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Hydraulic fracturing is a crucial technology for enhancing the recovery of oil and gas from unconventional reservoirs. Accurately
describing fracture morphology is essential for accurately predicting production dynamics. This article proposes a new fracture
inversion model based on dynamic data-driven methods, which is different from the conventional linear elastic fracture
mechanics model. This method eliminates the need to consider complex mechanical mechanisms, resulting in faster simulation
speeds. In the model, the fracture morphology is constrained by combining microseismic data and fracturing construction
data, and the fracture tip propagation domain is introduced to characterize the multi-directionality of fracture propagation. The
simulated fracture exhibits a multi-branch fracture network morphology, aligning more closely with geological understanding. In
addition, the influence of microseismic signal intensity on the direction of fracture propagation is considered in this study. The
general stochastic approximation (GSA) algorithm is employed to optimize the direction of fracture propagation. The proposed
method is applied to both the single-stage fracturing model and the whole well fracturing model. The research findings indicate
that in the single-stage fracturing model, the inverted fracture morphology aligns closely with the microseismic data, with a
fitting rate of the fracturing construction curve exceeding 95%, and a microseismic data fitting rate exceeding 93%. In the
whole well fracturing model, a total of 18 sections were inverted. The fitting rate between the overall fracture morphology and
the microseismic data reached 90%. The simulation only took 5 minutes, demonstrating high computational efficiency and
meeting the needs of large-scale engineering fracture simulation. This method can effectively support geological modeling and
production dynamic prediction.

1. Introduction
The world has abundant shale gas reservoir resources;
however, due to the influence of reservoir rock proper‐
ties, its development poses significant challenges [1–4].
Hydraulic fracturing technology can effectively enhance the
physical properties of reservoirs and form complex fracture
networks within the reservoir, thereby promoting oil and
gas production [5–7]. In order to assess the development

impact of shale gas reservoirs and devise appropriate
development plans, it is necessary to establish a numerical
model that is specific to the shale gas reservoir in question.
Accurately describing the post-fracturing fracture morphol‐
ogy is crucial for model construction and subsequent flow
simulations, as it is a key factor in ensuring the accuracy
of model calculation results [8]. Moreover, the morphol‐
ogy of fractures post-fracturing is often highly complex,
characterized by a network structure of fractures [9, 10].

GeoScienceWorld
Lithosphere
Volume 2024, Number 1, Article ID lithosphere_2023_347, 9 pages
https://doi.org/10.2113/2024/lithosphere_2023_347

Downloaded from http://pubs.geoscienceworld.org/gsw/lithosphere/article-pdf/doi/10.2113/2024/lithosphere_2023_347/6330644/lithosphere_2023_347.pdf
by guest
on 08 September 2024

http://orcid.org/0000-0003-4696-8984
http://orcid.org/0000-0003-0073-6811
https://doi.org/10.2113/2024/lithosphere_2023_347


Many existing fracture propagation models only consider
a simplified quasi-three-dimensional or three-dimensional
straight fracture structure. However, these models fail
to adequately explain the real distribution of fractures
observed during hydraulic fracturing operations [11]. To
achieve accurate simulation of fracture morphology, it is
crucial to find a complex fracture inversion method that can
effectively combine the constraints of fracturing monitoring
data for synchronous inversion of fracture morphology.

The microseismic data points are dynamically monitored
fracture data during the hydraulic fracturing process and
provide a relatively accurate reflection of the distribution of
underground fractures [12]. While microseismic data points
alone may not provide a clear representation of fracture
morphology continuity, integrating numerical simulation
methods for fracture propagation with microseismic data
can be a feasible approach to determine the direction
of fractures [13]. Existing methods for hydraulic fractur‐
ing fracture propagation mainly include finite element
methods, extended finite element methods, boundary
element methods, and unconventional fracture propagation
models [14–16]. However, these methods assume a single
direction for fracture propagation, determined by criteria
such as the maximum circumferential tensile stress criterion
or the Griffith criterion [16]. As a result, these methods
may not be suitable for accurately simulating the com‐
plex simulating the morphologies of multi-branch fracture
networks when constrained by microseismic data points.

Some scholars have explored the use of fractal theory
in constructing a multi-branch fracture network structure
and fitting microseismic data, which has shown significant
progress [17–20]. Sheng et al. utilized fractal theory to
establish a complex fracture model for fitting microseis‐
mic data. They employed fractal dimension to character‐
ize parameters such as fracture porosity, permeability, and
compressibility [17]. Cui used a tree structure generated by
an L-system, similar to fractal theory, as an approximately
to represent the fracture morphology and fit the micro‐
seismic data [21]. Fractal methods offer the advantage of
creating complex multi-branch structures that can fit widely
dispersed microseismic data. However, these methods tend
to construct fracture structures with high similarity and

may not fully capture the diversity of complex fracture
structures.

Furthermore, scholars have developed the discrete
fracture network model (DFN) as an alternative approach.
Unlike fractal methods, DFN models do not display the
branch structure. Instead, they utilize multiple intersecting
long straight fractures to fit microseismic data [22–25].
The DFN method is widely applied due to its simplicity
and ease of integration with flow simulation methods.
Warpinski et al. proposed a box model based on the
DFN method to approximate the distribution of microseis‐
mic data and evaluated the stimulated reservoir volume
[13]. Many scholars have improved this method [24, 25].
However, whether using fractal methods or DFN models,
they have not taken into account the influence of geological
parameters and microseismic intensity changes on fracture
structures. In the hydraulic fracturing process, complex
fractures are formed in the formation by fracturing fluid, so
the conservation of fracture space and the injected volume
of fracturing fluid should be considered. In these meth‐
ods, volume conservation is often overlooked. Therefore, to
accurately simulate the distribution of complex fractures,
it is essential to not only constrain the model with micro‐
seismic data points but also incorporate actual hydraulic
fracturing data, such as pump pressure parameters and
injection volume data, to jointly constrain the fracture
morphology.

In this article, based on the method proposed by Zhao
et al. [26], the concept of extended domain is introduced
to characterize the multi-directionality of fracture propa‐
gation. In addition, the model considers the influence of
microseismic signal intensity on the direction of frac‐
ture propagation and uses microseismic data to constrain
the direction of fracture propagation. Furthermore, the
model considers the volume conservation of fractures and
injection volume, utilizing hydraulic fracturing construc‐
tion data to constrain the number of fracture nodes. By
coupling these two methods through the local fracture
morphology, the model achieves dynamic inversion of
complex fracture networks. The method proposed in this
article takes into account the constraints by microseismic
data points, which are assumed to accurately reflect the

Figure 1: Fracture tip propagation domain
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actual fracture distribution in the reservoir. However, it
should be noted that the model does not currently consider
the propagation of fractures in the height direction,
assuming a constant height value and no fluid loss in the
fracture. Therefore, future research is required to investigate
the impact of fluid loss and the propagation of fractures in
the height direction.

2. Mathematical Model for Dynamic Inversion
of Complex Fractures Under Multi-Objective
Constraints

2.1. Hydraulic Fracture Initiation Mechanical Model. In this
section, drawing inspiration from the complex fracture
description method proposed by Zhao et al. [26], the
stochastic characteristics of fracture propagation are
considered. Building upon this, the anisotropy of reservoir
geological conditions is taken into account, and dynamic
geological parameters are obtained by introducing well-
logging data, enabling the characterization of reservoir
heterogeneity.

To obtain the mechanical parameters of the reservoir,
it is necessary to use well-logging data to obtain specific

Table 1: Basic parameters of the model.

Parameters Value

Maximum principal stress (MPa) 55
Minimum principal stress (MPa) 42
Injection rate (m3 min−1) 15
Maximum pump pressure (MPa) 75
Poisson’s ratio 0.23
Tensile strength of rock (MPa) 3.60
Fracture toughness of rock (MPa m0.5) 1.60

parameters such as shear-wave travel time, compressional-
wave travel time, and reservoir density at particular
locations, thereby calculating the formation stress. Shear-
wave travel time and compressional-wave travel time can
be obtained through dipole shear-wave logging, while
reservoir density is acquired from density logging data [27].
Therefore, the Poisson’s ratio and Young’s modulus in the
reservoir can be expressed as:

(1)Ed, i =
4ξi − 3ξiςiξi − ςi , νd, i =

2ξi − ςi
2 ξi − ςi

where Ed,I is the elastic modulus of the reservoir, GPa;
νd,i i is the Poisson’s ratio ; ξi and ςi are defined as:

(2)ξi =
ρb, i
Δts 2 , ςi =

ρb, i
Δtc 2

where ρb,i is reservoir density, kg/m3; Δts is the shear
wave travel time, s; Δtc is the compressional wave travel
time, s.

Given the obtained Poisson’s ratio and elastic modulus
data, considering the rock as a porous elastic medium, the
stress parameters of the rock can be determined based on
linear elastic fracture mechanics theory, represented as:

(3)
σℎ =

νd, i
1 − νd, i σv − αps + ζℎ Ed, iH

1 + νd, i +
αTEd, iΔT

1 − νd, i + αps + Δσℎ
σH =

νd, i
1 − νd, i σv − αps + ζH Ed, iH

1 + νd, i +
αTEd, iΔT

1 − νd, i + αps + ΔσH
where σh is the minimum horizontal principal stress,

MPa; σH is the maximum horizontal principal stress,
MPa; σv is vertical stress, MPa; ps is pore pressure, MPa;
α is the effective stress coefficient; αT is the coefficient
of linear expansion; ΔT is the formation temperature
difference, K; ζH and ζh are the strain coefficients of the

Figure 2: Complex fracture simulation process with multi-objective constraints
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maximum principal stress and the minimum principal
stress, respectively.

The induced stress can be solved using the analytical
solution proposed by Green and Sneddon [28]. Employing
the superposition principle allows the determination of the
induced stress components for the global fracture, which
can be expressed as:

(4)σx, ij = ∑k = 1

N pnet, k[
lmlm,nl2,mcos

2θm − θl,m − θ2,m
2 − 2] −

∑k = 1

N pnet, k lma ( a2ll,ml2,m )3/2sin θmsin(3
2(θl,m + θ2,m))

σy, ij = ∑k = 1

N pnet, k[
lmlm,nl2,mcos

2θm − θl,m − θ2,m
2 − 2]

− ∑k = 1

N pnet, k lma ( a2ll,ml2,m )3/2sin θmsin(3
2(θl,m + θ2,m))

τxy, ij = ∑k = 1

N pnet, k lma ( a2ll,ml2,m )3/2sin θmcos(3
2(θl,m + θθ2,m))

where σx,ij is the x-axis induced stress component, MPa;
σy,ij is the y-axis induced stress component, MPa; τxy,ij is the
shear stress component, MPa; N is the number of fractures;
pnet is the net pressure of fracture, MPa; a is the half length
of the fracture, m; lm is the distance between the space point
(i, j) and the midpoint of the fracture; l1,m, l2,m are the
distance between the space point (i, j) and the two ends of
the fracture, m; θm is the distance between the space point
(i, j) and the midpoint of the fracture; and θ1,m, θ2,m are the
angles between the spatial point (i, j) and the two ends of
the fracture, respectively.

Table 2: Relevant simulation parameters for well W1.

Parameters Value

Maximum principal stress (MPa) 65
Minimum principal stress (MPa) 54
Average pump pressure (MPa) 69
Injection rate (m3 min−1) 12
Young’s modulus (GPa) 19.3
Poisson’s ratio 0.28

Considering the multi-directionality of fracture
initiation, unlike traditional fracture criteria, within a
propagation domain Γ at the fracture tip, fractures will
initiate, as shown in Figure 1. The size of the fracture tip
propagation domain is related to the fracture toughness
of the reservoir and the tip stress intensity factor. In the
model presented in this article, propagation occurs when
the circumferential stress in the polar coordinate system
at the fracture tip exceeds the critical initiation stress.
Therefore, the range covered by the propagation domain
Γ in the polar coordinate system with the fracture tip as the
origin is expressed as:

(5)Γ = r, θ |σfr r, θ ≥ 0

(6)σfr = 1
2πrcosθ2 K1cos2θ

2 − 3
2K2sinθ − σcr

where r is the polar radius of the propagation domain Γ,
m; θ is the polar angle of the propagation domain Γ, rad;
K1 and K2 represent the fracture stress intensity factors of
type I and type II, respectively, MPa m0.5; σcr is the critical
fracture stress strength, MPa; and σfr is the residual stress
strength, MPa.

2.2. Multi-Objective Constrained Mathematical Model of
Fracture Parameters

2.2.1. Microseismic Data Point Constraints. In this section,
the evolution process and monitoring intensity of micro‐
seismic data are considered. The fracture orientation is
treated as a variable, and a model for fitting the fracture
morphology to microseismic data points is established. The
basic idea of the model is to establish a function of the
distance between fracture points (Nf) and microseismic
points (Mf) based on error estimation, with the microseis‐
mic point intensity as the weight. The mathematical model
can be represented as:

(7)Ei = χEi − 1 + ψ ∑j = 1

m
∑i = 1

n ωIii‖Nf, j − Mf, i‖2, Nf ∈ Γ

Figure 3: Field hydraulic fracturing construction data. (a) Actual microseismic data points and (b) the actual fracturing construction
curve.
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where Ei and Ei−1 are the error metrics of microseismic
and fracture in different stages; χ and ψ are the weight
coefficients of microseismic fitting values in stage i − 1 and
stage i, χ = (i − 1)/i, ψ = 1/i; ωi is the microseismic intensity
weighting factor; Іi is the micro-seismic intensity coefficient;
m is the number of fracture micro-elements in stage i; n
is the number of micro-seismic points in stage i; and Nf,i
and Mf,i are the location of stage fractures and microseismic
data points, respectively.

The microseismic data fitting model in equation (7),
can be considered as an optimization problem, where the
propagation direction of the fracture at the ith stage is
treated as the independent variable, aiming to minimize the
error value. This can be expressed as:

(8)minEi = J u , u ∈ Γ

where J is the objective function; u is the independent
variable and represents the fracture direction in this article.

For this optimization problem, the independent variable
cannot be expressed with a specific function, making
conventional gradient-based algorithms unsuitable for this
model. In this section, the general stochastic approximation
(GSA) algorithm is employed for optimizing and solving
the model. The GSA algorithm is an improvement over
the simultaneous perturbation stochastic approximation
(SPSA). In the conventional SPSA algorithm, the control
variables are randomly perturbed simultaneously to obtain
an approximate gradient. This process only involves the

objective function value J and ensures that the objective
function consistently moves uphill in complex problems. Its
approximate gradient is represented as:

(9)g ul = J ul + εlΔl − J ulεl × Δl−1

Then, the control variable under the iteration step l + 1
is:

(10)ul + 1 = ul + λlg ul
where εl is the perturbation step size; Δl is a vector of

Bernoulli distribution satisfying ±1; and λl is the iteration
step.

There is a drawback in the SPSA algorithm due
to the randomness of the approximate gradient, the
search direction exhibits high uncertainty. This makes
the algorithm prone to local convergence or difficulty in
escaping the current optimization solution. Therefore, the
GSA algorithm has been partially improved upon the SPSA
algorithm, generating N-perturbed control variables around
the control variable ul at the lth iteration step. This is
expressed as:

(11)ul, i = ul + εlΔl, i
Therefore,  the optimal control variables at the l  + 1

iteration step are determined by selecting the optimal

Figure 4: Fitted fracture morphology at different time intervals
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values from the N-perturbed variables. This  method can
effectively  solve the difficulty  of the SPSA method falling
into local optimal solution and obtain the best optimiza‐
tion solution.

2.2.2. Hydraulic Fracturing Construction Parameter
Constraints. Hydraulic fracturing construction is a
real-time process, and in the absence of proppants, the
most crucial parameters for hydraulic fracturing are the
injection rate and pump pressure. At a certain time t,
when a certain amount of fracturing fluid  is injected
into the fracture, the fluid  at the fracturing perforation
will produce a certain pressure due to the fluid-solid
coupling effect,  which is referred to as the bottom
hole perforation flow  pressure pwp  in this article. At
the same time, the fracturing pump at the wellhead
will provide pumping pressure to the fluid.  Ignoring
the flow  pattern of the fluid  in the wellbore, assuming
that the fluid  in the wellbore is filled,  the bottom hole
pump injection flow  pressure pwb  can be calculated by
pump pressure, fracturing fluid  properties, well depth,
and other parameters. The  bottom hole perforation flow
pressure pwp  and the bottom hole pump injection flow
pressure pwb  can be converted, expressed as:

(12)pwb = pwp + ppf + pcf

where ppf is the perforation friction of the fluid, MPa;
and pcf is the frictional resistance of the fluid along the
way, MPa.

In equation (12), the calculation of the bottom hole
perforation flow  pressure pwp  is directly related to
the fracture morphology and injection rate data. On
the other hand, the bottom hole pump injection flow
pressure pwb  can be directly calculated based on on-site
pump pressure data. A mathematical model to constrain
the fracture morphology through the injection rate and
pump pressure will be established.

Under the conditions of known pump pressure and
fracturing fluid properties, the bottom hole pump injection
flow pressure can be expressed as:

(13)pwb = pb + ∫ρ ℎ gdℎ
where pb is the pump pressure at time t + dt, MPa; ρ

is the density of fracturing fluid, kg/m3; and g is the local
gravity acceleration, m/s2.

For the frictional pressure drop along the fluid  flow
and the perforation hole frictional pressure drop, the
methods established by Crump and Conway through
physical experiments can be used for calculation, and are
expressed as:

Figure 5: Microseismic data for well W1 in the actual block.

Figure 6: Inverted fracture morphology of well W1 (with microseismic data points).
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(14)ppf t = 0.2369 × ρnp2dp4kd2 q t 2

(15)pcf, i = 128μπD4 ∑j = 1

i xj − xj − 1 qin − ∑k = 1

j − 1 qk
where np represents the number of perforations; dp

represents the perforation diameter, m; kd represents the
orifice flow coefficient, which is between 0.5 and 0.95, the
flow coefficient of the perfect hole is equal to 0.5 μ is fluid
viscosity, mPa s; D is the wellbore diameter, m; xj is the
distance between the perforation point and the bottom hole,
m; qin is the construction displacement, m3/min; and qk is
the flow rate of the kth perforation, m3/min.

Assuming that at time t, the fracture morphology is
the constrained ideal fracture morphology, the bottom hole
perforation flow pressure at the perforation point can be
calculated using the injection rate data at time t + dt and the
current fracture morphology. It can be expressed as:

(16)
pwp = α 1

2n + 2 π
2

2n + 1
2n + 2 kE2n + 1 qn t + dtHnL2n t + dt

1
2n + 2

α = 2 2 2n + 1n n
where n is the rheological index of the fluid, when the

fluid is Newtonian fluid, n = 1; k is the viscosity coefficient
of the fluid, mPa s; E is Young’s modulus, GPa; H is the
height of the fracture, m; and L is the length of the fracture,
m.

In this model, only the length of the fracture needs
to be adjusted to complete the fitting of the bottom
hole perforation flow pressure and the bottom hole pump
injection flow pressure. When the two are equal, it is
considered that the fracture morphology at the current time
is the real formation fracture morphology.

2.2.3 Multi-Objective Constrained Solution Process for
Fracture. In the previous sections, methods for constrain‐
ing complex fractures using microseismic data points
and hydraulic fracturing construction parameters are

respectively proposed. In the computations, these two
methods need to be coupled, with the fracture propagation
direction and morphology serving as the bridge between
them. In the model, we make several assumptions: (1) In the
microseismic constraint part, the microseismic data points
can truly reflect the distribution of reservoir fractures. (2) In
the hydraulic fracturing construction parameter constraint
part, due to the low permeability of shale reservoirs, fluid
loss is not considered. (3) The fracture height considered in
the model is a fixed value, which can be set as the reservoir
height.

The simulation calculation process is shown in Figure 2.
The specific steps are as follows: (a) Under given geological
conditions, establish the initial model, including properties,
mechanical parameters, and perforation parameters. (b)
Assume that at time t, the fracture morphology represents
the constrained ideal fracture morphology. Utilize pump
pressure at time t + dt to calculate the bottom hole pump
injection flow pressure. (c) Accounting for fluid resistance
effects, calculate the bottom hole perforation flow pressure
using injection rate data at time t + dt and the fracture
morphology at the current time step. (d) Based on injection
rate and wellbore data, calculate the fluid perforation
friction and fluid along-path friction. (e) Utilize equation
(12) for fitting calculation. If the error is less than the
limit error, proceed to the next iteration step or output the
fracture morphology. (f) If not fitted, increase the number
of fracture nodes, and use microseismic data points to
constrain the fracture propagation direction. Finally, output
the new fracture morphology. (g) Repeat steps (b) to (f)
until the final fracture morphology is output.

3. Inversion of Complex Fracture Morphology
Under Multi-Objective Constraints and Field
Application
3.1. Case Study of a Single-Stage Model in an Actual
Reservoir Block. To validate the fitting performance of the
model proposed in this article, we take the single-stage
fracturing model of the actual block model as an example.
A fracture inversion model with simultaneous constraints
from microseismic data and hydraulic fracturing construc‐
tion data is established, and the fracture morphology is

Figure 7: Inverted fracture morphology of well W1.
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dynamically simulated. The relevant simulation parameters
are presented in Table 1.

The microseismic data utilized in the model are
illustrated in Figure 3(a). The actual hydraulic fracturing
construction curve is depicted in Figure 3(b). It can be
seen from the microseismic data that the half length of the
fracture is about 98 m, the fracture width is about 38 m.
The fracture distribution is relatively uniform, and there
is no abnormal complex area. Simultaneously, to obtain
the coordinates of each microseismic data point, GetData
software is used for extraction. The microseismic intensity
coefficient І is considered, taking into account the radius
proportion of each microseismic data point. In processing
the construction curve, the paper directly considered the
fracture propagation segment, disregarding the process of
wellbore pressure build-up.

The real-time inversion results of the fracture are
illustrated in Figure 4. The figures depict the fracture
morphology at different time intervals: 20, 45, 60, 85, 105,
and 135 minutes. It is evident from the images that at each
stage, the fitting rate of the pump pressure is high, exceed‐
ing 95%. Simultaneously, the fitting rate of the fracture
morphology with microseismic data is also high, reaching
around 93%. The fracture length of the model inversion
is 95 m, and the fracture width is 35 m, which is 3 m
different from the microseismic results, which is deemed
acceptable in engineering applications. Furthermore, the
fracture morphology adequately explains the distribution
range of microseismic data and exhibits complex fracture
morphology, which is challenging to achieve with conven‐
tional numerical simulation methods. These results strongly
demonstrate that the proposed model in this article can
effectively meet engineering requirements.

3.2. Inversion and Analysis of Fracture Morphology of an
Actual Hydraulic Fracturing Block. The method is applied to
the single well model of the actual block, and the well W1
of an oilfield is selected as the research object. The well is
fractured in the early stage of development, and microseis‐
mic monitoring is carried out. The microseismic monitoring
results are shown in Figure 5. A total of 18 sections are
fractured in well W1, with an average length of about 60 m.
The microseismic monitoring results show that the average
fracture length of well W1 is 196 m and the fracture width
is 45 m. According to the microseismic data and fractur‐
ing construction data of well W1, the fracture morphology
inversion is carried out. The simulation parameters of well
W1 are shown in Table 2.

The results of the fracture morphology are shown in
Figures 6 and 7 . Figure 6 displays the fracture morphol‐
ogy with microseismic points, indicating a high degree of
matching with the microseismic data, with a fitting rate
of around 90%. Most of the errors are concentrated near
the wellbore, potentially due to significant influences from
the wellbore boundary, which are challenging to consider
in the model. Figure 7 provides a clear view of the frac‐
ture structure, with an average inverted fracture length of
189 m. The deviation from the microseismic data is around

7 m, providing a reasonable interpretation of the micro‐
seismic monitoring results. However, it is essential to note
that in actual fracturing monitoring processes, microseis‐
mic data points are dynamic. In this model, static micro‐
seismic data points are considered, which can significantly
impact the fracture direction. In future research, incorpo‐
rating dynamic microseismic data and fitting them with the
fracture propagation process will be explored to achieve a
higher precision in the fracture morphology.

4. Conclusion
In this article, a multi-objective constrained fracture
inversion model based on microseismic data and hydraulic
fracturing construction data is established. Conceptual and
practical block cases are used to verify the reliability and
accuracy of the model calculations. The main conclusions
are as follows:

(1) A multi-objective constrained fracture inversion
model based on microseismic data and hydraulic
fracturing construction data is constructed. The
model considers the multi-directionality of fracture
propagation and the influence of microseismic signal
strength on the direction of fracture propagation.
Microseismic data is used to constrain the direction
of fracture propagation, and hydraulic fracturing
construction data is used to constrain the number of
fracture nodes. The dynamic inversion of fracture
morphology is achieved by coupling these two
constraint methods.

(2) A single-stage single-cluster fracture propagation
model is established to simulate the fitted
morphology of fractures at different times. The
model results show that the fitting rate of the
construction curve reaches 95%, and the
microseismic fitting rate is around 93%.

(3) Fracture fitting is conducted for an 18-stage well,
and the average length of the fractures differed by
approximately 7 m compared to the microseismic
data. The fitting rate is around 90%, meeting
engineering requirements and providing technical
support for subsequent geological modeling and
numerical simulations.
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