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Título 
Alterações da Imunidade Celular em Nadadores: Resposta ao Exercício Agudo e ao Treino 
 

Resumo 
O treino competitivo envolve exercício intenso e prolongado, capaz de modular o número e 

actividade das células imunitárias. Quando demasiado exigente poderá induzir fadiga e 

aumentar a susceptibilidade a doenças. 

Esta dissertação apresenta três estudos desenvolvidos no âmbito da Imunologia do 

Exercício, considerando a análise da resposta celular imunitária sistémica aguda e crónica 

ao exercício aplicada em situações reais do treino competitivo de natação, controlando 

factores passíveis de influenciar esta resposta. Pretendeu-se avaliar a resposta imunitária a 

uma sessão de treino prolongada e intensa, durante as 24h de recuperação (Estudo 1) e a 

uma época de treino com sete meses (Estudo 2), e estudar a influência de um macrociclo 

de treino de quatro meses sobre a resposta imunitária à mesma sessão de treino e período 

de recuperação (Estudo 3), controlando sexo, fases do ciclo menstrual, maturidade, 

escalão, especialidade, performance, cargas de treino e sintomas respiratórios superiores 

(URS). 

A sessão de treino induziu a diminuição da vigilância imunitária adquirida imediatamente 

e, pelo menos nas 2h seguintes. Juvenis e seniores recuperaram totalmente 24h depois, mas 

não os juniores, reforçando a ideia da existência de uma janela aberta para a infecção após 

exercícios prolongados e intensos e sugerindo uma recuperação menos eficiente para os 

juniores. No período de treino mais intenso da época observou-se uma imunodepressão e 

maior prevalência de URS. No final da época, a imunidade inata diminuiu aparentando 

maior sensibilidade aos efeitos cumulativos da carga de treino, enquanto a imunidade 

adquirida parece ter recuperado após o taper. O macrociclo de treino atenuou a resposta 

imunitária à sessão de treino e aumentou o período de janela aberta às infecções (efeitos 

mais acentuados nos adolescentes). 

Os resultados evidenciam a importância de controlar alterações imunitárias durante a época 

competitiva, especialmente em períodos de treino intenso e quando se realizam sessões de 

treino intensas consecutivas com recuperações inferiores a 24h. 

 

Palavras-Chave: Imunidade Celular, Nadadores, Sessão de Treino, Época de Treino, 

Sintomas Respiratórios Superiores. 
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Title 
Immune Cell Changes in Swimmers: Response to Acute Exercise and Training 
 

Abstract  
Competitive training demands strenuous prolonged exercise that may modulate the number 

and activity of circulating immune cells. Over demanding programs can lead to fatigue and 

increased risk of infection and susceptibility to diseases. 

This dissertation presents three studies developed within the Exercise Immunology scope, 

considering the analysis of acute and chronic systemic immune cell responses to exercise 

applied in real situations of competitive training, controlling for factors that may affect 

immune responses. We aimed to evaluate the immune response to a high intensity 

prolonged swimming training session (Study 1) and to a 7-month swimming training 

season (Study 2), and the influence of a 4-month training macrocycle on the immune 

response to a swimming session (Study 3). Subjects characteristics, namely sex, menstrual 

cycle phase, maturity, swimming age group, and distance specialty were controlled, and 

training load, performance improvements and Upper Respiratory Symptoms (URS) were 

monitored. 

The swimming session induced an impaired acquired immune surveillance immediately 

and at least throughout 2h post-exercise, however, 24h after, senior and youth swimmers 

had totally recovered but not juniors. This supports the idea of an open window to infection 

after prolonged intense exercise, suggesting also a more difficult recovery of juniors. 

During the season’s high intensity training periods immune depression and higher URS 

prevalence were observed. When the season ended, innate immunity was decreased, 

appearing to have been more affected by cumulative training loads, while acquired 

immunity seemed to have adapted and recovered efficiently after the taper period. The 

training season induced an overall attenuation of the immune system’s ability to respond to 

the swimming session, and a subsequent longer open window period of susceptibility to 

infection (more accentuated in adolescents). 

These findings enhance the importance of controlling immune alterations throughout the 

season, especially in heavy training periods and when performing consecutive intense 

training sessions without 24h of recovery. 

 
Keywords: Cellular Immunity, Swimming, Training session, Training Season, Upper 

Respiratory Symptoms. 
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Título 
Alterações da Imunidade Celular em Nadadores: Resposta ao Exercício Agudo e ao Treino 
 

Resumo Desenvolvido 
O treino competitivo envolve exercício intenso e prolongado, capaz de modular o número e 

a actividade das células imunitárias. Quando demasiado exigente poderá induzir fadiga e 

aumentar a susceptibilidade a doenças. A presente dissertação inclui três estudos de 

investigação desenvolvidos no âmbito da Imunologia do Exercício, considerando a análise 

da influência do treino de competição sobre a resposta celular imunitária sistémica em 

nadadores, nomeadamente dos leucócitos totais e das subpopulações neutrófilos, 

monócitos, eosinófilos e linfócitos, respeitando a distinção clássica entre os efeitos agudos 

e crónicos do exercício. As subpopulações linfocitárias T (T totais CD3+, T helper CD4+ e 

T cytotoxic CD8+), B (CD19+) e natural killer (NK, CD16+56+) foram também avaliadas 

devido ao papel fundamental que desempenham na resposta imunitária celular, na humoral 

e na inata, respectivamente. Nesta investigação procurou-se avaliar a resposta imunitária 

ao exercício no terreno, em situações reais e representativas de processos de treino 

competitivos, controlando factores passíveis de influenciar esta resposta. No Estudo 1 

avaliou-se a resposta imunitária a uma sessão de treino de natação prolongada e intensa, ao 

longo de um período de recuperação de 24 h. No Estudo 2 avaliou-se a resposta imunitária 

a uma época de treino de natação com sete meses. No Estudo 3 estudou-se a influência de 

um macrociclo de treino de 4 meses sobre a resposta imunitária à sessão de natação 

padronizada, ao longo de um período de recuperação de 24 h. Em todos os estudos 

controlaram-se variáveis associadas às características dos sujeitos que poderão influenciar 

a resposta imunitária, nomeadamente: sexo, fases do ciclo menstrual, maturidade, escalão 

competitivo, e especialidade desportiva com base na distância do principal evento 

competitivo. Ao longo da época competitiva controlou-se a melhoria da performance e foi 

quantificada a carga de treino de todas as sessões de treino planeadas da época, no sentido 

de se caracterizar a dinâmica da carga e perceber como as alterações deste parâmetro 

poderiam estar associadas à resposta imunitária. A incidência de sintomas respiratórios 

superiores (URS) foi também monitorizada através de questionários semanais. 

Este projeto acompanhou uma época de inverno de natação competitiva com a duração de 

30 semanas. A avaliação dos nadadores foi feita em quatro momentos de avaliação (M) 

denominados M1 (início da época, avaliação de base), M2 (na semana após a competição 
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principal do 1º macrociclo; a 13ª semana de treino), M3 (na sub fase preparatória 

específica do 2º macrociclo; a 23ª semana de treino) e M4 (a semana posterior à 

competição principal do 2º macrociclo; a 30ª semana de treino). Em todos os momentos de 

avaliação foram recolhidos dados acerca dos índices bioquímicos imunitários em repouso, 

dados maturacionais e de características físicas. No M2 e M4 foi realizada uma sessão de 

treino de natação padronizada e depois da sessão avaliaram-se os índices imunitários acima 

referidos. Estas recolhas foram feitas imediatamente (Post), duas horas (Post 2h) e 24 h 

após (Post 24h) o término da sessão. A sessão de treino incluída nesta investigação é 

representativa do típico esforço desenvolvido nas sessões de treino integradas em qualquer 

processo de treino de natação competitiva. 

No Estudo 1, a resposta imunitária aguda à sessão de treino de natação de intensidade 

elevada, traduziu-se num aumento imediato do número de neutrófilos (neutrofilia), num 

decréscimo do número de linfócitos (linfopénia) e do número de eosinófilos, que duraram 

pelo menos duas horas, independentemente do sexo e maturidade. A recuperação da 

imunidade adquirida, expressa por linfócitos totais e subpopulações T (CD3+) e B 

(CD19+), parece ter sido mais difícil e lenta nos nadadores do escalão júnior (15 – 17 anos 

de idade, de acordo com a classificação Ligue Européene de Natation – LEN), uma vez que 

estes parâmetros se mantiveram diminuídos ao longo das 2 h após a sessão de treino e um 

período de 24 h foi insuficiente para a recuperação completa dos linfócitos totais e 

subpopulações T. Este facto deverá ser considerado aquando do planeamento de sessões de 

treino consecutivas. A linfopénia observada no final da sessão sugere uma vigilância 

imunitária diminuída que poderá aumentar o risco de infecção ou imunidade reduzida dos 

atletas no período imediatamente após o treino, destacando a necessidade de um cuidado 

extra quando expostos a agentes ambientais agressivos, como o ambiente das piscinas. No 

Estudo 2, ao considerar a influência da época de treino de natação sobre a resposta 

imunitária, observou-se na fase inicial da época (M2) uma diminuição da imunidade 

adquirida dos nadadores juvenis expressa principalmente pela diminuição dos linfócitos 

totais e subpopulações CD3+ e CD4+, bem como uma diminuição das subpopulações CD8+ 

em todos os nadadores. Durante o período de treino mais intenso da época de treino (M3), 

caracterizado por volumes elevados de treino realizados nas zonas de intensidade aeróbia e 

de tolerância láctica, verificou-se a manutenção dos valores reduzidos de linfócitos CD8+ e 

diminuições do número de eosinófilos e linfócitos NK CD16+56+, concomitantes com o 

maior número de episódios semanais de URS.  No final da época de inverno (M4), um 

período com uma componente de recuperação mais acentuada da carga de treino (período 
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de taper), os nadadores seniores apresentaram uma contagem reduzida de monócitos e 

todos os nadadores demonstraram decréscimos dos valores de eosinófilos e linfócitos 

CD16+56+. No entanto, as subpopulações CD8+ e CD19+ recuperaram com o período de 

taper, e no caso das CD19+, até se verificou o aumento do seu número. Estes resultados 

sugerem, por um lado, que a imunidade adquirida foi mais influenciada em períodos de 

carga de treino intensa, enquanto que a imunidade inata parece ter sido mais sensível ao 

efeito cumulativo do processo de treino de natação de longa duração. No Estudo 3, a 

investigação acerca da influência de um macrociclo de treino de 4 meses sobre a resposta 

imunitária aguda a uma sessão de treino de natação revelou que, no final do macrociclo 

(M4), imediatamente após a sessão de natação, houve uma leucocitose e neutrofilia 

inferiores e, nas duas horas após, uma recuperação menos eficiente dos linfócitos totais e 

subpopulação CD19+ (linfócitos B). Vinte e quatro horas após terminar a sessão verificou- 

-se também uma recuperação menos eficiente da subpopulação NK CD16+56+ nos 

nadadores adolescentes. Estas alterações dos parâmetros imunitários foram concomitantes 

com uma frequência mais elevada de URS no final do macrociclo comparativamente ao 

início (M2). Os resultados sugerem uma resposta imunitária aguda globalmente mais 

atenuada e um subsequente período de janela aberta de susceptibilidade à infecção mais 

longo. Esta resposta parece ter sido mais acentuada nos nadadores adolescentes. No 

entanto, é difícil de dizer se estas modificações reflectem mecanismos adaptativos 

positivos ou negativos, embora seja provável que tenham resultado dos efeitos cumulativos 

das cargas de treino de natação. 

Estes resultados evidenciam a importância de controlar alterações imunitárias durante toda 

a época de treino, especialmente em períodos de treino intenso e ao realizar sessões de 

treino de alta intensidade consecutivas que não respeitem um período de recuperação de 

24 h entre si, mas também durante os primeiros meses da temporada de treino em 

particular para os jovens atletas. Desta forma, sugere-se que treinadores e atletas 

implementem estratégias comportamentais e de intervenção a fim de contribuir para 

manter as condições de saúde, impedindo o aparecimento da fadiga e a diminuição de 

desempenho associada, contribuindo assim para evitar doenças, garantir a participação nas 

sessões de treino e alcançar o máximo desempenho em competições. Os atletas deverão 

ainda ter precauções especiais durante as primeiras horas após as sessões de treino 

intensas. 
 

Palavras-Chave: Imunidade Celular, Nadadores, Sessão de Treino, Época de Treino, 

Sintomas Respiratórios Superiores. 
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Introduction 
 

Exercise Immunology is an expanding field specially focused on the study of the influence 

of exercise on immune function. Exercise constitutes a stressful stimulus to the organism 

and induces immune perturbations. Researches in this field have been exploring the 

mechanisms related to exercise-induced modulation of the immune system and prevention 

of diseases by exercise training (Harris, 2011). Regarding competitive training processes, 

the relationship between the states of fatigue and the risk of infection and susceptibility to 

diseases has also been studied (Armstrong & VanHeest, 2002). Many exercise 

immunology researches have focused on the influence of acute exercise on the immune 

response, and on the immediate and post exercise early recovery effects, referring transient 

changes of immune cells. Few investigations extended the observation of the post-exercise 

period to 24 h, reporting the immune recovery to baseline levels. The literature states that 

these changes do not necessarily imply a clinically enhanced or deficient immune state, 

and highlight the need for further investigations to help understand their true meaning. The 

chronic response has been associated to the exercise intensity and duration. Moderate 

exercise, appears to be beneficial for the recreational, or sedentary populations and also for 

patients with chronic diseases (Harris, 2011; Sothern, Loftin, Suskind, Udall, & Blecker, 

1999). Whereas intense training processes may contribute to an immunodepression state 

sometimes accompanied by an impaired performance, a combination that, if not reversed, 

may lead to overtraining (Armstrong & VanHeest, 2002). To date, the mechanisms linking 

exercise and health are not entirely comprehended, but they possibly underlie either the 

capability of exercise to both modulate the number of circulating immune cells and their 

activity. Considering that athletes exercise daily and for several hours performing high-

intensity efforts, it seems important to account for the possible detrimental effects of high 

intensity training sessions, excessive exercise and long-term training on immune system. In 

this manner, the control of the immune response might be part of the strategy of 

monitoring and testing in sports training, directed to the acute and chronic exercise 

adaptations of athletes and also ensure the effectiveness of preparation strategies in sports. 

In theory, it could contribute to prevent the increase of the susceptibility to infections and 

illnesses, impaired performances and most of all disease, which may compromise 

attendance to training sessions, and in the worst case scenario, the onset of overtraining. 
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The knowledge developed in the exercise immunology field about the mechanisms linking 

exercise and health may help explain the impact of training in the health of physical active 

populations involved in training processes and the improvements in the outcomes of 

clinical disorders such as cancer (Kruijsen-Jaarsma, Revesz, Bierings, Buffart, & Takken, 

2013), heart disease, type 2 diabetes, degenerative osteoarticular and reumatological 

diseases, and other chronic diseases (Gleeson, 2007). 

 

The present dissertation, entitled “Immune Cell Changes in Swimmers: Response to Acute 

Exercise and Training” aimed to study the influence of acute and chronic exercise effects 

on the immune cell response of swimmers over the course of a competitive training season, 

controlling for possible factors that may affect the immune response. 

In order to contextualize the investigation that culminated in three research studies, a 

literature review (Chapter II), and an integrated discussion (Chapter VII) of the main 

findings obtained within the three studies (Chapters IV – VII) are presented. This 

dissertation is organized as follows: 

Chapter II includes a brief literature review including an introduction to the immune 

system concerning the main components that constitute the innate and acquired immune 

response. A detailed review of the current literature about exercise and immune function, 

including acute and chronic exercise effects, mechanisms and influential factors, is also 

presented in this chapter. This section finishes by highlighting the main research goals of 

the dissertation. 

A description of the methods used during this project is exposed in Chapter III.  

Chapters IV to VII correspond to the three studies that were conducted to answer the 

research goals that were defined in Chapter II. These studies are presented in a format 

ready to submit to peer reviewed journals. 

Chapter VII provides an integrated discussion of the main findings obtained in the three 

studies over the course of this investigation. Overall conclusions and practical applications 

were pointed out at the end of this section. 

Chapter VIII includes a list of all the references sited in all chapters. 

 

The investigation presented in this dissertation was conducted with the financial support of 

the Portuguese Foundation for Science and Technology (grant: SFRH / BD / 48211 / 2008) 

and CIPER.    
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Literature Review 
 

2.1. Biological component of the training process 
 

Training is a systematic process that aims to improve physical, psychological and technical 

qualities or abilities that allows reaching higher levels of performance. This process is 

based on the principle of biological adaptation. This principle sustains that the existence of 

stimuli, planned or spontaneous, induces a response that will lead to an adaptation (Alves, 

2006; Busso, 2003; Costill et al., 1991; Foss & Keteyian, 1998). Accordingly, the current 

scientific theory and methodology of sports training highlights the relevance of the 

different types of stimuli that will induce different physiologic responses, implicating a 

dose-response relationship between training stimulus and the adaptation of the athlete 

(Busso, 2003). These stimuli are usually seen as the exercises or tasks, which present 

structural and load characteristics, and their overall organization is known as training load.  

The application of physical stimuli affects the psychosomatic, neuroendocrine, and 

functional (metabolic) responses (Alves, 2006; Foss & Keteyian, 1998; Peake et al., 2015). 

Generally, physical exercise acts as a mechanical and metabolic stress that disrupts the 

internal environment balance (homeostasis) of the human body. All systems of the body 

respond by generating physiological feedback mechanisms that will satisfy the enlarged 

energy demands, eliminate toxic products and repair the molecular, cellular, and eventually 

tissue damage that may occur, so as to the body comes back to a new state of homeostasis 

(Alves, 2006; Menicucci et al., 2013; Peake et al., 2015). This reaction will comprise 

structural and metabolic changes that will diminish disruptive fluctuations and produce a 

more efficient and less expensive response to a subsequent stress.  

The body’s homeostasis can be disrupted also by injury, illness and disease, interfering 

with the proper functioning of the body. In this case, the immune system contributes to 

homeostasis by preparing the body to fight off infection and to help the healing process in 

case harm occurs (Gleeson, 2006, 2007; Harris, 2011; Menicucci et al., 2013). So, an 

active immune system is required if an athlete aims to produce frequent peak 

performances. Immune cells respond to growth factors and cytokines, and are involved in 

muscle growth and repair adaptations to exercise, participating in angiogenesis and tissue 
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repair (Adams et al., 2011). These functions may be important for the efficiency of muscle 

repair and muscle fiber hypertrophy induced by heavy resistance exercise (Ihalainen et al., 

2014). 

In competitive sports, many years of daily training and competition are required to achieve 

and maintain national and international level performances, which mean that the success of 

the athlete is determined by the cumulative effect of long-term training resultant from a 

long-lasting athletic preparation. The cumulative training effect reflects modifications in 

physiological and biochemical parameters and also in parameters associated to sports 

specific physical/technical abilities and level of performance (Issurin, 2010). The most 

noticeable adaptations may be achieved in aerobic abilities, which imply a higher 

improvement rate in aerobic endurance disciplines (Issurin, 2010; Jones & Carter, 2000). 

Endurance sports training processes are seen as promoters of several “beneficial” 

cardiovascular, metabolic, and respiratory adaptations. Some of those adaptations are: 

decreased heart rate, and increased levels of stroke volume of the heart, cardiac output, 

oxygen transportation and distribution efficiency, mitochondrial number and volume in the 

muscle fibers used in training, aerobic enzymes, glycogen and fat storing and energy 

source mechanisms, body thermal and pH regulation (Buchheit & Laursen, 2013; Foss & 

Keteyian, 1998; Jones & Carter, 2000).  

The physiological adaptations above mentioned affect positively endurance performance 

by inducing a rightward shift in the velocity-time curve. This change allows athletes to 

work out for a longer period of time at certain exercise intensity, or to exercise at a higher 

intensity for a given duration (Issurin, 2010). 

The cumulative training effect involves an adequate and competent planning and 

regulation of training loads throughout long periods. To allow the adaptation to the 

workloads, an adequate balance between training stimulus and recovery periods is 

necessary. The conceptual models that study the processes of physical adaptation to 

training assume that training load has, concomitantly, a positive (fitness) and a negative 

(fatigue) effect on performance (Banister, 1991). The consequences of low training loads 

and/or excessive recovery or high training loads along with deficient recoveries may 

impair performance, and in the latter can cause excessive fatigue (Armstrong & VanHeest, 

2002; Hackney, 2013; Mackinnon, 2000; Smith, 2004). 

Fatigue is characterized by a reduction of performance probably associated with 

insufficient muscular recovery, substrate depletion, neuroendocrine alterations, and/or 

microtrauma. This state is inextricable linked with the training process and also may be 
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exacerbated in the presence of other external factors (environment, relationship stress, 

schoolwork, lack of sleep, poor nutrition) and eventually be damaging to certain organs 

and systems of the body (Alves, 2006; Armstrong & VanHeest, 2002; Mackinnon, 2000).  

Furthermore, if not timely reversed it can become permanent and evolve to cumulative 

fatigue leading to overtraining syndrome (OTS) (Armstrong & VanHeest, 2002; 

Mackinnon, 2000; Smith, 2004). 

Overtraining syndrome (OTS) is also referred to as the unexplained underperformance 

syndrome, and is usually characterized by a long-term decreased performance capacity, 

and chronicle maladaptations in which the restoration of performance capacity and overall 

health condition may take several weeks or months. These maladaptations are associated to 

physiological, biochemical, immunological and psychological symptoms, and also 

inadequate nutrition (Halson & Jeukendrup, 2004; Hellard et al., 2013; Meeusen et al., 

2013). The OTS most reported symptoms besides decreased physical performance and 

general fatigue are: malaise, loss of vigor, insomnia, change in appetite, irritable, restless, 

excitable, anxious, loss of bodyweight, loss of motivation, lack of mental concentration, 

and feelings of depression (Armstrong & VanHeest, 2002).  

Several biological parameters, mostly blood constituents, regarded as possible markers of 

OTS, have been assessed in athletes. Among others, there are variables related to the 

endocrine and immune function that present reduced values in the athletes diagnosed with 

overtraining, namely hematocrit, hemoglobin, leukocytes and subsets, catecholamines, 

testosterone, cortisol, growth hormone, adrenocorticotropic hormone, and prolactin 

(Armstrong & VanHeest, 2002). 

As suggested by Hellard et al. (2005) in a study concerning the residual effects of training 

on the swimming performance in Olympic swimmers, it is essential to maintain the 

training loads below the overtraining limit in order to obtain an optimal development of 

physical capacities. 

From all endurance sports, swimming stands out for its special characteristics. Swimming 

is an individual cyclic sport, considerably different from dry land sports since the water 

environment induces in the body different metabolic and biomechanical displays (Holmer, 

Stein, Saltin, Ekblom, & Astrand, 1974; Toussaint & Beek, 1992; Zamparo, Capelli, & 

Pendergast, 2011). Since the majority of swimming events lasts longer than 30s, and 

similarly to other sports enduring similar range of exercise durations, the majority of 

training and competition loads induce a high participation of the oxidative system 

(Bangsbo, Michalsik, & Petersen, 1993; Craig et al., 1995; Spencer & Gastin, 2001). Well 
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trained swimmers, including short distance specialists, usually present elevated levels of 

aerobic power and capacity, much similar to those of other traditionally endurance sports. 

In fact, this predominant aerobic participation even in shorter events, such as 50 m and 100 

m, is a singularity of this sport (Toussaint & Beek, 1992; Zamparo et al., 2011). 

Apparently, in no other sport is efficiency more important than in swimming and the 

highest efficiency levels are achieved through a combination of ideal anatomical structure 

and technical perfection of the stroke (Toussaint & Beek, 1992). So, in swimming it is of 

common use the implementation of cycles of high training volume and intensity, which 

include consecutive highly demanding training sessions with little recovery time in 

between, in order to optimize aerobic and movement economy adaptations (Sargent, 

Halson, & Roach, 2014). The majority of such training is performed using an interval 

training format to allow reaching higher levels of the swimmers aerobic and anaerobic 

capacity. Consequently, the usual levels of energy expenditure are also elevated (Buchheit 

& Laursen, 2013; Sweetenham & Atkinson, 2003). 

Moreover, most of the training sessions are conducted in swimming pools, implicating the 

repeated exposure to warm humid environment, temperature variations and chlorine-rich 

atmosphere, thus predisposing swimmers to respiratory illness (Aubry, Hausswirth, Louis, 

Coutts, & Y, 2014; Bernard, Nickmilder, Voisin, & Sardella, 2009; Bougault et al., 2012; 

Gleeson, 2000; Gleeson et al., 1995; Gleeson et al., 2000; Mackinnon, 1997; Reid, 

Gleeson, Williams, & Clancy, 2004; Spence et al., 2007), especially sinusitis, otitis and 

conjunctivitis (Ahmadinejad, Alijani, Mansori, & Ziaee, 2014). This predisposition seems 

to be accentuated during the heaviest training periods characterized by high loads imposed 

continuously over several weeks as the number of upper respiratory symptoms (URS) 

reported increases (Morgado et al., 2012; Rama et al., 2013).  

Although, in some cases the intense stimulation of adaptive mechanisms related to 

metabolic, hormonal, circulatory and respiratory responses may have some negative 

influence on performance and health status, in most cases this may be reversed by a 

tapering or recovering period (Gleeson & Bishop, 2005; Shephard & Shek, 1999; Suzui et 

al., 2004). 

Thus, it becomes essential to know the athlete's skills and limitations and determine the 

ability of the swimmer to withstand the training loads. In addition, it appears important to 

analyze, among other variables, the functional state of the organism and health status (via 

functional tests and / or medical examinations). 
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Therefore, the preparation of the career of swimmers who pursuit high performances and 

national and international competitions, which requires daily training and preparation that 

consumes several hours and involves frequent periods of heavy training, should consider 

the possible overall detrimental effects of excessive exercise and long-term training on 

immune system. These evidences support the need for specific research on this sport.  

 

 

2.2. Introduction to the immune system 
 

The immune system is responsible for the maintenance of a healthy body, defending it 

against infectious organisms, such as bacteria, protozoa, parasites, fungi, and viruses. It is 

also able to recognize altered host cells (for example leading to cancer) and even non-

infectious substances that can promote the initiation of an immune response, such as 

proteins, polysaccharides and other macromolecules. The protection given by the immune 

system can be divided into two related activities: recognition and response (Kindt, 

Goldsby, & Osborne, 2007). The immune recognition is remarkable for its ability to 

distinguish between internal molecules of the host and foreign molecules (self - non self 

discrimination). The recognition of a pathogen by the immune system causes an effector 

response that aims to eliminate or neutralize the attacker. The first contact with pathogens 

elicits a memory response characterized by a faster and more exuberant immune response 

in subsequent contacts (Kindt et al., 2007; Parslow, Stites, Terr, & Imboden, 1997). 

The immune system contains a great number of components that can be divided into 

cellular and soluble elements. Cellular components are transported across the blood, lymph 

and lymphoid organs, and comprise all leukocytes (immune system main cells), which 

include neutrophils, eosinophils, basophils, mast cells, dendritic cells, monocytes, 

macrophages, and lymphocytes. Soluble components include acute phase-proteins, 

complement system, lysozymes, cytokines and immunoglobulins. All these components 

are associated to the Innate or to the Acquired immune responses, which work together 

synergistically, and the adequate and controlled interaction between them dictate an 

effective immune response. The innate response is activated as a first line of defense, 

attacking indiscriminately pathogens, eliminating altered host cells, or restricting the entry 

of microorganisms into the body. It comprises surface barriers (skin, epithelial layers and 

mucosal secretions), soluble factors, phagocytes (neutrophils, eosinophils, monocytes, and 
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macrophages) and natural killer (NK) lymphocytes (Parslow et al., 1997). The acquired 

response often succeed the innate response and is generally based on the proliferation of 

specific lymphocytes that attack the invader directly or through the production of 

antibodies (immunoglobulins; Ig) that target specific antigens. These lymphocytes have an 

antigen-specific memory of such pathogens (Smith, 2004). A clinical infection occurs 

when the pathogen overlaps the innate mechanisms of the immune system. 

Lymphocytes are the only body cells with the capacity to specifically recognize and 

distinguish different antigenic determinants and thus are responsible for the two defining 

characteristics of the acquired immunity: specificity and memory, operating as mediators 

of humoral and cellular immunity (Kindt et al., 2007; Parslow et al., 1997). They constitute 

20 to 25% of the leukocytes and may be divided into three major populations, based on the 

function and components of the cell membrane: NK, B and T lymphocytes or cells, which 

are again subdivided into T helper (Th1 and Th2), T cytotoxic (Tc1 and Tc2), and T 

suppressor (Ts) lymphocytes (Gleeson, 2006; Kindt et al., 2007; Parslow et al., 1997). 

Morphological differences between the populations of granulocytes and between them and 

monocytes and lymphocytes allow for the identification and quantification of these cells. 

For differentiation and quantification of lymphocytes subsets, it is necessary to selectively 

detect membrane bound molecular markers specific to each group of cells.  The different 

membrane bound molecular markers are called clusters of differentiation or cluster 

designators (CD) and each has been given a number (e.g. CD3 – present on all T 

lymphocytes; CD4 – present on T helper (Th) lymphocytes; CD8 – present on T cytotoxic 

(Tc) and T suppressor (Ts) lymphocytes; CD19 – present on B lymphocytes; CD16 and 

CD56 – present on NK lymphocytes (NK cells are identified mainly by the presence of one 

or both markers simultaneously) (Lancaster, 2006; Shephard, 2010). Cell populations are 

usually defined using a “+” or a “-” symbol to indicate whether a certain cell fraction 

expresses or lacks a CD molecule. Thus, CD molecules are utilized in cell sorting using 

various methods including flow cytometry (Biosciences, 2000; Lancaster, 2006; Radbruch, 

2000). CD molecules can act in numerous ways, often as receptors or ligands (activate a 

receptor) usually initiating a signal cascade that alters the behaviour of the cell, or as 

intracellular cell adhesion molecules (ICAMs) (Dimitrov, Lange, & Born, 2010). 

Maturation of B cells (5 to 15% of total lymphocytes) occurs in the bone marrow. These 

cells subsequently develop in the lymphoid organs, and have immunoglobulins anchored 

on their membrane surface, which will function as receptors for antigens. B cells are 

activated when they encounter an antigen and then initiate the production of antibodies, 
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thereby functioning as a mediator of humoral immunity. The inactive/naïve B lymphocytes 

do not produce immunoglobulin, however when stimulated by cytokines they undergo 

clonal expansion, becoming active cell called plasmocyte (Parslow et al., 1997). 

T lymphocytes (60 to 75% of total lymphocytes), like B cells, originate in the bone marrow 

but mature in the thymus. Unlike B cells that recognize the isolated antigen, T cells only 

recognize antigens when connected to the Major Histocompatibility Complex (MHC) 

class II. When T cells recognize an antigen combined with a MHC molecule in an antigen 

presenting cell (APC), it proliferates and differentiates into memory and effector T cells (T 

helper and T cytotoxic) (Gleeson, 2006; Kindt et al., 2007).  Th lymphocytes (CD4+) are 

regulatory immune cells, because they send messages to all leukocytes in order to fight the 

“aggression”. These cells stimulate growth and proliferation of Tc and Ts, and 

B lymphocytes into plasmocytes, to produce antibodies against the antigens. They also 

regulate macrophages activation and lymphocytes self-stimulation. T cytotoxic 

lymphocytes (CD8+) receptors recognize the MHC-class I expressed by foreign cells 

attacking them directly, thereby lysing the cell. T suppressor cells are lymphocytes which 

have the function of modulating the immune response by inactivating T helper and 

T cytotoxic cells, limiting their action in the body during an immune reaction (Kindt et al., 

2007; Parslow et al., 1997). Th lymphocytes activate Ts and the latter will control the 

activity of the first, inhibiting their action in a negative feedback. The Ts cells are also 

involved in the immune tolerance mechanism by which the immune system prevents the 

leukocytes from attack the body's own cells. Th cells can be subdivided on the basis of 

their cytokine production profile in two types: type 1 (Th1) produces interferon-γ (IFNγ), 

interleukin-2 (IL-2), and tumor necrosis factor (TNF), and type 2 (Th2) secrete interleukins 

IL-4, IL-5 and IL-13. Type 1 lymphocytes stimulate the cellular defence against 

intracellular pathogens whereas type 2 lymphocytes stimulate the humoral and cellular 

defence against extracellular pathogens (Lancaster et al., 2004). NK cells (10-20% of total 

lymphocytes) comprise a small population of granular lymphocytes that do not express 

CD3 cell-surface marker. These cells exert a spontaneous cytolytic activity against a wide 

variety of tumor and other cells infected with viruses. This kind of response is called 

nonspecific immune response because their action is independent of the MHC.  Also, they 

are able to produce cytokines that activate other immune cells (Gleeson, 2006; Kindt et al., 

2007; Parslow et al., 1997). 

The development of an effective immune response involves both lymphocytes and 

granulocytes. The complex interactions between these cells are mediated by cytokines, a 
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group of small glycoproteins, which are secreted by various sources like immune cells and 

other tissues, including muscle, in response to various stimuli, such as infections, trauma, 

physical and chemical agents, tissue necrosis, and foreign bodies. Through autocrine, 

paracrine, and in some cases endocrine actions, cytokines either stimulate or inhibit 

proliferation, differentiation and maturation of leukocytes, and regulate the inflammatory 

process, the acute phase response, tissue regeneration and management of energy stores 

(Peake et al., 2015). Cytokines are produced in small quantities and the main producers are 

T helper cells, dendritic cells and macrophages, although B cells, endothelial cells, 

fibroblasts, and various stromal cells may also produce cytokines (Kindt et al., 2007). 

Cytokines can be divided into interleukins (IL), interferons (IFN), colony-stimulating 

factors (CSF), and tumour necrosis factors (TNF).  

The basic structure and main components of the immune system and immune response 

abovementioned are represented in Fig 2.1. 

 
Fig 2.1. The basic structure and main components of the immune system response (adapted 
from Hackney (2013) and Gleeson (2006)). 
 

 

Abbreviations: IgA=Immunoglobulin A; IgM=immunoglobulin M 
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2.3. Exercise and immune function 
 

Exercise Immunology research has been focused on the mechanisms related to exercise-

induced modulation of the immune system and prevention of diseases by exercise training 

(Harris, 2011).  

It is important to distinguish acute (e.g. one training session) from chronic effects (training 

processes) of exercise on the capability to modulate both the number of circulating 

immune cells and their activity. This distinction takes into account the length, volume, 

intensity and type of activity that characterizes the physical exercise session or workout. 

The acute effects of exercise on the immune system reflect changes that arise in immune 

parameters in response and as a result of that workout. Conversely, the chronic effects of 

physical exercise refer to the stress caused by exercise activities and/or training sessions 

imposed cyclically over long-term periods (Gleeson, 2006). 

The immune system reacts differently to the acute and chronic stresses of exercise and the 

alterations may be observed in the number and functions of circulating blood leukocytes, in 

the concentrations of blood Igs and cytokines, and also in the concentrations of salivary Igs 

(Gleeson, 2006). However, these changes do not reach all constituents with the same 

magnitude because they depend on the degree of susceptibility of each type of cell, on the 

intensity and duration of the physical exercise sessions and on the intervals between 

sessions. 

Many exercise immunology studies have focused on the influence of acute exercise on the 

immune response, mostly in the adult population. The literature refers a consistent increase 

in total leukocytes (Gabriel, Schwarz, Steffens, & Kindermann, 1992a; Kargotich, Keast, 

Goodman, Crawford, & Morton, 1997; McFarlin, Flynn, Stewart, & Timmerman, 2004; 

Starkie, Rolland, Angus, Anderson, & Febbraio, 2001), but also in its subpopulations, 

namely: neutrophils (Ibfelt, Petersen, Bruunsgaard, Sandmand, & Pedersen, 2002; Kakanis 

et al., 2010; Kargotich et al., 1997; Steensberg et al., 2001a), monocytes Gabriel et al. 

(1992a); (Kakanis et al., 2010; Kargotich et al., 1997), and lymphocytes (Gabriel et al., 

1992a; Kakanis et al., 2010; Kargotich et al., 1997; Steensberg et al., 2001a; Steensberg, 

Toft, Schjerling, Halkjaer-Kristensen, & Pedersen, 2001b), during and immediately after 

exercise and a transient imbalance that may occur throughout the first hours of recovery 

reflecting divergent changes of the immune cells. These post exercise changes are 

proportional to exercise intensity and duration and appear to have recovered to resting 
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values within 24 h (Gleeson, 2006; Walsh et al., 2011). Although some of the mechanisms 

underlying these changes have been identified, their true significance remains rather 

inconclusive, and so it is still not clear whether it means enhanced immune response, or 

increased risk of infection resulting from supressed immunity. 

As for the chronic response, regular moderate primarily aerobic exercise has been 

pinpointed as a potential enhancer of various immune parameters, strengthening the 

immune system and improving resistance to disease and infection (Gleeson, 2007; Kakanis 

et al., 2010; Nehlsen-Cannarella et al., 1991a; Nehlsen-Cannarella et al., 1991b). However, 

when considering regular and intense training processes, the controversial outcomes in the 

literature are based in studies that evaluated primarily adult sedentary populations or 

recreational physical activity subjects, involved in rigorous experimental controls. The 

characteristics of the above mentioned samples are different from the athletic population, 

which per si present also some diverse inter-subjects characteristics, and may misrepresent 

the sports training influence on the immune response. Also, instead of the beneficial effects 

associated with moderate exercise, it is generally acknowledged that high intensity 

exercise, or physical activities, when accompanied by environmental or competitive stress, 

may lead to an “open window” for infection throughout the time of the stimulus, probably 

representing the basis for the progressive reduction of immune system’s competence 

(Armstrong & VanHeest, 2002; Walsh et al., 2011). This immunodepression can be more 

evident during the intense training periods of the season, particularly when consecutive 

high intensity training sessions with little recovery in between are performed and an 

adequate lifestyle and care in the recovery processes are not respected (Aubry et al., 2014; 

Sargent et al., 2014). Despite this trend for lowered immunity, most athletes cannot be 

considered clinically immune deficient. It is possible that the combined effects of small 

changes in several immune parameters, either in response to prolonged intense acute 

exercise or to high intensity training periods, may compromise resistance to minor illnesses 

such as the Upper Respiratory Symptoms (URS) and Upper Respiratory Tract infections 

(URTI). Moreover, the concomitant occurrence of cell-mediated immunosuppression and 

higher URS-URTI risk converges with the Open Window and J-Curve Response concepts 

about exercise training and illness developmental state (Gleeson, 2006; Hackney, 2013; 

Mackinnon, 2000; Nieman, 2000b). 
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Fig 2.2. The Open Window concept associated with acute immune responses to exercise 
(adapted from Gleeson (2006), Hackney (2013), Mackinnon (2000), and Nieman (2000b)) 
 

 
 

The Open Window theory (Fig. 2.2.) highlights the increase in the susceptibility to 

illnesses, such as URTI, due to a post exercise decline in the host defence mechanisms, in 

the 3 h - 72 h period following intense exercise, during which viruses and pathogens may 

enter the host. There is the possibility of this “window” to be extended for a longer period 

if daily rest is insufficient throughout consecutive days of intensive training. 

The J-Curve Response model (Fig. 2.3.) suggests that sedentary persons are considered to 

be at normal risk of URTI, individuals who are engaged in a regular and moderate physical 

activity programs are associated with reduced risk of URTI (resulting in lower incidence 

and duration of symptoms), while high-intensity exercise is associated with an increased 

risk of infection.  

 
Fig 2.3. The J-Curve model about the relationship between exercise-dose and infection risk 
based on upper respiratory tract infections prevalence (adapted from Gleeson (2006), 
Hackney (2013), Mackinnon (2000), and Nieman (2000b)) 
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However, in most studies, a limited number of common symptoms and signs were reported 

and the information provided lacked confirmation by a physician and/or laboratory 

analyses for the detection of pathogens (Cox et al., 2008; Spence et al., 2007). 

Consequently, it is possible that the outcomes could have misled the conclusions, probably 

tending to overestimate the frequency of URTI in athletes (Gleeson, Pyne, & Callister, 

2004; Hellard, Avalos, Guimaraes, Toussaint, & Pyne, 2015). Hence, it appears difficult to 

assess the difference between inflammation and infection, even for medical personnel, 

once lab confirmation of the presence of a pathogen is required for accurate results (Cox et 

al., 2008; Spence et al., 2007). However, medical diagnosis and laboratory confirmation 

are not always possible and since the symptoms are often very similar in self reported 

upper airway infection or inflammation, lately the literature suggested the use of the term 

URS to classify signs and symptoms that affect the upper airways (Spence et al., 2007). 

 

 

2.3.1. Acute cellular immune response to exercise 
 

The number of leukocytes increases in the blood (leucocytosis) during and immediately 

after acute exercise (McCarthy et al., 1991; McCarthy et al., 1992; Natale et al., 2003; 

Yamada et al., 2000). This pattern of mobilization is usually observed for all leukocytes 

subsets after exercise, and has been reported in the literature: rises in the number of 

neutrophils (neutrophilia) (Ferrer, Tauler, Sureda, Tur, & Pons, 2009; Gabriel et al., 1992a; 

Kargotich et al., 1997; Yamada et al., 2000), monocytes (monocytosis) (Gabriel et al., 

1992a; Kargotich et al., 1997), and total lymphocytes (lymphocytosis) (Gabriel et al., 

1992a; Ibfelt et al., 2002; Kakanis et al., 2010; Starkie et al., 2001; Yamada et al., 2000) 

and lymphocytes subsets (Natale et al., 2003), whereas eosinophils remained unchanged 

(Kakanis et al., 2010). The magnitude of the increases depends on the intensity, duration 

and type of exercise (Blannin et al., 1998). Yet, although some authors have mentioned 

that the immune changes are more dependent on exercise intensity (Gabriel, Urhausen, & 

Kindermann, 1992b), others point out a more meaningful influence of the duration of 

exercise as indicated by a larger leucocytosis magnitude observed in prolonged exercises 

compared to short-term high intensity exercises (Nieman et al., 1998a; Robson, Blannin, 

Walsh, Castell, & Gleeson, 1999; Suzuki et al., 2003).  

During the recovery period following acute exercise, a delayed leucocytosis and 

neutrophilia has been reported at 1h (Gabriel et al., 1992a; Green, Rowbottom, & 
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Mackinnon, 2003) and at 2 h after accomplishing the exercise (Gabriel et al., 1992a; 

Yamada et al., 2000), also observed 3 h into recovery after different types of cycling tasks 

(McCarthy et al., 1991; McCarthy et al., 1992; Natale et al., 2003) and after a resistance 

exercise circuit (Natale et al., 2003). No alterations in monocytes (Kakanis et al., 2010; 

Kargotich et al., 1997) and eosinophils (Kakanis et al., 2010) have been reported in this 

early recovery of exercise. 

However, Gabriel et al. (1992a) reported a fall in lymphocytes (lymphocytopenia), 

reflecting essentially the decline in CD3+ lymphocytes below rest levels. Other studies also 

reported declines of CD4+ and CD8+ cells (Ibfelt et al., 2002; McFarlin et al., 2004) and of 

type 1 CD4+ and CD8+ cells (Steensberg et al., 2001a). As for other lymphocyte 

subpopulations, several investigations showed decreases of CD16+ (Gabriel et al., 1992a), 

CD56+ (McFarlin et al., 2004), and CD16+56+ NK cell counts (Gabriel et al., 1992b) and 

others increased values of CD19+ lymphocytes (Natale et al., 2003) during recovery. 

According to Natale et al. (2003) the levels of CD3+, CD4+ and CD8+ cells return to 

baseline by 3 h after exercise and in the same period CD19+ cells can remain elevated. 

McFarlin et al. (2004) added that the total numbers of CD4+ and CD8+, and CD56+ NK 

subsets were not different from pre-exercise levels at 4h following exercise. 

Investigations about the acute response of leukocytes and subpopulations (including 

lymphocytes subsets) to exercise throughout the post exercise 24 h recovery are scarce, and 

essentially reported the return to baseline levels of leukocytes (Gabriel et al., 1992a; Zhang 

et al., 2006), neutrophils (Kakanis et al., 2010), and monocytes (Gabriel et al., 1992a). As 

for lymphocytes, the recovery to pre-exercise values of lymphocytes total (Gabriel et al., 

1992a; Steensberg et al., 2001a) and subsets CD3+ (Gabriel et al., 1992a), CD4+ (Gabriel et 

al., 1992a; Steensberg et al., 2001a), and CD8+ (Gabriel et al., 1992a) has been observed, 

although the latter subset has also been reported to stay below baseline values (Steensberg 

et al., 2001a). 

 

 

2.3.1.1. Innate immunity cell functions response to exercise: chemotaxis, 

adherence, phagocytosis, degranulation, oxidative burst 

 

Neutrophils affinity to chemical receptors that allow chemotaxis (and consequent facilitate 

the movement of these granulocytes to the desired location) may be elevated (Giraldo, 

Garcia, Hinchado, & Ortega, 2009; Ortega, Collazos, Maynar, Barriga, & De la Fuente, 
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1993) after the completion of both moderate and intense exercise. Moreover, neutrophils 

adherence to the endothelium, which may facilitate diapedesis, has shown not to be 

affected by acute exercise (Lewicki, Tchorzewski, Denys, Kowalska, & Golinska, 1987). 

As for neutrophils phagocytosis activity, an elevation (Blannin, Chatwin, Cave, & Gleeson, 

1996) and unaltered responses to exercise (Lewicki et al., 1987) were observed. 

Phagocytosis efficiency depends on the number of neutrophils, on the percentage of active 

neutrophils (those that effectively promote phagocytosis, usually this percentage decreases 

after exercise), and on individual phagocytic ability of neutrophils (Blannin et al., 1996). 

The digestion of microorganisms by neutrophils during phagocytosis implicates the release 

of granular lytic enzymes (degranulation) and generation of reactive oxygen species 

(respiratory burst) and these combined effects generate an hostile environment for the 

destruction of pathogens (Kindt et al., 2007). Exercise has been indicated as inducer of 

degranulation (Suzuki et al., 2003), essentially through means of their increased number 

and not so through their ability to degranulate, which seems to be lowered facing 

stimulation (Robson et al., 1999). Neutrophils oxidative burst activity in response to acute 

exercise has shown to be dependent on exercise intensity. So, moderate exercise is 

associated to an enhanced oxidative burst and inversely high intensity exercise to a 

reduction in respiratory burst activity. The reduction of neutrophils functions is associated 

with recurrent infections (Parslow et al., 1997) and it has suggested that this condition 

could help to an augmented susceptibility to infection in athletes (Pyne, 1994). 

Regarding monocytes, their phagocytic function has shown to be increased after prolonged 

exercise while the oxidative burst activity appears to be unaltered (Nieman et al., 1998b). 

Also, macrophages functions such as adherence, chemotaxis, and phagocytosis seem to be 

positively affected by moderate exercise and remain unaltered facing intense exercise. 

Furthermore, monocytes act as APCs and the Toll Like Receptors (TLRs) enable the APCs 

recognition, phagocytosis, digestion, and presentation of pathogens, and also stimulate the 

acquired immune response, especially by activating naïve T cells (Kindt et al., 2007). With 

exercise an immediate reduction in the expression of TLRs on monocytes surface may 

occur (Simpson et al., 2009) and remain below baseline levels for 2 h (Lancaster et al., 

2005), thus suggesting a compromised recognition of the pathogens associated molecular 

patterns and the succeeding initiation of innate and acquired inflammatory responses. 

NK cells are important in both innate and acquired immune response, and its functions of 

proliferation, differentiation, cytotoxicity, and degranulation are regulated by a balance in 

the activation and inhibition of cytokines such as interleukins. Recently, researches about 
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exercise-induced phenotypic and functional changes in circulating lymphocytes have been 

based on the distinctive surface cell markers within each lymphocytes subset. Two NK cell 

subsets CD56dim and CD56bright have been distinguished, and their functionality appears to 

be different: whereas CD56bright NK cells produce cytokines such as IFN-γ and have lower 

cytotoxicity, CD56dim NK cells participate in natural and antibody-dependent cell-mediated 

cytotoxicity (Campbell et al., 2009; Millard et al., 2013). 

Investigations about NK cell function response to exercise have been controversial. High 

intensity exercise appears to induce an immediate post exercise elevation (Nieman et al., 

1993) followed by a diminution in the CD56+ NK cytotoxic activity (McFarlin et al., 

2004). However, Suzui et al. (2004) observed that intense training was related to a 

diminished CD56+ NK cytotoxicity per cell. Furthermore, higher increases of CD56dim 

comparing to CD56bright NK cells after exercise were also reported, suggesting that 

CD56dim NK cells are more responsive to exercise (Campbell et al., 2009; Millard et al., 

2013). The preferential mobilization of CD56dim NK cells, as well of specific CD8+ 

lymphocytes subsets, suggests that exercise induces a selective mobilization of cells that 

present certain functional and phenotypic characteristics, such as high cytotoxicity, low 

proliferative ability, and high tissue-migrating potential (Campbell et al., 2009; Millard et 

al., 2013).  

 

 

2.3.1.2. Acquired immunity cell functions response to exercise: activation, 

cytokine production, proliferation, and cytotoxicity 

 

T cell activation is indicated by the expression of protein markers of activation on the 

surface of the cell, such as CD69 (early activation), CD25 (IL-2 receptor), CD45RO 

(memory/effector) and the HLA-DR antigen (MHC class II determinant) (Kindt et al., 

2007). Investigations about the responsiveness of these markers of CD4+ and CD8+ cells to 

acute exercise have revealed inconsistent findings, although they seem to be, as with many 

other aspects of immune function, proportional to exercise intensity and duration. Still, 

increases in the T cell activation can indicate either a selective recruitment of subsets of 

active cells into circulation (Fry, Morton, & Keast, 1992b), or a state of activation due to 

hormonal influence (Gabriel et al., 1993), or even both concurrently (Gleeson, 2006).  

The production of cytokines by T cells is also affected by acute exercise, and the type of 

cytokines produced will dictate if the immune response is cell mediated (IL-2 and IFN-γ) 
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or humoral (IL-4, IL-5, IL-6, and IL-13). So far, investigations have reported mostly a 

decreased in the cytokine production after accomplishing high intensity workouts. 

Specifically, this reduction was observed for the production of Interleukin - 2 (IL-2) by Th 

type 1 cells (Steensberg et al., 2001a), and of IL-2 and IFN-γ by Th type 1 cells (Ibfelt et 

al., 2002) by CD4+ and CD8+ type 1 cells, and appears to be associated to the exercise 

induced rises in adrenaline (Steensberg et al., 2001a). As for cortisol no correlations with 

type 1 or type 2 cells were observed (Ibfelt et al., 2002; Steensberg et al., 2001a). 

Usually, the proliferation of CD3+ T cells declines during and after prolonged exercise 

(Fry, Morton, Crawford, & Keast, 1992a; Henson et al., 1999), appears to reflect decreases 

in the number of responsive cells, instead of a diminished responsiveness of each cell.  

The functional capacity of B cells has essentially been evaluated through the production of 

mucosal and serum antibodies in vitro and in vivo studies. The most common used 

immunoglobulins in exercise immunology research have been the IgM, IgG and IgA, 

which slightly increased (Nehlsen-Cannarella et al., 1991a) or maintained their blood 

concentrations in response to exercise (Gleeson, 2006). 

 

 

2.3.1.3. Immune mechanisms of the acute exercise response 

 

The alterations in the number of leukocytes counts and their populations in response to 

acute exercise may be explained by three different processes: cell traffic, cell proliferation 

or cell death (Kruger, Lechtermann, Fobker, Volker, & Mooren, 2008; Kruger & Mooren, 

2014). It is thought that these processes are concurrent and their relative magnitude 

probably depends on the mode of exercise (Kruger & Mooren, 2014). Cell traffic depends 

upon the adherence of cells to the endothelium and on their redistribution amongst organs 

or compartments, especially between the circulation and the lung, spleen and muscle 

(Adams et al., 2011). Leukocyte trafficking and function can be influenced, during exercise 

and immediately after its ending, by increases of cardiac output, shear stress, and blood 

flow to working muscle, and by changes in pH and temperature (Adams et al., 2011). This 

physiological response reflects an increase of sympathetic activity and an activation of the 

hypothalamic-pituitary axis inducing the secretion of circulating catecholamines (Ottaviani 

& Franceschi, 1996). Catecholamines also contribute, directly and indirectly, to the 

decrease of the adherence of leukocytes to the endothelium (demargination) and 

consequently increase the number of circulating leukocytes (Gabriel et al., 1992a). Directly 
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by reducing the number of cell adhesion molecules on the cells’ surface, and indirectly by 

accelerating heart rate, increasing blood flow and shear stress. Moreover, it is believed that 

catecholamines exert a direct action on lymphocytes, particularly increasing the density of 

β2 adrenergic receptors. In addition, exercise enhances the exposure of these receptors to 

catecholamines and their activation increases intracellular cyclic adenosine monophosphate 

(cAMP) concentration. This molecule will induce decreases in lymphocytes ICAM 

expression and/or affinity for the ligands expressed by the vascular endothelial cells, thus, 

resulting in mobilization of marginated lymphocytes (Shephard, 2003). The use of β-

blockers during exercise attenuates the elevation of lymphocytes, supporting the idea that 

these hormones constitute one of the possible mechanisms involved in the lymphocytosis 

during and immediately after exercise, before the lymphocytopenia (Nemet, Mills, & 

Cooper, 2004). The lymphocytosis observed immediately after exercise as shown to be 

different among subsets, with higher increases (listed in order of magnitude), in CD56+ NK 

cells followed by CD8+ and CD4+, possibly related to higher β2-adrenergic receptor density 

on the cell surface (Zhang et al., 2006). Furthermore, it has been suggested that to promote 

significant changes in the number of B cells, exercise until exhaustion, regardless of 

duration, must be performed (Fry et al., 1992a; Miles et al., 2003). 

According to McCarthy et al. (1991; 1992), and Mignini et al. (2008) catecholamines 

appear to be in the basis of the acute effects of exercise, particularly lymphocytosis, 

participating in the regulation of lymphocyte subset redistribution, and cortisol seems to 

contribute, during the recovery period, to generate and uphold both the lymphopenia and 

neutrophilia (the last may be produced by release of neutrophils from the bone marrow).  

The proliferation of T cells seems to decrease during and after exercise, and this function 

may be affected by the number of activated cells (Fry et al., 1992a; Henson et al., 1999). 

However, exercise has shown to induce a reduction of the expansion of cell populations by 

increasing the rate of apoptosis of both CD4+ and CD8+ T cells, rather than a decrease in 

the rate of proliferation (Rowbottom & Green, 2000). 

Cell death or apoptosis plays an important role in the maintenance of the balance between 

the generation of new cells and removal of damaged or aged cells.  Findings about 

apoptosis regulation of immune cells after exercise in athletes have essentially focused 

neutrophils and lymphocytes. It is commonly accepted that the transient lymphopenia after 

exercise occurs in part due to enhanced apoptosis (Mars, Govender, Weston, Naicker, & 

Chuturgoon, 1998; Mooren, Bloming, Lechtermann, Lerch, & Volker, 2002), although no 

influence was mentioned by others (Simpson et al., 2007), while for other cells, such as 
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neutrophils, the post-exercise apoptosis regulation remains controversial (Kruger & 

Mooren, 2014).  

Despite the contradictory results, these authors worked on the assumption that this 

mechanism would involve the lymphocyte recruitment from the marginated pool, 

therefore, bringing to circulation cells that eventually had different functional abilities to 

those already in the circulation thus enlarging the naïve T-cell repertoire (Kruger & 

Mooren, 2014). However, it also should be taken into account that most of lymphocytes 

are not on the blood stream, which lead us to argue whether the changes observed in these 

peripheral blood cells after acute exercise reflect changes in the reservoirs. 

Another mechanism that is not yet fully understood has to do with apoptosis and whether 

the deletion of autoreactive cells can be seen as beneficial due to the generation of "free 

space" for new lymphocytes, thus enlarging the naïve T-cell repertoire. Or instead, if it 

should be considered harmful, once a suppressed immune response occurs. 

Additionally strenuous exercise induces increased levels in a number of pro-and anti-

inflammatory cytokines, especially IL-6, which is predominantly produced within the 

contracting skeletal muscle. The net release from the muscle can account for the exercise-

induced increase in arterial concentration, which can reach up to 100 fold after a marathon 

race (Pedersen, Steensberg, & Schjerling, 2001). Suwa et al. (2000) suggested that IL-6 

causes a biphasic neutrophilia where the first peak (2 – 6 h) results from the mobilization 

of neutrophils into the circulating pool from the marginated pool and the second peak 

(12 – 24 h) results from an accelerated bone marrow release of polimorphonuclear cells. 

Epinephrine may only partly influence the plasma levels of IL-6 during exercise 

(Steensberg et al., 2001b). 

 

 

2.3.2. Chronic cellular immune response to exercise 
 

The literature about the effects of chronic exercise on immune cell system, is consensual 

regarding the moderate exercise beneficial effects on physical and mental health especially 

if performed regularly and with aerobic characteristics (Laires & Monteiro, 2008).  

Another commonly accepted notion is that during periods of heavy training, the 

stimulation of adaptive mechanisms related to metabolic, hormonal, circulatory and 

respiratory responses may compromise performance and negatively influence health status, 
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although this situation may be reversible by a tapering or recovering period (Gleeson & 

Bishop, 2005; Shephard & Shek, 1999; Suzui et al., 2004).  

Researches that have assessed the chronic response of leukocytes and subpopulations 

(including lymphocytes subsets) in athletes of different sports such as running (Denguezli 

et al., 2008), basketball (Brunelli et al., 2014), volleyball (Dias et al., 2011) and soccer 

(Bury, Marechal, Mahieu, & Pirnay, 1998; Del Giacco, Scorcu, Argiolas, Firinu, & Del 

Giacco, 2014; Rebelo et al., 1998; Suda et al., 2013) to long-term training periods or 

competitive training seasons showed controversial outcomes, somehow suggesting that, 

besides training load, particular characteristics of the sports and of the athletes may also 

affect the immune response.  

Neutropenia (decreased neutrophils) and monocytopenia (decreased monocytes) were 

observed along a 10-year retrospective study in elite athletes of 14 different sports, 

including athletics, swimming, cycling, triathlon, basketball, volleyball, rugby, soccer, 

among others (Horn, Pyne, Hopkins, & Barnes, 2010). Prolonged cycling training induced 

a reduction in neutrophils phagocytic ability at rest. The decrease in the phagocytic 

function at rest seems to occur in response to prolonged periods of intense training 

(Lewicki et al., 1987; Mackinnon, 2000), especially in endurance sports training (Gleeson, 

2006). Studies that followed up a 7-month swimming training season reported a reduction 

in neutrophils and monocytes resting values (Morgado et al., 2012) and decreased CD56+ 

NK cells (Gleeson et al., 1995; Rama et al., 2013). After a 3-month swimming training 

program CD56+ NK cells were also diminished (Gleeson et al., 2000). T and B 

lymphocytes functions have also shown to be sensitive to increases in the training load in 

well-trained athletes, with falls in circulating type 1 Th cells counts, decreased T cell 

proliferative responses and reductions in stimulated B cell Ig synthesis (Baj et al., 1994; 

Lancaster et al., 2004; Verde, Thomas, & Shephard, 1992). 

The long term negative changes in neutrophils counts and functions predispose athletes to 

bacterial infection. The exercise-induced neutrophil apoptosis and consequent lower 

neutrophil lifespan may be one of the mechanisms that contribute to these cells alterations 

(Kruger & Mooren, 2014). The declines in T, B and NK cells numbers, activity, and 

proliferation appear to compromise the humoral immune response, thus lowering the host 

protection level against intracellular pathogens such as viruses and “opening the window” 

for infections and illnesses. These lymphocytes subsets decreases may be caused by 

elevations of the circulating stress hormones, particularly cortisol, and anti-inflammatory 

cytokines, induced by consecutive bouts of exercise (e.g. IL-6, IL-10, IL-Ira) (Giraldo et 
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al., 2009; Gleeson, 2007; Suzuki et al., 2003). Over the course of a swimming training 

season, resting cortisol concentrations also increased (Morgado et al., 2012; Rama et al., 

2013), whereas monocytes, dendritic cells, and neutrophils capacity to produce 

inflammatory cytokines in response to an external stimulation was decreased (Morgado et 

al., 2012), especially during the observation periods with elevated training volumes. So, in 

response to excessive exercise, it seems that these anti-inflammatory factors (cortisol and 

cytokines) produced by the immune system, may persist for long periods and possibly 

cause immune suppression (Dinarello, 1997). 

 

 

2.4. Factors affecting immune function response to exercise 
 

It is acknowledged that genetic and environmental factors can interfere with the way the 

immune system works. Regarding exercise and sports training, the type of sport/activity, 

training load, subject fitness level, age, sex, and maturity have been pointed as potential 

influential factors of the immune response (Vleck, Millet, & Alves, 2014). Additionally, 

the divergent findings of the immune response to exercise have often been explained by a 

possible influence of these factors, along with the variety of exercise protocols, methods of 

data collection, and differences in the length and seasonality of observation periods. 

 

 

2.4.1. Subjects characteristics 
 

In general, at rest, athletes seem to have leukocyte and lymphocyte subsets counts and 

functions similar to those of non-athletes (Nieman, 2000a), and trained individuals seem to 

have lower neutrophils adherence to the endothelium than controls (Lewicki et al., 1987). 

When considering specific sports, runners have shown total leukocyte and lymphocyte 

subsets similar to controls (Nieman et al., 1995a; Nieman et al., 1995b), as well as cyclists 

(Baj et al., 1994). Tennis players’ number of leukocytes, total lymphocytes, CD3+ and 

CD19+ subsets, eosinophils, and basophils were not different, but neutrophils were lower 

and CD16+56+ NK cells were higher than in non-athletes controls (Nieman, Kernodle, 

Henson, Sonnenfeld, & Morton, 2000). Leukocytes and neutrophil counts were lower in 
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endurance sports athletes, namely cycling and triathlon compared with team or skill-based 

sports such as water polo, cricket and volleyball (Horn et al., 2010). 

As for swimmers, they have presented similar lymphocytes counts to controls but lower 

numbers of circulating total leukocytes (Gleeson et al., 1995). Moreover, no differences 

were observed between non-swimmers and swimmers in the response of total leukocytes, 

total lymphocytes, lymphocytes subsets CD8+, CD19+, CD16+56+ and monocytes to the 

Wingate anaerobic test, except for CD3+, immediately after exercise and for CD4+ at 1 h 

post-exercise (Boas et al., 1996). 

Evidences of maturity differential effects on the immune response to acute physical 

exercise between adolescents and adults have been highlighted by Timmons et al. (2004). 

Generally, chronological age may not reflect biological age, especially during puberty. 

This is a period where each individual presents different timings of growth and maturation, 

and where the growth patterns of lymphoid, neural, general and genital domains of the 

body’s are not similar. Consequently, it is commonly observed a diversity in 

anthropometric characteristics and body composition of subjects during this development 

phase (Boggin, 1999). When considering the normal development of the immune system, 

the typical curve of lymphoid development shows an increasing line until puberty which 

afterwards decreases, independently at what time puberty happens (Molinari & Gasser, 

2004). This variety stands out when contemplating also the sex-related differences in the 

physiological levels of some hormones (e.g. catecholamines, cortisol, estrogen, and 

testosterone) in association with a differential effect of these hormones and cytokines on 

lymphocyte subsets (Fragala et al., 2011). 

Regarding the effect of the menstrual cycle phases over the immune response in females, 

controversial data has been found. No differences were observed between luteal and 

follicular phases by Morgado et al. (2014), contrasting with the higher responsiveness 

during the luteal phase comparing to the follicular phase observed by Timmons et al. 

(2005). 

The few studies that have assessed the influence of sex on the immune response to exercise 

have revealed controversial results as well. No differences between the sexes were 

observed, at rest, in total blood leukocyte, neutrophil, monocyte and lymphocyte counts of 

endurance training athletes, however males had higher B and CD56+ NK cells than females 

(Gleeson, Bishop, Oliveira, McCauley, & Tauler, 2011). Contrarily, females have shown 

weaker immune responsiveness than males to a swimming test, represented by lower 

neutrophils (Ferrer et al., 2009; Tauler et al., 2008) and lymphocytes count and subsets 
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responses (Morgado et al., 2014). Nonetheless, the CD56+ NK cells counts elevation have 

shown to be higher in females than in males after running up and down 150 stair-steps for 

about 1 min (Millard et al., 2013), and higher in girls than in boys after 60 min of cycling 

at 70% of maximal oxygen uptake (Timmons, Tarnopolsky, & Bar-Or, 2006b). Likewise, 

Timmons et al. (2006c) observed that post exercise elevations in total lymphocytes and 

CD16+56+ NK cells were superior in older girls versus older boys, without any 

dissimilarity between young girls and young boys. Furthermore, the abovementioned 

authors described bigger rises in total leukocytes, lymphocytes, and subset CD16+56+ NK 

counts in girls than in boys of similar pubertal status (an indicator of maturity). 

Puberty effects on the immune response to exercise have also been noted.  Post pubertal 

boys have shown less acute changes in the immune parameters than the prepubertal and 

peripubertal boys in response to a Wingate anaerobic test (Boas et al., 1996). Leucocytosis 

and lymphocytosis, and elevation of CD3+, CD4+, and CD8+ lymphocytes was observed in 

prebubertal and peripubertal boys but not in postpubertal boys. Despite this, 1 h after 

exercise, this effect was not evident over total leukocytes, and, in the prepubertal group, 

nor over total lymphocytes, having all returned to baseline values (Boas et al., 1996). In the 

peripubertal group, lymphocytes total and subsets CD3+, CD4+, and CD8+, decreased 

below resting values. CD16+56+ NK cells and CD19+ cells responses were different within 

puberty groups. In postpubertal boys, CD16+56+ was the only parameter that changed 

immediately post-exercise.  

All these evidences pinpoint the need to take age, pubertal stage, and sex into account 

when interpreting the immune responses to exercise, as referred by Timmons et al. (2007). 

Furthermore, in the particular case of swimming, the competitive teams include males and 

females of different ages and maturational states, involving diversity in the characteristics 

of subjects. In order to deal with this diversity, swimmers are divided into sex and age 

groups that compete within each group. Therefore, seldom training programs are 

individualized; instead they are applied to each sex and age group according to a set of 

fundamental capacities that is expected to have been developed, and respect the biological 

maturation/growth expected for that age. So, it appears also pertinent to contemplate a 

possible differential immune response considering the different swimming age groups. 

Little is also known or assumed about the effects of ability level, and/or event distance 

specialization (distance specialty) on the immune response to training either in swimming 

or others sports. Actually, regarding endurance sports, since short- and long-distance 

specialists normally differ in the proportion of the time that is spent on training at higher 
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intensities, it would be interesting to know if the immune status would be affected 

differentially. 

 

 

2.4.2. Training load 
 

The influence of training load on sports performance is essential for training science and 

the practice of sport. The training load is characterized by two main factors that will 

determine the degree of adaptation to training: volume and intensity. The volume is 

directly related to the frequency (number of repetitions and the number of sets) and 

duration of the stimulus or stimuli, whereas the intensity refers to the effort level required 

by the stimulus (Costill et al., 1991). In order to assess the training loads impact and to 

perceive the load dynamic throughout the training processes it is necessary to quantify this 

variable. 

In competitive swimming, the immediate physiological demands of swimming events 

dictate the particular abilities (aerobic endurance, aerobic power, lactate tolerance, and 

sprint) that will need to be developed and trained under specific training regimens in order 

to maximize the performance in those competitive events. Each of these characteristics 

implies training sets that have different intensities, duration and rest intervals and that are 

frequently adopted in training methodologies, thus promoting the specific desired 

adaptions (Maglischo, 2003; Sweetenham & Atkinson, 2003). The adjustment of one or 

more of these parameters may effectively target one of the abovementioned training 

intensities. These evidences raise the question of the use of the total distance swam as not 

clearly reflecting the physiological stress produced at different levels of intensity of the 

various training sets (Sharp, 1993). In fact, coaches need to quantify the work 

accomplished in the various levels of intensity associated to each training set, to have an 

estimation of the physiological stress of training sets, and consequently of the training 

sessions, training mycrocycles, mesocycles and macrocycles and eventually of the whole 

training season. 

In order to estimate the values of intensity of training Mujika et al. (1995) proposed the 

quantification of the magnitude of the training load expressed by dimensionless units of 

load, named arbitrary units of load (AUL). AUL determination is based on a stress index 

scale and is a procedure that allows adjustment to the exponential function determined by 

the curve of lactate accumulation in relation to the intensity of effort determined by the 
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average swimming speed on each training zone. The description of the zones of intensity 

and correspondent swimming speeds percentage in relation to race time, theoretical blood 

lactate accumulation levels, and the associated stress index scale values, are represented in 

Table 2.1. The AUL can then be obtained from the ratio between the sum of the volumes 

swam in each zone of intensity multiplied by the respective index and the total volume 

effectively completed. 

 
Table 2.1. Characterization of the intensity levels of swimming training based on the average swimming speed 
on tasks, theoretical lactatemia, and stress index values (adapted from the works by Mujika et al. (1995), 
Maglischo (2003), and Sweetenham & Atkinson (2003)) 
 

Zones of Intensity 

(Intensity levels) 
Description 

(Training Purpose) 
Average swimming speed on tasks 

(relative to race time; %) 

Lactatemia 
(mmol.l-1) 

Stress 

Index 

I – WR Warm up and Recovery until 60% 0 - 2 1 

II – A1 Aerobic Threshold until 75% 2 - 3 2 

III – A2 Anaerobic Threshold  80% 3 - 4 3 

IV – VO2max VO2max  85% 6 - 9 4 

V – LT Lactate Tolerance  90% >8 6 

VI – LP Lactate Production  95% >8 8 

VII - Sprint Power Training (Alactic) maximal - 10 

 

The literature review revealed that several cross-sectional and longitudinal studies have 

investigated the systemic exercise induced changes of leukocytes and subpopulations 

(including lymphocytes subsets), however some limitations upsurge when discussing the 

emerged findings. Few cross-sectional studies included observations of these immune cell 

parameters and up to 24 h after acute exercise, and time-course response patterns are 

difficult to define until complete recovery. There seem to be convergent findings about the 

response of leukocytes, neutrophils, total lymphocytes, and monocytes to exercise. 

However, lymphocyte subsets behaviour has shown inconsistent results. Most of the cross 

sectional studies primarily evaluated male adults and majorly adopted an exercise stimulus 

based on cycle ergometer and treadmill protocols in laboratories, or competition events, 

and not representative training sessions (Gabriel et al., 1992a; Kakanis et al., 2010; 

Steensberg et al., 2001a). Longitudinal studies that evaluated these immune cells at rest 
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over the course of long-term training periods or competitive training seasons of different 

sports (Brunelli et al., 2014; Del Giacco et al., 2014; Denguezli et al., 2008; Dias et al., 

2011; Suda et al., 2013) presented dissimilarities in the length and seasonality of the 

observation periods that difficult the comparison of the outcomes. Additionally, to our best 

knowledge no longitudinal study was conducted with the intent of exploring a long-term 

training process influence on the immediate immune cell response to an acute exercise, or 

training session, and the subsequent recovery along the 24 h after. 

The somewhat divergent findings have often been explained by the diversity of exercise 

protocols, training loads, length and seasonality of the observational periods, methods of 

data collection, sample sizes and inter-subjects characteristics, such as subject fitness level, 

sex, maturity, ability level, and/or event distance specialization. Another factor associated 

to this heterogeneity may be the type of activities or sports and the specific periodization 

and training characteristics. This evidence seems to be more relevant when considering 

endurance sports, and, as above mentioned, competitive swimming. Although some 

researches have been conducted about this subject, in laboratory or in the field, we 

intended to apply the analysis of immune cell systemic basic parameters, namely, 

leukocytes and subpopulations (including lymphocytes subsets) directly in the field with 

the follow-up of real and representative competitive training situations, in a particular sport 

such as competitive swimming, where few investigations have been made.  

With this in mind, specific research on this subject appears to be pertinent to help 

understanding how to handle these apparently harmful effects of high intensity training 

sessions and long-term training on immune system and how to take advantage of the 

immune system participation on the adaptation to exercise, while minimizing the 

deleterious effect of intense exercise. 

In fact, we believe this comprehension and the control of the immune response may 

improve the strategies of monitoring and testing used in the preparation of the swimmers’ 

career, in preventing the increase of the susceptibility to potential infections and illnesses, 

impaired performances and most of all health, which may compromise attendance to 

training sessions, and in the worst case scenario, the onset of overtraining. Furthermore, 

knowing better the particular responses to exercise of the immune system according with 

the subject’s characteristics may be useful regarding the individualization of the training 

process. 
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2.5. Aim of the investigation 
 

The present dissertation includes three research studies conducted under the scope of the 

effects of training on swimmers immune system, considering the classic distinction of 

acute and chronic exercise effects: 

 

Study 1 (Chapter IV) aimed to evaluate the acute systemic immune cell response to a 

representative high intensity swimming training session integrated in a normal training 

process during a competitive swimming season, during a 24 h recovery period, in well 

trained swimmers, taking into account, sex, menstrual cycle phases, maturity and 

swimming age groups effects in the interpretation of these immune responses. 

 

Study 2 (Chapter VI) aimed to investigate the variation of resting systemic immune cell 

parameters over the course of a 7-month swimming training season, in a large cohort of 

well-trained swimmers involved in their regular training environment, taking into account 

sex, maturity, swimming age groups, performance improvements, and distance specialty 

effects in the interpretation of these immune variations. 

 

Study 3 (Chapter VII) intended to explore the influence of a 4-month training macrocycle 

of a swimming training season over the immune cell response to a standardized high 

intensity swimming training session integrated in the normal training process, during a 

24 h recovery period, whilst controlling systematically and simultaneously for the effects 

of sex, maturity, age group, performance improvements, and distance specialty.  
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Methodology 
 

A brief description of the sample will be provided in this chapter, followed by a description 

of the methods and inherent procedures used throughout the present investigation. 

 

 

3.1. Study design and sampling 
 

This project used an observational design with a follow-up over a swimming competitive 

training season lasting 30 weeks. The evaluation of the swimmers was made at four 

moments of evaluation, named M1 (at the beginning of the season; baseline evaluation), 

M2 (the week after the main competition of the 1st macrocycle; 13th week of training), M3 

(at the specific preparatory sub phase of the preparatory phase of the 2nd macrocycle; 23rd 

week of training) and M4 (the week after the main competition of the 2nd macrocycle; 30th 

week of training). At M2 and M4 a standardized real high intensity swimming training 

session was performed in order to understand the influence of training over the acute 

response of biochemical immune indices to exercise. 

According to this organization, each study was performed considering certain moments of 

evaluation. Study 1 was based on M2, Study 2 on M1, M2, M3 and M4, and Study 3 on M2 

and M4. In the latter, although analysing only two evaluation moments, which could be 

referred as moment 1 and moment 2, the designation M2 and M4 was preserved in order to 

respect the logical sequence of the study design and facilitate the integration of the results 

in the general discussion (Chapter VII). 

At each moment of evaluation data collected for all subjects included subjects’ physical 

characteristics and maturity, and biochemical immune indices.  

Throughout the follow up season the incidence of URS and the menstrual cycle phases for 

females were monitored weekly and training load and mean intensity of all scheduled 

swimming sessions were quantified. In general, the characteristics of the training regimens 

and competition schedules were not modified by the present study in anyway nor any 

swimmer suffered from major injury or sickness preventing them from training for more 

than one day. 
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3.1.1. Subjects 
 

The subjects of this study were members of four different Portuguese swimming teams 

belonging to the Lisbon Swimming Association.  

 

 

3.1.1.1. Swimming age groups 

 

Swimmers were classified according to the different age group they belonged to and thus 

had different background in competitive swimming amongst the age groups considered 

(average of 5.3 ± 1.9 yrs. and range ≃ 3 to 11 yrs. of practice). 

The classification of the swimming age groups according to the Portuguese Swimming 

Federation and the Ligue Européene de Natation (LEN) is described in Table 3.1.:  

Table 3.1. Swimming age groups description in both sexes according to the Portuguese Swimming 
Federation and the Ligue Européene de Natation (LEN) 

Swimming Age Groups  
Age range (years) 

Females Males  

Youth 13 - 14 14 – 16 
Junior 14 – 16 16 – 18 

Adult ≥ 17 ≥ 18 

 

 

3.1.1.2. Distance specialty 

 

Swimmers were also grouped regarding their swim specialty on a distance type basis: short 

or long-distance. This division was made according to the coaches’ classifications of their 

swimmers, and was primarily based on the swimmers’ main event distance: 50 m, 100 m 

and 200 m swimmers were classified as short distance and 400 m, 800 m and 1500 m 

swimmers as long distance swimmers. 

 

All participants and their parents or legal guardians were informed about the possible risks 

of the investigation before giving their written informed consent to participate (Appendix 

A). All procedures were approved by the Ethic Committee of the Faculty of Human 
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Kinetics, University of Lisbon and conducted in accordance to the declaration of Helsinki 

for human studies of the World Medical Association (World Medical Association, 2008). 

This study started with 103 participants at M1. Over the course of the training season not 

all subjects had a continuous participation in the study especially due to dropping out 

swimming competition training, or being ill or injured at the times of the evaluation 

moments. 

 

Table 3.2. presents the number of female and male swimmers, chronological age range and 

study design for the three studies included in this dissertation. Specific and individualized 

details of the sample and the methods will be provided in each study (Chapters IV to VI). 

 

Table 3.2. Number of female and male swimmers, chronological age range and study design of each 
study of the dissertation 

Study Females (N) Males (N) Chronological age 
range (yrs) Study design 

1 30 35 13 - 21 Cross-sectional (in season) 
2 25 29 13 - 21 Longitudinal (7-month winter training season) 
3 16 27 13 - 21 Longitudinal (4-month  training macrocycle; in season) 

 

 

3.1.2. Swimming training season 
 

The follow up training program started after detraining from the previous swimming year 

(transition phase) and lasted throughout a competitive season lasting 30 weeks (Fig. 3.1.). 

Swimmers followed the training program set by the coaches of each different team. 

The evaluation of the swimmers was made at four moments of evaluation (M) named M1 

(at the beginning of the season; baseline evaluation), M2 (the week after the main 

competition of the 1st macrocycle; 13th week of training), M3 (at the specific preparatory 

sub phase of the preparatory phase of the 2nd macrocycle; 23rd week of training) and M4 

(the week after the main competition of the 2nd macrocycle; 30th week of training). 

The study was divided into three main periods that represented distinctive training phases: 

M1 to M2 (three months) corresponded to the 1st macrocycle of the training season, which 

began with the general preparatory sub phase and lasted until the main competitive sub 

phase. This first macrocycle aimed to prepare the athletes to the National Youth Long-

distance Championship, to the winter National Championships and to the National 
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Interclubs Championship. This period was characterized by an aerobic training 

predominance and the progressive increase of training volumes and intensities in the first 

two months and for the maintenance of high intensities and progressive decrease of 

volumes in the last month. At the National Championships all swimmers have 

accomplished at least one personal best time in the races they were enrolled in. 

M2 to M3 (two months) coincided with the entire preparatory phase of the 2nd macrocycle 

of the season. This development period was characterized by a progressive increase in 

training volume; intensity and frequency that lasted until the end of the specific 

preparatory sub phase, where the higher peak of training load of the season was reached 

and the swimmers were evaluated (M3). In this period there was also a more frequent 

participation in competitions (including international meetings); 

M3 to M4 (one month) was a period of training that occurred during the competitive phase 

of the 2nd macrocycle of the season and included a specific preparatory period followed by 

a competitive period that lead to important competitions for which training load was 

progressively reduced: National Youth Championship and National Junior and Senior 

Championships. 
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Fig. 3.1. Periodization of the 7-month winter swimming training competitive season and schedule of the moments of evaluation: M1, M2, M3 and M4 
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3.1.3. Swimming training session 
 

At M2 and M4 a standardized high intensity swimming training session was performed in 

order to explore the acute response of biochemical immune indices to exercise. The pre-

selected swim training session started with a 1500 m standardized warm-up lasting 30 to 

35 min followed by a high intensity main task that lasted 50 min and a 500 m recovery task 

(8 min of duration). The main task was designed to induce maximal lactate accumulation 

and had a total distance of 1000 to 1200 m, depending on the age group considered. For the 

youth group the main task consisted of two sets of four repetitions of 75 m front crawl on a 

five min cycle, with 10 min of active recovery between sets (400 m freestyle). Each 

repetition had to be accomplished at 90 - 95% of 100 m Freestyle personal best race time. 

The task organization was identical for juniors and seniors but with repetitions of 100 m. 

Swimming times were registered in each repetition and the mean time was used to 

determine the mean effort intensity percentage (%), in relation to the personal best time at 

the 100 m freestyle race.  

 

The organization of the session tasks is described below: 

 

Warm up (1500 m, 30 – 35 min): 

500 m (200 m Freestyle/ 150 m Breaststroke / 100 m Backstroke/ 50 m Butterfly) 

8 x 75 m Medley 2x(Freestyle/ Breaststroke / Backstroke/ Butterfly) on 1:25 

12 x 25 m (Freestyle / 1≠Freestyle) on :30 

100 m Freestyle, catch-up, bilateral 

 

Main Set: Maximal Lactate Accumulation, 90 – 95% of 100 m Freestyle of personal best 

time (1000 – 1200 m Freestyle, 50 min): 

≥16 yrs: 2 x (4 x 100 m, on 5:00) with 10:00 active recovery (400 m)  

13-15 yrs: 2 x (4 x 75 m, on 5:00) with 10:00 active recovery (400 m) 

 

Recovery (500 m, 8m20s) 

10 x 50 m Freestyle on :50, bilateral 
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3.2. Methods 
 

3.2.1. Subjects characteristics 
 

Chronological age, anthropometric characteristics (stature, weight, body mass index, fat 

mass percentage, and free fat mass), and an indicator of biological maturation (pubertal 

Tanner stages) were used to characterize swimmers enrolled in this study. 

 

 

3.2.1.1. Chronological age 

 

Decimal chronological age was calculated as the difference between date of birth (in years, 

months, and days) and date on which the evaluations were made. 

 

 

3.2.2.2. Anthropometric characteristics 

 

Stature and body mass were measured following procedures of Martin & Saller (1957) 

always after wakening in the fasted state. Stature was measured to the nearest 0.1 cm with 

Siber-Hegner anthropometric kit (DKSH Ltd., Zurich, SW), as the distance from the 

standing surface (the anthropometer’s flat platform) to the top (vertex) of the head (the 

anthropometer’s head piece). The examiner assisted with positioning the anthropometer 

and correcting swimmers posture. Subjects were in standard erect posture with weight 

evenly distributed between both feet, heels together, arms hanging relaxed at the sides and 

the head in the Frankfurt horizontal plane. The head was in the Frankfurt plane when the 

horizontal line from the ear canal to the lower border of the orbit of the eye was parallel to 

the floor and perpendicular to the vertical line of the anthropometer.  The anthropometer 

headpiece was lowered so that it rested firmly on top of the participant’s head, with 

sufficient pressure to compress the hair. Subjects were instructed to stand as tall as 

possible, to take a deep breath, and hold this position. Intra-observer technical errors of 

measurement were 0.29 units. 

Participants were weighed to the nearest 0.1 kg wearing a bathing suit without shoes on an 

electronic scale (TANITA BC-601 body composition scale monitor). This electronic scale 
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also calculated swimmers Fat Mass percentage (%FM) using Bioelectrical Impedance 

Analysis (BIA) with a measuring current of 50 kHz, 100 μA. Body mass index (BMI) was 

calculated as body mass (BM, kg) divided by the square of the stature (m). Free fat mass 

(FFM) was calculated according to the formula: 

 

	ܯܨܨ  = –	ܯܤ	  (ܯܨ%	ݔ	ܯܤ)	
 
Where FFM is the Fat Free Mass expressed in kilograms, BM is the Body Mass expressed in kilograms, 
and %FM is the Fat Mass percentage expressed in percentage. 
 

 

3.2.2.3. Indicators of biological maturation 

 

In adolescence, chronological age is not a reliable parameter for biological characterization 

of individuals. During this period, individuals with the same age are frequently in different 

stages of puberty considering that its onset and progression are highly variable. So, in the 

present study a non-invasive method was utilized to assess biological maturity of 

participants: sexual maturation. 

Sexual maturation is a continuous process that extends from sexual differentiation in the 

period of the embryo through puberty to full sexual maturity and fertility (Malina, 

Bouchard, & Bar-Or, 2004). The assessment of sexual maturation allows for the evaluation 

of the adolescents pubertal developmental stage.  

Stages of puberty provide an indication of maturity status at the time of observation. 

Swimmer’s sexual maturity was assessed by questionnaire and classified according to the 

pubertal Tanner’s stages based on the secondary sex characteristics (1962). A self-

evaluation method, with figures, was used to identify the degree of development of pubic 

hair in each gender, breast development and age at menarche in girls and genital and voice 

changes development in boys. Breasts and genitals are examined according to size, shape, 

and characteristics and pubic hair according to quantity and distribution (Appendix B). 

Stage 1 (Tanner 1) corresponds to the pre-pubertal phase and stage 5 (Tanner 5) 

corresponds to late-pubertal (adult) phase. In this sense, stages 2, 3, and 4, or the mid-

pubertal stages, represent puberty. Stages 2 to 4 are conventionally called sexual 

maturation stages, or Tanner stages. 
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3.2.3. Quantification of the training load 
 

Training load was determined through the total amount of meters swam (volume) and also 

by the balance of the distance completed at each level of intensity based on the work of 

Mujika et al. (1996a; 1995). 

The use of a stress index scale of difficulty has been established in reference to the 

theoretical values of blood lactate accumulation usually associated with the different 

swimming training zones of intensity. In the present dissertation, the training zones 

adopted considered the works by Mujika et al. (1995), Maglischo (2003), and Sweetenham 

& Atkinson (2003) (described in Table 2.1.), and were: I - warm up and recovery, II - 

aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, VI - lactate production and 

VII - sprint. In order to evaluate the swimming sessions training load the volume 

accomplished in each zone of intensity was quantified (mI, mII, mIII, mIV, mV, mVI and 

mVII). The magnitude of the load was then expressed in dimensionless units of load, or 

arbitrary units of load (AUL), obtained from the ratio between the sum of the volumes 

swam in each zone of intensity multiplied by the respective index (1, 2, 3, 4, 6, 8, 10) and 

the total volume effectively completed, according to the formula: 

 

 

	ܮܷܣ =
1	mI	+ 	2	mII	 + 	3	mIII	 + 	4	mIV	+ 	6	mV	+ 	8	mVI	 + 	10	mVII	

swimming	training	session	volume	  

 
Where AUL is the arbitrary units of load expressed in dimensionless units of load, the numerator is the 
weighed volume expressed in meters, mI, mII, mIII, mIV, mV, mVI and mVII are the meters 
accomplished at the following swimming training zones of intensity: I- warm up and recovery, II - 
aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, VI - lactate production and VII – sprint, the 
numbers 1, 2, 3, 4, 6, 8, 10 are the indexes associated to each zone of intensity, the denominator is the 
swimming training session volume expressed in meters. 
 

 

This was performed for all season sessions considering each age group and within all 

swimming teams. 

The mycrocycle or weekly load was quantified by the volume (total of meters swam), by 

the weighed volume (sum of the multiplications of the volume accomplished in each zone 

of intensity by the respective stress index values) and by the intensity (determined through 

the sum of the resulting dimensionless unit of load of each session of training). 
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3.2.4. Performance improvements 
 

The effect of training on performance was evaluated by magnitude of the change of the 

race time at competitive events. It was expressed as a relative difference, which 

represented a percentage of change, comparing the race time accomplished at M4 with that 

at the end of the previous season for study 2, and with that at M2 for study 3. In this 

manner, two groups were created according to the level of improvement: the less efficient 

group, which presented under 2% changes in performance, and the efficient group, which 

presented changes of 2% and above (Table 3.1.). This 2% level of improvement was 

adopted based on the consistently mean improvements of around 3% mentioned in the 

literature (Mujika et al., 1996a). 

 

 

3.2.5. Upper Respiratory Symptoms 
 

Subjects were asked to answer to a weekly questionnaire that was sent every Monday to 

their email address. This questionnaire (Appendix C) consisted of a daily logbook in which 

they noted their symptoms associated with illnesses related to Upper Respiratory Symptoms 

(URS) such as: headache, fever, ear pain, chills, runny or blocked nose, 

pharyngitis/tonsillitis, bronquitis, asthma, phlegm, cough, conjunctivitis; itchy, watery 

eyes, nausea/vomiting, and diarrhoea. All swimmers were asked to indicate the medication 

they were on and female subjects to point out the days of menstruation. If subjects had no 

symptoms they simply recorded that and reply to the email. 

If fever or at least two concomitant symptoms persisted for at least 48 hours, separated 

from previous symptoms by at least one week, they were considered an episode of URS 

(Bishop, 2006). Symptoms separated by less than one week were regarded as a recurrence 

or continuation of the initial episode and were regarded as part of the same episode. The 

counting of the URS episodes was expressed and displayed graphically as the weekly 

number of episodes of URS over the course of the training season. 
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3.2.6. Blood samples collection and analysis 
 

Peripheral venous blood was obtained early in the morning (resting samples; 

(6:00 – 6:30 a.m.), in the fasted state (after a period of 8 – 10 h without food ingestion) by 

standard procedures and collected into tubes containing EDTA for assessment of 

haemogram and leukogram and lymphocytes subpopulations. At M2 and M4 blood 

samples were also collected immediately after (Post), 2 h after (Post 2h) and 24 h after 

(Post 24h) the selected swimming session. Post, Post 2h and Post 24h exercise values were 

corrected for plasma volume variations with hemoglobin concentration and hematocrit 

values according to Dill & Costill (1974). 

Haemogram and leukogram was performed in an automated hematology analyzer Coulter 

LH 750 (Beckman Coulter) which produced the following parameters (abbreviation and SI 

units): hematocrit (HCT; % L.L-1), hemoglobin concentration (Hb; g.dL-1), red blood cell 

count, (RBC; *10^12.L-1), mean cell volume (MCV; fL), mean cell hemoglobin (MCH; 

pg), mean cell hemoglobin concentration (MCHC; g.dL-1), red cell distribution width 

(RDW; %), white blood cell count or leukocytes (WBC), neutrophils, monocytes, 

eosinophils, basophils, platelets (the leukocytes and subsets were expressed as *10^9.L-1) 

and also the percent (%) of neutrophils, lymphocytes, monocytes, eosinophils and 

basophils. 

Total lymphocytes and subsets were counted by flow cytometry, using the FACS Calibur 

Becton, Dickinson and Company cytometer equipped with two laser beams at 635 e 488 

nm. This cytometer was linked to a Macintosh computer that uses the software Multiset to 

analyse the cytometry results (Burtis & Ashwood, 1999; Goldsby, Kindt, Osborne, & 

Kuby, 2003; Radbruch, 2000; Rose, 2002). 

The lymphocytes subsets analysed were CD3+ (total T lymphocytes; T cells), CD4+ 

(T helper; Th), CD8+ (T cytotoxic; Tc), CD16+56+ (NK cells) and CD19+ (B cells) and 

results were expressed as cells.µL-1. 

Flow cytometry is a technology that concurrently measures and then analyses multiple 

physical characteristics of single particles, usually cells, as they flow, one by one, in a fluid 

stream through a beam of light. The properties measured involve a particle’s relative size, 

relative granularity or internal complexity, and relative fluorescence intensity. The 

determination of these characteristics is made by an optical-to-electronic coupling system 

that records how the cell or particle scatters incident laser light and emits fluorescence. 

Flow cytometry integrates the use of multiple fluorochromes, which cause the emission of 
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secondary light with a different wavelength; to identify and isolate subset populations from 

a single sample, thus used as cellular markers (Biosciences, 2000). 

 
 

3.2.7. Statistical analysis 
 

The statistical analyses were performed with the software IBM SPSS Statistics (SPSS Inc., 

an IBM Company, Chicago, Illinois, USA) version 21, and the R software (R Core Team, 

2012), version 2.15.1, and a significance level of 5% was considered. 

The statistical procedures common to all studies are presented in this section as follows: 

 Descriptive statistics, including means and standard deviation (mean ± SD) were 

performed for participants’ characteristics and training sessions intensity and training 

load quantification measurements and also for biochemical indices relative difference 

values in study 3.  

 Descriptive statistics, including means and standard error of the mean (mean ± SEM), 

were performed for biochemical indices in studies 1 and 2. 

 Normality of the outcome variables was analysed using the Shapiro-Wilk test. 

 One sample T-test (t) was used to compare group means with the reference range 

provided by the National Health Institute Doutor Ricardo Jorge (INSA) (Lewis, Bain, 

& Bates, 2006) and indicate if participants were within the “clinical normal” values 

associated with each variable. 

 The effects of menstrual cycle phases (follicular, luteal, and not menstruated), sex, 

Tanner’s stages (adolescent and adult), swimming age-groups (youth, juniors and 

seniors), distance specialty (short and long distance swimmers), performance (efficient 

and less efficient), and the interaction effect of each one of these factors with the 

moment of evaluation on the response of the variables of interest was analysed using 

nonparametric mixed-design ANOVAs. The within-subjects factor was the moment of 

evaluation (four levels: M1, M2, M3 and M4, or Pre, Post, Post2h and Post 24, and also 

two levels: M2 and M4), which is referred to as the effect of acute exercise or training, 

and the subjects’ factors were the aforementioned influential variables. The 

nonparametric mixed-design ANOVA has an ANOVA-type statistic (ATS) for each 

effect, and also a modified ANOVA-type statistic (MATS) for the between subjects 

factor. The option for the nonparametric approach was due to the violation of the 
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assumptions of parametric mixed ANOVA in some groups, namely the normality of 

the dependent variables in each factor’s level, the homogeneity of variances and the 

sphericity. This nonparametric analysis was performed with the nparLD package 

(Noguchi, Gel, Brunner, & Konietschke, 2012) from the R software. 

 If an interaction term between the factors mentioned and the variables of interest was 

non-significant, subsequent analysis of the effects of exercise and training were 

performed using the whole sample. Otherwise, exercise effects were analysed 

separately considering each group of effects that influenced the variables of interest. 

 When an effect of a factor with three levels occurred, Kruskal-Wallis test with the 

Dunn-Bonferroni post hoc tests were executed to assess between which levels the 

differences existed. If the interaction effect between each one of the factors 

aforementioned and the moment of evaluation on the variables of interest was non-

significant, subsequent analysis of the effects of exercise were performed not 

distinguishing participants by the levels of each between-subjects factor. Otherwise, 

exercise effects on the variables of interest were analyzed separately considering each 

between-subjects factor’s level. Repeated measures ANOVA was used for the 

assessment of training effects on immune parameters. Normality and sphericity 

assumptions were evaluated with the Shapiro-Wilk and Mauchly’s test, respectively. 

Post hoc tests with Bonferroni correction were performed to determine between which 

moments a significant difference was observed. If the repeated measures ANOVA 

assumptions were not met, the exercise effect was assessed by Friedman test. Post hoc 

analyses were performed using Dunn-Bonferroni test (Dunn, 1964) or, if necessary, 

due to the conservative characteristic of the Bonferroni procedure, according to 

Conover et al. (1999). 

 Wilcoxon signed ranks test was used for comparisons between the relative difference 

values of the acute response at M2 and M4. Statistical significance was set at p < .05 in 

all cases. 
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Study 1 – Acquired immunity impairment in 

response to a high intensity swimming session 
 

 

4.1. Abstract 
 

Exercise immunology studies have shown convergent findings about total leukocytes, 

neutrophils, total lymphocytes, and monocytes response to exercise but lymphocyte subsets 

behavior has shown inconsistent results. Also, seldom representative team training sessions 

have been studied. This study aimed to evaluate the acute systemic immune cell response 

to a real swimming session during a 24 h recovery period, taking into account, sex, 

menstrual cycle phases, maturity and swimming age groups. Competitive swimmers (30 

females; 15 ± 1.3 yrs., and 35 males; 16.5 ± 2.1 yrs.) performed a high intensity swimming 

training session (main set at 91.4 ± 4.7 % of personal best time) at the end of the first 

macrocycle of the season. Blood samples were collected before (Pre), immediately after 

(Post), 2 h after (Post 2h) and 24 h after (Post 24h) exercise, by standard procedures for 

assessment of leukogram by automated counting (Coulter LH 750, Beckman) and 

lymphocytes subsets by flow cytometry (FACS Calibur BD Biosciences). Subjects were 

grouped according to the Portuguese Swimming Federation age groups, and monitored for 

pubertal Tanner stage, and girls for menstrual cycle phases. Statistical significance was set 

at p < .05. 

At rest, immune system mean baseline values were within the reference interval. At Post, it 

was observed an increase in neutrophils in youth and junior swimmers, and a decrease in 

monocytes, eosinophils and lymphocytes counts, reflecting lymphocytes subsets CD3+, 

CD8+, CD19+, CD16+56+ in all subjects, and in juniors and seniors also CD4+. At Post 2h, 

leukocytes and neutrophils increased in all groups, with neutrophils increasing above the 

normal range, however eosinophils, and lymphocytes, except for CD4+ in female seniors 

and male juniors, and CD19+ in youth and seniors, persisted low, and monocytes recovered 

to pre exercise values. At Post 24h, the total lymphocytes and CD3+ subsets in the junior 

group remained below the pre-exercise levels, while all other cells counts returned to 
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baseline values. No effects of menstrual cycle phases or maturity were observed, 

throughout the 24 h period. A demanding real swimming training session, representative of 

the typical effort developed in any training process, induced a significant acute 

neutrophilia, lymphopenia and low eosinophils count lasting for at least two hours, 

independently of sex and maturity. Furthermore, when considering the junior swimming 

age group (15 – 17 yrs. of age), a 24 h period revealed to be insufficient to attain total 

recovery of the acquired immunity, i.e. total lymphocytes and total T lymphocytes (CD3+). 

This fact must be taking into account when planning consecutive training sessions. The 

observed lymphopenia suggests a lower immune surveillance at the end of the session that 

may increase the risk of infection or suppressed immunity of athletes in the period just 

after training, highlighting for the need of extra care when exposed to aggressive 

environmental agents, such as swimming pools. 

 

Keywords: Cellular Immunity, Swimmers, Training Session. 

 

 

4.2. Introduction 
 

In adults, considerable evidence suggests that immunocompetence is compromised after 

intensive exercise, especially when the latter is accompanied by environmental or 

competitive stress (Walsh et al., 2011), particularly in highly trained athletes (Lopes, 

Osiecki, & Rama, 2011; Pyne & Gleeson, 1998). 

Competitive swimmers are usually under high-intensity training processes that frequently 

include highly demanding training sessions with little recovery time in between (Sargent et 

al., 2014). Additionally, they are repeatedly exposed to warm humid environment and 

chlorine-rich atmosphere (Sa, Boaventura, & Pereira, 2011). These training conditions may 

contribute to compromise immunocompetence of the swimmers and support the need for 

specific research on this sport. 

The understanding of the impact of the training sessions on the immune system, especially 

during heavy training periods, is crucial for the adequate periodization of training, in order 

to prevent the negative influence on health and performance status of the athlete. In fact, if 

the organization of consecutive acute bouts of intensive exercise is not well managed 

throughout high-load training periods, a “prolonged maladaptation” of the athlete and of 
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several biochemical, neurochemical, and hormonal regulation mechanisms may occur and 

lead to the settling of overtraining syndrome (Meeusen et al., 2013). 

Moreover, traditionally, swimming teams include males and females and athletes of 

different ages and maturational states, implicating diversity in the characteristics of 

subjects. This diversity is somewhat associated to the different timings of growth and 

maturation of each individual, involving different types of growth (lymphoid, neural, 

general and genital) (Boggin, 1999). Thus, chronological age may not reflect biological 

age, especially during puberty. Considering a normal development of the immune system, 

the typical curve of lymphoid development shows an increasing line until puberty which 

afterwards decreases, independently at what time puberty happens (Molinari & Gasser, 

2004). This variety stands out when contemplating also the sex-related differences in the 

physiological levels of some hormones (e.g. catecholamines, cortisol, estrogen, and 

testosterone) in association with a differential effect of these hormones and cytokines on 

lymphocyte subsets (Fragala et al., 2011). 

In order to deal with this diversity, in sports, athletes are divided into sex and age groups 

that compete within each group. Therefore, seldom training programs are individualized; 

instead they are applied to each sex and age group according to a set of fundamental 

capacities that is expected to have been developed, and respect the biological 

maturation/growth expected for that age. 

So, when exploring the immune response to exercise, and taking into account that in the 

past years the studies about the acute immune response to exercise and sports activities 

have created a pool of data that has some heterogeneity, where the divergent findings have 

often been explained by the variety of exercise protocols, methods of data collection, and 

subjects’ different levels of conditioning, age, and sex, it appears pertinent to consider the 

particularities of the response of males versus females, pre-pubertal versus pubertal versus 

post-pubertal, and youth versus juniors versus seniors. 

Regarding previous studies of the acute immune cells response to exercise, several Authors 

have reported consistent patterns, namely a rise in the number of total leukocytes 

(leukocytosis) (McCarthy et al., 1991; McCarthy et al., 1992; Natale et al., 2003; Yamada 

et al., 2000), neutrophils (neutrophilia) (Ferrer et al., 2009; Gabriel et al., 1992a; Kargotich 

et al., 1997; Yamada et al., 2000), and total lymphocytes (lymphocytosis) (Gabriel et al., 

1992a; Ibfelt et al., 2002; Kakanis et al., 2010; Starkie et al., 2001; Yamada et al., 2000) 

just after high intensity exercise. Throughout the recovery period, leukocytosis and 

neutrophilia have been reported at 1h (Gabriel et al., 1992a; Green, Croaker, & 
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Rowbottom, 2003), 2 h (Gabriel et al., 1992a; Yamada et al., 2000), and 3 h (McCarthy et 

al., 1991; McCarthy et al., 1992; Natale et al., 2003) after accomplishing the exercise. 

However, 2 h after intense exercise a fall in total lymphocytes (lymphocytopenia) (Gabriel 

et al., 1992a; Kakanis et al., 2010; Steensberg et al., 2001a; Steensberg et al., 2001b) was 

observed, reflecting essentially the decline in CD3+ lymphocytes below rest levels (Gabriel 

et al., 1992a; McFarlin et al., 2004; Steensberg et al., 2001a) although decreases for CD16+ 

(Gabriel et al., 1992a), and CD56+ (McFarlin et al., 2004) NK cells and CD19+ (Gabriel et 

al., 1992a) were also observed. Twenty four hours after exercise, several studies reported 

the return to pre-exercise values (Kakanis et al., 2010; Nielsen, Secher, Christensen, & 

Pedersen, 1996; Nieman et al., 1989; Nieman et al., 1991; Zhang et al., 2006) while others 

reported still altered values which included increased total leukocytes and lymphocytes, 

and lymphocytes subsets CD3+, CD4+, CD8+ (Gabriel et al., 1992a) or decreased CD8+ 

subset (Steensberg et al., 2001a). 

When considering competitive swimmers, research about the acute immune response to 

swimming sessions or exercise protocols is scarce, specifically as regards changes in 

circulating leukocytes and subpopulations (Ferrer et al., 2009; Kargotich et al., 1997; 

Morgado et al., 2014; Tauler et al., 2008). These studies referred the immediate post-

exercise leukocytosis, lymphocytosis, reflecting the increase of all subsets, and a 

CD4+/CD8+ ratio decline after high intensity swimming (Kargotich et al., 1997; Morgado 

et al., 2014). Moreover, throughout the recovery period subsequent to high intensity 

swimming exercises, leucocytosis was observed at 2 h and 2.5 h post exercise (Kargotich 

et al., 1997) and neutrophilia at 1 h (Tauler et al., 2008), 2 h (Ferrer et al., 2009; Kargotich 

et al., 1997) and 2.5 h post exercise (Kargotich et al., 1997). As for lymphocytes subsets, a 

fall in lymphocytes total and subsets CD4+, CD8+ and CD19+ at 1 h post swimming was 

reported, which maintained below pre-exercise levels at 2 h and 2.5 h post swimming; 

CD16+ NK cells fully recovered at 1 h post and CD4+/CD8+ ratio increased 1 h post and 

recovered at 2 h post (Kargotich et al., 1997).  On the contrary, no changes occurred in the 

number of lymphocytes at 2 h post swimming in the study of Ferrer et al. (2009).  

When considering sex, maturity or age differences in the immune response to acute 

exercise the number of studies designed to monitor these characteristics is scarce and the 

results are not consistent. When studying sex-based differences, the effect of menstrual 

cycle phase must be considered. Previous studies have reported either no differences 

between phases (Morgado et al., 2014), or a higher responsiveness during the luteal 

comparing to the follicular phase (Timmons et al., 2005). In general, females have shown 



Study 1 – Acquired immunity impairment in response to a high intensity swimming session 

 57

either weaker immune responsiveness than males to a swimming test, represented by lower 

neutrophils (Ferrer et al., 2009; Tauler et al., 2008) and lymphocytes count responses 

(Morgado et al., 2014), or higher increases of CD56+ NK cells counts after 60 min of 

cycling at 70% of maximal oxygen uptake (Timmons et al., 2006b). Regarding maturity 

postpubertal boys had less responsiveness than prepubertal and peripubertal boys in 

response to the Wingate anaerobic test (Boas et al., 1996). These facts emphasizes the need 

to take sex, pubertal stage, and age into account when interpreting the immunological 

responses to exercise, as referred by Timmons et al. (2006c). 

In most of exercise immunology investigations, the immune response was studied using 

exercise protocols or competition events and not real training sessions. To our knowledge, 

this is the first study addressing the immune cell response to a representative training 

session whilst systematically and simultaneously examining the influence of sex, menstrual 

cycle phase, maturity, and swimming age groups throughout the recovery period. 

Considering all the above evidences it is pertinent to ask if a usual high intensity and 

prolonged swimming training session is too demanding in ways that athletes become at 

risk of infection, if recovery is complete until the next training session, or if the risk for 

infection or for recovery capacity differs between athletes of different sexes, maturity 

states or swimming age groups.  

This study aimed to evaluate the acute systemic immune cell response to a representative 

high intensity swimming training session integrated in a normal training process during a 

competitive swimming season, during a 24 h recovery period, in well trained swimmers, 

taking into account, sex, menstrual cycle phase, maturity and swimming age groups effects 

in the interpretation of these immunological responses. 

 

 

4.3. Methods 
 

4.3.1. Participants 
 

Sixty-five swimmers (30 females, 35 males) members of four different Portuguese 

swimming teams, undertaking 13 - 15 h of pool training and 4 h of dry-land training per 

week, were evaluated in this study.  
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The swimmers were included into different swimming age groups according to the 

regulation of Portuguese Swimming Federation and the Ligue Européene de Natation 

(LEN) (described in Table 4.1.) and had different competitive swimming backgrounds 

(5.3 ± 1.9 yrs. ranging from ≃ 3 to 11 yrs. of practice). 

Six girls had not reached menarche at the time of the evaluations and the other female 

participants reported regular menstrual cycles for at least the 4 months prior to 

participation in this study. No one was undergoing oral contraceptive therapy. The testing 

coincided with the beginning of the follicular phase of the menstrual cycle in 14 girls and 

with the luteal phase in nine girls.  

After receiving detailed information about the aim of the study and the possible risks of the 

investigation, either the subjects or their parents, as appropriate, provided their written 

informed consent to participate. All procedures were approved by the Ethics Committee of 

the Faculty of Human Kinetics of the University of Lisbon and were conducted in 

accordance with the Declaration of Helsinki for human studies (World Medical 

Association, 2008).  

 

 

4.3.2. Study design 
 

Swimmers performed a representative high intensity swimming training session designed 

by experienced coaches. Data collected included subjects’ chronological age and body 

composition measurements, menstrual cycle phases for girls and an indicator of biological 

maturity (pubertal Tanner stages). Biochemical immune indices were evaluated before 

(Pre), immediately after (Post), 2 h after (Post 2h) and 24 h after (Post 24h) in order to 

examine the acute immune response to exercise. Athletes were instructed not to consume 

anything but water after 10:00 p.m. of the preceding day and to have a minimum of 8 h rest 

before testing. To standardize pre-exercise food intake and to avoid extending the duration 

of their fasted state, participants consumed a sandwich with butter and a juice after the 

body composition measurements and the resting blood sample collection. The 

experimental session took place between 6:30 and 10:00 a.m.. All swimmers performed the 

evaluation at the same period of the season. The evaluation took place immediately after 

the correspondent main competition of the first macrocycle of the season (short course). 

The month prior to the competition was characterized by the maintenance of high 

intensities and progressive decrease of training volumes. 
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4.3.3. Body composition measurements 
 

Stature and body mass were measured always after wakening in the fasted state. Stature 

was measured to the nearest 0.1 cm with Siber-Hegner anthropometric kit (DKSH Ltd., 

Zurich, SW). Participants were weighed to the nearest 0.1 kg wearing a bathing suit 

without shoes on an electronic scale (TANITA BC-601 body composition scale monitor). 

This electronic scale was also used to calculate swimmers Fat Mass percentage (%FM) 

using Bioelectrical Impedance Analysis with a measuring current of 50 kHz, 100 μA. Body 

Mass Index (BMI) was calculated as body mass (BM; kg) divided by the square of the 

stature (m). Free Fat Mass (FFM) was calculated according to the formula:  
 

	ܯܨܨ  = –	ܯܤ	  (ܯܨ%	ݔ	ܯܤ)	
 

Where FFM is the Fat Free Mass expressed in kilograms, BM is the Body Mass expressed in kilograms, 
and %FM is the Fat Mass percentage expressed in percentage. 
 
 

4.3.4. Maturity - Tanner stages  
 

After receiving detailed instructions, the participants self-assessed their degree of genital 

organ, breast, and pubic hair development using a questionnaire (Tanner, 1962) 

accompanied by figures and were then grouped according to pubertal stage. 

 

 

4.3.5. Swimming training session 
 

The swimming session started with a 1500 m standardized warm-up lasting 30 to 35 min 

followed by a high intensity main task that lasted 50 min and a 500 m recovery task (8 min 

of duration). The main task was designed to induce maximal lactate accumulation and had 

a total distance of 1000 to 1200 m, depending on the age group considered. For the youth 

group the main task consisted of two sets of four repetitions of 75 m front crawl on a five 

min cycle, with 10 min of active recovery between sets (400 m freestyle). Each repetition 

had to be accomplished at 90 - 95% of 100 m Freestyle personal best race time. The task 

organization was identical for juniors and seniors but with repetitions of 100 m. Swimming 

times were registered in each repetition and the mean time was used to determine the mean 

effort intensity percentage (%), in relation to the personal best time at the 100 m freestyle 

race.  
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4.3.6. Immune system parameters 
 

Peripheral venous blood samples were collected via standard procedures before (Pre, 

between 6:00 – 6:30 a.m. in the fasted state), immediately after (Post), 2 h after (Post 2h) 

and 24 h after (Post 24h) the swimming training session. Venous blood was collected into 

tubes containing EDTA for assessment of hemogram and leukogram and for counting of 

total and subpopulations of lymphocytes. Hemogram and leukogram was performed in an 

automated hematology analyzer (Coulter LH 750, Beckman) which produced information 

about the following parameters: hemoglobin concentration (g.dL-1), hematocrit (%) and 

counts of white blood cells namely: leukocytes, neutrophils, monocytes, and eosinophils. 

Total and subpopulations of lymphocytes were counted by flow cytometry (FACS Calibur, 

BD Biosciences). The lymphocytes subpopulations analyzed were CD3+ (total T 

lymphocytes; T cells), CD4+ (T helper; Th cells), CD8+ (T cytotoxic; Tc cells), CD16+56+ 

(NK cells) and CD19+ (B cells). Results were expressed as number of cells.109.L-1 for 

leukogram parameters and as number of cells.µL-1 for total and subpopulations of 

lymphocytes counts. Post, Post 2h and Post 24h exercise values were corrected for plasma 

volume variation (Dill & Costill, 1974). 

 

 

4.3.7. Statistical analysis 
 

The statistical analyses were performed with the software IBM SPSS Statistics, version 21, 

and the R software (R Core Team, 2012), version 2.15.1, and a significance level of 5% 

was considered. 

Descriptive statistics, including means and standard deviation (mean ± SD) were 

performed for participant’s characteristics measurements and training sessions intensity, 

and including means and standard error of the mean (mean ± SEM) for biochemical 

indices. Normality of the outcome variables was analysed using the Shapiro-Wilk test. 

One sample t test was used to compare group means with the upper or lower limits of the 

reference interval provided by the National Health Institute Doutor Ricardo Jorge (INSA) 

to verify if participants were within the “clinically normal” values associated with each 

variable. 

The effects of the menstrual cycle phases (follicular, luteal, and not menstruated), sex, 

pubertal Tanner’s stages (1st and 2nd stages of adolescence, and adult stage), swimming 
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age-groups (youth, juniors and seniors), and the interaction effect of each one of these 

factors with the moment of evaluation on the response of the variables of interest was 

analysed using nonparametric mixed-design ANOVAs. The within-subjects factor was the 

moment of evaluation (four levels: Pre, Post, Post 2h and Post 24h), which is referred as 

the effect of exercise, and the subjects’ factors were the aforementioned influential 

variables. The nonparametric mixed-design ANOVA has an ANOVA-type statistic (ATS) 

for each effect, and also a modified ANOVA-type statistic (MATS) for the subject’s factor. 

The option for the nonparametric approach was due to the violation of the assumptions of 

parametric mixed ANOVA, namely the normality of the dependent variables in each 

factor’s level, the homogeneity of variances and the sphericity. This nonparametric 

analysis was performed with the nparLD package (Noguchi et al., 2012) from the R 

software. 

When an effect of a factor with three levels occurred, Kruskal-Wallis test with the Dunn-

Bonferroni post hoc tests were executed to assess between which levels the differences 

existed. If the effect of interaction between menstrual cycle phase and the moment of 

evaluation on the variables of interest was non-significant, subsequent analyses were 

performed not distinguishing girls by menstrual cycle phase. After that, if the interaction 

effect between each one of the other factors aforementioned and the moment of evaluation 

on the variables of interest was non-significant, subsequent analysis of the effects of 

exercise were performed not distinguishing participants by the levels of each between-

subjects factor. Otherwise, exercise effects on the variables of interest were analyzed 

separately considering each between-subjects factor’s level.  

Repeated measures ANOVA was used for the assessment of exercise effects on immune 

parameters. Normality and sphericity assumptions were evaluated with the Shapiro-Wilk 

and Mauchly’s test, respectively. Post hoc tests with Bonferroni correction were performed 

to determine between which moments a significant difference was observed. If the 

repeated measures ANOVA assumptions were not met, the exercise effect was assessed by 

Friedman test. Post hoc analyses were performed using Dunn-Bonferroni test (Dunn, 

1964) or, if necessary, due to the conservative characteristic of the Bonferroni procedure, 

according to Conover et al. (1999). 
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4.4. Results 
 

The participant’s characteristics, including body composition related variables, are 

presented in Table 4.1. 

 

Table 4.1. Mean and SD of the demographics and body composition of female (n=30) and male (n=35) 
swimmers and number of participants in each maturity group and swimming age group 

Swimmers characteristics Females Males 
Age (years) 15.0 ± 1.33 16.5 ± 2.07 
Stature (cm) 165 ± 7.03 174 ± 6.87 
Body Mass (kg) 56.0 ± 6.99 64.8 ± 8.35 
BMI (kg.m-2) 20.8 ± 1.72 21.3 ± 2.02 
FM (%) 24.7 ± 3.89 15.8 ± 3.09 
FFM (kg) 42.5 ± 4.71 54.5 ± 7.43 

Years of swimming practice 5.01 ± 1.33 6.47 ± 2.07 

Maturity 
(Tanner’s stages) 

1st state of adolescence n = 5 n = 2 
2nd state of adolescence n = 18 n = 19 
Adult n = 17 n = 14 

Swimming 
age group 

Youth 13 – 14 yrs; n = 9 14 – 16 yrs; n = 20 
Juniors 14 – 16 yrs; n = 16 16 – 18 yrs; n = 5 
Seniors ≥ 17 yrs; n = 5 ≥ 18 yrs; n = 10 

Abbreviations: BMI, body mass index; FM, fat mass percentage; FFM, fat free mass; Note: Tanner’s stages classification 
of the maturational state according to Tanner (1962); Swimming age groups classification in both sexes according to the 
regulation of the Portuguese Swimming Federation and Ligue Européene de Natation (LEN). 
 

Swimmers accomplished the main set at 91.4 ± 4.7 % of intensity in relation to their 

personal best time at the 100 m Freestyle race. 

Immune system mean baseline values indicated that the participants were within the 

reference interval associated with each variable (Lewis et al., 2006). At Post 2h, 

neutrophils were above the upper limit reference interval. During the 24 h recovery period 

the response of the immune parameters to the swimming session returned to the reference 

interval. 

 

 

4.4.1. Effects of sex, maturity and swimming age group on the 
immune response to the swimming training session 
 

Although no influence was observed for menstrual cycle phase or for maturity Tanner 

stages, sex influenced the response of CD4+ lymphocytes (F(2.454, ∞) = 3.285, p = .028); 

and swimming age group influenced the response of neutrophils (F(3.910, ∞) = 2.576, 
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p = .037), total lymphocytes (F(4.750, ∞) = 2.515, p = .030), and lymphocytes 

subpopulations CD3+ (F(4.851, ∞) = 2.801, p = 0.017), CD4+ (F(4.455, ∞) = 3.326, 

p = .008), and CD19+ (F(4.561, ∞) = 3.056, p = .012) to exercise. CD16+56+ mean values 

throughout the 24 h post exercise were higher in males than in females 

(F(1, 60.121 = 4.591, p = .036). 

The sex (F(1, 61.473) = 10.433, p = .002) and swimming age groups effects 

(F(1.843, 40.353) = 4.271, p = .023) over monocytes revealed higher values for males than 

for females at rest and in response to the swimming session and greater values for youth 

compared to juniors at Pre, Post 2h and Post 24h, and higher values for seniors compared 

to juniors at Pre, but lower values for juniors compared to seniors at Post 24h. 

The assessment of the effect of a high intensity swimming training session over leukocytes, 

monocytes, eosinophils, lymphocytes subpopulations CD8+, CD16+56+ and CD4+/CD8+ 

ratio was done not distinguishing participants by the levels of each between-subjects factor 

as the interactions were non-significant. 

 

 
4.4.2. Immune response to the swimming training session 
 

At Post, significantly lower values for monocytes, eosinophils, total lymphocytes, and 

subpopulations of lymphocytes CD3+, CD8+, CD19+ and CD16+56+ were observed, 

whereas the CD4+/CD8+ ratio was higher than baseline. Neutrophils for the youth and 

junior groups were also elevated and CD4+ lymphocytes for the male and female junior and 

senior groups decreased (Fig. 4.1.). 

At Post 2h, leukocytes increased; monocytes returned to baseline values; eosinophils, total 

lymphocytes and subpopulations of lymphocytes CD3+, CD8+, and CD16+56+ maintained 

lower values while CD4+/CD8+ ratio maintained higher values; CD19+ lymphocytes in the 

groups of youth and seniors returned to baseline whereas in the juniors group this 

parameter increased but without reaching baseline values.  

Neutrophils increased for the senior group and maintained higher values for the youth and 

junior groups. CD4+ lymphocytes returned to Pre values for the male junior group and the 

female senior group and remained lower for the male senior and female junior groups 

(Fig. 4.1.). 

At Post 24h, leukocytes, neutrophils, eosinophils, subpopulations of lymphocytes CD8+ 

and CD16+56+, and CD4+/CD8+ ratio returned to Pre levels. As for total lymphocytes and 
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subpopulation CD3+ lymphocytes there was a recovery to baseline values in the youth and 

senior groups but for the junior group these variables stayed below Pre levels although they 

had augmented comparing to Post and Post 2h. CD19+ lymphocytes in the junior group and 

CD4+ lymphocytes in the female junior and male senior groups recovered to baseline 

levels which had already been observed at Post 2h for the youth and senior groups in 

CD19+ and female senior and male junior groups for CD4+. 

CD4+ lymphocytes for the youth group remained similar to baseline in response to the 

swimming session throughout the 24 h evaluation period. 
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Fig 4.1. Mean and SEM values of the acute response of leukocytes, neutrophils, eosinophils, total lymphocytes and subsets CD3+, CD4+, CD8+, 
CD16+56+, CD19+ counts and CD4+/CD8+ ratio to a representative high intensity swimming training session. Pre = before exercise, Post = immediately 
after exercise, Post 2h = two hours after exercise, and Post 24h = 24 hours after exercise.  
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4.5. Discussion 
 

Studies that have assessed the acute response of leukocytes and subpopulations (including 

lymphocytes subsets) to exercise immediately after the accomplishment of exercise, and 

2 h after, are scarce (Ibfelt et al., 2002; Kargotich et al., 1997; McFarlin et al., 2004; 

Starkie et al., 2001; Steensberg et al., 2001b; Yamada et al., 2000), and if we consider 

adding the evaluation 24 h after, they are even more scarce (Gabriel et al., 1992a; Kakanis 

et al., 2010; Steensberg et al., 2001a). Furthermore, most of these studies were performed 

using cycle ergometers and treadmills at laboratories or in swimming pools using specific 

exercise protocol tests but not real training sessions and mainly evaluating adult male 

subjects. So, to date, research on the comprehensive analysis of exercise-induced immune 

cell counts changes in athletes respecting the effects of sex, menstrual cycle phase, 

maturity and sports age groups are clearly lacking. In this way, our study has a marked 

descriptive component given the great and varied amount of information collected. 

Regarding total leukocytes we did not observe any change immediately after the swimming 

session, despite a marked elevation trend has occurred. This finding is divergent from the 

ones that refer a stereotypical post-exercise leukocytosis either after swimming tests 

(Kargotich et al., 1997; Morgado et al., 2014), or after cycling continuously either for short 

or long period at several intensities  (e.g. approximately 90 min at 85% and 100% of 

individual anaerobic threshold (IAT) (Gabriel et al., 1992a); 20 min at 80% of VO2 max 

(Starkie et al., 2001); 60 min at 75 – 80% of VO2 max (McFarlin et al., 2004)), or even 

after treadmill running to exhaustion (Yamada et al., 2000). This may result from the 

balance between the rise of neutrophils that opposes the decrease of monocytes, 

eosinophils and lymphocytes. Nonetheless, leukocytosis happened at Post 2h, which is in 

accordance with some of the abovementioned studies (Gabriel et al., 1992a; Kargotich et 

al., 1997; McFarlin et al., 2004; Starkie et al., 2001) although it does not necessarily imply 

increased immune defences. As described before (Gabriel et al., 1992a; Zhang et al., 

2006), at 24 h leukocytes had return to baseline values. 

When analysing leukocyte subsets, in particular the innate immune cells studied, the 

neutrophilia, observed in this study, at Post, in youth and juniors groups, and at Post 2h, in 

all swimming age groups, is in accordance with other studies where it has been described 

in adults after intense prolonged exercise (Ibfelt et al., 2002; Kakanis et al., 2010; 

Kargotich et al., 1997; Steensberg et al., 2001a) lasting at least for 2 h and having returned 
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to pre-exercise values at 24 h (Kakanis et al., 2010). However, the decrease in monocytes 

and eosinophils observed at Post, and maintenance of eosinophils below pre-exercise 

values at Post 2h oppose the studies that reported post exercise monocyte rises (Gabriel et 

al., 1992a; Kargotich et al., 1997) or absence of eosinophils changes in response to 

exercise, either immediately or at Post 2h, although as in our study the authors observed 

the recovery of monocytes at Post 2h (Kakanis et al., 2010; Kargotich et al., 1997). 

Considering the cells of the adaptive immune response, the lymphopenia observed just 

after the swimming training session, and at Post 2h, appears to be due to a decrease of 

CD3+, CD4+, CD8+, CD16+56+ and CD19+ subsets below baseline values at Post, plus their 

maintenance below pre-exercise levels, with the exceptions of CD4+ in female seniors and 

male juniors, and of CD19+ in youth and senior groups that had returned to baseline values, 

at Post 2h. In the youth group, although CD4+ lymphocytes remained similar to baseline 

throughout the 24 h, there was a trend to decrease immediately after the swimming training 

session. These results contrast those of other investigations where a lymphocytosis 

reflecting an increase of lymphocytes subsets was observed just after swimming 

(Kargotich et al., 1997; Morgado et al., 2014), running (Ibfelt et al., 2002), and cycling 

(Gabriel et al., 1992a), or where no alterations in total lymphocytes (Steensberg et al., 

2001a; Steensberg et al., 2001b), and in CD4+ (Kakanis et al., 2010) and CD8+ subsets 

(Kakanis et al., 2010; Steensberg et al., 2001a) were observed. However, regarding the 

recovery period the results from previous studies are heterogeneous. Two hours after the 

exercise tasks declines in total lymphocytes (Gabriel et al., 1992a; Kakanis et al., 2010; 

Kargotich et al., 1997; Steensberg et al., 2001a; Steensberg et al., 2001b), CD3+ (Gabriel et 

al., 1992a; McFarlin et al., 2004), CD4+ (Gabriel et al., 1992a; Kargotich et al., 1997; 

McFarlin et al., 2004; Steensberg et al., 2001a), CD8+ (Gabriel et al., 1992a; Kargotich et 

al., 1997; Steensberg et al., 2001a), CD16+56+ (Ibfelt et al., 2002), and CD19+ subsets 

(Kargotich et al., 1997), or cell counts similar to pre-exercise values for total lymphocytes 

(Ferrer et al., 2009; Ibfelt et al., 2002), CD3+ (Ibfelt et al., 2002), CD4+, CD8+ (Ibfelt et al., 

2002; Kakanis et al., 2010), CD16+ (Gabriel et al., 1992a; Kargotich et al., 1997), and 

CD19+ (Gabriel et al., 1992a) have been observed. At Post 24h, the recovery to pre-

exercise values of lymphocytes total and subsets CD3+, CD4+, and CD8+ was observed by 

Gabriel et al. (1992a) after 90 min cycling at 85% of IAT, and Steensberg et al. (2001a) 

observed the recovery of lymphocytes total and CD4+ cells but not of CD8+ cells that, 

contrastingly, stayed below baseline values. 
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The increased CD4+/CD8+ ratio observed at Post and maintenance of higher levels at 

Post 2h diverges from the reduction observed post-swimming (Kargotich et al., 1997; 

Morgado et al., 2014) and cycling (Gabriel et al., 1992a) and from the absence of changes 

at Post 2h (Gabriel et al., 1992a; Kargotich et al., 1997) reported in the literature, 

suggesting a more accentuated reduction of CD8+ comparing to CD4+ in the present study. 

Regarding all the aforementioned discussed results, the authors suggest that the changes in 

the number of leukocytes and their populations in response to acute exercise may be 

explained by three different processes: cell traffic, cell proliferation or cell death (Kruger et 

al., 2008). It is thought that these processes occur concomitantly and their relative 

magnitude probably depends on the mode of exercise (Kruger & Mooren, 2014). Cell 

traffic depends upon the adherence of cells to the endothelium and on their redistribution 

amongst organs or compartments, especially between the circulation and the lung, spleen 

and muscle (Adams et al., 2011). Leukocyte trafficking and function can be influenced, 

during exercise and immediately after its ending, by increases of cardiac output, shear 

stress, and blood flow to working muscle, and by changes in pH and temperature (Adams 

et al., 2011). This physiological response reflects an increase of sympathetic activity and 

an activation of the hypothalamic-pituitary axis inducing the secretion of circulating 

catecholamines (Ottaviani & Franceschi, 1996). 

This well-known rising of catecholamines levels during exercise protocols and just after 

their ending (Gabriel et al., 1992a; Timmons & Bar-Or, 2007; Timmons et al., 2006b) and 

of cortisol concentrations immediately post-exercise (Gabriel et al., 1992a; Timmons, 

Hamadeh, & Tarnopolsky, 2006a; Timmons et al., 2006b) may influence the number and 

activity of leukocytes and its subpopulations. According to McCarthy et al. (1991; 1992), 

and Mignini et al. (2008) catecholamines appear to be in the basis of the acute effects of 

exercise, particularly lymphocytosis, participating in the regulation of lymphocyte subset 

redistribution, and cortisol seems to contribute, during the recovery period, to generate and 

uphold both the lymphopenia and neutrophilia (the last may be produced by release of 

neutrophils from the bone marrow). Catecholamines also contribute, directly and 

indirectly, to the decrease of the adherence of leukocytes to the endothelium 

(demargination) and consequently increase the number of circulating leukocytes (Gabriel 

et al., 1992a). Directly by reducing the number of cell adhesion molecules on the cells’ 

surface, and indirectly by accelerating heart rate, increasing blood flow and shear stress. 

Cell death or apoptosis plays an important role in the maintenance of the balance between 

the generation of new cells and removal of damaged or aged cells.  It is commonly 



Study 1 – Acquired immunity impairment in response to a high intensity swimming session 

 69

accepted that the transient lymphopenia after exercise occurs in part due to enhanced 

apoptosis, while for other cells, such as neutrophils, the post-exercise apoptosis regulation 

remains controversial (Kruger & Mooren, 2014). Moreover, these authors referred that 

exercise-induced lymphocyte apoptosis may generate "free space" for new lymphocytes 

thus enlarging the naïve T cell repertoire. 

The long duration and high intensity of the swimming training session, may explain the 

declines of monocytes, eosinophils and lymphocytes total and subsets observed in this 

study immediately after the swimming training session, that oppose the rising of these cells 

counts mentioned in the literature (Gabriel et al., 1992a; Ibfelt et al., 2002; Kakanis et al., 

2010; Kargotich et al., 1997). These results may reflect a negative balance generated by 

proliferation, demargination, and mobilization of cells from reservoirs, and by entry of 

cells into tissues along with apoptosis. 

Additionally, strenuous exercise induces increased levels in a number of pro-and anti-

inflammatory cytokines, especially IL-6, which is predominantly produced within the 

contracting skeletal muscle. The net release from the muscle can account for the exercise-

induced increase in arterial concentration (Pedersen et al., 2001). Suwa et al. (2000) 

suggested that IL-6 causes a biphasic neutrophilia where the first peak (2 – 6 h) results 

from the mobilization of cells into the circulating pool from the marginated pool and the 

second peak (12 – 24 h) results from an accelerated bone marrow release. Epinephrine may 

only partly influence the plasma levels of IL-6 during exercise (Steensberg et al., 2001b). 

The similarity in the immune response to the swimming session regardless of menstrual 

cycle phase is in accordance with the immediate post-exercise results obtained by Morgado 

et al. (2014) for a 7 x 200 m swimming maximal test, but contrasts with those obtained by 

Timmons et al. (2005) for 90 min cycling at 65% maximal oxygen uptake which reported a 

lower lymphocyte response to exercise during the follicular phase than during the luteal 

phase. 

When considering sex-based differences, monocytes and CD16+56+ values were higher for 

males than for females at rest and throughout the recovery period. Nonetheless, the 

immune response to the swimming training session was similar for these two variables 

regardless of sex. Regarding monocytes, our results are in accordance with Timmons et al. 

(Timmons et al., 2005; 2006c) who observed no differences between sexes in response to 

exercise. The results obtained for the CD16+56+ response to exercise diverge from the 

conflicting few results mentioned in the literature e.g. higher responsiveness in males than 

in females just after a swimming test (Morgado et al., 2014) and a more elevated 
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CD16+56+ counts in girls than in boys after cycling (Timmons et al., 2006c). For the other 

studied variables the mean values were not different between sexes along this investigation 

and the response to exercise was similar regardless of sex with the exception of CD4+, 

where females at Post tended to decrease more and at Post 24h recovered more efficiently 

than males. The absence of differences between sexes is in conformity with the findings 

for total lymphocytes of Ferrer et al. (2009), but do not comply with the sex differences 

reported by the same authors for neutrophils (Ferrer et al., 2009). The similar sex response 

immediately after exercise has been reported for leukocytes (Timmons et al., 2005), 

neutrophils, monocytes (Timmons et al., 2005; Timmons et al., 2006c), total lymphocytes 

(Timmons et al., 2005), CD3+, CD4+ and CD8+ (Timmons et al., 2005; Timmons et al., 

2006c), and for CD19+ lymphocytes (Morgado et al., 2014; Timmons et al., 2006c). 

However, in a previous study we observed that a swim set induced an increase in 

leukocytes, total lymphocytes, CD3+, CD4+, CD8+, and CD16+56+ counts in the male 

group while in the female group only leukocytosis, but of a lower magnitude, occurred 

(Morgado et al., 2014). Conversely, Timmons et al. (2006c) observed a strong response of 

leukocytes in females, and of CD56+ as referred before. To our knowledge few studies 

followed the recovery period. Timmons et al. (2006c) observed no sex differences for 

leukocytes and subsets, including lymphocytes subsets, except for CD3+ where young girls 

had higher values than young boys, 1 h after exercise. 

Regarding maturity, our findings showed similar responses of the immune cell counts to 

the swimming training session which is consistent with the similar post-exercise immediate 

leukocytosis and neutrophilia across pubertal stages in boys and girls (Timmons et al., 

2006c), but opposes the outcomes reported by Boas et al. (1996) in which postpubertal 

boys had less immune responsiveness to cycling than the prepubertal and peripubertal 

boys. 

As in real training sessions, the youth group swimmers performed a main set adapted to 

their competitive level in order to reach an effort percentage similar to that of juniors and 

seniors. However, the immune response observed for the youth group was consistent with 

a blunter immune reaction than that of the other groups. This might be the result of a 

reduced immune responsiveness of these younger swimmers. 

Conversely, the exercise effect over the immune response along the 24 h recovery period 

was more noticeable over the junior group for total lymphocytes and CD3+ subsets. This 

was a particular finding of the present study which was not observed elsewhere when 

considering a prolonged and intense exercise performed either by female athletes between 
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14 and 16 yrs. or by male athletes between 16 and 18 yrs.. Generally, if we consider all 

other immune parameters, their recovery at Post 24h has been mentioned in previous 

investigations that studied male adults (Gabriel et al., 1992a; Kakanis et al., 2010; 

Steensberg et al., 2001a; Zhang et al., 2006). 

The physiological response of sex hormones such as cortisol, oestrogen, and testosterone in 

association with a differential effect of these hormones and cytokines on leukocyte subsets 

(Fragala et al., 2011) may be implicated in the differential effects of sex and swimming age 

group we observed in the acute response and recovery of systemic cell immunity to the 

swimming training session. 

In general, just after the training session, the swimmers showed a decrease of the adaptive 

immune response, but also of some parameters of the innate immune response as NK cells, 

monocytes and eosinophils also decreased. This was only counteracted by the increase of 

neutrophils. As we did not assess the cells functions we could not evaluate whether their 

reduction in number was compensated by their activation. However, previous studies 

suggested a diminished activity of some leukocytes subsets, namely neutrophils (Robson et 

al., 1999), monocytes (Nieman et al., 1998b; Simpson et al., 2010) and CD56+ NK 

lymphocytes (Suzui et al., 2004). So we can argue that at least in the first 2 h after intense 

training sessions such as the one performed by our swimmers, immune defenses of athletes 

may be compromised. 

 

 

4.6. Conclusions 
 

The swimming training session performed in this study represents the real and typical 

effort developed in training sessions involved in any training process. This swimming 

session provoked a significant acute neutrophilia; lymphopenia and low eosinophils count 

lasting for at least two hours, independently of sex and maturity. 

Furthermore, the recovery of acquired immunity reflected by total lymphocytes and total 

T (CD3+) and B (CD19+) cells seems to have been more affected in the junior swimming 

age group (15 – 17 yrs. of age, according to the LEN classification). Both parameters 

persisted low along the 2 h after swimming and a 24 h period revealed to be insufficient to 

attain total recovery total lymphocytes and T cells. 
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The observed lymphopenia suggests a lower immune surveillance at the end of the session 

that may increase the risk of infection or suppressed immunity of athletes in the period just 

after training, highlighting for the need of extra care when exposed to aggressive 

environmental agents. Concerning juniors, the insufficient 24 h period for recovery of the 

immunological levels must be considered when planning consecutive training sessions. 

So, athletes and coaches should consider taking actions in order to avoid exposure of the 

athletes to potential infections, which may compromise attendance to training sessions, 

performance and most of all health. 
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Study 2 – Innate and acquired immunity are 

affected by long term swimming training 
 

 

5.1. Abstract 
 

In endurance sports such as swimming, many years of daily training and competition are 

required to progressively improve performances, and usually the cycles of high training 

volume and intensity that include consecutive training sessions with little recovery time in 

between may lead to transient imbalances between training loads and recovery contributing 

to the onset of fatigue and eventually illness in athletes. 

This study aimed to investigate resting cellular immune changes over a 7-month swimming 

season, controlling for sex, maturity, age groups, distance specialty, and performance. 

Blood resting samples were taken from 54 swimmers (29 males, 16 ± 2.0 yrs., and 25 

females, 15 ± 1.5 yrs.) at 4 moments of evaluation: M1 (beginning of the season), M2 

(after the main competition of the 1st macrocycle, 13th wk.), M3 (preparatory phase of the 

2nd macrocycle, 23rd wk.) and M4 (after the main competition of the 2nd macrocycle, 

30th wk.). Samples were collected by standard procedures for assessment of leukogram by 

automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow 

cytometry (FACS Calibur, BD Biosciences). Upper Respiratory Symptoms (URS) 

episodes were monitored using daily logbooks. Training load was quantified. Statistical 

significance was considered at p<.05. 

Only sex influenced the response of monocytes to training, and swimming age group 

influenced the response of monocytes, total lymphocytes and subsets CD3+ and CD4+, 

while CD19+ lymphocytes values were higher for males than females despite similar 

response to training. CD8+ lymphocytes decreased at M2, remained below baseline values 

at M3 and recovered at M4. CD16+56+ lymphocytes and eosinophils decreased at M3, and 

remained diminished at M4. At M4, CD19+ lymphocytes were elevated. Along the 4 

moments of evaluation, no alterations in leukocytes and neutrophils were observed. In 
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juveniles, total lymphocytes, lymphocytes subpopulations CD3+ and CD4+, decreased at 

M2 and recovered at M3, but remained unchanged in juniors and seniors. Monocytes were 

unchanged, except for the senior males, which were elevated at M4. The heaviest training 

load, both in volume and intensity, and the higher frequency of URS episodes happened at 

M3. 

The swimming training season had a cumulative effect towards a decrease of the innate 

immunity, while the acquired immunity appeared to be more affected at the most intense 

training period, recovering after a taper period. Younger swimmers presented acquired 

immune depression earlier in the training season. At the heaviest training period both 

innate and acquired immunity impairments contributed to a more pronounced immune 

depression alongside with higher prevalence of upper respiratory symptoms. 

 

Key Words: Cellular Immunity, Swimmers, Training Season. 

 

 

5.2. Introduction 
 

It is generally acknowledged that the immune system may experience a functional 

reduction when exposed to successive psychological and physical stressful stimulus, such 

as the competitive training process (Walsh et al., 2011). 

In endurance sports such as swimming, many years of daily training and competition are 

required to achieve and maintain national and international level performances. It is of 

common use the implementation of cycles of high training volume and intensity that 

include consecutive training sessions with little recovery time in between in order to 

optimize aerobic and movement economy adaptations (Sargent et al., 2014). This can lead 

to transient imbalances between training loads and recovery contributing to the onset of 

fatigue and eventually illness in athletes (Aubry et al., 2014). When this transitory 

impaired performance settles, an extra pressure on immune function can be generated, and 

an immunodepression state characterized by substrate depletion, hormonal and immune 

functions disturbances and infectious episodes, which are normally reported by athletes, is 

usually the response to these hard training periods (Cordova, Sureda, Tur, & Pons, 2010; 

Dias et al., 2011; Gleeson, 2007; Gleeson & Williams, 2013; Morgado et al., 2012; Rama 

et al., 2013). Additionally, swimmers are repeatedly exposed to warm humid environment, 
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temperature variations and chlorine-rich atmosphere, thus being more predisposed to 

respiratory illness (Aubry et al., 2014; Bernard et al., 2009; Bougault et al., 2012; Gleeson, 

2000; Gleeson et al., 1995; Gleeson et al., 2000; Mackinnon, 1997; Reid et al., 2004; 

Spence et al., 2007). In fact, there is a shared belief that the frequency of upper respiratory 

symptoms (URS) is bigger in elite endurance athletes after single bouts of ultra-endurance 

exercise and through periods of intensified training (Nieman, 1994; Spence et al., 2007), 

with the common cold being the most reported common infection episode. Altogether, 

these training conditions can lead to the stimulation of adaptive mechanisms related to 

metabolic, hormonal, circulatory and respiratory responses that may compromise 

performance and negatively influence health status, although this situation may be 

reversible by a tapering or recovering period (Gleeson & Bishop, 2005; Shephard & Shek, 

1999; Suzui et al., 2004). 

Moreover, it has been argued that the immunological response to training may depend on 

factors such as training load, subject fitness level, performance, sex, maturity, age group, 

ability level, and/or event distance specialization (Vleck et al., 2014).  

So, it is reasonable to ask which variables and factors are possible to monitor and control 

in ways that help coaches and athletes to handle with the related transitory impaired 

performance and immunosuppression state that is usually generated in periods of heavy 

training, preventing the onset of fatigue and upsurge of related infections and illnesses.  

The answer to this question may be crucial for the adequate periodization of training, and 

eventually to the individualization of the training process, in order to prevent the negative 

influence on health and performance status of the athlete. 

Studies that followed up a 7-month swimming training season reported a reduction in 

neutrophils and monocytes resting values (Morgado et al., 2012) and decreased CD56+ NK 

cells (Gleeson et al., 1995; Rama et al., 2013). After a 3-month swimming training 

program CD56+ NK cells were also diminished (Gleeson et al., 2000). So, it seems that 

long-term intensified training can affect the number of innate immune cells, possibly 

contributing to an elevated risk of infection. Nevertheless, T and B cell functionality has 

shown signs of hampering in athletes engaging long-term periods of intense training 

(Walsh et al., 2011). 

In general, at rest, athletes seem to have leukocyte and lymphocyte subsets counts and 

functions similar to those of non-athletes (Baj et al., 1994; Nieman, 2000a; Nieman et al., 

1995a; Nieman et al., 1995b). Gleeson et al. (2011), reported no differences between the 

sexes, at rest, in total blood leukocyte, neutrophil, monocyte and lymphocyte counts of 
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endurance training athletes, however males had higher B and CD56+ NK cells (Gleeson et 

al., 2011). Additionally, Timmons et al. (2004) referred that adolescents and adults may 

have slightly different immunological responses to physical exercise, although on an acute 

response basis. As for swimmers, they have presented lymphocytes counts similar to 

controls but lower numbers of circulating total leukocytes (Gleeson et al., 1995).  

When comparing the investigations about the behaviour of the immune system that made a 

follow-up of the training load or periodization and the occurrence of upper respiratory 

symptoms, several limitations can be found in what refers to differences in the length and 

seasonality of the observation periods, and control for subjects characteristics. 

To our knowledge, no one has addressed the effect on the circulating leukocytes and 

subpopulations (including lymphocyte subset populations) of a long-term training process 

of any physical activity or sports controlling for subjects characteristics. Thus, this study 

aimed to investigate the variation of resting systemic immunological cell parameters over 

the course of a 7-month swimming training season, in a large cohort of well-trained 

swimmers involved in their regular training environment, taking into account sex, maturity, 

swimming age groups, performance, and event distance specialization effects in the 

interpretation of these immunological variations. 

Consequently, we hypothesised that the most intense periods of training over the 

competitive training season would lead to some immunological depression as compared to 

the beginning of the season, and that the upper respiratory symptoms occurrence would be 

greater during the intense periods. Conversely we hypothesized that at the end of the 

training period, where recovery was provided to swimmers and peak performance was 

expected, the immunological condition of the athlete would have recovered from the 

intensive periods thus conferring a healthy condition necessary for achieving best 

performances in competition (Aubry et al., 2014). 

 

 

5.3. Methods 
 

5.3.1. Participants 
 

Fifty-four swimmers (25 females, 29 males) members of four different Portuguese 

swimming teams, undertaking 13 – 15 h of pool training and 4 h of dry-land training per 
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week, were evaluated in this study. The swimmers were included into different swimming 

age groups according to the regulation of Portuguese Swimming Federation and the Ligue 

Européene de Natation (LEN) (described in Table 5.1.) and had different competitive 

swimming backgrounds (4.6 ± 1.6 yrs. in females and of 5.9 ± 2.0 yrs. in males, ranging 

from ≃ 3 to 11 yrs. of practice). 

After receiving detailed information about the aim of the study and the possible risks of the 

investigation, either the subjects or their parents, as appropriate, provided their written 

informed consent to participate. All procedures were approved by the Ethics Committee of 

the Faculty of Human Kinetics of the University of Lisbon and were conducted in 

accordance with the Declaration of Helsinki for human studies (World Medical 

Association, 2008). 

 

 

5.3.2. Study design 
 

This study used an observational design with a follow-up over a swimming competitive 

training season lasting 30 weeks.  Swimmers followed the training program set by the 

coaches of each different team.  

The evaluation of the swimmers was made at four moments of evaluation (M) named M1 

(at the beginning of the season; baseline evaluation), M2 (the week after the main 

competition of the 1st macrocycle; 13th week of training), M3 (at the specific preparatory 

sub phase of the preparatory phase of the 2nd macrocycle; 23rd week of training) and M4 

(the week after the main competition of the 2nd macrocycle; 30th week of training). At each 

moment of evaluation, data collected for all subjects included subjects’ chronological age 

and body composition measurements, an indicator of biological maturity (pubertal Tanner 

stages) and biochemical immune indices. Athletes were instructed not to consume anything 

but water after 10 p.m. of the preceding day and to have a minimum of 8 h rest before 

testing. The body composition measurements and the resting blood sample collection were 

performed in a fasted state (between 6:30 and 9 a.m.). Throughout the follow up season the 

incidence of URS and the menstrual cycle phases for girls were monitored weekly and 

training load and mean intensity of all scheduled swimming sessions were quantified. The 

characteristics of the training regimens and competition schedules were not modified by 

the present study in anyway nor any swimmer suffered from major injury or sickness 

preventing them from training for more than one day. 
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5.3.3. Swimmers characteristics 
 

5.3.3.1. Body composition measurements 

 

Trained and experienced staff measured swimmers stature and body mass always after 

wakening in the fasted state wearing a bathing suit without shoes. Stature was measured to 

the nearest 0.1 cm with Siber-Hegner anthropometric kit (DKSH Ltd., Zurich, SW). 

Participants were weighed to the nearest 0.1 kg on an electronic scale (TANITA BC-601 

body composition scale monitor) that also calculated Fat Mass percentage (%FM) using 

Bioelectorical Impedance Analysis with a measuring current of 50 kHz, 100 μA . Body 

Mass Index (BMI) was calculated as body mass (BM; kg) divided by the square of the 

stature (m) and Free Fat Mass (FFM) according to the formula: 
 

	ܯܨܨ  = –	ܯܤ	  (ܯܨ%	ݔ	ܯܤ)	
 
Where FFM is the Fat Free Mass expressed in kilograms, BM is the Body Mass expressed in kilograms, 
and %FM is the Fat Mass percentage expressed in percentage. 
 

 

5.3.3.2. Maturity - Tanner stages  

 

Participants received detailed instructions after which they made a self-assessment of their 

degree of genital organ, breast, and pubic hair development using a questionnaire (Tanner, 

1962) accompanied by figures and were then grouped according to pubertal stage (1st and 

2nd stages of adolescence, and adult stage). Considering the heterogeneity and mean 

chronological age of the swimmers, it was possible that some might develop from one 

stage to the succeeding along the 7-month training process. In fact, at M2, some swimmers 

classified themselves as having developed into the subsequent stage in comparison to M1. 

Yet, all swimmers maintained the classification they had at M2 throughout the rest of the 

training season. So, in this study, the maturity stage at M2 (which was equal at M3 and 

M4) was considered for the differentiation in two maturity groups (adolescents and adults) 

(Table 5.1.).  

 

 



Study 2 – Innate and acquired immunity are affected by long term swimming training  

 81

5.3.3.3. Distance specialty 

 

Swimmers were grouped regarding their swim specialty on a distance type basis: sprint or 

long-distance. This division was made according to the coaches’ classifications of their 

swimmers, and was primarily based on the swimmers’ main event distance: 50m, 100m 

and 200m swimmers were classified as short distance and 400m, 800m and 1500m 

swimmers as long distance swimmers (Table 5.1.). 

 

 

5.3.4. Swimming training season 
 

The study was divided into three main periods that represented distinctive training phases 

(Fig. 5.1.): 

M1 to M2 (three months) corresponded to the 1st macrocycle of the training season, which 

began with the general preparatory sub phase and lasted until the main competitive sub 

phase. This first macrocycle aimed to prepare the athletes to the National Youth Long-

distance Championship, to the winter National Championships and to the National 

Interclubs Championship. This period was characterized by an aerobic training 

predominance and the progressive increase of training volumes and intensities in the first 

two months and for the maintenance of high intensities and progressive decrease of 

volumes in the last month. At the National Championships all swimmers have 

accomplished at least one personal best time in the races they were enrolled in. 

M2 to M3 (two months) coincided with the entire preparatory phase of the 2nd macrocycle 

of the season. This development period was characterized by a progressive increase in 

training volume, intensity and frequency that lasted until the end of the specific preparatory 

sub phase, where the higher peak of training load of the season was reached and the 

swimmers were evaluated (M3). In this period there was also a more frequent participation 

in competitions (including international meetings). 

M3 to M4 (one month) was a period of training that occurred during the competitive phase 

of the 2nd macrocycle of the season and included a specific preparatory period followed by 

a competitive period that lead to important competitions for which training load was 

progressively reduced: National Youth Championship and National Junior and Senior 

Championships. 
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Fig. 5.1. Periodization of the 7-month winter swimming training competitive season and 
schedule of the four moments of evaluation: M1, M2, M3 and M4 
 

 

 
 

5.3.5. Performance improvements 
 

The effect of training on performance was evaluated by magnitude of the change of the 

race time at competitive events. It was expressed as a relative difference, which 

represented a percentage of change, comparing the race time accomplished at M4 with that 

at the end of the previous season. In this manner, two groups were created according to the 

level of improvement: the less efficient group, which presented under 2% changes in 

performance, and the efficient group, which presented changes of 2% and above 

(Table 5.1.). This 2% level of improvement was adopted based on the consistently mean 

improvements of around 3% mentioned in the literature (Mujika et al., 1996a). 
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5.3.6. Quantification of the training load 
 

Training load was determined through the total amount of meters swam (volume) and also 

by the balance of the distance completed at each level of intensity based on the work of 

Mujika et al. (1996a; 1995) (Table 5.3). 

The use of a stress index scale of difficulty has been established in reference to the 

theoretical values of blood lactate accumulation usually associated with the different 

swimming training zones of intensity. 

The training zones adopted considered the works by Mujika et al. (1995), Maglischo 

(2003), and Sweetenham & Atkinson (2003), and were: I - warm up and recovery, II - 

aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, VI - lactate production and 

VII - sprint. In order to evaluate the swimming sessions training load the volume 

accomplished in each zone of intensity was quantified (mI, mII, mIII, mIV, mV, mVI and 

mVII). The magnitude of the load was then expressed in dimensionless units of load, or 

arbitrary units of load (AUL), obtained from the ratio between the sum of the volumes 

swam in each zone of intensity multiplied by the respective index (1, 2, 3, 4, 6, 8, 10) and 

the total volume effectively completed, according to the formula: 

 

	ܮܷܣ =
1	mI	+ 	2	mII	 + 	3	mIII	 + 	4	mIV	+ 	6	mV	+ 	8	mVI	 + 	10	mVII	

swimming	training	session	volume	  

 
Where AUL is the arbitrary units of load expressed in dimensionless units of load, the numerator is the 
weighed volume expressed in meters, mI, mII, mIII, mIV, mV, mVI and mVII are the meters 
accomplished at the following swimming training zones of intensity: I- warm up and recovery, II - 
aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, VI - lactate production and VII – sprint, the 
numbers 1, 2, 3, 4, 6, 8, 10 are the indexes associated to each zone of intensity, the denominator is the 
swimming training session volume expressed in meters. 
 

This was performed for all season sessions considering each age group and within all 

swimming teams. 

The mycrocycle or weekly load was quantified and expressed by the volume (total of 

meters swam), by the weighed volume (sum of the multiplications of the volume 

accomplished in each zone of intensity by the respective stress index values) and by the 

intensity (determined through the sum of the resulting dimensionless unit of load of each 

session of training). 
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5.3.7. Immune system parameters 
 

Peripheral venous blood samples were collected via standard procedures between 6:00 and 

6:30 a.m., in the fasted state, at the four moments of evaluation (M1, M2, M3 and M4). 

Venous blood was collected into tubes containing EDTA for assessment of hemogram and 

leukogram and for counting of total and subpopulations of lymphocytes. Hemogram and 

leukogram was performed in an automated hematology analyzer (Coulter LH 750, 

Beckman) which produced information about the following parameters: hemoglobin 

concentration (g.dL-1), hematocrit (%) and counts of white blood cells namely: leukocytes, 

neutrophils, monocytes, eosinophils. Total and subpopulations of lymphocytes were 

counted by flow cytometry (FACS Calibur, BD Biosciences). The lymphocytes 

subpopulations analyzed were CD3+ (total T lymphocytes; T cells), CD4+ (T helper; Th 

cells), CD8+ (T cytotoxic; Tc cells), CD16+56+ (NK cells) and CD19+ (B cells). Results 

were expressed as number of cells.109.L-1 for leukogram parameters and as number of 

cells.µL-1 for total and subpopulations of lymphocytes counts. 

 

 

5.3.8. Upper Respiratory Symptoms 
 

Subjects were asked to answer to a weekly questionnaire that was sent every Monday to 

their email address. This questionnaire consisted of a daily logbook in which they noted 

their symptoms associated with illnesses related to URS such as: headache, fever, ear pain, 

chills, runny or blocked nose, pharyngitis/tonsillitis, bronquitis, asthma, phlegm, cough, 

conjunctivitis; itchy, watery eyes, nausea/vomiting, and diarrhoea. All swimmers were 

asked to indicate the medication they were on and female subjects to point out the days of 

menstruation. If subjects had no symptoms they simply recorded that and reply to the 

email. 

If fever or at least two concomitant symptoms persisted for at least 48 hours, separated 

from previous symptoms by at least one week, they were considered an episode of URS 

(Bishop, 2006). Symptoms separated by less than one week were regarded as a recurrence 

or continuation of the initial episode and were regarded as part of the same episode. The 

counting of the URS episodes was expressed as the weekly number of episodes of URS 

over the course of the training season. 
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5.3.9. Statistical analysis 
 

The statistical analyses were performed with the software IBM SPSS Statistics, version 21, 

and the R software (R Core Team, 2012), version 2.15.1, and a significance level of 5% 

was considered. Descriptive statistics, including means and standard deviation 

(mean ± SD) were performed for participants’ characteristics and training load 

quantification measurements and including means and standard error of the mean 

(mean ± SEM) for biochemical indices. Normality of the outcome variables was analysed 

using the Shapiro-Wilk test. One sample t test was used to compare group means with the 

upper or lower limits of the reference interval, provided by the National Health Institute 

Doutor Ricardo Jorge (INSA) (Lewis et al., 2006), to verify if participants were within the 

“clinically normal” values associated with each variable. 

The effects of sex, pubertal Tanner’s stages (adolescence and adult stages), swimming age-

groups (youth, juniors and seniors), distance specialty (short and long distance swimmers), 

performance (efficient and less efficient), and the interaction effect of each one of these 

factors with the moment of evaluation on the response of the variables of interest was 

analysed using nonparametric mixed-design ANOVAs. The within-subjects factor was the 

moment of evaluation (four levels: M1, M2, M3 and M4), which is referred to as the effect 

of training, and the subjects’ factors were the aforementioned influential variables. The 

nonparametric mixed-design ANOVA has an ANOVA-type statistic (ATS) for each effect, 

and also a modified ANOVA-type statistic (MATS) for the subject’s factor. The option for 

the nonparametric approach was due to the violation of the assumptions of parametric 

mixed ANOVA in some groups, namely the normality of the dependent variables in each 

factor’s level, the homogeneity of variances and the sphericity. This nonparametric 

analysis was performed with the nparLD package (Noguchi et al., 2012) from the R 

software. 

When an effect of a factor with three levels occurred, Kruskal-Wallis test with the Dunn-

Bonferroni post hoc tests were executed to assess between which levels the differences 

existed. If the interaction effect between each one of the factors aforementioned and the 

moment of evaluation on the variables of interest was non-significant, subsequent analysis 

of the effects of exercise were performed not distinguishing participants by the levels of 

each between-subjects factor. Otherwise, exercise effects on the variables of interest were 

analyzed separately considering each between-subjects factor’s level. Repeated measures 

ANOVA was used for the assessment of training effects on immune parameters. Normality 
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and sphericity assumptions were evaluated with the Shapiro-Wilk and Mauchly’s test, 

respectively. Post hoc tests with Bonferroni correction were performed to determine 

between which moments a significant difference was observed. If the repeated measures 

ANOVA assumptions were not met, the exercise effect was assessed by Friedman test. 

Post hoc analyses were performed using Dunn-Bonferroni test (Dunn, 1964) or, if 

necessary, due to the conservative characteristic of the Bonferroni procedure, according to 

Conover et al. (1999). 

 

 

5.4. Results 
 

The number of participants in each group of maturity, swimming age group, distance 

specialty, and performance is presented in Table 5.1. 

 
Table 5.1. Number of female (n=25) and male (n=29) participants in each group of maturity, swimming 
age-group, distance specialty, and performance 
       Females Males 

Maturity (Tanner’s stages) 
Adolescent 12 15 

Adult 14 9 

Swimmimng age-group 

Youth (female: 13 – 14 yrs, male:14 – 16 yrs) 10 19 

Juniors (female: 14 – 16 yrs, male:16 – 18 yrs) 10 3 

Seniors (female: ≥ 17 yrs, male: ≥ 18 yrs) 5 7 

Distance specialty 
Short distance (sprinters and individual medley) 20 13 

Long distance (middle to long distance) 5 16 

Performance 
Efficient (improved performance at the end of the season) 13 15 

Less efficient (maintained performance at the end of the season) 12 14 

Note: Tanner’s stage classification of the maturational state according to Tanner (1962); Swimming age-group classification in 
both sexes according to the regulation of the Portuguese Swimming Federation and Ligue Européene de Natation (LEN); 
Distance specialty groups were based on the participant’s main event distance: 50m, 100m and 200m swimmers were 
classified as Short distance and 400m, 800m and 1500m swimmers as Long distance; Performance groups based on the 
percent change difference between the personal race best time between at the beginning and at the end of the season: <2% 
changes = Less efficient (maintained performance), and ≥ 2% changes = Efficient (improved performance) 

 

The participant’s characteristics, including demographics and body composition related 

variables, are presented in Table 5.2. 
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Table 5.2.  Demographics and body composition of swimmers at the four moments of evaluation  
(M1, M2, M3 and M4) 

  
Moments of evaluation 

  M1   M2   M3   M4 

Females 

Age (years) 14.6 ± 1.50 14.9 ± 1.49 15.1 ± 1.50 15.2 ± 1.51 
Stature (cm) 163.0 ± 6.24 163.5 ± 6.22 164.2 ± 6.20 *; ** 164.5 ± 6.06 *; ** 
Body Mass (kg) 54.9 ± 7.40 55.5 ± 7.21 56.2 ± 7.19  *; ** 56.3 ± 6.86 *; ** 
BMI (kg.m-2) 20.6 ± 1.78 20.7 ± 1.89 20.8 ± 1.83 20.8 ± 1.84 
FM (%) 23.9 ± 3.59 24.9 ± 3.64 * 24.2 ± 3.47 24.2 ± 3.56 
FFM (kg) 41.7 ± 4.99 41.6 ± 4.95 42.5 ± 5.10 ** 42.6 ± 4.76 ** 

Males 

Age (years) 15.9 ± 2.04 16.2 ± 2.04 16.4 ± 2.03 16.5 ± 2.04 
Stature (cm) 172.1 ± 7.47 173.0 ± 7.00 * 173.4 ± 6.88 *; ** 173.7 ± 6.69 *; ** 
Body Mass (kg) 64.0 ± 8.03 64.2 ± 7.96 65.4 ± 7.71 *; ** 65.4 ± 7.21 ** 
BMI (kg.m-2) 21.6 ± 2.05 21.4 ± 2.04 21.8 ± 1.98 ** 21.6 ± 1.77 
FM (%) 16.1 ± 3.11 16.5 ± 3.17 16.4 ± 3.01 *; ** 16.4 ± 3.11 * 
FFM (kg) 53.6 ± 6.75 53.6 ± 7.11 54.7 ± 7.02 54.7 ± 6.34 

Abbreviations: BMI, body mass index; FM, fat mass percentage; FFM, fat free mass;  * different from M1;  ** different from M2;  
*** different from M3 (p<.05) 

 

Swimmers physical characteristics changed over the season, especially between M1 and 

M3. These alterations reflect stature growth between M1 and M2 in males and between M2 

and M3 in both groups, and also increases in body mass and FFM.  

Immune system values throughout the four moments of evaluation were within the 

reference interval associated with each variable. 

 

 

5.4.1. Effects of sex, maturity, swimming age group, distance 
specialty and performance on the immune response to the 
swimming training season 
 

No influence was observed for maturity Tanner stages, distance specialty, and performance 

on the response of the variables of interest to the training season. However, sex influenced 

the response of monocytes (F(2.931, ∞) = 3.598; p = .014), and swimming age group 

influenced the response of monocytes (F(5.271, ∞) = 2.574; p = .022), total lymphocytes 

(F(4.967, ∞) = 3.043; p = .010), and lymphocytes subsets CD3+ (F(4.678, ∞) = 2.857; 

p = .016), and CD4+ (F(4.550, ∞) = 2.493; p = .034). CD19+ lymphocytes revealed higher 

values for males than females throughout the season (F(1, 51.314) = 4.635; p = .036) 

although they presented  similar responses of the variables of interest to the training 

season. 



 CHAPTER V 

 88

5.4.2. Immune system response to swimming training 
 

At M2, CD8+ subsets decreased. Total lymphocytes and subsets CD3+ and CD4+ decreased 

in the youth group. 

At M3, CD8+ subsets remained below baseline values, eosinophils and CD16+56+ subsets 

decreased. Total lymphocytes and subsets CD3+ and CD4+ recovered to baseline values in 

the youth group. 

At M4, CD19+ lymphocytes were elevated, CD16+56+ lymphocytes continued to decrease, 

eosinophils remained below baseline levels and CD8+ lymphocytes recovered to baseline 

levels. Monocytes were also decreased in the male senior group (Fig. 5.2.). 
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Fig. 5.2. Mean and SEM values of leukocytes, neutrophils, eosinophils, total lymphocytes and 
subsets CD3+, CD4+, CD8+, CD16+56+, CD19+ counts, and CD4+/CD8+ ratio, at the four moments 
of evaluation of the 7-month winter swimming training season (30 wks.). M1 = beginning of 
the season (1st wk.), M2 = after the main competition of the 1st macrocycle (13th wk.), 
M3 = preparatory phase of the 2nd macrocycle (23rd wk.) and M4 = after the main competition 
of the 2nd macrocycle (30th wk.). 
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5.4.3. Seasonal training workload 
 

Training load characterization of the four weeks before the last three moments of 

evaluation are presented in Table 5.3. 

Table 5.3. Mean and SD values of the weekly and total training volume (m), weighed volume (m), load 
score (AUL) and partial training volumes accomplished at each intensity training zone (m), performed 
every four weeks before the last three moments of evaluation (M2, M3, and M4) of the 7-month swimming 
winter training season 

Training load parameters and training 
zones of intensity  (weekly value at each 
zone; m) 

      M2       M3       M4 Statistic 

Volume (m) 30979 ± 4120 47251 ± 12819 ** 30110 ± 7519 *** F(1, 112.668) = .000 

Weighed volume (m) 73956 ± 10456 112344 ± 28542 ** 73121 ± 16586 *** F(1, 144.335) = .000 

Load score (AUL) 12,09 ± 0,63 13,88 ± 0,21 ** 11,47 ± 0,73 **; *** F(1.035, 214.309) = .000 

Warm-up/Recovery (m)  7819 ± 1295 10818 ± 2659 ** 8460 ± 1517 **; *** F(1.036, 98.312) = .000 

Aerobic 1 (m) 12462 ± 1248 18252 ± 6686 ** 10883 ± 3372 **; *** F(1.006, 52.469) = .000 

Aerobic 2 (m) 7325 ± 1272 13113 ± 2861 ** 6923 ± 1989 *** F(1.169, 353.347) = .000 

VO2 (m) 1983 ± 698 3238 ± 796 ** 2091 ± 754 **; *** F(1.043, 186.395) = .000 

Lactacte Tolerance (m) 404 ± 207 1223 ± 66 ** 683 ± 182 **; *** F(1, 416.830) = .021 

Lactacte Power (m) 374 ± 39 336 ± 133 387 ± 74 *** F(1.070, 5.504) = .000 

Sprint (m) 555 ± 330 271 ± 70 ** 617 ± 189 **; *** F(1.003, 71.318) = .000 

Training load parameters (total training 
values) and corresponding RV (%) of the 
training season 

from M1 to M2 from M2 to M3 from M3 to M4 from M1 to M4 

Volume (m)  449039 (39,7%) 382953 (33,8%) 300024 (26,5%) 1132016 

Weighed volume (m) 1052320 (39,4%) 891645 (33,4%) 724608 (27,2%) 2668573 

Load score (AUL) 161.22 (43,6%) 112.93 (30,6%) 95.41 (25,8%) 369.6 

Abbreviations: AUL, arbitrary units of load; RV (%); relative value in percentage;  ** different from M2; *** different from M3 (p<.05) 

 

In the whole group, as when considering the separated swimming training groups, at M3, 

training volume, weighed volume, load score (AUL), warm-up/recovery, aerobic 1, aerobic 

2, VO2, and lactate tolerance were higher, and sprint volume was lower than at M2 and 

M4. At M4, training load score (AUL), aerobic 1, lactate tolerance were lower, whereas 

warm-up/recovery, and VO2 were higher, than at M2.  At M4, lactate power was higher 

than at M3, and sprint was greater than at M2. No differences were observed for training 

volume, weighed volume, and aerobic 2, between M2 and M4, or for lactate power, 

between M2 and M3. When considering the different age groups of swimmers (youth, 

juniors and seniors) there was a similar training load pattern. 
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These results indicate that M3 was the moment of evaluation preceded by the 4 week 

period with the heaviest training load, both in volume and intensity, as planned by the 

coaches. 

 

 

5.4.4. Upper Respiratory Symptoms 
 

The number of episodes of URS was monitored weekly throughout the 7-month swimming 

winter training season (Fig. 5.3). 

 
Fig. 5.3. Weekly number of episodes of Upper Respiratory Symptoms (URS) over the course of 
a 7-month swimming winter training season and schedule of the four moments of evaluation: 
M1, M2, M3 and M4 

 
The greater amount of URS episodes happened during the four weeks/mycrocycles prior to 

M3, and in the two weeks after M3. 

 

 

5.5. Discussion 
 

Our study shows that training periods with higher load volume and intensity induce a more 

pronounced immune depression that seemed to be coincident to a greater incidence of URS 

episodes.  Researches that have assessed the chronic response of leukocytes and 

subpopulations (including lymphocytes subsets) in athletes of different sports such as 

running (Denguezli et al., 2008), basketball (Brunelli et al., 2014), volleyball (Dias et al., 
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2011) and soccer (Del Giacco et al., 2014; Suda et al., 2013) to long-term training periods 

or competitive training seasons are scarce. If we consider swimming training they are also 

rare, but rather consistent in what concerns the length and seasonality of the observation 

periods (Gleeson et al., 1995; Morgado et al., 2012; Mujika, Chatard, & Geyssant, 1996b; 

Rama et al., 2013; Teixeira et al., 2014). Therefore, since the swimming training season is 

particularly different from team sports, we chose to focus our discussion on previous 

studies that monitored immunological alterations along 7-month swimming winter training 

seasons. 

The diminished CD16+56+ cells observed in the present study were also reported by Rama 

et al. (2013) at the heaviest training period (M3, 23rd wk. of training). However, the lower 

values observed for CD8+ subsets at M2 and M3 contradict the absence of changes 

observed for these cells throughout the several evaluation moments in a previous study 

(Teixeira et al., 2014). The decreases in eosinophils, CD16+56+ and CD8+ subsets suggest 

an impairment of the cellular immunity, which increases the susceptibility for viral 

infections. The elevated number of CD19+ subsets observed at the end of the season is also 

contrary to the unaffected response to training of these cells reported by Gleeson et al. 

(1995). CD19+ subsets were also higher in males than in females. Theoretically, these 

higher CD19+ levels confer the capacity to produce more antibodies/Ig’s, thus increasing 

humoral immunity. As in our study other authors reported stable values of leukocytes 

(Gleeson et al., 1995; Mujika et al., 1996b) and neutrophils (Morgado et al., 2012; Mujika 

et al., 1996b). 

Immunological values throughout the training season were similar between adolescents 

and adults as classified by Tanner (1962). According to Table 5.2., it appears that the 

whole group of swimmers was under a maturational development over the season reflected 

essentially by stature growth. The immune system is highly influenced by the 

physiological levels of some hormones (e.g. growth hormone, cortisol, estrogen, and 

testosterone) that are permanently changing during puberty. The fact that no influence of 

maturity was observed on the immune response may be due to the somewhat subjective 

self-reported methodology used to assess the maturity stage. This does not allow for the 

positioning of subjects in a continuous process. Although not supported by any evaluation 

of biological maturity, swimmers are in practice classified according with swimming age 

groups using chronological age ranges that differ between sexes. This difference aims to 

take into consideration the classical earlier maturational development of girls compared to 

boys that occurs throughout adolescence (Boggin, 1999). In fact, in this study, the 
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swimming age group classification of subjects revealed more differences in the response of 

the immune cell parameters to the training season than Tanner’s stages of maturity, maybe 

suggesting an alternative and very practical tool to differentiate recommendations for 

preventing episodes of immune depression or URS. 

We also explored the relation between the evolution of immune cells during the training 

season and the outcome of the training process, evaluated through the impact on 

performance, and the distance specialty. We chose to explore distance specialty because 

swimmers tend to explore their particular physical and physiological characteristics for the 

achievement of the best performance possible. Yet, no influences were observed. 

Thus, in the youth group total lymphocytes and subsets CD3+ and CD4+ decreased at M2 

and recovered to baseline values afterwards. This suggests that the initial training load of 

the season affected the acquired immune response, in particular CD4+ (T helper), with 

reflections on CD3+ (total T) and even on total lymphocytes specifically in the youth 

group. This behavior was not expected hence the most intense period of training was M3. 

In fact, juniors and seniors showed total lymphocytes and subsets CD3+ and CD4+ values 

similar to baseline throughout the season, which is in accordance with previous studies that 

evaluated primarily junior and senior swimmers (Gleeson et al., 1995; Mujika et al., 

1996b; Teixeira et al., 2014). 

Furthermore, males presented higher monocytes values than females throughout the 

season, and the response to training was different between males and females with male 

seniors having diminished monocytes count at M4 compared to M1 and male juniors 

showing a similar trend profile. Although this last evaluation moment was preceded by a 

taper period, both seniors and juniors had the lower monocytes count values, suggesting a 

cumulative effect of the training load, from which swimmers could not efficiently recover 

with the taper period. This cumulative effect was also noticed for CD16+56+ subset and 

eosinophils in the whole group but not for CD8+ or CD19+ subsets, which recovered at the 

end of the season, with CD19+ even increasing. 

The heaviest training period preceded M3 and was characterized by greater volumes in 

aerobic and lactate tolerance training zones. Increases in training load in well trained 

athletes undertaking a period of intensified training such as M3 have been described as 

causing immune depression that may lead to opportunistic infections. In our study, the 

immune depression was more evident for the innate immunity that decreased during the 

heaviest training period and persisted below baseline levels until the end of the season 

although the training load decreased. Immune depression was also noticed for the acquired 
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immunity but earlier in the training season, suggesting a higher susceptibility to the 

cumulative training load of the innate immunity while acquired immunity seems to be able 

to adapt and recover more efficiently when the subject is allowed a period of taper. Indeed, 

T and B lymphocytes functions have shown to be sensitive to increases in the training load 

in well-trained athletes, with falls in circulating type 1 T cells counts, decreased T cell 

proliferative responses and reductions in stimulated B cell Ig synthesis (Baj et al., 1994; 

Lancaster et al., 2004; Verde et al., 1992). The cause of this depression in acquired 

immunity may be related to the cumulative effects of repeated bouts of intense exercise 

which can cause elevations of the circulating stress hormones, particularly cortisol, and 

anti-inflammatory cytokines (e.g. IL-6, IL-10, IL-Ira) (Gleeson & Bishop, 2005). Overall, 

the result appears to be a temporary inhibition of Type 1 T cell cytokine production, with a 

relative diminution of the Type 1 (cell-mediated) response (Gleeson & Bishop, 2005). The 

literature refers cortisol as a potential conditioner of the entry of lymphocytes into the 

circulation after intense and prolonged exercise contributing to their return to lymphoid 

compartments (Nieman, 1994). However, the overall long-term training effects of cortisol 

over lymphocytes remain unclear. An augmented incidence of viral infections can be the 

consequence of a defect in T cell number and function (Fabbri, Smart, & Pardi, 2003) 

either associated or not with cortisol action. 

At the heaviest training period both innate and acquired immunity impairments contributed 

to a more pronounced immune depression. In fact, the higher frequency of URS episodes 

seems to have happened along this training phase, reinforcing the idea of a disturbed 

immune resilience of the swimmers. Our results are in agreement with other studies that 

have also reported an increase in URS symptoms during the heaviest training periods 

characterized by high loads imposed continuously over several weeks (Morgado et al., 

2012; Rama et al., 2013).  

The results of the present investigation enhance the importance of controlling 

immunological alterations during in-season training, especially in heavy training periods 

but also in the first months of training for young athletes, as a result of the diminished 

innate and acquired immunity along with higher incidence of URS. This difference in the 

youth group may be related with the traditional stepper increase in the training load that 

characterizes the transition for this age group. Furthermore the accumulated effect of years 

of training can be responsible for the less responsive behaviour of the junior and senior 

groups in the first macrocycle of the season.  
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5.6. Conclusions 
 

The long term swimming training process had a cumulative effect towards a decrease of 

the innate immunity, while the acquired immunity appeared to be more affected at the most 

intense training period, recovering after a taper period. Younger swimmers presented 

acquired immune depression earlier in the training season. At the heaviest training period 

both innate and acquired immunity impairments contributed to a more pronounced immune 

depression alongside with higher prevalence of upper respiratory symptoms. 
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Study 3 – Long term swimming training modifies 

the immune response to high intensity 

swimming sessions 
 

 

6.1. Abstract 
 

Long-term training influence on the acute immune cell response to exercise in athletes has 

been poorly studied, despite the complexity of both chronic and acute adaptations induced 

by training programs performed throughout the years of the athlete’s career. 

This study aimed to investigate the influence of a 4-month swimming training macrocycle 

on the immune cell response to a representative high intensity swimming training session, 

during a 24 h recovery period, controlling for sex, maturity, age group, performance, and 

distance specialty effects. 

Forty-three swimmers (16 females; 14.4 ± 1.05 yrs., and 27 males; 16.2 ± 2.01 yrs.) 

performed a standardized training session, at the beginning (M2) and at the end (M4) of a 

4-month training macrocycle. Blood samples were collected before (Pre), immediately 

after (Post), 2 h after (Post 2h) and 24 h after (Post 24h) the training sessions, by standard 

procedures for assessment of leukogram by automated counting (Coulter LH 750, 

Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur, BD Biosciences). 

Throughout the season Upper Respiratory Symptoms (URS) episodes were monitored and 

training load was quantified. Statistical significance was considered at p<.05. 

At the end of the training macrocycle, immediately after the swimming session, there was a 

lower leukocytosis and neutrophilia.  From Post 2h to Pre, total lymphocytes and CD19+ 

subset had a less efficient recovery in the whole group. CD4+/CD8+ ratio, in the youth 

group continued to increase at M2 but not at M4, while in the senior group continued to 

increase at M4 and at M2 was returning to baseline. CD16+56+ cells’ recovery from 

Post 24h to Pre values was less efficient in adolescents than in adults. 
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At the end of the training macrocycle, there seems to be a general attenuated acute immune 

response, more accentuated in the younger athletes. The higher URS frequency at this 

period reinforces the idea of a potential immune depression and a longer interval of 

immune susceptibility to infection. Nonetheless, it is difficult to say if this response 

reflects positive or negative adaptive mechanisms. However, it appears that the overall 

changes resulted from the cumulative effects of the swimming training loads. 

 

Key Words: Cellular Immunity, Swimmers, Training Session, Training Season. 

 

 

6.2. Introduction 
 

The acute immune response to various types of exercises (Gabriel et al., 1992a; Mignini et 

al., 2008; Natale et al., 2003), and the chronic response of immune cells resting values to 

long-term training periods or competitive training seasons in different sports (Brunelli et 

al., 2014; Del Giacco et al., 2014; Dias et al., 2011; Suda et al., 2013) have been 

investigated. However, there is little evidence about the long-term training effects upon the 

acute immune systemic and mucosal response to exercise. In fact, to our knowledge the 

literature refers only one investigation about this topic, which has specifically overviewed 

the impact of a 3-month training program on mucosal immunity response to swimming 

training sessions and the incidence of respiratory illness in swimmers (Gleeson et al., 

2000). Nonetheless, the influence of the long-term training effects on the acute immune 

cell response to exercise remains unclear and has not yet been studied, despite the 

complexity of both chronic and acute adaptations induced by training processes that are 

extended through many years with daily training and frequent competitions. 

At the time of important competitions, a healthy immunological, metabolic, hormonal, 

circulatory and respiratory condition along with an optimized functional capacity is needed 

(Hellard et al., 2013). This optimal functionality allows the athlete to achieve the best 

performance in competition, and is usually the result of an adequate balance between 

training loads and recovery throughout the different phases of the periodization of a 

training season (Mujika et al., 1995). However, in endurance sports, such as swimming, 

during the cycles of high training volume and intensity that include consecutive training 

sessions with little recovery time in between, athletes may experience a temporary 
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diminished performance concomitant with an immunodepression state (Dias et al., 2011; 

Gleeson, 2007; Gleeson & Williams, 2013; Morgado et al., 2012; Rama et al., 2013). 

Moreover, swimmers are frequently exposed to warm humid environment, temperature 

variations and chlorine-rich atmosphere, thus being more predisposed to respiratory illness 

(Aubry et al., 2014; Bernard et al., 2009; Bougault et al., 2012; Gleeson et al., 1995; 

Gleeson et al., 2000; Mackinnon, 1997; Spence et al., 2007). These combined factors 

influence negatively the health status must be seriously considered and well managed 

especially during taper periods (Gleeson & Bishop, 2005) so that the overall functional 

levels of the athlete may recover in time for competition.  

Studies concerning the immune systemic response to swimming, both acute (Ferrer et al., 

2009; Kargotich et al., 1997; Morgado et al., 2014; Tauler et al., 2008) and chronic 

(Gleeson et al., 1995; Morgado et al., 2012; Mujika et al., 1996b; Rama et al., 2013; 

Teixeira et al., 2014), have also been addressed separately. Like most of the exercise 

immunology literature, the consistent immediate post-exercise rise in the number of 

leukocytes (leukocytosis), neutrophils (neutrophilia), monocytes (monocytosis), and 

lymphocytes (lymphocytosis), reflecting the increase of all lymphocytes subsets, and a 

CD4+/CD8+ ratio decline was also observed after high intensity swimming (Kargotich et 

al., 1997; Morgado et al., 2014). Furthermore, during the first hours of recovery following 

high intensity swimming exercises, leucocytosis and neutrophilia (Ferrer et al., 2009; 

Kargotich et al., 1997; Tanner, 1978), monocytes recovery to baseline levels (Kargotich et 

al., 1997), and declines in lymphocytes total and subsets CD4+, CD8+, CD16+ and CD19+ 

have been reported (Kargotich et al., 1997), although others noticed no alterations on 

lymphocytes  (Ferrer et al., 2009). When considering the effects of long-term swimming 

training seasons, reductions in neutrophils and monocytes resting values (Morgado et al., 

2012) and decreased CD56+ NK cells (Gleeson et al., 1995; Rama et al., 2013) were 

observed after a 7-month competitive season, and after a 3-month swimming training 

program, CD56+ NK cells were also reduced (Gleeson et al., 2000). Summarizing, intense 

training over long periods appears to affect the number and function of innate and acquired 

immune cells, possibly contributing to upraise the risk of infection (Walsh et al., 2011). 

Besides all the above mentioned factors concerning the immune response to exercise and 

sports activities, there are still divergent findings in the literature for both acute and 

chronic immune responses that have been explained by the diversity of exercise protocols, 

training loads, length and seasonality of the observational periods, methods of data 
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collection, sample sizes and inter-subjects characteristics, such as subject fitness level, 

performance, sex, maturity, age group, ability level, and/or event distance specialization. 

This study aimed to investigate the influence of a 4-month training macrocycle of a 

swimming season over the immune cell response to a representative high intensity 

swimming training session integrated in the normal training process, during a 24 h 

recovery period, whilst controlling systematically and simultaneously the effects of sex, 

maturity, age group, performance, and distance specialty. 

 

 

6.3. Methods 
 

6.3.1. Participants 
 

Forty-three swimmers (16 females, 27 males) members of four different Portuguese 

swimming teams, undertaking 13 – 15 h of pool training and 4 h of dry-land training per 

week, were evaluated in this study.  

The swimmers were included into different swimming age groups according to the 

regulation of Portuguese Swimming Federation and the Ligue Européene de Natation 

(LEN) (described in Table 6.1.) and had different competitive swimming backgrounds 

(5.5 ± 0.3 yrs. ranging from ≃ 4 to 11 yrs. of practice). 

After receiving detailed information about the aim of the study and the possible risks of the 

investigation, either the subjects or their parents, as appropriate, provided their written 

informed consent to participate. All procedures were approved by the Ethics Committee of 

the Faculty of Human Kinetics of the University of Lisbon and were conducted in 

accordance with the Declaration of Helsinki for human studies (World Medical 

Association, 2008).  

 

 

6.3.2. Study Design 
 

This study used an observational design with a follow-up of the second macrocycle of a 

swimming winter training season lasting 17 weeks. Swimmers followed the training 

program set by the coaches of each different team. 
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The evaluation of the swimmers was made at two moments of evaluation named M2 (the 

week after the main competition of the 1st macrocycle, the beginning of the 2nd 

macrocycle; 13th week of the training season) and M4 (the week after the main competition 

of the 2nd macrocycle; 30th week of the training season). 

At each moment of evaluation, swimmers performed a representative high intensity 

swimming training session designed by experienced coaches, and data collected for all 

subjects included subjects’ chronological age and body composition measurements, an 

indicator of biological maturity (pubertal Tanner stages (Tanner, 1962)) and biochemical 

immune indices that were evaluated before (Pre), immediately after (Post), 2 h after 

(Post 2h) and 24 h after (Post 24h) in order to examine the acute response of biochemical 

immune indices to exercise. Athletes were instructed not to consume anything but water 

after 10:00 p.m. of the preceding day and to have a minimum of 8 h rest before testing. To 

standardize pre-exercise food intake and to avoid extending the duration of their fasted 

state, participants consumed a sandwich with butter and a juice after the body composition 

measurements and the resting blood sample collection, which were performed in a fasted 

state. The experimental session took place between 6:30 and 10:00 a.m..  

Throughout the follow up season the incidence of Upper Respiratory Symptoms (URS) 

was monitored weekly and training load and mean intensity of all scheduled swimming 

sessions were quantified. The characteristics of the training regimens and competition 

schedules were not modified by the present study in anyway nor any swimmer suffered 

from major injury or sickness preventing them from training for more than one day. 

 

 

6.3.3. Swimmers characteristics 
 

6.3.3.1. Body composition measurements 

 

Stature and body mass were measured always after wakening in the fasted state. Stature 

was measured to the nearest 0.1 cm with Siber-Hegner anthropometric kit (DKSH Ltd., 

Zurich, SW). Participants were weighed to the nearest 0.1 kg wearing a bathing suit 

without shoes on an electronic scale (TANITA BC-601 body composition scale monitor). 

This electronic scale was also used to calculate swimmers Fat Mass percentage (%FM) 

using Bioelectrical Impedance Analysis with a measuring current of 50 kHz, 100 μA. Body 
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Mass Index (BMI) was calculated as body mass (BM; kg) divided by the square of the 

stature (m). Free Fat Mass (FFM) was calculated according to the formula: 

 

	ܯܨܨ  = –	ܯܤ	  (ܯܨ%	ݔ	ܯܤ)	
 
Where FFM is the Fat Free Mass expressed in kilograms, BM is the Body Mass expressed in kilograms, 
and %FM is the Fat Mass percentage expressed in percentage. 
 

 

6.3.3.2. Maturity - Tanner stages  

 

Participants received detailed instructions after which they made a self-assessment of their 

degree of genital organ, breast, and pubic hair development using a questionnaire (Tanner, 

1962) accompanied by figures and were grouped according to pubertal stage. In this study, 

the maturity stage at M2 was equal at M4 and so swimmers were divided in two groups: 

adolescents and adults (Table 6.1.). 

 

 

6.3.3.3. Distance specialty 

 

This division was made according to the coaches’ classifications of their swimmers, and 

was primarily based on the swimmers’ main event distance: 50m, 100m and 200m 

swimmers were classified as short distance and 400m, 800m and 1500m swimmers as long 

distance swimmers (Table 6.1.). 

 

 

6.3.4. Swimming training season 
 

The observed 4-month training macrocycle was the second macrocycle of a swimming 

winter training competitive season (Fig. 6.1.). This macrocycle started with a development 

period characterized by an increasing training volume, intensity and frequency that lasted 

until the end of the specific preparatory sub phase, where the higher peak of training load 

of the season was reached. In this period there was also a more frequent participation in 

competitions (including international meetings). Afterwards, the competitive phase of the 

2nd macrocycle of the season occurred, and included a specific preparatory period followed 



Study 3 – Long term swimming training modifies the immune response to high intensity swimming sessions 

 105

by a competitive period that lead to important competitions for which training load was 

progressively reduced: National Youth Championship and National Junior and Senior 

Championships. 

 

Fig. 6.1. Periodization of the swimming winter training competitive season in which the  
4-month training macrocycle is incorporated and schedule of the two moments of evaluation: 
M2 and M4 
 

 
 

 

6.3.5. Quantification of training load 
 

Training load was determined through the total amount of meters swam (volume) and also 

by the balance of the distance completed at each level of intensity based on the work of 

Mujika et al. (1996a; 1995) (Table 6.3.). 

The use of a stress index scale of difficulty has been established in reference to the 

theoretical values of blood lactate accumulation usually associated with the different 

swimming training zones of intensity. The training zones adopted considered the works by 
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Mujika et al. (1995), Maglischo (2003), and Sweetenham &Atkinson (2003)), and were: I - 

warm up and recovery, II - aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, 

VI - lactate production and VII - sprint. In order to evaluate the swimming sessions 

training load the volume accomplished in each zone of intensity was quantified (mI, mII, 

mIII, mIV, mV, mVI and mVII). The magnitude of the load was then expressed in 

dimensionless units of load, or arbitrary units of load (AUL), obtained from the ratio 

between the sum of the volumes swam in each zone of intensity multiplied by the 

respective index (1, 2, 3, 4, 6, 8, 10) and the total volume effectively completed, according 

to the formula: 

 

	ܮܷܣ =
1	mI	+ 	2	mII	 + 	3	mIII	 + 	4	mIV	+ 	6	mV	+ 	8	mVI	 + 	10	mVII	

swimming	training	session	volume	  

 
Where AUL is the arbitrary units of load expressed in dimensionless units of load, the numerator is the 
weighed volume expressed in meters, mI, mII, mIII, mIV, mV, mVI and mVII are the meters 
accomplished at the following swimming training zones of intensity: I- warm up and recovery, II - 
aerobic 1, III – aerobic 2, IV - VO2max, V - lactate tolerance, VI - lactate production and VII – sprint, the 
numbers 1, 2, 3, 4, 6, 8, 10 are the indexes associated to each zone of intensity, the denominator is the 
swimming training session volume expressed in meters. 
 

This was performed for all season sessions considering each age group and within all 

swimming teams. 

The mycrocycle or weekly load was quantified and expressed by the volume (total of 

meters swam), by the weighed volume (sum of the multiplications of the volume 

accomplished in each zone of intensity by the respective stress index values) and by the 

intensity (determined through the sum of the resulting dimensionless unit of load of each 

session of training). 

 

 

6.3.6. Swimming training session 
 

The swimming session started with a 1500 m standardized warm-up lasting 30 to 35 min 

followed by a high intensity main task that lasted 50 min and a 500 m recovery task (8 min 

of duration). The main task was designed to induce maximal lactate accumulation and had 

a total distance of 1000 to 1200 m, depending on the age group considered. For the youth 

group the main task consisted of two sets of four repetitions of 75 m front crawl on a five 

min cycle, with 10 min of active recovery between sets (400 m freestyle). Each repetition 



Study 3 – Long term swimming training modifies the immune response to high intensity swimming sessions 

 107

had to be accomplished at 90 – 95 % of 100 m Freestyle personal best race time. The task 

organization was identical for juniors and seniors but with repetitions of 100 m. Swimming 

times were registered in each repetition and the mean time was used to determine the mean 

effort intensity percentage (%), in relation to the personal best time at the 100 m freestyle 

race.  

 

 

6.3.7. Performance improvements 
 

The effect of training on performance was evaluated by magnitude of the change of the 

race time at competitive events. It was expressed as a relative difference, which 

represented a percentage of change, comparing the race time accomplished at M4 with that 

at M2. In this manner, two groups were created according to the level of improvement: the 

less efficient group, which presented under 2% changes in performance, and the efficient 

group, which presented changes of 2% and above (Table 6.1.). This 2% level of 

improvement was adopted based on the consistently mean improvements of around 3% 

mentioned in the literature (Mujika et al., 1996a). 

 

 

6.3.8. Immune system parameters 
 

Peripheral venous blood samples were collected via standard procedures before (Pre, 

between 6:00 – 6:30 a.m. in the fasted state), immediately after (Post), 2 h after (Post 2h) 

and 24 h after (Post 24h) the swimming training sessions. Venous blood was collected into 

tubes containing EDTA for assessment of hemogram and leukogram and for counting of 

total and subpopulations of lymphocytes. Hemogram and leukogram was performed in an 

automated hematology analyzer (Coulter LH 750, Beckman) which produced information 

about the following parameters: hemoglobin concentration (g.dL-1), hematocrit (%) and 

counts of white blood cells namely: leukocytes, neutrophils, monocytes, and eosinophils. 

Total and subpopulations of lymphocytes were counted by flow cytometry (FACS Calibur, 

BD Biosciences). The lymphocytes subpopulations analyzed were CD3+ (total T 

lymphocytes; T cells), CD4+ (T helper; Th cells), CD8+ (T cytotoxic; Tc cells), CD16+56+ 

(NK cells) and CD19+ (B cells). Results were expressed as number of cells.109.L-1 for 

leukogram parameters and as number of cells.µL-1 for total and subpopulations of 
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lymphocytes counts. Post, Post 2h and Post 24h exercise values were corrected for plasma 

volume variation (Dill & Costill, 1974). 

 

 

6.3.9. Upper Respiratory Symptoms 
 

Subjects were asked to answer to a weekly questionnaire that was sent every Monday to 

their email address. This questionnaire consisted of a daily logbook in which they noted 

their symptoms associated with illnesses related to URS such as: headache, fever, ear pain, 

chills, runny or blocked nose, pharyngitis/tonsillitis, bronquitis, asthma, phlegm, cough, 

conjunctivitis; itchy, watery eyes, nausea/vomiting, and diarrhoea. All swimmers were 

asked to indicate the medication they were on and female subjects to point out the days of 

menstruation. If subjects had no symptoms they simply recorded that and reply to the 

email. If fever or at least two concomitant symptoms persisted for at least 48 hours, 

separated from previous symptoms by at least one week, they were considered an episode 

of URS (Bishop, 2006). Symptoms separated by less than one week were regarded as a 

recurrence or continuation of the initial episode and were regarded as part of the same 

episode. The counting of the URS episodes was displayed graphically as the weekly 

number of episodes of URS over the course of the training season. 

 

 

6.3.10. Statistical analysis 
 

The statistical analyses were performed with the software IBM SPSS Statistics, version 21, 

and the R software (R Core Team, 2012), version 2.15.1, and a significance level of 5% 

was considered. 

In order to have a single value that indicated the change between the moments of 

observation of the acute immune response (Pre, Post, Post 2h, and Post 24h), the relative 

differences in percentage from Pre to Post, Pre to Post 2h, Pre to Post 24h, Post to 

Post 24h, and from Post 2h to Post 24h were calculated according to the formula: 

 RV= X-Y
Y 	×	100 

 
Where RV is the Relative Difference in percentage, X is the final value, Y is the starting value, the ratio 
is multiplied by 100 so RV can be expressed as percentage. 
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Descriptive statistics, including means and standard deviation (mean ± SD) were 

performed for all quantitative outcome measurements. Normality of the outcome variables 

was analysed using the Shapiro-Wilk test.  

The effects of the sex, pubertal Tanner’s stages (adolescents and adults), swimming age-

groups (youth, juniors and seniors), distance specialty (short and long distance swimmers), 

and performance (efficient and less efficient), and the interaction effect of each one of 

these factors with the moment of evaluation on the response of the variables of interest was 

analysed using nonparametric mixed-design ANOVAs.  

The within-subjects factor was the moment of evaluation (two levels: M2 and M4), which 

is referred as the effect of training, and the subjects’ factors were the aforementioned 

influential variables. The nonparametric mixed-design ANOVA has an ANOVA-type 

statistic (ATS) for each effect, and also a modified ANOVA-type statistic (MATS) for the 

subject’s factor. The option for the nonparametric approach was due to the violation of the 

assumptions of parametric mixed ANOVA, namely the normality of the dependent 

variables in each factor’s level, the homogeneity of variances and the sphericity. This 

nonparametric analysis was performed with the nparLD package (Noguchi et al., 2012) 

from the R software. 

It was determined if sex, maturity, swimming age group, distance specialty, and 

performance interactions contributed to the relationships between the immune response to 

a swimming session (from Pre to Post, Pre to Post 2h, and Pre to Post 24h in percent 

changes values in relation to pre-exercise values) and the moments of evaluation (M2 and 

M4). When an interaction occurred exercise effects on the variables of interest were 

analyzed separately considering each between-subjects factor’s level.  

The majority of the collected data did not follow the normal distribution and so 

nonparametric Wilcoxon test was used to analyze the influence of training over the acute 

immune response to exercise. 
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6.4. Results 
 

The number of participants in each group of maturity, swimming age group, distance 

specialty, and performance is presented in Table 6.1. 

 

Table 6.1. Number of participants in each group of maturity, swimming age group, swim specialty, and 
performance 

  Number of Participants 

Maturity (Tanner’s stages) 
Adolescent 28 
Adult 15 

Swimmimng age group 
Youth (female: 13 – 14 yrs, male:14 – 16 yrs) 26 
Juniors (female: 14 – 16 yrs, male:16 – 18 yrs) 10 
Seniors (female: ≥ 17 yrs, male: ≥ 18 yrs) 7 

Distance specialty 
Sprinters (sprinters and individual medley) 22 
Long distance (middle to long distance) 21 

Performance 
Improved performance at the end of the season 25 
Maintained performance at the end of the season 18 

Note: Tanner’s stage classification of the maturational state according to Tanner (1962); Swimming age-group classification in 
both sexes according to the regulation of the Portuguese Swimming Federation and Ligue Européene de Natation (LEN); 
Distance specialty groups were based on the participant’s main event distance: 50m, 100m and 200m swimmers were 
classified as Short distance and 400m, 800m and 1500m swimmers as Long distance; Performance groups based on the 
percent change difference between the personal race best time between at the beginning and at the end of the season: <2% 
changes = Less efficient (maintained performance), and ≥ 2% changes = Efficient (improved performance) 

 

The participant’s characteristics, including demographics and body composition related 

variables, are presented in Table 6.2. 

 
Table 6.2. Demographics and body composition of swimmers at the moments of evaluation M2 and M4 

 
Females Males 

   M2    M4    M2    M4 
Age (years) 14.4 ± 1.05 14.7 ± 1.06 16.2 ± 2.01 16.5 ± 2.05 
Stature (cm) 162.2 ± 6.13 163.5 ± 6.23 173.6 ± 6.42 174.3 ± 6.18 
Body Mass (kg) 54.3 ± 8.87 55.4 ± 6.60 64.7 ± 7.85 66,0 ± 7.31 
BMI (kg.m-2) 20.6 ± 1.96 20.5 ± 1.82 21.5 ± 3,0 21.8 ± 1.82 
FM (%) 25.0 ± 3.33 24.8 ± 2,91 16.6 ± 3.05 16.6 ± 2.90 
FFM (kg) 40.7 ± 5.02 41.6 ± 4.69 54.0 ± 7,05 55.0 ± 6.29 

Abbreviations: BMI, body mass index; FM, fat mass percentage; FFM, fat free mass 
 

Swimmers physical characteristics slightly changed over the training macrocycle, 

reflecting little increases in height, body mass and FFM. The main sets of the swimming 

training sessions were accomplished at the requested high intensity in relation to their 

personal best time at the 100 m Freestyle race: 92.3 ± 4.7 % at M1, and 93.4 ± 7.2 % at 
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M4. Immune system mean baseline values indicated that the participants were within the 

reference interval associated with each variable (Lewis et al., 2006). 

 

 

6.4.1. Influence of training on the acute exercise immune response 
 

Regarding the effects of the training macrocycle on the response to the training session, 

maturity influenced CD16+56+ subsets (from Pre to Post 24h: F(1, ∞) = 4.470, p = .035), 

and swimming age group influenced CD4+/CD8+ ratio (from Pre to Post 2h: 

F(1.881, ∞) = 10.847, p = .000) (Fig 6.2. E. and F.). Sex, distance specialty, and 

performance had no influence over the effect of the training macrocycle on the response to 

the training session. 

At M4, from Pre to Post, leukocytes and neutrophils ascendant response was lower. From 

Pre to Post 2h, total lymphocytes and CD19+ subset absolute relative differences were 

higher. For seniors, CD4+/CD8+ ratio relative ascendant response was more accentuated at 

M4, while in the youth group it was more accentuated at M2. From Pre to Post 24h, for 

adolescents CD16+56+ subset absolute relative difference was more accentuated at M4 

(Fig. 6.2.). 
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Fig. 6.2. Mean and SD of the relative difference (%) values of leukocytes (A.), neutrophils (B.), 
total lymphocytes (C.) and subsets CD19+ (D.), CD16+56+ (E.), and CD4+/CD8+ ratio (F.) in 
response to a representative high intensity swimming training session performed at the 
beginning (M2) and at the end (M4) of a 4-month swimming training macrocycle 
(corresponding to the 2nd macrocycle of a 7-month swimming season) 
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6.4.2. Seasonal training workload 
 

Training load characterization of the four weeks before each moment of evaluation is 

presented in Table 6.3. The mean weekly training load score (AUL) throughout the 30th 

weeks of the swimming winter training season in which the 4-month macrocycle is 

incorporated is presented in Fig. 6.3. 

 

Table 6.3. Mean and SD values of the weekly and total training volume (m), weighed volume (m), load score 
(AUL) and partial training volumes accomplished at each intensity training zone (m), performed every four 
weeks before the two moments of evaluation that defined the beginning (M2) and the end (M4) of the 4-
month swimming training macrocycle 

Training load parameters and 
training zones of intensity  
(weekly value at each zone; m) 

M2 M4 Macrocycle mean 
weekly value (m) 

Macrocycle total (m) 
and RV (%) values 

Volume (m) 30696 ± 3991 29157 ± 7397 40175 682977 
Weighed volume (m) 72951 ± 11005 70868 ± 18177 95074 1616254 
Load score (AUL) 12.0 ± 0.8 11.4 ± 0.8 * 12.3 208.3 

Warm-up/Recovery (m) 7564 ± 1131 8110 ± 1417 * 9967 24.8 
Aerobic 1 (m) 12625 ± 1782 10586 ± 3666 * 15435 38.4 
Aerobic 2 (m) 7310 ± 1331 6920 ± 2306 10464 26.0 
VO2 (m) 1893 ± 708 1843 ± 971 2722 6.8 
Lactacte Tolerance (m) 416 ± 228 674 ± 281 * 807 2.0 
Lactacte Power (m) 368 ± 162 403 ± 167 345 0.9 
Sprint (m) 518 ± 346 615 ± 219 436 1.1 

Abbreviations: AUL, arbitrary units of load; RV (%); relative value of the macrocycle total values in percentage; 
* different from M2 (p<.05) 

 

At M4, the lower weekly AUL and Aerobic 1 volume, along with a higher volume 

accomplished at the warm-up/recovery training zone suggests that M4 had a more 

accentuated recovery component than M2. 
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Fig. 6.3. Mean weekly training load score (AUL) values over the course of the training season 
in which the 4-month swimming training macrocycle was included (between M2 and M4; 
corresponding to the 2nd macrocycle of the season) 

 
 

6.4.3. Upper Respiratory Symptoms 
 

The number of episodes of URS was monitored weekly throughout the 7-month swimming 

winter training season in which the 4-month macrocycle (between M2 and M4) was 

included (Fig. 6.4.). 

 

Fig. 6.4. Weekly number of episodes of Upper Respiratory Symptoms (URS) over the course of 
the training season in which the 4-month swimming training macrocycle was included 
(between M2 and M4; corresponding to the 2nd macrocycle of the season) 

 
The higher number and weekly frequency of URS episodes of the training season occurred 

between the 20th and the 24h weeks of training. When comparing the two moments of 

evaluation, during the four weeks before M4 there was a superior frequency of URS 

episodes than along the four weeks prior to M2. 
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6.5. Discussion 
 

In the present investigation, to understand the influence of training over the acute response 

to intense prolonged exercise, a representative high intensity swimming training session 

was performed at the beginning (M2) and at the end (M4) of a 4-month swimming training 

macrocycle. 

At the end of the training macrocycle, immediately after the swimming session, there was a 

lower leukocytosis and neutrophilia, suggesting an attenuated acute response to the 

swimming session. It was also observed a less efficient recovery of total lymphocytes and 

CD19+ subset (B cells) from Post 2h to Pre values in the whole group. As for CD4+/CD8+ 

ratio, in the youth group their ratio continued to increase at M2 but not at M4, while in the 

senior group their number continued to increase at M4 and at M2 was returning to baseline, 

from Post to Post 2h. CD16+56+ NK cells’ recovery from Post 24h to Pre values was less 

efficient in adolescents than in adults. 

At the end of the swimming training macrocycle, the immediate response to the swimming 

training session seems to involve a smaller recruitment of cells from the reservoirs or 

marginated pool of cells, as shown by the variations of neutrophils reflected into the 

variation of leukocytes. In addition, the acquired immune response, in particular CD19+ 

lymphocytes, appears to have a less efficient recovery in the first 2 h after the intense 

training session in all swimmers, suggesting a longer interval of immune susceptibility to 

infection than at the beginning of the macrocycle. Likewise, but only in the adolescent 

swimmers, a less efficient recovery of the innate immunity, namely CD16+56+, to the 

swimming session was observed even at 24h post, indicating that the general acute immune 

response was more attenuated than adults, and also that the innate immune response of 

adolescents to acute exercise was apparently more sensitive to the influence of long term 

training. Throughout adolescence, especially during puberty, the physiological levels of 

some hormones (e.g. catecholamines, cortisol, growth hormone, estrogen, and testosterone) 

in association with a differential effect of these hormones and cytokines on lymphocyte 

subsets (Nemet & Eliakim, 2010; Steensberg et al., 2001b) may influence the exercise-

induced immune response. 

The training process might have contributed to the reduced leukocytes acute response to 

exercise, through a diminished cell traffic and cell proliferation and/or increased cell death 

responses (Kruger et al., 2008). A reduction in cell trafficking could have relied upon the 
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long term adaptations of the adherence of cells to the endothelium and their redistribution 

amongst organs or compartments, and of the physiological responses to acute exercise, 

namely, cardiac output, shear stress, and blood flow to working muscle, and improved 

ability to counteract pH and temperature changes (Adams et al., 2011). Moreover, training 

might have influenced catecholamines, and cortisol concentrations and their regulation of 

lymphocyte subset redistribution (McCarthy et al., 1991; Mignini et al., 2008). During the 

post exercise recovery period cortisol acts as conditioner of the entry of lymphocytes into 

the circulation contributing to their return to lymphoid compartments (Nieman, 1994), and 

regulates both lymphopenia and neutrophilia (McCarthy et al., 1991; Mignini et al., 2008). 

Although the overall long-term training effects of cortisol over resting lymphocytes values 

remains unclear, and herein was not evaluated, we may argue that cortisol’s levels may 

partially explain the less efficient recovery response of total lymphocytes and CD19+ 

subset to the swimming session at the end of the macrocycle. 

It is commonly accepted that training load increments in well-trained athletes undertaking 

periods of elevated training volume and intensity can lead to the stimulation of adaptive 

mechanisms related to metabolic and hormonal circulatory and respiratory responses that 

can compromise performance and induce an impaired immune status, including falls in the 

number and activity of T and B cells (Baj et al., 1994; Lancaster et al., 2004; Verde et al., 

1992). This conjuncture can contribute to elevate the risk of infection, despite this situation 

may be reversible by a tapering or recovering period (Gleeson & Bishop, 2005; Walsh et 

al., 2011).  

In our investigation, although the training load intensity decreased from M2 to M4, the 

number of URS tended to be higher at M4 than at M2. This evidence suggests a potential 

immune depression, and we can argue that this may result from the cumulative effects of 

the swimming training loads. We still have to consider seasonal variations of infectious 

agents, although M2 occurred in winter and M4 in spring.  

We did not observe any interaction between the improvement of performance during the 

macrocycle and the immune response to the swimming session. However, swimming 

performance depends on a multiplicity of factors, including biomechanical, energetic, 

psychological, that can mask the role that the immune system has on the outcome (Costill 

et al., 1985; Reis, Alves, Bruno, Vleck, & Millet, 2012; Toussaint & Beek, 1992). Thus, 

we may argue that the changes observed in the immune ability to respond to exercise 

during this period were not associated to the efficiency of the physical, psychological and 

technical qualities that allow reaching the desired performance. 
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Finally, coaches and athletes ought to implement intervention and behavioural strategies 

during taper periods in order to contribute to maintain health conditions, preventing the 

onset of fatigue and associated diminished performance, thus helping to avoid illness and 

reaching the peak performance at competitions. Also, athletes should take special 

precautions during the first hours after intense training sessions.  

 

 

6.6. Conclusions 
 

In the present investigation, at the end of the training macrocycle, the lower magnitude of 

the immediate leukocytosis and neutrophilia followed by the more prolonged recovery of 

total lymphocytes and B cells in response to the swimming session appears to dictate a 

general attenuated acute immune response. This response seemed even more attenuated in 

the younger athletes, reflected by the difficulty of CD16+56+ to recover in 24 h in 

adolescents, and by the lower magnitude of the CD4+/CD8+ ratio response during the early 

recovery in the youth group. Concurrently, there was a higher URS frequency, which 

reinforces the idea of a potential immune depression and a longer interval of immune 

susceptibility to infection. Nonetheless, it is difficult to say if this response reflects positive 

or negative adaptive mechanisms. However, it appears that the overall changes resulted 

from the cumulative effects of the swimming training loads. 
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General Discussion 
 

 

7.1. Main findings 
 

In order to address and enrich some of the above mentioned issues and limitations, which 

are scrutinized in the literature review section, three research studies were conducted. A 

detailed discussion of each study and the respective main findings were included in the 

corresponding chapters (Chapters IV to VI). This current section aims to gather and 

integrate the contributions of the three studies, by summarizing the main results and 

globally reflecting on the implications and practical applications. Limitations of these 

studies and future research avenues are also disclosed. 

In the present dissertation we investigated the acute immune cell response to a 

representative high intensity swimming training session, during a 24 h recovery period 

(Study 1), and to the chronic effects of the 7-month swimming winter training season, in 

which the training session was integrated, at rest (Study 2). We also investigated the 

influence of a 4-month training macrocycle over the acute immune response to exercise 

(Study 3). It was also an objective to control systematically and simultaneously inter-

subjects diversity, namely sex, menstrual cycle phases for females, maturity, swimming 

age group, and distance specialty, and also performance improvements and training load 

along the training season. The review of the state of the art revealed evidences about the 

possible influence of the aforementioned variables on the immune response to exercise. 

Thus, since the interpretation of results could be affected by these variables, and there was 

the possibility of evaluating a large sample of subjects with diverse characteristics, it has 

been found interesting to control the effects of these variables on the immune response to 

exercise. 

The immune response to the high intensity and prolonged swimming training sessions, 

which represent a typical effort developed in training sessions included in competitive 

swimming training processes, was similar throughout the season as it was observed in 

Study 1 and Study 3. In general, there was a rise of neutrophils, opposed by a decrease of 

monocytes, eosinophils and total lymphocytes and subsets CD3+ (total T), CD4+ (Th), 
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CD8+ (Tc), CD16+56+ (NK), and CD19+ (B), with the neutrophilia and lymphopenia 

lasting for approximately 2 h after exercise ended. The neutrophilia and lymphopenia 

suggest a change in the type of circulatory surveillance with increased innate immunity 

(neutrophils) and decreased acquired immunity (lymphocytes). We can argue that this may 

result in a broader immune response but also slower and less efficient, which may have 

advantages in case of infections by agents to which the athlete has never previously been 

exposed but is disadvantageous for reinfection situations. As the immune cells function 

was not evaluated, it is not possible to evaluate whether any elevation or diminution in 

cells counts observed in Study 1 and Study 3, were counteracted by the reduction or 

enhancement of their ability to respond. Still, previous investigations suggested a 

diminished activity of some leukocytes subsets, namely neutrophils (Robson et al., 1999), 

monocytes (Nieman et al., 1998b; Simpson et al., 2010) and CD56+ NK lymphocytes 

(Suzui et al., 2004). So, it is possible that at least in the first 2 h after intense training 

sessions such as the ones performed by our swimmers, athletes may be more susceptible to 

infection, highlighting the need for extra care when exposed to aggressive environmental 

agents. Except for total lymphocytes and subsets CD3+ in the junior group in Study 1 and 

for CD16+56+ NK subsets in adolescents in Study 3, all immune parameters recovered to 

baseline values at 24 h after the swimming session, pointing out the importance of the 

resting period after intense exercise sessions when planning consecutive training sessions. 

Three different processes that probably occur concomitantly may explain the variations of 

the number of these immune cells: cell traffic, cell proliferation or cell death (Kruger et al., 

2008; Kruger & Mooren, 2014). These changes and processes are also affected by the 

release of the exercise-induced hormones catecholamines and cortisol (Gabriel et al., 

1992a; Timmons et al., 2006b), and cytokines (Giraldo et al., 2009; Gleeson, 2007). In 

Study 1 and Study 3, the long duration of the swimming sessions may have revealed a 

scenario where the influence of cortisol was more evident, with the increase of neutrophils, 

and the reduction of lymphocytes probably mobilized into tissues such as lungs, spleen and 

muscles (Adams et al., 2011). These processes and mechanisms associated to the acute 

immune cell changes induced by exercise are explained in detail in Chapter II, Study 1, 

and in Study 3.  

When considering the influence of long term training on the immune cells at rest (Study 2), 

and on the acute response to the swimming session (Study 3), our results suggest that the 

innate and acquired immune cell responses to swimming training vary throughout the 

competitive season possibly affected by the dynamic of the training load. 
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Both the innate and acquired immune responses decreased was similar at the highest 

intensity training period of the season (M3, Study 2), reflecting the decreases in CD16+56+ 

NK (innate) and CD8+ subsets (acquired) and contributing to an overall impaired 

immunity, concomitant with the highest weekly number of URS episodes. These evidences 

support the idea of a disturbed immune resilience of the swimmers and an increased 

susceptibility to infections at periods of high training load, which is in accordance with the 

literature (Morgado et al., 2012; Rama et al., 2013). Also, earlier in the training season 

(M2, Study 2), the youth swimmers presented a diminished acquired immunity compared 

to the beginning of the season, expressed mostly by decreased total lymphocytes and 

subsets CD3+ and CD4+, whereas CD8+ subsets were diminished in the whole group. This 

different and more accentuated acquired immune response to training in the youth group 

may be related with the traditional stepper increase in the training load that characterizes 

the transition for this age group. The decreased number of the immune cells at M2 and M3 

is probably associated to the increased resting cortisol concentrations (Morgado et al., 

2012; Rama et al., 2013) and decreased cytokines production by immune cells (Morgado et 

al., 2012), which occur in response to exhaustive training. 

The end of the season (M4, Study 2 and Study 3) was preceded by a taper period (recovery 

period). At M4, in Study 2, we observed that the taper might have enabled an efficient 

recovery to baseline values of the resting acquired immunity (CD8+ and CD19+ subsets). 

Contrarily, resting innate immunity (CD16+56+ cells and eosinophils) persisted below 

baseline levels suggesting a higher susceptibility to the cumulative effect of the long term 

swimming training. At M4, in Study 3, there was an overall attenuated acute immune 

response to the swimming training session reflected by smaller leukocytosis and 

neutrophilia, and a subsequent longer open window period of susceptibility to infection 

indicated by the less efficient recovery of total lymphocytes and CD19+ (B cells) subset. 

The CD16+56+ NK subset recovery from Post 24h to Pre values was less efficient in 

adolescents than in adults. The leukocytosis seems to have involved a smaller recruitment 

of cells from the reservoirs or marginated pool of cells, probably through diminished cell 

traffic and cell proliferation and/or increased cell death responses (Kruger & Mooren, 

2014), as a consequence of the long term physiological and biochemical adaptations 

induced by the predominant endurance type of training included in swimming training 

(Bangsbo et al., 1993; Craig et al., 1995; Spencer & Gastin, 2001). Also, as previously 

explained in Study 2 and Study 3, and although herein was not evaluated, the elevated 

circulating levels of cortisol and cytokines as consequence of exhaustive exercise can 
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persist for long periods (Dinarello, 1997), and may partially explain the less efficient 

recovery response of total lymphocytes and subsets CD16+56+ and CD19+ to the 

swimming session. Whether this altered acute response reflects positive or negative 

adaptive mechanisms it is difficult to say, however, it is likely that the overall changes 

resulted from the cumulative effects of the swimming training loads. 

 

 

7.2. Intervention strategies 
 

The outcomes of the present dissertation suggest that athletes and coaches should consider 

taking several actions, mostly preventive, in order to avoid exposure of the athletes to 

potential infections, which may compromise attendance to training sessions, performance 

and most of all health. 

In general, coaches should consider immune susceptibility when planning training loads at 

the level of the whole squad, sub-groups (e.g., internationals, nationals, juniors, youth) and 

individual swimmers.  Strategies for surveillance of health status and to detect individuals 

more susceptible to infection, in particular in period of high training load should be 

implemented. Furthermore, these training periods should be applied with discretion and the 

coach should be aware of the repercussions that it implies. Additionally, a careful planning 

of the general conditioning undertaken in the early stages of the season, during intensive 

and post-competition periods is needed (Hellard et al., 2015). Besides, during the heavy 

training phases, several intervention strategies should be adopted to prevent health issues 

and the onset of fatigue and associated diminished performance thus helping to avoid 

illness and absence from training sessions. In this manner, coaches should carefully 

monitor recuperation by providing the adequate rest and recovery periods and the balance 

between training volume and intensity. A psychological approach, in ways of developing 

the self-management and coping skills of the athletes and at the same time monitor their 

responses to the psychological and psychosocial stresses of training and competition, 

should also be considered. Moreover, according to several authors (Ahmadinejad et al., 

2014; Gleeson, 2006; Hackney, 2013; Nieman, 2001; Walsh et al., 2011) preventive 

behavioural plans for athletes should be contemplated as well, in what refers adopting 

some actions, such as paying attention to the exposure to common infections and infected 

or sick persons, and keep vaccine(s) administration updated; protect airways from very 
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cold or dry air when performing intense exercise; follow a well-balanced diet with 

adequate nutritional intake; sleep for at least seven hours a night; and try to minimize other 

life stressors (e.g. management of academic, personal and professional areas).  

Nonetheless, in case of illness, a quick and complete recovery is essential to allow the 

athlete to return to the training activities. Yet, it must be a “safe” recovery, conferring the 

healthy and functional condition required for adequate participation in the demanding 

training processes. The timing for return to training should be adapted to the case and 

circumstance and the specific illness. In these cases, after returning from illness, the 

application of the behavioural strategies abovementioned appears to assume a greater 

importance. 

 

 

7.3. Future directions 
 

Regarding the long-term prospective swimming studies and the outcomes about the 

relationship between infection, training variables and immune parameters, it would be 

interesting trying to establish a “health friendly” range of the weekly training load, 

particularly, for the heavy training periods of the training seasons. Additionally, long term 

studies conducted in the same athletes over consecutive training seasons can probably help 

to understand if innate immunity is actually more susceptible to the cumulative training 

load than acquired immunity. 

As the understanding of the immune response to exercise appears to be associated to the 

influence of hormones, it is of particular importance to evaluate biological maturity when 

considering youth and adolescent populations. In our study we assessed sexual maturation 

based on the Tanner puberty stages classification. This somewhat subjective self-reported 

methodology turned out to be limitative and it did not allow for the positioning of subjects 

in a continuous process. Other methods of estimating the stage of maturity should be 

considered, especially those that have shown agreement with estimates based on skeletal 

age such as relative distance from adult stature and hand-wrist X-ray. 

Furthermore, knowing better the subjects characteristics effects upon the immune response 

to exercise, may be useful regarding the individualization of the training process. 
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7.4. Conclusions 
 

In the present research dissertation, we observed an impaired acquired immune 

surveillance immediately and at least throughout a 2 h period after the end of a 

representative high intensity prolonged swimming training session that may have increased 

the risk of infection in the period just after training, highlighting the need for extra care 

when exposed to aggressive environmental agents. This extra care is particularly important 

for the junior swimming age group that apparently takes longer to recover to baseline 

immune levels. 

During the heavier training periods of the winter season an immune depression was also 

observed, in particular of the acquired immunity. This was accompanied by higher 

prevalence of upper respiratory symptoms, reinforcing the idea of a disturbed immune 

resilience of the swimmers and an increased susceptibility for infections. There were also 

evidences for a higher susceptibility of the innate immunity to the cumulative effects of the 

training load while acquired immunity seems to be able to adapt and recover more 

efficiently when the subject is allowed a period of taper. 

The long term training appear to have induced an overall attenuated acute immune 

response to the swimming session and a subsequent longer open window period of 

susceptibility to infection, apparently more accentuated in the adolescent swimmers. 

Whether this altered acute response reflects positive or negative adaptive mechanisms it is 

difficult to say, however, it is likely that the overall changes resulted from the cumulative 

effects of the swimming training loads. 

These findings enhance the importance of controlling immune alterations throughout the 

season, especially in heavy training periods and when performing consecutive high 

intensity training sessions without a 24 h recovery period in between, but also during the 

first months of the training season particularly for young athletes. Accordingly, coaches 

and athletes ought to implement intervention and behavioural strategies in order to 

contribute to maintain health conditions, preventing the onset of fatigue and associated 

diminished performance, thus helping to avoid illness and reaching the peak performance 

at competitions. Also, athletes should take special precautions during the first hours after 

intense training sessions. 
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Appendix A: Informed consent 
 
 
 

Universidade de Lisboa 
FACULDADE DE MOTRICIDADE HUMANA 

Laboratório de Fisiologia e Bioquímica do Exercício 
 
 

CONSENTIMENTO INFORMADO 
 

O estudo intitulado Variações Imunitárias em Nadadores de Competição: Resposta ao 
Exercício Agudo e ao Treino, pretende analisar as alterações induzidas pelo exercício 
agudo e crónico em indicadores associados ao sistema imunitário e endócrino. O estudo 
decorrerá durante a época competitiva de Natação Pura Desportiva 2011/2012 sendo a 
participação voluntária. 
Aos participantes serão aplicados questionários maturacionais e de controlo da percepção 
subjectiva de esforço e de recuperação.  Efectuar-se-á o registo  de sintomas associados a 
episódios de Infecções do Tracto Respiratório Superior e também do consumo energético e 
nutricional. Solicitar-se-á a recolha de amostras de saliva e amostras sanguíneas, através de 
venopunção, ao acordar e após a realização de sessões de treino enquadradas em diferentes 
momentos de preparação da época desportiva. Nestas alturas serão também avaliadas as 
características físicas e antropométricas e a Variabilidade da Frequência Cardíaca. 
Asseguramos que a totalidade dos procedimentos utilizados na recolha dos dados são 
perfeitamente inofensivos do ponto de vista clínico e que serão realizados por profissionais 
habilitados para o efeito. Os resultados serão apenas utilizados para investigação não sendo 
divulgados a não ser ao próprio. Este estudo enquadra-se no âmbito do projecto de 
doutoramento com o mesmo nome, aprovado pela Comissão de Ética da Faculdade de 
Motricidade Humana – FMH. Todas as dúvidas serão esclarecidas com os investigadores 
participantes ou com o coordenador do projecto. 
O grupo de investigação agradece a sua participação neste estudo. 
 
 
 

DECLARAÇÃO 
 
Declaro que, voluntariamente, aceito participar neste estudo e que estou esclarecido quanto 
aos objectivos e procedimentos do mesmo. 
 
 
 ________________________  _________________________ 
  O participante    O Encarregado de Educação 
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Appendix B: Tanner questionnaires 
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Appendix C: Upper Respiratory Symptoms daily logbook 

 

Natação –   Juvenis, Juniores e Seniores

Faculdade de Motricidade Humana - FMH Laboratório de Fisiologia e Bioquímica do Exercício

Sintom as de I TRS / Dias da sem ana Segunda Terça Quarta Quinta Sexta Sábado Dom ingo

Dores de cabeça

Febre

Tosse

Náuseas/Vómito

Otite/Dôr de ouvidos

Faringite/Amigdalite

Bronquite

Asma

Expectoração

Comichão nos olhos

Diarreia

Corrimento nasal/ nariz entupido

Prescrições médicas/Medicação/Suplementos 
(marca e quantidade)

Data da última Menstruação

N om e:                                              Código:  

Sem ana de _ _ _ _   a _ _ _ _   de _ _ _ _ _ _ _ _ _   

Diár io de Regist o de Ocorrências ( S-  sim ; N- não)


