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Exotic tree species are increasingly common in many regions of the world and at least some species are
becoming naturalized in the regions where they were introduced. Disturbances like fire may be at the origin
or accelerate the naturalization of these species. Portugal holds one of the largest areas of exotic Eucalyptus
globulus plantations in the world and is one of the countries most affected by forest fires. These two facts
have triggered the present research. This study aimed at characterising medium-term natural establish-
ment of E. globulus plants originated from seeds under natural conditions in burnt planted forests (pure
E. globulus stands, pure Pinus pinaster stands, and mixed stands of both species), and at analysing factors
associated with this establishment. Occurrence, abundance and height of naturally established E. globulus
plants were characterized in 284 sites distributed in burnt areas, across Central and Northern Portugal, 5–
7 years after wildfire. Generalized linear models were used to assess the influence of stand type, regional
productivity potential, and post-fire management practices on occurrence probability, density, and med-
ian height of sampled E. globulus individuals. The influence of these explanatory variables on the structure
(in terms of size class distribution) of naturally established E. globulus cohort was examined using analysis
of similarity and non-metric multidimensional scaling. Naturally established E. globulus plants were pres-
ent in 93.1%, 19.0% and 98.6% of samples in pure E. globulus, pure P. pinaster and mixed stands, respectively.
Cohort median density was 0.20 plants m�2 and maximum density was 4.55 plants m�2. Median height of
plants was 2.0 m and 95.3% of them had h >1.30 m and DBH 65 cm. Establishment probability, density and
median height were highest in the most productive regions. Three post-fire management operations had a
significant influence on the response variables: (i) salvage logging was associated with a higher density;
(ii) tillage was associated with a lower density and a smaller median height; (iii) understorey removal
was associated with a lower occurrence probability. Tillage was the only studied factor influencing the size
structure of spontaneously established cohort, eliminating larger plants. This study showed that stand
type, productivity region and post-fire management operations might have significantly influenced the
natural establishment of E. globulus in burnt areas, and consequently the species naturalization process
in Portugal. The implications of these findings for management are discussed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction associated with these forests is increasingly important. Some of
Given the expansion of exotic tree plantations in the world
(MCPFE, 2007; FAO, 2010), the study of ecological processes
the most relevant issues are related to naturalization or invasive
potential of exotic tree species, since significant interactions with
the native ecosystems are possible (Richardson, 1998). Distur-
bances in general and fire in particular are known to facilitate the
recruitment of different exotic species (e.g. Anderson and Brown,
1980; Mandle et al., 2011; Arianoutsou and Vilà, 2012; Vallejo
et al., 2012). Therefore, the fire-mediated naturalization of planted
exotic trees is a relevant research topic (Silva and Marchante, 2012).
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Eucalyptus globulus Labill. (Tasmanian blue gum) is one of the
most widely planted and economically important hardwood spe-
cies in temperate regions of the world (Potts et al., 2004). This
eucalypt is native to SE Australia and it is planted in many regions
around the world. Portugal is among the countries that have larg-
est areas of planted E. globulus in the world (Potts et al., 2004). This
species was introduced in Portugal in the middle of the 19th cen-
tury (Radich, 2007) and is now the most widespread tree species
in Portuguese mainland, representing 26% (812 � 103 ha) of its for-
est cover (ICNF, 2013).

E. globulus forests in Portugal are planted and mostly managed
through a coppice system (10–12 year rotations) (Turnbull and
Pryor, 1984; Soares et al., 2007). Their wood is almost exclusively
used for pulp production. Water availability and episodic occur-
rence of temperatures below 0 �C are considered the main limiting
climatic factors to E. globulus development in Portugal (Almeida
et al., 1994; Ribeiro and Tomé, 2000; Alves et al., 2012), where
wood yields are very variable due to site conditions and may ex-
ceed 30 m3 ha�1 year�1 in the very best sites (Tomé, 2000). How-
ever, the good adaptation of E. globulus to many Portuguese
environmental conditions is having other implications, as the spe-
cies has become naturalized. The species reproduces by seeds and
naturally established plants are commonly found within or close to
planted stands nowadays (Marchante et al., 2008; Silva and
Marchante, 2012). Although the first reference to naturalization
of E. globulus in Portugal dates from 1943 (Almeida and Freitas,
2006), we found no quantitative assessments of this process in
the literature. Naturalization processes are known to have resulted
in considerable economic and environmental costs for several alien
species (Andreu et al., 2009). Naturally established plants may
modify ecosystem/plantation dynamics and changes in forest man-
agement may be required to control them, since E. globulus grows
fast (Silva et al., 2007a). Most of the literature concerning the seed
regeneration from E. globulus plantations reports qualitative
assessments in order to infer about the naturalization or the inva-
sive status of the species (Ritter and Yost, 2009; Gassó et al., 2010;
Gordon et al., 2012). The few references that provide quantitative
data are not comparable due to differences on methods and on
considered factors (Virtue and Melland, 2003; Calviño-Cancela
and Rubido-Bará, 2013; Larcombe et al., 2013).

Fire is often related with eucalypt recruitment and establish-
ment (Mount, 1964; Cremer, 1965; Mount, 1969; Ashton, 1981;
Gill, 1997). Causes for fire facilitated recruitment/establishment
of eucalypts are related with: increased seed shed from canopy
(Cremer, 1965; Pryor, 1976; O’Dowd and Gill, 1984; Wellington
and Noble, 1985b; Florence, 1996); seed-predator satiation
(O’Dowd and Gill, 1984; Wellington and Noble, 1985b; Gill,
1997); increased light availability (Jacobs, 1955; Kirkpatrick,
1975; Gill, 1997); ‘‘ash-bed effect’’ (Pryor, 1976; Chambers and
Attiwill, 1994); reduced competition (Wellington and Noble,
1985a; Whelam, 1995; Gill, 1997); removal of allelopathic sub-
stances (Pryor, 1976; Stoneman, 1994); and decreased predator
activity (Whelam, 1995). Larcombe et al. (2013) demonstrated that
fire was associated with higher recruitment levels of E. globulus, as
it had been suggested earlier by Kirkpatrick (1975).

Portugal has the largest percentage of burnt forest area in Eur-
ope and one of the largest in the world (FAO, 2010; JRC, 2012) and
the National Forest Strategy (DGRF, 2007) indicates that wildfires
are a major threat to sustainable forest management in this coun-
try. Moreover, eucalypt stands are highly flammable in comparison
to other forest systems in Europe and particularly in Portugal
(Nunes et al., 2005; Moreira et al., 2009; Silva et al., 2009; Fernan-
des et al., 2011; Xanthopoulos et al., 2012).

Effects of post-fire operations on seedling establishment de-
pend on how and when they are performed. Post-fire management
of burnt forests often includes: salvage logging; tillage; and shrub
removal. Post-fire salvage logging usually occurs before establish-
ment of the next generation of trees and its major effects consist of
environmental changes derived from removal of burnt trees. If it
occurs after seedling establishment, significant seedling mortality
can happen (McIver and Starr, 2000). In situ germination of seeds
from logging eucalypt slash is common under favourable condi-
tions (Fagg, 2001) and E. globulus plants may establish and grow
normally or become dominated trees under coppice shoots (Skol-
men and Ledig, 1990). Tillage is aimed at improving soil conditions
for root development (Madeira et al., 1989), but in burnt areas can
largely enhance erosion, if it is not performed with caution (Coelho
et al., 1995; Shakesby et al., 1996). Established plants that were
born after fire may be destroyed by tillage (Catry et al., 2010).
Few years after fire, understorey is well developed in forests. Since
E. globulus is very sensitive to competition with understorey plants
especially in early years of life, and fuel load build up increases fire
hazard, periodic understorey removal is performed in this species
stands (Pereira, 2007; Soares et al., 2007; Moreira et al., 2009;
Alves et al., 2012).

To our knowledge, a quantitative assessment of natural estab-
lishment of E. globulus in burnt areas has never been carried out
in Europe. We chose to study the post-fire seminal regeneration
of E. globulus because there were recurrent references to fire-in-
duced eucalypt establishment (Jacobs, 1955; Cremer, 1965; Kirk-
patrick, 1975; Pryor, 1976; O’Dowd and Gill, 1984; Chambers and
Attiwill, 1994; Stoneman, 1994; Florence, 1996; Gill, 1997), as well
as frequent observations of E. globulus saplings in recently burnt
areas in Portugal (Silva et al., 2007a, 2007b; Silva and Marchante,
2012). Stands with Pinus pinaster were included in the study be-
cause this species is highly represented in Portuguese mainland
(23% forest cover) (ICNF, 2013), and it has similarities to E. globulus
on its ecological requirements and geographical range. Additional
grounds were the common coexistence of these species in mixed
stands (Silva et al., 2011) and the high fire proneness of P. pinaster
stands (pure or mixed) (Moreira et al., 2009).

The study aimed at answering four questions related to med-
ium-term establishment of E. globulus plants originated from seeds
under natural conditions in burnt forests (pure E. globulus stands,
pure P. pinaster stands, and mixed stands): (a) what is the likeli-
hood of E. globulus natural establishment in burnt areas; (b) which
are the most important factors related with site characteristics,
stand type and post-fire management practices influencing this
likelihood; (c) how do these variables affect the density of post-fire
naturally established E. globulus cohort and the median height of
its individuals; and (d) how do these variables influence the size
structure (distribution of individuals among size classes) of post-
fire naturally established E. globulus cohort.
2. Material and methods

2.1. Study areas

Forty areas that had burnt during 2005 and 2006 were selected
in Central and Northern Portugal (Fig. 1), regions where E. globulus
is common. Burnt areas were identified from existing fire maps
created through semi-automated classification of remote sensing
satellite data (Marques et al., 2011). Selection of burnt areas was
based on time-since-fire (5–7 years), size (largest areas were pre-
ferred), accessibility and presence of pure or mixed stands of E.
globulus and P. pinaster (pure stands corresponding to cover of tar-
get species P75%, and mixed stands to cover of either spe-
cies <75%) (AFN, 2009). The selected areas ranged in size from 6
to 10924 ha, with an average of 2078 ha. The sampling grid
(500 m � 500 m) created for the National Forest Inventory (NFI)
(AFN, 2010) was used to define potential study sites within the
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Fig. 1. Location of the 40 studied burnt areas in Portugal (in black). Limits for the
three E. globulus productivity regions are also shown (in shades of grey). White
areas refer to regions where sampling did not occur.
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selected areas. From these potential sites, those corresponding to
pure or mixed stands of E. globulus and P. pinaster were selected,
based on pre-2005 NFI data. Depending on the size of the selected
areas, up to 30 sites were chosen per area. The selected sites were
checked in the field for eventual land cover changes after fire, and
the ones that had been converted to other land uses after fire were
excluded. A total of 321 sites was obtained (range = 1–30 sites per
burnt area): 37 for refining sampling method (data not presented),
and 284 for definite sampling.
Table 1
Description of assessed explanatory variables.

Variable Data description

Pre-fire forest type Dominant species in the plot

Productivity region E. globulus productivity classes, based on
annual precipitation and number of frost days
per year

Post-fire salvage
logging

Cut of Eucalyptus globulus poles and/or Pinus
pinaster trees (all or only dead)

Post-fire tillage Mechanical disturbance of the forest floor, by
harrowing, ploughing or ripping

Post-fire understorey
removal

Mechanical removal of understorey shrubs and
small trees

Terrain physiography Plot physiographic position

Slope In degrees

Aspect Aspect classes based on Kutiel and Lavee
(1999): unfavourable – SE, S, and SW aspects;
favourable – remaining aspects
2.2. Field sampling

Sites were sampled between June 2010 and June 2012. The sam-
pling design was an adaptation of the method used in Portuguese
National Forest Inventory (AFN, 2009) for minor trees assessment,
and consisted of a combination of transect sampling (to allow a
more effective detection of eucalypt presence) with area surveys
(subplots) to measure plant densities. Each sampling site consisted
of a 6.78 m radius circular plot centred on the site coordinates (lo-
cated using a hand-held GPS – Garmin, e-Trex, Taiwan). Four
5 m � 2 m transects were established at every site, diverging from
the plot centre and oriented towards the north, the south, the east
and the west. At the end of each transect, a 1.78 m radius subplot
was established, with its centre 5-m distant from plot centre. Pres-
ence of post-fire naturally established E. globulus plants was
checked inside the four subplots and along the four transects. In or-
der to distinguish these individuals from pre-fire, artificially sown
or planted individuals, we observed cumulatively the following fea-
tures: absence of charred parts; presence of a conspicuous lignotu-
ber; and location within the plantation inconsistent with spacing.
The number of target plants and the height of the median individual
were measured in loco inside each of the four subplots. Each indi-
vidual was assigned to one of the four size classes using a combina-
tion of height (h) and diameter at breast height (DBH) – size class 1:
h 61.3 m; size class 2: h >1.3 m and DBH 65 cm; size class 3:
h >1.3 m and 5 < DBH 67.5 cm; size 4: h >1.3 m and DBH >7.5 cm.
At all sampling sites, evidences of several post-fire stand manage-
ment operations (Table 1) were collected by field observation
and, whenever possible, by inquiring land owners. Information
about site physiographic position, slope, and aspect was also col-
lected (Table 1). A hypsometer (Haglöf Vertex III, Sweden) was used
to measure slope. Aspect was measured using a compass. Addition-
ally, the presence of potential mother trees, either in the plot or in
its surroundings (up to 100 m), was registered.

2.3. Data analysis

Considering that there is no accurate and quick method of
determining age of E. globulus plants, we decided to use a broad
Data type Data source Frequency (%)

Categorical Forest inventory data
and field evidence

P. pinaster (29.6)
E. globulus (45.8)
Mixed (24.6)

Categorical Ribeiro and Tomé
(2000); Tomé et al.
(2001)

High (35.6)
Medium (53.9)
Low (10.6)

Binary (0/1) Inquiries and field
evidence

69.4

Binary (0/1) Inquiries and field
evidence

15.8

Binary (0/1) Inquiries and field
evidence

16.2

Categorical Field evidence Flat or valley
bottom (10.9)
Slope (78.5)
Ridge (10.6)

Continuous Field measurement [0�;15�] (50.0)
]15�;30�] (44.0)
]30�;45�] (6.0)

Categorical Field evidence Unfavourable (31.3)
Favourable (68.7)
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Fig. 3. Median heights of post-fire naturally established E. globulus plants in
sampled sites. n = 152.

50 A. Águas et al. / Forest Ecology and Management 323 (2014) 47–56
concept of cohort in this study – cohort as a group of individuals of
the same species that experienced the same event within the same
time interval (Ryder, 1965), using as cohort definer (sensu Schaie
(1984)) the natural establishment in a burnt stand. Accordingly,
we included all E. globulus plants that had been naturally estab-
lished within 5–7 years after fire in a single cohort, which was
our study subject.

For simplicity purposes, we will refer to post-fire natural estab-
lishment of E. globulus as establishment. Similarly, post-fire natu-
rally established E. globulus plants/individuals and post-fire
naturally established E. globulus cohort, will be respectively named
as plants/individuals and cohort. Nevertheless, the extensive
names will be used whenever the use of short names results in
ambiguity.

Three response variables were modelled using generalized lin-
ear models (GLM): occurrence of establishment (presence/
absence), cohort density (plants m�2), and plant median height
(m). A plot was considered as having established plants if they oc-
curred in at least one of its transects or subplots. Plant density was
estimated by averaging the densities from the different subplots.
Median height was also calculated across subplots. Nine explana-
tory variables were used (Table 1): stand type; tillage; understorey
removal; salvage logging; terrain physiography; slope; aspect
(based on Kutiel and Lavee (1999)); and E. globulus productivity re-
gions (Fig. 1; adapted from Ribeiro and Tomé (2000) and Tomé
et al. (2001)). Productivity region factor was chosen as it could
be a surrogate of habitat quality for E. globulus and, consequently,
for seedling establishment and growth of this species.

Occurrence of establishment (presence/absence) was modelled
by setting a binomial distribution for the response variable and a
logit link (occurrence model) (Quinn and Keough, 2002). The co-
hort density (Fig. 2) was modelled using a gamma distribution
and a log link (density model). In this case, only sites with plant
establishment were considered. The median heights of established
plants had a log normal distribution (Fig. 3), so they were log-
transformed and modelled through a Gaussian distribution and
an identity link (height model) (Quinn and Keough, 2002). The only
three sites with regeneration at subplots located in low productiv-
ity regions were discarded in density and height models as these
regions were not sufficiently represented. Model selection fol-
lowed Zuur et al. (2009), starting with a model that included all
nine explanatory variables and sequentially removing the variables
that did not contribute significantly (a = 0.05) to the explained
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Fig. 2. Observed densities of post-fire naturally established E. globulus cohort, in
sampled sites where it was present. n = 153.
deviance (according to analysis of deviance tests). Modelling was
performed using R statistical software (R Core Team, 2012).

Assessment of each model performance was based on the frac-
tion of total deviance explained by the model. Performance of
occurrence model was additionally assessed through the area un-
der the receiver operating characteristics curve, commonly known
as area under the ROC curve (AUC) (Pearce and Ferrier, 2000). AUC
was estimated using package ROCR for R (Sing et al., 2009). The
eventual presence of spatial autocorrelation in the model residuals
was tested through a spatial correlogram using the Moran’s I auto-
correlation coefficient (Fortin and Dale, 2005), employing the func-
tion correlog of the ncf package for R statistical software
(Bjornstad, 2009). Significance was tested using 100 permutations
and the progressive Bonferroni correction (Legendre and Legendre,
1998).

Relationship between regeneration occurrence and presence of
potential mother trees was analysed through a contingency table,
X2 test, and U2 coefficient (Zar, 1996).

Differences on size structure of the naturally established cohort
(given by the distribution of individuals into size classes) among
sites were assessed, using analysis of similarity (ANOSIM) and
non-metric multidimensional scaling (MDS) (Clarke, 1993). Data
on distribution of individuals among sizes classes in different sites
were standardized. Then, a similarity matrix of those frequencies
was computed using the Bray–Curtis coefficient of similarity (Bray
and Curtis, 1957; Clarke, 1993). MDS was performed with 20 re-
starts and a two-dimension MDS diagram was built. A one-way
ANOSIM test was performed for each factor separately. Then,
obtained global R value was compared with the R probability dis-
tribution, previously produced with a maximum of 9999 random
permutations, considering a = 0.05. ANOSIM and MDS were
performed using software Primer 5 for Windows (version 5.2.9)
(Primer-e, 2002).
3. Results

The 284 sites were unevenly distributed among different stand
types, productivity regions and topographic conditions (Table 1).

Post-fire management occurred in 78.5% of sites. Salvage log-
ging was the most common operation (69.4%), while understorey
removal (16.2%) and tillage (15.8%) were less common (Table 1).

A total of 3062 naturally established E. globulus plants were ob-
served across 72.5% of the 284 sampling sites. Almost every site
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(99.5%) with natural regeneration had or had had potential mother
trees inside the plot or nearby. At sites with no regeneration, these
seed trees were, or had been present in 29.5% of cases. This differ-
ence was significant (u2 = 0.79, p < 0.001). At the sites where stud-
ied plants were present at the subplots, cohort density had its
median at 0.20 plants m�2 and its maximum at 4.55 plants m�2

(mean ± SD = 0.48 ± 0.73 plants m�2). Plant median height was
2.0 m, and the values ranged from 0.2 to 12.1 m (mean ± SD was
2.7 ± 2.4 m). These two variables had positively skewed distribu-
tions (Figs. 2 and 3).

The occurrence model showed that establishment was signifi-
cantly influenced by stand type, productivity region, and understo-
rey removal, together explaining 56.8% of the deviance (Table 2).
AUC value for occurrence model was 0.941, revealing its high accu-
racy (Swets, 1988). Establishment probability was higher in mixed
and pure E. globulus stands, in medium and high productivity re-
gions, and when understorey vegetation was not removed,
although this latter effect was less important and appeared to be
overshadowed by other factors (Fig. 4(a)). The main explanatory
variables in the density model were productivity region and two
post-fire management operations, although altogether they only
explained 11.6% of the deviance (Table 2). Density was higher in
the high productivity region, and when salvage logging had oc-
curred, while it was lower following tillage (Fig. 4(b)). According
to height model, plants were taller in the high productivity region
and smaller where the soils were tilled (Fig. 4(c)). However, this
model only explained 8.0% of the deviance (Table 2). There was
no significant spatial autocorrelation pattern in any of the models’
residuals.

The MDS analysis performed to compare the size structure of
the spontaneous cohort among different sites had a stress of
0.03, revealing an excellent representation with no prospect of
misinterpretation (Clarke, 1993). The 2-dimension MDS diagram
(Fig. 5) showed two main groups of sites: one group of 52 sites
lacking plants of size 1, located along the vertical axis (group A);
and another group of 119 sites lacking of sizes 3 and 4, located
along the horizontal axis (group B). The two groups partially over-
lapped. This overlap involved 38 sites that only had plants of size 2.
The far end of group B comprised sites only with plants of size 1 (C;
n = 23). In between groups A and B, there were sites with different
proportions of plants belonging to several size classes (1, 2, and 3
or/and 4). Size classes 1 and 2 were prevalent in the study, 95.4%
Table 2
Generalized linear models for natural establishment of E. globulus – occurrence
likelihood, cohort density, and plant median height. For each response variable,
explanatory variables kept in the respective final model are indicated through their
coefficient ± SE, as well as their significance (***p < 0.001, **p < 0.01, *p < 0.05).

Occurrence Density Height

Intercept 1.002 ± 0.925 �0.812 ± 0.260* 0.889 ± 0.113***

Stand type –***

E. globulus 0
P. pinaster �4.000 ± 0.521
Mixed 1.717 ± 1.073

Productivity region –** –* –*

High 1.732 ± 0.900 0 0
Medium 2.299 ± 0.877 �0.501 ± 0.259 �0.293 ± 0.146
Low 0 – –

Salvage logging 0.597 ± 0.278*

Tillage �0.864 ± 0.333* �0.436 ± 0.193*

Understorey removal �1.462 ± 0.624*

n 284 150 149

Explained deviance 56.8% 11.6% 8.0%
AUC 0.941
of plants belonged to one of these classes, and they were present
in all sites that had natural regeneration at the subplots. Size clas-
ses 3 and 4 were the rarest, together they occurred in 20.6% of sites
which had natural regeneration at subplots (all but group B) and
they represented only 4.5% of plants. ANOSIM showed that tillage
was the only explanatory variable that significantly affected cohort
size structure (p = 0.048) but its influence on relative abundances
of different size classes was not very strong (global R = 0.064).
Plants of sizes 3 and 4 were absent in tilled sites (Fig. 5).
4. Discussion

Considering the wide geographical range of the survey, the
diversity of sampled stands and the relatively small size of the
sampling plots, it is relevant that 72.0% of plots from all stands
had naturally established E. globulus plants. The positive associa-
tion between the occurrence of these plants and the presence of
potential mother trees suggested the existence of a widespread
establishment in burnt stands where close seed sources were avail-
able. The occurrence of progeny restricted to vicinity of these trees
is in accordance with the limited dispersal capacity of the species
(Cremer, 1977) and occasional occurrence of regeneration some
tens of meters away from these trees are compatible with results
obtained by Larcombe et al. (2013) and Calviño-Cancela and Rubi-
do-Bará (2013).

The occurrence model revealed high accuracy in predicting the
likelihood of establishment, pointing at stand type, productivity re-
gion, and understorey removal as main explanatory variables.

Natural establishment was very common in pure E. globulus
stands (90.9%) and mixed stands (94.9%), while it only existed in
19.1% of pure P. pinaster stands. This difference was very signifi-
cantly reflected in the occurrence model. While this result is not
surprising, since the presence of adult E. globulus trees (seed
sources) naturally increases the likelihood of recruitment, it is
noticeable that this type of establishment also occurred often in
pure P. pinaster stands. However, all but one of concerned sites
had adult E. globulus trees or its burnt remnants within the plot
or had conspicuous potential mother trees in the surrounding area.
The presence of sexually mature E. globulus trees in pure P. pinaster
stands is common in Portugal (Godinho-Ferreira et al., 2005).

Likelihood of establishment was higher in better productivity
regions, based on classification proposed by Ribeiro and Tomé
(2000). The criteria used in this classification to define homoge-
neous climatic regions for E. globulus productivity (�growth) were
essentially based on indicators of water availability and frost
occurrence. These factors are known to affect not only E. globulus
growth, but also this species recruitment, establishment, and sur-
vival. In fact, water deficit negatively affects: E. globulus seed ger-
mination (López et al., 2000; Humara et al., 2002); E. globulus
seedling establishment success (González-Muñoz et al., 2011);
and summer survival of young eucalypts (Jacobs, 1955; Whelam
and Main, 1979; Wellington and Noble, 1985a; Stoneman et al.,
1994; Richards and Lamont, 1996). Additionally, frost may directly
kill foliage and buds and sometimes the whole plant (Cremer et al.,
1984). T50 for E. globulus seedlings leaves is �5.5 �C (Almeida et al.,
1994). These facts may explain why higher productivity regions are
more likely to have E. globulus establishment. Results obtained by
Larcombe et al. (2013) point at the same direction, since they
found that sites where precipitation seasonality was lower had
higher probability to have natural establishment of this species,
in Australia, similarly to what happens in areas corresponding to
higher productivity regions in Portugal, probably due to reduced
water stress in late summer.

Most of the surveyed sites (68.3%) did not show any evidences
of management activities, except for salvage logging. Establishment
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occurred in all but one of those ‘‘unmanaged’’ sites in pure
E. globulus stands, and the same happened in mixed stands, while
only 15.8% of ‘‘unmanaged’’ pure P. pinaster sites had spontaneous
E. globulus plants. This suggests that poor management or total lack
of it favoured establishment both in pure E. globulus stands and in
mixed stands; while other factors may have major influence on the
phenomenon in pure P. pinaster stands. However, a more detailed
analysis shows that different management operations had different
effects.

Sites where understorey removal had occurred were less likely
to have naturally established E. globulus plants, although this effect
was minor. This operation is aimed at destroying understorey veg-
etation, which may include small E. globulus individuals. In some
sites where understorey was removed, probably all previously re-
cruited E. globulus seedlings/saplings were killed and no subse-
quent establishment succeeded, resulting in absence of plants at
sampling time. This would be compatible with the idea that most
post-fire establishment happens shortly after fire (Pryor, 1976;
Florence, 1996).
Densities of naturally established E. globulus cohort observed in
our study were not easy to compare with other quantitative refer-
ences on this subject because of differences in methodology and
considered factors (Virtue and Melland, 2003; Calviño-Cancela
and Rubido-Bará, 2013; Larcombe et al., 2013). In order to compare
our data to those from other studies, we needed to consider only
pure E. globulus stands. Densities observed in our study (maxi-
mum = 4.55 plants m�2; mean = 0.48 plants m�2) were largely
higher than those registered by Larcombe et al. (2013) (maxi-
mum = 1.98 � 10�3 plants m�2; mean = 8.52 � 10�4 plants m�2)
within 10 m from plantation borders, including both burnt and un-
burnt areas. Meanwhile, the absolute values of maximum density
mentioned in the other two references had the same order of mag-
nitude that we observed: 1–2 plants m�2 (Virtue and Melland,
2003) and about 2 plants m�2 (Calviño-Cancela and Rubido-Bará,
2013), both located next to unburnt plantations edges. However,
we cannot evaluate if these values are lower or higher than ours
because they might result from potential periods of recruitment
with very different time lengths.
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The density model pointed at productivity region and two man-
agement operations as the most important studied variables for
explaining young cohort density.

Like occurrence, cohort density was higher in the most produc-
tive region. Since water deficit can negatively affect eucalypt
recruitment, establishment and survival, as discussed before, it
may explain this density difference. Our results on density also
agreed with those reported by Larcombe et al. (2013) for Australia,
with respect to annual precipitation and precipitation seasonality.

Salvage logging had a positive effect on cohort density.
Although logging can destroy post-fire established plants (McIver
and Starr, 2000), it is not likely because it is recommended to har-
vest burnt E. globulus trees shortly after fire (Shakesby et al., 1996).
In fact, logging has been associated with plant recruitment in E.
globulus stands and in other eucalypt stands (Skolmen and Ledig,
1990; Fagg, 2001), since seedlings may originate from the so-called
‘‘slash seed’’ (Fagg, 2001), which in the specific case of salvage log-
ging may be enhanced by the seed shed caused by fire (Cremer,
1965). Additionally, reduction of competition caused by salvage
logging might have improved establishment success of youngsters,
resulting in higher densities of their cohort in fallen stands. Euca-
lypts are not able to become established and develop normally un-
der a complete overstorey canopy (Florence, 1996). E. globulus
usually regenerates only when the overstorey is removed (Ston-
eman, 1994). Asymmetrical competition was observed in E. globu-
lus by Tomé et al. (1994). Several Australian studies under
temperate and Mediterranean climates have shown that water def-
icits are stronger in eucalypt seedlings in sites with overstorey
than in sites where it did not exist, resulting in higher mortality
rates in the former (Bowman and Kirkpatrick, 1986; Battaglia
and Wilson, 1990; Stoneman et al., 1994). Negative effects of water
stress on E. globulus recruitment and establishment were already
discussed.

Tillage had a negative effect on cohort density. This operation
can destroy post-fire regeneration from seeds (Catry et al., 2010).
Direct killing of most of naturally established E. globulus plants
was probably the major cause of low density of their cohort in
tilled sites. Harrowing reduces the development of understorey
biomass in E. globulus plantations (Carneiro et al., 2008) and this
may be related to a reduction of nutrients in soil caused by tillage
(Madeira et al., 1989; Carneiro et al., 2008). Increased soil erosion
due to tillage probably resulted in harsher soil conditions that
might have hindered plant establishment (Shakesby et al., 1996)
and increased mortality since then, contributing to an even lower
density of the cohort in those sites.

Median height of spontaneous E. globulus plants in surveyed
plots had a broad variation across sites (0.2–12.1 m). This fact
could be related either with different times of recruitment or with
differences among the sites where these plants were growing. As E.
globulus age is difficult to determine (Williams and Brooker, 1997;
Leal et al., 2004), the relationship between size and age of observed
plants is partially speculative. Even so, plant size can be used for
demographic interpretations in eucalypt communities (Florence,
1996). Therefore, the existence of continuous recruitment or occur-
rence of several recruitment episodes might explain the diversity
of plant sizes observed in many sites and especially the abundance
of smaller plants. Nevertheless, according to literature, it is proba-
ble that most of these plants have been recruited in the first year
after fire, since: fire improves conditions for eucalypt recruitment
(Cremer, 1965; Kirkpatrick, 1975; O’Dowd and Gill, 1984; Cham-
bers and Attiwill, 1994; Stoneman, 1994; Gill, 1997); eucalypt
seeds are short lived in soil (Jacobs, 1955; Cremer et al., 1984; Wel-
lington and Noble, 1985b) and germinate as soon as they have
favourable conditions to do so in nature (Penfold and Willis,
1961); and E. globulus plants take 4–7 years to produce their first
seeds (Kirkpatrick, 1975; Turnbull and Pryor, 1984; Jordan et al.,
1999) and 7 years to produce seeds after canopy burn (Kirkpatrick,
1975).

More than 95% of sampled individuals were of sizes 1 or 2, and
were at most 6.77 m tall (height estimate based in Marques et al.
(2011)). If we presume a major event of recruitment in the first
year after fire, these plants were shorter than it would be expected
(data from WebGlobulus 2.1 simulator (Palma, 2009)). Addition-
ally, they were also much shorter than the resprouts of most of
the coexisting burnt trees. Therefore, we may think about the for-
mer as dominated, suppressed or growth restricted trees (Skolmen
and Ledig, 1990; Florence, 1996). Eucalypt lignotuberous seed-
lings/saplings are very resistant, therefore they can survive for long
years in the understorey, and may be considered as a ‘regeneration
pool’ in eucalypt forests (Florence, 1996; Ashton, 2000), since they
can speed up growth after release from overstorey competition
(Florence, 1996). If we consider the observed persistence of growth
restricted E. globulus trees, their latent growth capacity, and their
ability to attain reproductive state (pers. observ.); we may say that
conditions might exist for natural perpetuation of this species in
many surveyed sites. This means that the naturalization process
(sensu Richardson et al. (2000)) is undergoing.

Plants with the above features are often used in forestry as ad-
vance growth (Jacobs, 1955; Florence, 1996; Alves et al., 2012),
being a most important aspect of eucalypt forest regeneration cy-
cle in Australia (Ashton, 2000). Although this practice is possible
with E. globulus in Portugal, the species invasive potential in this
territory (Marchante et al., 2008; Silva and Marchante, 2012) must
be taken into account.

The height model indicated that productivity region and tillage
were significant explanatory variables. Tillage also affected the size
structure of the regenerating population. However, other non-
studied variables might have significantly influenced the observed
plant height.

Plants were taller in the highest productivity region. Climate
factors (frost and water availability) that influence E. globulus
growth, and consequently height, are the basis of this classifica-
tion. Negative effect of water stress on E. globulus growth is broadly
known (Wang et al., 1988; Tomé et al., 1994; Osório et al., 1998;
Pita and Pardos, 2001; Humara et al., 2002). Actually, lack of water
is the main limiting factor to E. globulus growth in Mediterranean
type ecosystems (Alves et al., 2012), even though this species can
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deal with more severe water stress in Portugal and Spain than in its
native range (Turnbull and Pryor, 1984; Alves et al., 2012). Cold is
also an important limiting factor to E. globulus growth. Tempera-
tures around 0 ± 2 �C inhibit water uptake and growth of E. globulus
seedlings (Almeida et al., 1994; Costa-e-Silva et al., 2008). Our re-
sults on relative height of plants among productivity regions were
obviously consistent with the rationale underlying classification
produced by Ribeiro and Tomé (2000). They also coincide with
the trends predicted by model Globulus 2.1 (Tomé et al., 2001).

Tillage had a negative effect on median height of plants. Wher-
ever performed, this management operation also slightly affected
the size structure of the cohort; it completely eliminated plants
of sizes 3 and 4 and tended to favour the presence of size 1 plants.
If we admit the existence of recruitment along time, since fire until
sampling, many of the observed smaller plants might have estab-
lished after tillage, while all or part of pre-existing plants was de-
stroyed by tillage, both contributing to reduced median height of
plants at sampling time at tilled sites. Tillage reduces nutrient
availability in soil (Madeira et al., 1989). The synergetic effects of
fire and tillage risk aggravating erosion even more (Coelho et al.,
1995; Shakesby et al., 1996). Carneiro et al. (2008), found that har-
rowing reduced understorey development in E. globulus planta-
tions and related it with reduction of nutrients in soil. The
indirect effect of tillage hampering plant growth can be an addi-
tional explanation for lower plant median height at tilled sites.

Aspect, slope and topographic position influence incident solar
radiation, water flow and soil erosion; whose effects on tempera-
ture, radiation, water and nutrients availability to plants may be
determinants of their successful establishment and development
(Jacobs, 1955; Moore et al., 1988; Shakesby et al., 1996; Kutiel
and Lavee, 1999; Taiz and Zeiger, 2002; Pereira, 2007). Notably,
none of topographical explaining variables was considered signifi-
cant in any of the analyses. Similarly, Larcombe et al. (2013) found
no significant influence of slope and aspect either on occurrence of
natural establishment of E. globulus or on its density. This probably
means that potential effects of topography on our response vari-
ables were overwhelmed by other factors effects, or even hidden
by background noise of data.

The built models did not explain all the observed variability.
Some other factors, like fire severity and intensity, might have
affected observed establishment (Mount, 1969; Pryor, 1976; Flor-
ence, 1996; Gill, 1997; Martínez et al., 2002; Bailey et al., 2012),
but they were not considered in this study because accurate eval-
uation of these features is not feasible 5–7 years after fire, when
the study was done.
5. Conclusions

This study showed that the natural establishment of E. globulus
was widespread in two types of burnt stands (pure E. globulus and
mixed) and that this establishment was favoured by climatic con-
ditions that enhance the productivity of this species. Considering
the frequency of occurrence and the characteristics (presumable
age, size, lignotuber) of observed plants, we can say that conditions
for natural persistence of E. globulus were probably met in those
types of stands in the studied regions. However, further studies
are needed to assess the capacity that this type of plants has to
complete the life cycle under the conditions they are growing at,
in order to better understand the naturalization process of this spe-
cies in Portuguese territory.

The use of a naturally regenerating cohort as advance growth
for production purposes seems possible. Nevertheless, whenever
this possibility is considered, the fact that E. globulus is an exotic
species with some invasive potential in Portugal must be kept in
mind.
On the other hand, the increased stand density that results from
the existence of spontaneously established plants may have detri-
mental consequences in terms of forest management and may lead
to a higher fire hazard. Attention should be paid to the very high
prevalence of these plants in two of the studied stand types,
regarding the wide distribution of E. globulus and the high inci-
dence of forest fires in Portugal. Our results suggested that both
the lack and the type of post-fire management operations strongly
influenced seminal regeneration of E. globulus in burnt stands.
Tillage has detrimental effects on this regeneration and may be
considered in management programs for its control, in the geo-
graphical range of this study.

Mechanisms responsible for this species establishment are still
poorly understood. It is not clear yet if post-fire recruitment of
plants occurs mainly in a single initial recruitment event or in suc-
cessive minor events or even if it is continuous along time. Com-
parative studies on this subject, either in burnt and unburnt
areas, are needed to clarify the role of fire on this species recruit-
ment and establishment. For instance: effects of fire severity and
intensity on natural regeneration of the species are still unknown;
and there is no quantitative evidence on the importance of fire-
stimulated seed shed and how it interacts with post-fire manage-
ment. Considering the wide expansion of E. globulus in the world,
the study of such mechanisms is undoubtedly a fertile field for
future research initiatives.
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