maximum2DDiameterSlice
VP_original_gldm_LowGrayLevelEmphasis
VP_log.sigma.1.0.mm.3D_glszm_ZoneEntropy
VP_log.sigma.2.0.mm.3D_glszm_ZoneEntropy
VP_log.sigma.3.0.mm.3D_glrlm_RunLengthNonUniformityNormalized
VP_log.sigma.3.0.mm.3D_ngtdm_Contrast
VP_log.sigma.5.0.mm.3D_glszm_HighGrayLevelZoneEmphasis
VP_wavelet.LLH_glrlm_ShortRunEmphasis
VP_wavelet.LHL_glcm_Idn
VP_wavelet.HLL_glszm_SmallAreaLowGrayLevelEmphasis
VP_wavelet.HLH_glszm_GrayLevelNonUniformity
VP_wavelet.LLL_firstorder_MeanAbsoluteDeviation
VP_wavelet.LLL_glcm_MCC
VP_wavelet.LLL_ngtdm_Contrast
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regrettably, they only considered portal venous phase images and

not valuable arterial phase information. Ueda et al. (40) and Matsui

et al. (41) suggested that the hepatic artery blood supply increases

and the portal vein blood supply decreases when the degree of

malignancy of liver tumors increases; in other words, the blood

supply can reflect HCC malignancy. The association between blood

supply and HCC malignancy may partly explain why both arterial

phase and portal venous phase contrast-enhanced CT could predict

the HCC pathological grade in our study and why the prediction

efficiency was more satisfactory when arterial and portal venous

phase images were combined. Furthermore, the multi-phase

contrast enhanced MRI may reflect the pathological grading of

HCC, with the low-grade lesions exhibiting obvious enhancement,

particularly in the portal phase, while the high-grade lesions always

displayed enhancement in the arterial phase (42). So, it is easy to

appreciate the usefulness of contrast enhancement MRI in

discriminating the differentiation grade of HCC. Because of the

small number of MRI subjects, our institution has not been able to

conduct research related to contrast enhancement MRI and

pathological grading of HCC.
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Our study has several distinct strengths. First, compared with

other studies, our study included many more radiomic features,

suggesting that we had a lower likelihood of omitting any crucial

radiomic signature. Second, compared with some studies with only

2D ROI (13), our study added more information and improved the

reliability of the results by delineating a 3D region including every

slice of the tumor. Third, the radiomic analysis in our study

involved not only arterial but also portal venous images, while

some prior studies used only one type of image (21). Because of the

different enhancement patterns of both phases, combined CECT

radiomic analysis of arterial and portal venous phase images is

regarded as a more useful predictive tool than analysis based only

on portal venous images.

Our study has the following limitations: (1) As a retrospective

single-center study, the results were limited because of the small

sample size. (2) Because of the small number of patients who

underwent MRI, we had no opportunity to compare the contrast-

enhanced CT and contrast-enhanced MRI radiomics models. (3)

The CT images used in our study had a dissatisfactory slice

thickness of 5 mm. Reportedly, the diagnostic information might
BA

FIGURE 4

Different models with receiver operating characteristic curves (ROC). (A) Training cohort; (B) validation cohort.
TABLE 4 Predictive performance of different models.

Models Training dataset (n=170) Test dataset (n=72)

Sensitivity Specificity Accuracy AUC(95%CI) Sensitivity Specificity Accuracy AUC(95%CI)

AP 0.829 0.810 0.818 0.890(0.843-0.938) 0.743 0.730 0.736 0.773(0.665-0.881)

VP 0.929 0.870 0.894 0.944(0.908-0.980) 0.743 0.838 0.791 0.833(0.737-0.929)

Clinical 0.843 0.530 0.659 0.700(0.621-0.779) 0.314 0.865 0.597 0.526(0.389-0.663)

AP+VP 0.971 0.920 0.941 0.981(0.965-0.997) 0.857 0.730 0.791 0.842(0.752-0.931)

AP+ Clinical 0.857 0.820 0.835 0.904(0.861-0.948) 0.971 0.432 0.694 0.740(0.626-0.853)

VP+ Clinical 0.914 0.910 0.911 0.950(0.917-0.983) 0.600 0.919 0.763 0.821(0.725-0.917)

AP+VP+Clinical 0.957 0.940 0.947 0.985(0.971-0.998) 0.943 0.595 0.763 0.829(0.737-0.922)
AP, arterial phase; VP, portal venous phase; AUC, area under the curve; CI, confidence interval.
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be better obtained from thinner slices (43). (4) There is no clear

explanation for the biological mechanisms that produce these

imaging features, as in all radiomics studies; therefore, in the

future, researchers may be able to gain clear mechanistic insight

into the biological basis of these radiomic features by investigating a

possible association between radiomics and tumor genomics

or proteomics.
Frontiers in Oncology 10
5 Conclusion

According to our study, the radiomics features from contrast-

enhanced CT images could successfully be used to construct a

prediction model for categorizing HCC tumors into high- or low-

grade cases. However, the combination of the model with clinical

data did not perform better than the radiomics model.
BA

FIGURE 6

Model calibration curves for the train (A) and test cohorts (B) for the AP+VP model.
FIGURE 5

A nomogram for predicting poorly differentiated HCC risk.
BA

FIGURE 7

Decision curve analysis for the radiomics nomogram and the clinical factors model in the train dataset (A) and validation dataset (B). An x-axis
indicates the probability of reaching a threshold; a y-axis indicates the net benefit. As indicated by the threshold probabilities obtained, the radiomics
nomogram (blue line) provided a greater net benefit than the clinical factors model (green line).
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