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Abstract—The Empirical model for Solar Proton Events Real Time Alert (ESPERTA) exploits three solar
parameters (flare longitude, soft X-ray fluence, and radio fluence) to provide a timely prediction for the
occurrence of solar proton events (SPEs, i.e., when the >10MeV proton flux is >10 pfu) after the emission
of a >M2 flare. In addition, it makes a prediction for the most dangerous SPEs for which the >10 MeV
proton flux is >100 pfu. In this paper, we study two different ways to upgrade the ESPERTA model
and implement it in real time: 1) by using ground based observations from the LOFAR stations; 2) by
applying a novel machine learning algorithm to flare-based parameters to provide early warnings of
SPE occurrence together with a fine-tuned radiation storm level. As a last step, we perform a preliminary
study using a neural network to forecast the proton flux 1-hour ahead to complement the ESPERTA tool.
We evaluate the models over flare and SPE data covering the last two solar cycles and discuss their per-

formance, limits, and advantages.

Keywords: Solar energetic particles / Machine learning

1 Introduction

Solar proton events (SPEs) constitute a hazardous condition
in the interplanetary space and near-Earth environment in terms
of ionizing radiation that can endanger technology systems and
life (e.g. Bothmer et al., 2007; Vainio et al., 2009; Temmer,
2021). For instance, SPEs can disrupt spacecraft operations
and instruments on board. In extreme cases, satellites may be
rendered useless, memory impacts can cause loss of control,
serious noise can affect image data, star trackers may be unable
to locate sources, and permanent damage to solar panels is pos-
sible. SPEs can also affect the polar ionosphere, causing absorp-
tion of high-frequency (HF) radio waves (Hunsucker, 1992;
Hargreaves, 2005). This impact can consequently disrupt
long-distance radio communications and radar systems. Even
a complete blackout of HF communications can occur through
the polar regions and position errors can make navigation oper-
ations extremely difficult. In addition, SPEs can induce biolog-
ical effects and pose a major risk to manned space flights.
Astronauts on deep space missions and in high-inclination
low Earth orbit (LEO) may be exposed to high radiation dose,
as well as aircrews and passengers of airlines in polar routes
when SPEs reach relativistic energies. Therefore, a warning
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system is required to predict SPE occurrence and severity and
mitigate the impacts.

Many models have been developed in the past years to fore-
cast SPEs (also termed >S1 events according to the NOAA
scale!, i.e., when the >10 MeV proton flux exceeds the 10
pfu threshold), both physics-based and empirical (e.g. Whitman
et al., 2023, and references therein). Physics-based models, such
as SOLPENCO (Aran et al., 2006), SEPSTER (Richardson
et al., 2018), and SEPMOD (Luhmann et al., 2007), are based
on the modelling of processes of particle acceleration and prop-
agation from the Sun to the interplanetary space in order to pre-
dict the properties of the resulting SPE. A big drawback of these
models is that they are computationally intensive, and their
usage in real-time prediction tools may be limited by the
resources available, so they may not be easily put into operation.

On the contrary, empirical models, which include also
machine learning techniques, mainly exploit correlations
between SPE observations and precursor parameters. Early
empirical models to predict SPEs include: the “proton prediction
system” PPS76 (Smart & Shea, 1979, 1989; Kahler et al., 2007)
based on solar flare parameters (microwave or X-ray flux, flare
location); the model (Balch, 1999, 2008) used by NOAA Space
Weather Prediction Center, which also exploits metric radio
type II and type IV bursts (indicating the presence of a coronal

! https://www.swpc.noaa.gov/noaa-scales-explanation.
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Table 1. Evolution of the ESPERTA model in terms of the provided forecast (severity of the SPEs and time when the forecast is issued),
validation period and type, and scores (probability of detection-POD, false alarm rate-FAR, median, and average (AVG) warning time-WT).

References Forecast Forecast time Validation Median (AVG) WT POD FAR
Laurenza et al. (2009) >S1 SPEs 10 min after > M2 flare peak time 1995-2005 55 min* 63%  42%
Alberti et al. (2017) >S1 SPEs 10 min after > M2 flare peak time 20062014 ~2h (~7 h) 59% 30%
Laurenza et al. (2018) >S1 SPEs 10 min after > M2 flare peak time 1995-2014 ~4.8 h (~9 h) 63% 38%
Laurenza et al. (2018) >S2 SPEs S1 threshold crossing 1995-2014 ~1.7h (4 h) 75% 24%
Alberti et al. (2019) >S1 SPEs 10 min after > M2 flare peak time 1995-2017 6.7 h (-) 63% 38%
Alberti et al. (2019) >S2 SPEs S1 threshold crossing 1995-2017 - 75% 23%
Stumpo et al. (2021) >S1 SPEs 10 min after > M2 flare peak time 1995—April 2017; - 63%**  42%

stratified cross-validation

%»Based on the 31-50 MeV protons onset times published by Posner (2007).
In Stumpo et al. (2021) a theoretical POD of 76% was computed without including the 21 missed SPEs due to <M2 flares. Here we
considered them to obtain the operational POD, which is comparable with the other ESPERTA ones.

mass ejection-CME driven shock) as input parameters. Some
empirical models incorporate CME information as input
(St. Cyr et al., 2017; Papaioannou et al., 2018, 2022), whereas
others, such as REIeASE (Posner, 2007; Nuiiez et al., 2018) and
UMASEP (Nuifiez, 2011), rely on the arrival times of relativistic
electrons to predict SPEs in the 30-50 MeV energy range or
high-energy protons at 1 AU compared to lower >10 MeV
energy protons, respectively. Other machine learning-based
approaches have been employed such as decision tree models
based on GOES soft X-ray (SXR) and high-energy proton
observations (Boubrahimi et al., 2017; Nufiez & Paul-Pena,
2020; Lavasa et al., 2021).

A state-of-the-art empirical model is ESPERTA (Empirical
model for Solar Proton Events Real Time Alert), developed
by Laurenza et al. (2009). ESPERTA is based on the logistic
regression analysis on three solar parameters, viz., the flare loca-
tion, 1-8 A SXR and 1 MHz Type III fluences, being the SXR
fluence a measure of flare size/energy and the Type III solar
radio bursts the signatures of fast electron beams streaming out-
ward, along the open magnetic field lines. ESPERTA predic-
tions for >S1 events are made 10 min after the peak time of
a greater or equal to M2 class flare, in order to maximise the
warning time, with a good performance. Table 1 includes all
different applications over time of ESPERTA in terms of goals
and scores. After the development, ESPERTA was validated on
an independent data set (Alberti et al., 2017), reaching scores
similar to those obtained on the dataset over which it was devel-
oped. Moreover, the ESPERTA model has been adjusted
(Laurenza et al., 2018; Alberti et al., 2019) to provide early fore-
casts of the largest SPEs, for which the >10 MeV proton flux
exceeds the 100 pfu threshold at the Earth (such events are
defined as >S2 events, according to the NOAA scale). It is
worthwhile to note that ESPERTA is the only model which
has been tested in terms of the event severity, with a median
warning time of about 2 h for the prediction of >S2 events over
an extended data set covering the period 1995-2014. Moreover,
the ESPERTA model has been reinterpreted in the framework
of machine learning and validated through stratified cross-
validation (Stumpo et al., 2021), which is more robust than
the evaluations of the model preformed previously. The perfor-
mance obtained was comparable with past results.

Although ESPERTA was designed to run in real-time in
Space Weather operations, the Wind/WAVES (Bougeret
et al., 1995) radio data necessary to compute the radio fluence

are currently not available in real-time. In this paper, we present
upgrades to the ESPERTA model to possibly implement it in
real-time operation, by using new radio data from ground-based
observatories, and provide also a reliable forecasting of the radi-
ation storm flux, by using two machine learning approaches: a
binary classification algorithm and a Long Short Term Memory
(LSTM)-based regression approaches.

2 Exploitation of ground-based radio
observations

ESPERTA was designed to predict the occurrence of an
SPE 10 min after the peak of any flare of class greater or equal
to M2. To achieve this, ESPERTA is based on three variables:

1. Helio-longitude of the flare;
2. Time-integrated SXR flux (i.e. SXR fluence);
3. Time-integrated radio flux (i.e. radio fluence).

The first two variables were obtained by using information from
Ho flares from the former National Geophysical Data Center as
in Laurenza et al. (2009) and the 1 min GOES 1-8 A flux,
respectively. The third variable was computed by using the
1 MHz emission from the WIND/Waves instrument. Here we
conducted a study to verify the possibility of replacing the
1 MHz fluence from WIND/Waves, with data recorded with
the LOw-Frequency ARray (LOFAR; van Haarlem et al,
2013) telescope. Each LOFAR station has two separate antenna
arrays: the low-band antennas (LBA), operating below 80 MHz,
and the high-band antennas (HBA), operating above 110 MHz
(the FM radio band prohibits observations between 80 and
110 MHz). For this study, we used data from a single station
in the LBA range.

Replacing space-based with ground-based data has obvious
advantages for operations and real-time forecasting tools. Thus,
we have recalculated the probability curves of the ESPERTA
model as in Laurenza et al. (2009), by replacing the 1 MHz flu-
ence with 30 MHz fluence. First, we used the flare list for the
period 1995-April 2017 from Stumpo et al. (2021), including
989 events (55 of which with data gaps), and extracted 200
events for which we were able to obtain data at 30 MHz. As
we do not have LOFAR observations before 2014, we also used
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Figure 1. Example event, showing the calibrated dynamic spectrum of the NDA (top left panel) used for one of the 200 selected flares. The
radio emission is shown also in detail during the period used for the radio fluence computation (top right panel) as well as the 30 MHz intensity
(bottom right panel). The related GOES SXR burst is also shown (bottom-left). The time intervals for the fluence calculation for both SXR and
radio data at 30 MHz are marked with a dashed violet line (bottom panels), while the integrated value used to calculate the fluence is marked

with a blue area (bottom-right).

the radio data from the Nangay decametric array (NDA,
Lecacheux, 2000) to cover most of these events (when LOFAR
data are not available). We remark that both LOFAR LBA and
NDA operate in similar frequency ranges, so this joined dataset
can be used to test the method, which afterwards could be
potentially used with any radio data at the same frequency.
Then, we performed data calibration for the emission at
30 MHz and calculated the radio fluence using the method
described in Laurenza et al. (2009).

To perform the calibration the NDA is equipped with a
radio emitter with a constant duty cycle and a constant emission
spectrum offering the possibility to calibrate the flux emission in
absolute terms. An example of the fluence for one of the flares
in the list is shown in Figure 1. The top panels of Figure 1 show
the dynamic spectrum from NDA, including the details of the
emission used for the fluence (top-right). The time intervals
for the SXR fluence and for the 30 MHz radio flux are shown
in the bottom panels. For the limited number of events from
2014 to 2017 we also used the data from LOFAR, and com-
pared it with the NDA data. They resulted in very good agree-
ment, so the whole dataset is homogeneous. The radio fluence at
30 MHz calculated for 200 events of this dataset, was then used
to reproduce the scatter plot replacing the 1 MHz fluence used
in Laurenza et al. (2009). We produced new probability curves
based on the 30 MHz fluence, and recalculated the Probability
of Detection (POD) and False Alarm Rate (FAR) for ESPERTA
with the new ground-based radio dataset. In particular, we
assumed the probability distribution

el
1
o (1)

where X and R are the variables SXR and radio fluence,
respectively and n(log X,log R) = alog X + fllog R + dlog

P(log X,log R) =

X log R. The parameters o, 5 and é have been estimated via
a Montecarlo approach from the observed events and the cor-
responding fluence at 30 MHz. In contrast with Laurenza et al.
(2018) and Laurenza et al. (2009) in this study we did not dif-
ferentiate for the longitudinal bands of the events, because of
the limited number of the considered flares. Adding the infor-
mation on the longitudinal bands would in principle improve
the POD and minimize the FAR. In this study however we
mainly want to show if the low-frequency ground-based
observations may replace the space-based radio observations
originally used in the ESPERTA model.

The resulting probability curves using the 30 MHz data are
shown in the left panel in Figure 2. A plot with the correlation
between 1 MHz and 30 MHz fluence is shown on the right
panel in Figure 2. The linear fit is indicated with a solid black
line, the dashed lines represent the 1o fit confidence while the
blue shaded area indicates the 20 confidence.

We selected a probability threshold to discern positive
events (hits, false alarms) from negative events (correct nulls,
misses) by maximising the Heidke score (hereafter HSS)
(Heidke, 1926). In particular, the possibility of predicting an
event by chance is

(hits + misses) - (hits + FAs) + (FAs + nulls) - (misses + nulls)
SEPs + nonggps

C=

(2)
where hits and misses are the number of successful or unsuc-
cessful predictions, FAs are the false alarms and nulls are the

correct rejections. The resulting Heidke score is expressed
then as:

HSS = (hits 4 nulls — C)/((SEPs + nonsgps) — C)  (3)
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Figure 2. Scatter plot (left) of the 30 MHz fluence vs the SXR one, including also the probability curves (black lines) for ESPERTA
recalculated using ground-based radio data at 30 MHz for the 200 flares selected for this study. The probability contour threshold (see the text)
is indicated by the white line. Red circles indicate SPE-associated flares, whereas orange circles indicate flares not associated with any SPE. A
scatter plot showing the correlation of the radio fluence at 1 MHz and 30 MHz for 200 events of the ESPERTA list extended to 2017 (right).
The black dashed lines represent the fit 16 uncertainty, while the 2¢ confidence level is marked with a blue area.

We obtained HSS = 0.70 with a threshold of 0.23, indicated
by the white line in the scatter plot on the left panel in Figure 2.
A point above this contour is considered to be a hit if a SPE is
associated to this flare, otherwise it is considered to be an FA. A
point below the contour is considered to be a miss if a SPE is
associated with this flare, otherwise, it is considered to be a null.
This leads to a POD = 0.69 and FAR = 0.33 for the radio data at
30 MHz. Note that these scores are obtained by considering also
the missed SPEs (MISSES) due to <M2 flares (that the method
cannot predict by definition). We estimated the number of
MISSES to be 5, i.e., about 22% of the 21 MISSES occurred
in the period 1995-April 2017 for consistency with the percent-
age of the 200 analysed flares with respect to the total ones in
the same period (934). This allows us to compare the obtained
scores with those computed in past studies (see Table 1). We
point out that they are computed for the same dataset on which
the method has been developed. The obtained scores of POD
and FAR are comparable and even slightly better than those
using WIND data at 1 MHz (see also next section).

3 ESPERTA model — A supervised learning
approach to SPEs forecasting

The ESPERTA model can be reinterpreted in the framework
of machine learning (Stumpo et al., 2021; Benella et al., 2023).
We used the supervised learning approach to perform the binary
classification needed because there are two classes of events, Cy
and C,, representing NO-SPEs and SPEs associated flares,
respectively. Thus, we defined an input vector x; of the three
aforementioned ESPERTA features and a binary target variable
t; which can assume the value of one if the input vector is a SPE
and O in the other case. In this framework, the model is a

function which maps the input vector into the target variable.
This function depends on a set of unknown parameters
(weights) which can be found by optimizing an error function
with respect to a series of examples for which the target variable
is given. Once the optimal weights have been learned, the model
performance in making predictions is evaluated. The basic idea
to do it properly is to split up the original data set into training
and testing datasets. The first one is used to learn the best
model, while the second one, which is independent from the
first, is used to evaluate the performance of the model.

ESPERTA exploits the probabilistic approach by modelling
the probability that the ith vector is a SPE with a logistic func-
tion. In this case, the unknown parameters are optimized by
minimizing the cross-entropy error function:

LX|P) = log Pi+ Y log(l—P) (4)

where

1

Pi(Cilxi, W) = 1

(5)
analogously to equation (1). Then, to decide whether or not a
given vector results in an SPE we define a decision function
based on the value of a threshold probability e:

1 it P(Ci|x;, W) >
t(Xi):{O if P(Cilxr, w) > €

if P(Ci|x;, W) < €
Ideally, we can say that it is a SPE if its estimated probability is
greater than a threshold of 0.5, but this threshold needs to be
reconsidered because the errors in classifying the events may
arise essentially from the overlapping of the two classes in the
parameter space. This effect is strongly dependent on the degree
of umbalancing (see Fig. 1 of Stumpo et al., 2021). To take into

(6)
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account this effect we have to find the optimal threshold on the
probability to decide more accurately the decision boundaries.

Stumpo et al. (2021) computed the validation metrics for
ESPERTA over the test set for different values of the threshold
(displayed in the top panel of Fig. 3) and obtained the following
scores: a critical success index (CSI) of 0.49, a POD of 0.76 and
FAR of 0.42. In particular, the CSI metric measures the trade-
off between POD and FAR, so they defined the optimal thresh-
old to be one which maximizes the CSI. Note that the above
“theoretical” POD was computed without including the
21 missed SPEs due to <M2 flares. If we considered them,
we would obtain the “operational” POD = 0.63, as reported
in Table 1, which is comparable with the other ESPERTA ones.

3.1 Calibration of the model for predicting > S2 SPE
events

In order to provide early warnings of SPE occurrence
together with an indication of the radiation storm level, we sep-
arated the >S2 proton events, i.e., those reaching a peak flux of
>100 pfu, over the period 1995-April 2017 (extending the list
in Laurenza et al. (2018)). Then we applied the supervised
machine learning approach described above by considering
the >S1 and >S2 as two separated classes.

We computed the validation metrics for different threshold
probabilities, as shown in the middle panel of Figure 3. Then,
we calibrated the model by computing the optimal threshold that
maximizes the CSI (yellow line in the middle panel of Fig. 3),
which is a trade-off between maximising the POD and minimis-
ing the FAR.

As the >S2 events are less frequent and we do not have
enough statistics, we calibrated the model by using N — 1 obser-
vations in the training set and 1 event in the test set and repeated
this for N — 1 times.

The optimization led to the following scores: f1 = 0.77;
CSI = 0.63; POD = 0.88; FAR = 0.32, comparable to those
obtained by Laurenza et al. (2018). Again, this POD was
computed without including the 6 missed >S2 SPEs due to
<M2 flares. When considering these MISSES, we obtained
the “operational” POD = 0.79.

In order to possibly refine the predictions of the radiation
storm level, we distinguished also the >S3 SPEs, i.e., those
reaching a peak flux of >1000 pfu, over the period 1995—April
2017. Then, we applied the supervised machine learning
approach again by considering the >S2 and >S3 as two sepa-
rate classes, we computed the metrics (see bottom panel of
Fig. 3) and performed a calibration for >S3 SPEs. The optimal
scores maximising the CSI were found to have the following
values: POD = 1.00, FAR = 0.54, f1 = 0.63, CSI = 0.46.
Nevertheless, they cannot be considered to be reliable, given
the small number of >S3 events.

Thus here we propose a forecasting scheme where forecasts
of >S1 SEP events are given 10 min after the flare peak time,
and are followed by forecasts of the >10 MeV solar proton
events with a peak flux >100 pfu (i.e., >S2) at the time when
the >10 MeV proton flux reaches the S1 level (i.e., at the end of
the third consecutive 5-minute interval with average flux >10
pfu). The median (mean) warning time of >S1 forecast is about
6 (8) h (Alberti et al., 2017), whereas the median (mean) for
>S2 forecast is 1.7 (4) h (Laurenza et al., 2018). Thus, we
would be able to predict the occurrence of an SPE soon after
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Figure 3. Averaged cross-validated scores with respect to the
decision threshold e for forecasting >S1 SPEs (top), >S2 SPEs
(middle), and >S3 SPEs (bottom).

the flare and, if it actually occurs, we could give an indication
that it is going to reach or surpass the S2 level in about 2 h.
In order to implement this approach in real time we can use
the aforementioned LOFAR data, as currently LOFAR is
observing with a dedicated station a calibrated solar radio spec-
trum (see Sect. 5). Another possibility is to exploit the
STEREO-A beacon data, as the spacecraft is currently close
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training set (top) and one in the test set (bottom). The predicted profiles are shifted 1 h ahead. The RMSE is given by the square root of the

MSE.

to the Earth furnishing real-time beacon data which are similar
to the WIND/WAVES ones. Nevertheless, this aspect will be
investigated deeper in the near future.

4 Long short-term memory

As detailed in Stumpo et al. (2021), the major challenge for
the design of classification algorithms based on flare precursors,
such as ESPERTA, is the optimization of the FAR. This prob-
lem is due to the fact that the distributions of the features remain
overlapped. The overlap creates a region of uncertainty, which
is all the more important the more unbalanced the classes are.
Furthermore, the classification does not provide quantitative
information on the peak of the proton flux. As we showed pre-
viously, in order to adapt a classification algorithm to give a pre-
diction of SPE severity, it is necessary to introduce three- or
four-class problems. In that case, some classes can have quite

poor statistics, such as the one of >S3 SPEs and, as a conse-
quence, the relative umbalancing is greater. For this reason, cre-
ating a classification model for the prediction of the >S3 SPE
severity is unreliable.

Thus, we explored an alternative approach that allows for
forecasting the whole SPE profile through the LSTM networks,
which are a special kind of recurrent neural networks, capable
of learning long-term dependencies (Hochreiter & Schmidhu-
ber, 1997).

The main advantage is that we have direct access to the pre-
dicted time series at time ¢ + n, which is extremely helpful for
real-time monitoring and space weather operations. The idea
of the LSTM is to use past data of the input time series say
attimet — 1,7 — 2, ..., t — m, in order to predict the value
assumed by the proton flux at time ¢ + n, where m and n are
the lookback and lookforward, respectively. The network
depends on a series of parameters w (weights) which weight
the importance of each point in the past until # — m, in order
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Table 2. Operational probability of detection-POD and theoretical false alarm rate-FAR computed for the different developed models.

Model Forecast Validation POD FAR
ESPERTA-based with 30 Mhz fluence >S1 1995-April 2017 69% 33%
LSTM-based >S1 2012-April 2017 67% 10%
ESPERTA-based with 1 Mhz fluence >S2 1995-April 2017 79% 32%

to predict the value assumed at ¢ + n. The weights w are initial-
ized and optimized with respect to the mean squared error func-
tion computed over a series of examples (learning phase). As
input time series we could not use two out of three of the
ESPERTA parameters, i.e., the heliologitude as it is not a time
series and the radio fluence, because of the unavailability of
WIND/WAVES data in real-time and the limited number of
ground-based observations. Thus we introduced the quasi-
relativistic electron flux as a feature. In particular, we used the
1 min electron flux data in the energy range 0.25-0.7 MeV
obtained from COSTEP/EPHIN experiment onboard SOHO
from 1996 to 2019 for 103 SPEs. It is worthwhile to note that
the quasi-relativistic electrons arrive on the Earth about 1 h
before the >30 MeV protons and are already successfully
exploited in the HESPERIA REIeASE forecasting technique
(Posner, 2007; Malandraki & Crosby, 2018).

We trained the model on the dataset from 1996-01-01 to
2011-12-31 and tested it on the dataset from 2012-01-01 to
2019-12-31. We evaluated the performance by computing the
root mean squared error (RMSE) over the test dataset. We
obtained an RMSE of 0.24 pfu, which is referred to the loga-
rithm of the proton flux.

Figure 4 shows an example of the comparison between
observations (green line) and forecast (blue line) for an event
in the training dataset and one in the testing dataset (top and
bottom panels, respectively). It can be seen that both the profiles
and the onset time are quite well reproduced. The predicted
profiles are provided one hour in advance of the actual ones.
As far as the SEP intensity is concerned, the agreement is gener-
ally good and in any case, the discrepancy remains on average
bounded within the RMSE. We emphasise that the LSTM algo-
rithm also allows for a dynamic forecast of the SPE features (e.g.
onset time, peak flux, and peak time) up to 1-hour in advance.
From the LSTM-predicted proton flux we identified how many
events could be predicted and performed a cross-comparison
with ESPERTA over the same testing period January 2012—
April 2017 (for a total of 27 SPEs). We obtained the follow-
ing results: POD = 59% (16/27) and FAR = 16% (3/19) for
ESPERTA, whereas POD = 67% (18/27) and FAR =
10% (2/20) for the LSTM. The LSTM results are better in terms
of classification, although with a lower warning time (up to 1 h
vs 6.7 h median warning time of ESPERTA).

5 Conclusions

Our study aimed at advancing the SPE forecasting capabil-
ities (Laurenza et al., 2023) based on the well-proven concept of
the ESPERTA model (Laurenza et al., 2009, 2018) and imple-
ment a real-time tool. Our findings can be summarised as
follows.

1. Ground-based radio observations represent a viable
option to provide real-time alerts.

2. The performance of the developed models for the >S1
prediction is quite good and in agreement with past
results. Table 2 summarizes the obtained scores. We were
able to estimate an operational POD. On the contrary, the
computed FAR can be considered to be theoretical, as it
strongly depends on the imbalance of the dataset (see
Stumpo et al., 2021, for a thorough analysis).

3. The machine learning-based ESPERTA modified model is
the only validated forecasting technique predicting the
occurrence of the SPEs producing radiation storm level
>S2. The performance of the method is high with the
following validation metrics: theoretical (operational)
POD = 88% (79%), FAR = 32% with a good median warn-
ing time (~2 h). The estimation of the warning time
remains theoretical as it depends on the data availability
in real time.

These findings are very promising for the implementation of an
ESPERTA-based tool with advanced prediction capabilities for
>S2 SPEs by using ground-based radio data. One possible
approach to implement the ESPERTA tool in real-time is to
use LOFAR data. In particular, as the new project IDOLS
(Incremental development of LOFAR Space-weather) is provid-
ing real time calibrated radio data using one dedicated LOFAR
station (see e.g. https://spaceweather.astron.nl/SolarKSP/data/
website/), the ESPERTA model may be used at least during
the European day time in real-time operations in the near future.
One limitation of this approach is however the limited observing
time resulting from a single LOFAR station. Other radio obser-
vations in other parts of the world would be needed to achieve
24-hour coverage. This study wants to show how any low-
frequency radio dataset properly calibrated, would be able to
be integrated into the ESPERTA tool, providing that the prob-
ability curves are calculated for the specific frequency used in
the observations.

As a last step, we provided the first preliminary results about
the forecasting of the SPE flux profile 1 h in advance using an
LSTM-based neural network. Moreover, the comparison
performed between ESPERTA and the LSTM over the same
time span (January 2012—-April 2017), shows that the LSTM
has better performance, but lower warning time. Thus, the
ESPERTA model could be complemented with the prediction
of the flux profile through the LSTM neural network when
exploiting the additional feature of quasi-relativistic electrons.
We envisage an operational model consisting of different
modules so that first ESPERTA would issue a forecast about
the >S1 SPE occurrence 10 min after a >M2 flare. Such pre-
diction would be likely followed (because of the lower warning
time) by: 1) the LSTM dynamic forecast, which includes the
forecast of the SPE features (e.g. the peak flux), and 2) the
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>S2 SPE ESPERTA forecast presumably later than the LSTM
one. Note that the radio data at 30 MHz would be available
within the 10-minute forecasting timeframe of the first module
as they are recorded in real-time with a cadence of 4 data points
per second, although only during daytime in Europe. Of course,
a decision rule would have to be established in case of different
predictions of the different modules. However, a deeper inves-
tigation is necessary in the future, especially to assess the
LSTM-based operational tool.
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