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A Survey on Intelligent Optimization Approaches to Boiler
Combustion Optimization
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ABSTRACT

This paper reviews the researches on boiler combustion optimization, which is an important direction in the field of energy saving
and emission reduction. Many methods have been used to deal with boiler combustion optimization, among which evolutionary
computing (EC) techniques have recently gained much attention. However, the existing researches are not sufficiently focused and
have not been summarized systematically. This has led to slow progress of research on boiler combustion optimization and has
obstacles in the application. This paper introduces a comprehensive survey of the works of intelligent optimization algorithms in
boiler combustion optimization and summarizes the contributions of different optimization algorithms. Finally, this paper discusses
new research challenges and outlines future research directions, which can guide boiler combustion optimization to improve
energy efficiency and reduce pollutant emission concentrations.
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ith the fast development of economy and technology 6.8%—.
W in recent decades, China’s electricity demand has

increased. Figures 1 and 2 depict information from
various forms of power generation in recent years. Statistics show
that a sizable share of China’s power output still comes from
thermal power. The boiler carrier in the thermal power plant is
the circulating fluidized bed boiler (CFBB). Coal has become the
primary fuel for CFBB in most countries due to its low price and
abundant reserves 7. The pollution gas generated by coal
combustion has seriously damaged the ecological environment.

6%

Many countries have formulated the corresponding laws and 67.6% 7
regulations to specify the pollution emission concentration of @ Raw coal @ Crude oil @ Natural gas © Other energy
boilers™*. Fig.2 Proportion of various raw materials used.

The use of coal-fired power generation mainly causes the

i ) severe environmental pollution. Although coal reserves are
following two results: (1) a lot of energy consumption and (2)

relatively wealthy, they are not renewable resources. In addition,

) the current utilization rate of coal in thermal power plant boilers is
= 78000 @ Hydroelectric power @ Thermal power

< Nuclear power Wind power relatively low, resulting in a waste of resources. Furthermore, a
£ 65000 large number of harmful gases are generated after coal
S 52000 combustion, mainly including sulfide concentration (SO,), carbon
® 39 000 oxide (CO,), and nitrogen oxide concentration (NO,). These
% 26 000 pollutants cause serious environmental problems such as acid
o rain, greenhouse effects, and the depletion of the earth’s ozone
£ 13000 layer. Therefore, how to effectively reduce pollutant emissions and
g enhance boiler thermal efficiency has essential significance for the

qp"q’ qp'\rb qp'\b‘ qp'\(o qp'\% qp\/\ qp'\% qp'\g qpqp qpq:\ sustainable development of the global economy. In the 1970s,
research on boiler combustion optimization technology began. At
first, Launder and Spalding” combined mechanics and
combustion knowledge to obtain the mathematical model and
numerical calculation method of the combustion process, which
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Fig.1 Total power generation trend diagram of different power generation
forms.
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opened a new idea in combustion theory and applied research. Air
cover is an effective method to ensure airflow uniformity in a
CFBB boiler. In order to improve the thermal efficiency, Liu
et al. designed a 220 t/h CFBB small test bench, integrated with a
new gas cap. The mathematical model was deduced, and cold
experiments verified the accuracy. The experimental results
showed that the thermal efficiency of CFBB increased from 86.4%
to 91.8% after using the new gas cap. The early research is mainly
divided into three categories, namely physical and chemical
methods, numerical simulation, and burner design optimization.
Representative works are shown in Table 1.

Although these methods improve the thermal efficiency of the
boiler and reduce pollutant emissions to a certain extent, with the
continuous increase of boiler capacity, the combustion process
becomes more complex, and it is difficult to use mechanical
methods to optimize the boiler combustion process. Therefore, an
efficient intelligent optimization technology is needed to better
solve the boiler combustion optimization problem. Evolutionary
computing (EC) technology and data modeling (DM) technology
have attracted a lot of attention in boiler combustion optimization
problems due to their efficient performance™ . However, there is
currently no complete guideline on the advantages, disadvantages,
and usability of various algorithms™. This has led to the
disconnection of research in this field, and the progress of practice
has not been shared in time, resulting in the slow progress of
boiler combustion optimization. This paper systematically
summarizes the current achievements of boiler combustion
optimization, aiming to provide guidance for interested
researchers.

The use of intelligent optimization technology in boiler
combustion optimization is mainly divided into two stages,
namely, the establishment of the boiler combustion model and the
optimization of the combustion process. Using the historical data
of boiler combustion, the model is established by EC and DM
technology, and then the combustion process is optimized by EC
technology. The optimization flow chart is shown in Fig. 3.

Table1 Works summary of mechanism methods.

Category Reference

Physical and chemical methods [5, 7-14]

Numerical simulation [6, 15-24]
Burner design optimization [25-30]

‘ Operating parameter I

( Optimization solutions ’

Fig.3 Computational intelligence technologies to optimize boiler
combustion processes.
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Fig.4 Number of EC technical works in boiler combustion optimization.
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Figure 4 shows the application of the main popular EC
technologies in boiler combustion optimization. It can be clearly
seen from Fig. 4 that genetic algorithms (GAs) and particle swarm
optimization (PSOs) have relatively more research, while ant
colony optimization (ACOs), teaching and learning-based
optimization (TLBOs), differential evolution (DEs), and artificial
bee colony (ABCs) are relatively few. The number of other EC
technologies is small, mainly including grey wolf optimization
(GWOs), whale optimization algorithm (WOAs), vortex search
(VSs), and so on. In addition, the works on single-objective
optimization are more than that on multi-objective optimization.
(Please note that the data may not be absolutely complete, but are
representative works. The data are from mainstream databases
such as Google Scholar and Web of Science.) The goal of this
paper is to conduct a comprehensive investigation of boiler
combustion optimization research, hoping to further promote the
research in the field of boiler combustion optimization.

The remaining sections are as follows. Section 1 introduces the
structure and mechanism of CFBB. Section 2 introduces the
existing researches on boiler combustion optimization. Section 3
presents future research directions and challenges. Section 4
summarizes the paper.

1 Background

This section introduces the basic structure and characteristics of
boilers, the principle of NO, generation, and the calculation
method of thermal efficiency.

1.1 CFBB structure and combustion process

Figure 5 shows the structure of a CFBB boiler in a thermal power
plant. The coal is first broken into small particles, and then sent
into the furnace together with limestone and circulated under the
action of primary and secondary air. To achieve full utilization of
raw materials, the cyclone separator recycles unburned pulverized
coal particles into the furnace. The high temperature and high-
pressure gas produced by combustion will enter the turbine,
driving the generator to generate electricity and converting heat
and mechanical energy into electrical energy. Finally, the flue gas
is filtered by the bag filter and discharged into the atmosphere.

Pulverized coal particles in a CFBB are fluidized under the
action of graded wind, which is a unique feature different from the
traditional pulverized coal boiler, and its unique characteristics
have many advantages.

(1) It can adapt to various fuel types with a high fuel utilization
rate. Some inferior fuels with low calorific value, high ash content,
and low ash melting points, such as lignite and peat, can also be
entirely burned in CFBB.

(2) In actual production, the CFBB bed temperature is strictly
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Fig.5 Structure diagram of CFBB.

maintained at 850-950 ‘C, lower furnace temperature, effectively
avoiding the slag melting phenomenon. By adding limestone to
the combustion process, the ash contains high calcium content,
which can be used to make raw materials for cement and make
the combustion residue recycled.

(3) The boiler has a wide range of manipulation conditions.
This type of boiler load has an extensive mobilization range,
which can meet the complex needs of the State Grid in different
seasons and different periods.

(4) CFBB helps reduce pollutant emissions. The low-
temperature combustion environment of CFBB makes it difficult
for nitrogen (N) in the air to oxidize to NO,. In addition, the
staged combustion process can broadly inhibit the conversion of
N into NO, in the fuel and reduce some of the NO, generated.
Therefore, the combustion of CFBB is a kind of energy-saving and
environmental protection combustion mode.

1.2 NO, formation mechanism

NO, is the main pollution gas in the CFBB combustion process,
mainly including NO and NO,, and NO accounts for about 90%.
In order to prevent air pollution and protect the environment, it is
necessary to strictly control its emission standards. CFBB
combustion is a very complex process of physical and chemical
changes. According to the NO, formation mode, it can be roughly
divided into three types: fuel type, thermal type, and fast type.

(1) Fuel NO, is generated during the combustion process and is
the dominant form. After a series of complex physical and
chemical changes, numerous nitrogen ions and nitrogen-
containing compounds will be decomposed. A series of chemical

Solid phase

(CN)

Pyrolysis
F(Kje)l yroly NO

reactions occur between high-temperature conditions and carbon,
hydrogen, and oxygen plasma, and NO, is generated. This is also
the main source of NO, generated in the operation of CFBB,
accounting for about 90% of the total NO, production. The redox
process of nitrogen in fuel is shown in Fig. 6.

Studies have shown that NO, generated by coal combustion
mainly comes from two ways, volatile ammonia and coke
ammonia. In the early stage of the eruption, volatile coal ammonia
produces some intermediate products in the rich zone. If oxygen
is sufficient, NO, is produced. If oxygen is insufficient, the
precipitated nitrogen oxides are reduced to N,. Because fuel NO,
accounts for a large proportion of total NO, emissions, it is very
important to study its formation and destruction mechanisms to
control NO, emissions.

(2) Thermal NO,, comes from the oxidation reaction of N, in
the air at high temperature. The primary air and secondary air in
the furnace are rich in N, and O, In a high-temperature
environment, a series of chemical reactions occur between N, and
O, to generate NO,. The production process is shown in the
following equation:

O+N, - NO+N (1)

N+0O, —+NO+0O 2)

The production of thermal NO, is greatly affected by
temperature. If the temperature is higher than 1200 C, its
production will be large. On the contrary, if the temperature is
lower than 1200 C, its production is very small. Since the

Heterogeneous reaction (slow)

Oxygen deficiency

Oxygen enrichment

Oxygen deficiency

—— Gas phase

=N,

Oxygen enrichment

Oxygen deficiency

(organic nitrogen compounds) Syntropy reaction (fast)

Fig.6 Redox process of nitrogen.
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temperature in the CFBB furnace is generally maintained at
850-900 C, the thermal NO, production accounts for a small
proportion of the CFBB.

(3) Fast NO, is produced by the reaction of hydrocarbon ion
clusters in fuel and N in the air according to the Fenimore
mechanism. Fast NO, production requires more hydrocarbons,
and the oxygen concentration is relatively low. The production of
rapid NO, generally does not exceed 5% of the total NO,
production, so the production of rapid NO; is less than that of
thermal NO,. Usually, only with gas-fueled burners can their
production be considered.

1.3 Thermal efficiency calculation

Most of the heat generated during the regular operation of the
boiler will be absorbed through the water wall. The absorbed heat
is usually called adequate heat, and the part of heat lost through
other ways is called heat loss. The thermal efficiency of a boiler is
the percentage of heat energy converted to the total heat energy
input. Thermal efficiency is not only the standard to evaluate the
operation status of the boiler, but also an essential goal of boiler
combustion optimization. The calculation method is shown as
fouows:

n= % x 100% (3)
where 7 is the thermal efficiency of the boiler, Q, is the effective
heat, and Q, is the total heat input.

(1) Calculation method of thermal efficiency. There are two
methods to calculate thermal efficiency, the positive equilibrium
method and the inverse equilibrium method. The positive balance
method is to obtain Q, and Q, through measurement and then
calculate according to Eq. (3), namely, the thermal efficiency of the
boiler. The inverse equilibrium method is also known as the heat
loss method because it measures the heat loss value of the boiler
combustion system and then calculates the percentage of total
heat loss to Q,, as well as the combustion efficiency. The
calculation equation is as follows:

q:l—%xlOO%ZI—Zq 4)

where Q, is the sum of all boiler heat loss.

Many thermal power plants obtain relevant data by measuring
the speed of the coal feeder or using belt weighing and other
rough means, so the measured data must have mistakes, resulting
in within errors the calculated thermal efficiency. The equilibrium
and anti-equilibrium methods are the main methods for
calculating the thermal efficiency of boilers. Suppose the relative
error is § when the total heat input is Q,, we have:

Ql Ql +6- Ql

A= Q0L8 Q  (1Ld)-Q ®)

Q Q +6-Q,

5= (- guiw) (-3)=nina ©

It can be found from Egs. (5) and (6) that the difference

between the error values A, and A, of the positive and negative

balance methods is determined by the size of Q and Q,

respectively. The combustion efficiency of CFBB is relatively high.

Generally, Q,/Q, is about 90%, and Q,/Q, is about 10%. It can be

seen that the error A, obtained by the inverse equilibrium method

is about 1/9 of that obtained by the positive equilibrium method
A

4

(2) Anti-equilibrium calculation method. Limestone is usually
added as a desulfurized in the CFBB combustion process. The
addition of limestone will affect the change of material
composition and energy in the furnace, which is not conducive to
calculating thermal efficiency. For the convenience of
mathematics, the m, kg desulfurized required for each kilogram of
coal combustion is taken as the standard, and the changes of
material and heat in the furnace brought about by the combustion
process are equivalent to the corresponding mass of coal. The anti-
equilibrium calculation Eq. (4) is transformed into Eq. (7).

_QHQAQAQEQHQ

= Q 7)
1_(5]2+Q3+CI4+CI5+CIG+Q7)

where Q, is the physical heat loss of exhaust smoke (kJ/kg). Q, is
incomplete combustion heat loss of combustible gas (kJ/kg). Q,
is solid incomplete combustion heat loss (kJ/kg). Q; is the boiler
heat loss (kJ/kg). Qs is the physical heat loss of ash (kJ/kg). Q,
is the heat loss of desulfurization reaction (kJ/kg),
q:(i=2,3,...,7) isthe Q, percentage of Q,.

It can be seen from Eq. (7) that when the inverse equilibrium
method is used to calculate the thermal efficiency, the calculation
results of each heat loss will affect the thermal efficiency of the
boiler. Therefore, in order to obtain a more accurate thermal
efficiency of the boiler, it is necessary to accurately calculate the
heat loss of the boiler, to lay the foundation for the combustion
optimization of the boiler. It should be noted that the detailed
calculation of each index in Eq. (7) can be referred to in Ref. [34].
Among the six heat losses, exhaust heat loss Q, is the largest
proportion of the heat loss in the combustion process, accounting
for about 5%. The heat loss Q, caused by incomplete combustion
of solids is second only to exhaust heat loss, and the proportion is
also large. The ash physical heat loss Q, has a greater impact on
the thermal efficiency of CFBB, and its impact on the index is
small.

2 Existing Researches in Boiler Intelligent
Optimization

This section summarizes the existing researches on boiler
combustion optimization. It can be seen from Fig. 7 that
according to different technologies, the works of boiler
combustion optimization are divided into two categories, namely
the EC paradigm and the DM paradigm. Mainstream EC
technologies have been used in boiler combustion optimization.
Genetic algorithm is a typical evolutionary algorithm, particle
swarm optimization, ant colony optimization, and teaching and
learning-based optimization are representative swarm intelligence
algorithms. Other algorithms include differential evolution and
vortex search, which are relatively lacking. DM paradigm is
mainly used in boiler combustion modeling, including artificial
neural networks (ANNs) and support vector machine regression
(SVRs). Some other machine learning techniques such as
ensemble learning and deep learning have less work.

2.1 EC paradigms

This subsection summarizes the works of EC technologies in
boiler combustion optimization. It mainly includes GAs, PSOs,
ACOs, TLBOs, and other EC techniques.

2.1.1 GAs for boiler combustion optimization
GAs are likely to be the first intelligent algorithm for boiler
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Fig.7 Existing researches classification of intelligent boiler combustion optimization.

Table2 Representative works of GAs in boiler combustion optimization.

Number of objectives Reference
Single-objective [35-49]
Multi-objective [50-54]

combustion optimization. Since the 1990s, GAs have been applied
to the optimization of boiler thermal efficiency. Table 2 lists some
representative works on GAs optimization of boiler combustion.
It can be seen in Table 2 that the number of single-objective
optimization is more than that of multi-objective optimization.

In order to estimate the oxygen content in syngas generated by
biomass in different types of facilities, Krzywanski et al
considered the optimization of calcium oxide adsorption in syngas
by bubble fluidized bed (FB) and CFBB. A non-iterative model
was developed using GA and ANN to optimize hydrogen
production. The experimental results showed that based on the
established model, the thermal efficiency of CFBB was improved.
The maximum hydrogen production rate was 67.4%, the
temperature reached 775 “C, and the molar ratios of CaO/C and
H,O/C were 2.40 and 3.12, respectively. Suresh et al.* used ANN
and GA to study the thermal efficiency optimization of a high-ash
coal-fired boiler in a supercritical power plant in order to
maximize the thermal efficiency of the boiler. Wang et al.”” have
realized a safe and efficient explosion of boilers to some extent by
using fuzzy association mining algorithms, ANN, and ECs in
computational intelligence technologies. In Ref. [58],
established ANN-GA model was verified by historical combustion
data and computational fluid dynamics. The experimental results
showed that computational fluid dynamics was helpful to improve
the performance of ANN and provided an effective tool for the
combustion optimization of CFBB in practical industrial
operations.

There are also many research works in multi-objective
optimization. Chaudhari and Garg™ used single-objective and
multi-objective optimization techniques to study the adjustment
model of maleic anhydride CFBB commercial plant reactor. Using
the NSGA-II algorithm, the optimal productivity parameter
combination was obtained. Buche et al’ proposed a multi-
objective evolutionary algorithm capable of dealing with noise
problems, which was applied to boiler combustion optimization to
reduce the emission of NO, and the pressure fluctuation of flame.
In Ref. [61], based on the experimental data of coal-fired boilers,
the hybrid model for predicting the efficiency and pollutant
emissions of 360 MW boilers was established by using ANN. The
GA was used to reduce the fuel and environmental costs as the
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optimization objective, and the optimal operation schemes such as
excess air, primary airflow, and secondary air flow were obtained.
This algorithm was combined with distributed control system
(DCS) to realize the real-time coordinated and optimized control
of power plant boilers. Shi et al used the computational fluid
dynamics simulation method combined with ANN, the thermal
efficiency and NO, emission models of a 660 MW ultra-
supercritical boiler were established, and the average prediction
errors were 0.04% and 3.56 mg/Nn’, respectively. Then the GA
was used to optimize the air supply scheme to achieve the goal of
high thermal efficiency and low NO, emission.

In general, GA has played an excellent optimization effect in
boiler combustion. However, GA still faces many challenges in
boiler combustion optimization, such as difficulty in selecting
hyperparameters, slow convergence speed, and easily falling into
local minima.

2.1.2 PSOs for boiler combustion optimization

Table 3 lists the representative works of PSOs in boiler
optimization. It can be seen in Table 3 that there are more studies
on single-objective  optimization than  multi-objective
optimization.

Because the original PSO has a fast convergence speed and is
easy to converge to the local optimum, it is difficult to achieve a
better optimization effect. Many scholars have used improved
PSO combined with regression models such as ANN and SVR for
boiler combustion optimization. In order to make full use of the
potential of CFBB waste heat sources, Garg and Orosz"? used PSO
to search for the best trade-off between specific investment costs
and energy utilization. A method for generating high entropy
efficiency vortex geometry corresponding to the optimization
period was proposed, and the optimization analysis was further
extended to solar thermal applications. In Ref. [63], it focused on
the use of PSO and SVR to minimize NO, emissions and
compared the performance with GA and ACO algorithms in this
research. In Ref. [87], PSO with variable population size was used
to optimize the reliability of the boiler furnace system. The results
showed that the optimized reliability was as high as 99.9845%. In
Ref. [88], a new hybrid jump particle swarm optimization

Table3 Representative works of PSOs in boiler combustion optimization.

Number of objectives Reference
Single-objective [63-80]
Multi-objective [81-85]
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(HJPSO) was proposed to adjust the gain of the boiler
proportional-integral (PI) controller. After introducing Gauss and
Cauchy mutation, the optimization ability of HJPSO was greatly
enhanced, and better PI controller gain was obtained in the
comparison of other PSO variants. In Ref. [89], the distributed
PSO based on MapReduce was used to optimize the thermal
efficiency and NO, emission of the boiler. The weighted
coefficient method was used to convert multi-objective
optimization into single-objective optimization. In Ref. [90], the
control effects of PSO-proportional-integral-derivative (PID),
modern controller fuzzy logic controller (FLC), and classical PID
controller on CFBB bed temperature were compared. The results
showed that the control establishment time of PSO-PID was
shorter than that of other controllers.

In general, the application of PSO in boiler optimization is
reflected in the improvement of PSO, and the optimization
performance of PSO is improved by designing different strategies.
However, most of the works do not consider the characteristics of
boiler combustion to improve the algorithm.

2.1.3 ACOs for boiler combustion optimization

Table 4 lists the works of ACOs in boiler combustion
optimization, the earliest work can be traced back to 2008"". There
are not many studies on ACOs in boiler combustion compared
with GAs and PSOs. In addition, it can be seen from the statistical
data that more work focuses on single-objective optimization, and
there are very few works on multi-objective optimization.

In Ref. [106], SVR was used to establish a model of the
relationship between boiler NO, emission concentration and
boiler operating parameters. Then ACO was used to optimize the
NO, emission concentration. The experimental results showed
that in the comparison of GA and PSO, the decision scheme
optimized by ACO can effectively reduce NO, emissions. In Ref.
[107], a novel ACO-SVR model was proposed to establish a NO,
emission model. Experimental results showed that the proposed
algorithm has higher prediction accuracy and training speed.
Zheng et al" introduced the combination of SVR and ACO to
reduce NO, emissions. Experiments showed that the method used
effectively reduces NO, by about 18.69%.

ACO has relatively less work in boiler combustion
optimization. ACO has the characteristics of fast global
convergence and strong robustness, but it is prone to stagnation
and falls into local optimum in the later stage of evolution.
Therefore, it is still necessary to study and design effective
strategies to enhance the optimization efficiency of ACO in boiler
optimization. In addition, it is necessary to further explore multi-
objective optimization technology to meet the requirements of
boiler optimization development.

2.1.4 TLBO for boiler combustion optimization

Table4 Representative works of ACOs in boiler combustion optimization.

Number of objectives Reference
Single-objective [91-104]
Multi-objective [105]

Table5 Representative works of TLBOs in boiler combustion
optimization.

Reference
[38, 80, 110-118]
[119-121]

Number of objectives

Single-objective

Multi-objective

As an efficient swarm-based search algorithm, TLBO is widely
used in various industrial problems"”. Table 5 shows the works of
TLBO on boiler combustion optimization. In order to improve
the optimization efficiency of boiler combustion, more improved
TLBOs have been proposed.

In Ref. [122], a novel teaching-learning-based optimization
algorithm (TLSO) was proposed, which dynamically adjusted the
convergence speed according to the number of iterations and
enhanced the global search ability of the algorithm. Compared
with several other algorithms, such as PSO, ACO, TLBO, etc., the
experimental results showed that TLSO achieves better results in
NO, emission optimization. Li et al""" proposed an improved A-
TLBO algorithm to construct a 330 MW CFBB combustion
model. The experimental results showed that the proposed
method had good regression accuracy and generalization ability.
In Ref. [123], the improved AELM model was combined with
TLBO to establish a CFBB combustion NO, model. The
experimental results showed that compared with the other six
models, AELM-TLBO had better prediction accuracy and
provides a basis for reducing NO, emissions. In Ref. [121], a multi-
objective improved teaching optimization algorithm (MMTLBO)
was proposed. Then, the thermal efficiency, NO,, and SO, in the
boiler combustion process were comprehensively optimized. The
experimental results showed that MMTLBO can find multiple sets
of reasonable combustion schemes and provide meaningful
guidance. In Ref. [114], an improved TLBO algorithm was used to
optimize the NO, emission of boiler combustion. The
experimental results showed that the proposed method can
effectively reduce the NO, emission concentration. In Ref. [124],
an improved TLBO algorithm (MTLBO) was proposed. The
optimization ability and generalization performance of MTLBO
were verified by 14 standard test functions. Finally, the NO,
emission of a 330 MW boiler was optimized. The experimental
results showed that the proposed MTLBO algorithm has good
optimization performance in NO, emission optimization.

As an efficient optimization algorithm, the main advantage of
TLBO is that it does not require parameter setting. Unlike PSO
and GA, the optimization performance is greatly affected by
algorithm parameters. However, the computational complexity of
TLBO in boiler combustion optimization is relatively high, and it
is necessary to further improve the computational efficiency to
meet the requirements of complex and variable working
conditions.

2.1.5 Others EC

optimization

techniques for boiler combustion

Table 6 lists other optimization techniques in boiler combustion
optimization, including differential evolution (DE), artificial bee

Table 6 Other EC techniques for boiler combustion optimization.

Algorithm Reference
DE [70, 125-130]
ABC [38, 131-134]
WOA [135-137]
GWO [138-140]
S [141, 142]
HS [143]
JAYA [144]
SSA [145]
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colony (ABC), whale optimization algorithm (WOA), sparrow
search algorithm (SSA), grey wolf optimization (GWO), vortex
search (VS), harmony search (HS), and some mathematical
optimization techniques. Among them, DE has the most research
results. In addition, Refs. [130, 131] are multi-objective
optimization works.

Pattanayak et al.'* developed a groundbreaking optimization
system based on thermodynamics and an ANN model. The
system used an optimization algorithm to refine the search for the
optimal sequence of fan frequencies, which improved thermal
efficiency and reduced pollutant emissions. In Ref. [147], a novel
evolutionary multi-objective search algorithm was used to find the
probability trade-off front between NO, and fly ash carbon
content based on a data-driven model, which effectively solves the
problems of NO, and thermal efficiency. In Ref. [148], the boiler
efficiency was optimized using the optimal manipulated variable
(MVs) decision algorithm.

In Ref. [149], multivariate analysis tools such as principal
component analysis (PCA) and partial least square-regression
(PLS-R) were used to establish the relationship between the input
parameters of biomass gasification in a CFBB furnace. According
to the optimization results, in order to obtain high quality, it was
suggested to use olivine with a high carbon conversion rate and a
low tar yield. Kusiak and Song"* used a data mining method to
optimize the complex, nonlinear, and non-stationary combustion
process of CFBB. On this basis, a virtual test program was
developed to verify the results of the optimization method. The
results showed that the developed program improved combustion
efficiency. Kim et al"" pointed out that the input parameters are
related to the performance of the established model. When
selecting the input parameters, not only the accuracy of prediction
should be improved, but also the dimension of the model should
be reduced. Therefore, one or more input parameters should be
eliminated continuously. No less than 10 input parameters were
saved out of the 36 initial input parameters. Finally, through the
test of four commonly used models, it was found that the least
squares support vector machine (LSSVM) combined with
principal component analysis had the smallest prediction error of
NO, emission, which laid the foundation for boiler combustion
optimization. In Ref. [152], a NO, emission prediction model
based on the combination of a feature selection method using an
improved pollination algorithm and a random forest was
proposed. The results showed that the model has high prediction
accuracy and good robustness, which provides key technical
support for combustion optimization. A model framework based
on deep belief network (DBN) and JAYA was developed to obtain
a 660 MW CFBB combustion model and optimize NO, emission
concentration. In Ref. [138], GWO was used to optimize the
CFBB operating parameters and improved the operating
efficiency. In the comparison between GA and PSO, the proposed
method effectively reduced the calculation time and improved the
solution accuracy.

Although various intelligent optimization methods have
promoted the research of boiler combustion optimization, the
proposed algorithms are rarely aimed at boiler combustion
characteristics, and the efficiency of the algorithm needs to be
further improved.

2.1.6 Performance summary of EC technologies

Boiler combustion optimization refers to improving combustion
efficiency and economy and reducing environmental pollution by
adjusting boiler combustion parameters. As an effective tool to
find the optimal solution, intelligent optimization algorithms have
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been widely used in boiler combustion optimization. This
subsection discusses the effects of various EC algorithms in boiler
combustion optimization and related connections and differences.

In boiler combustion optimization, GAs can optimize and
adjust the adjustable parameters by modeling the fitness function
of combustion parameters. GAs can solve multi-objective
optimization problems and nonlinear problems to a certain
extent, but for problems with a large distribution of decision
space, it may lead to reduced search efficiency. PSOs find the
optimal solution by simulating the movement and interaction of
particles in the search space. PSOs have good search ability for
problems with large search space, but for non-convex problems,
they may fall into local optimal solutions and cannot obtain a
significantly improved decision scheme. ACOs is a search
algorithm based on the behavior of ants in finding food. In boiler
combustion optimization, ACOs can find the optimal boiler
combustion operating conditions by simulating the pheromone
deposition and volatilization of ants during the search process.
ACOs can deal with multi-objective optimization problems and
constrained optimization problems, but they can not play a good
optimization effect on problems with large search spaces. TLBOs
find the optimal solution by simulating the behavior of teachers
and students in the learning process. TLBOs can also handle multi-
objective optimization problems and constrained optimization
problems. TLBOs have good optimization ability in the early stage
of the search stage, but the convergence speed is relatively slow in
the later stage of the search.

Among the above four optimization algorithms, GAs, and
PSOs are widely improved and applied to boiler combustion
optimization. Due to the difference in the search performance of
each algorithm, it can produce different optimization effects under
different working conditions. In future work, it is necessary to
further analyze the advantages and disadvantages of each
algorithm in order to achieve better search performance in boiler
combustion optimization.

2.2 DM paradigms

This subsection summarizes the works of DM algorithms in boiler
combustion optimization. It mainly includes ANNs, SVRs, and
other DM algorithms.

2.2.1 ANNs

Artificial neural networks (ANNs) have been proven to be an
effective modeling method and have been widely applied to
various fields of the power generation industry"™, boiler failure
detection™*"*%, noise anomalies"”, power output prediction"* *”,
and early abnormal behavior changes'® . This helps give
untimely warnings during operations'*. When some studies focus
on monitoring and control"'?, others investigate the possibility
of optimization"*"™ and establish intelligent power plants'”". Since
the performance of ANNs in CFBB optimization was clarified in
the 1990s", a large number of studies using ANNs applications
have been produced. Table 7 shows the application of some

Table7 Representative works of ANNs variants in boiler combustion
optimization.

Algorithm Reference
BP [37, 68]
ELM [159, 173-175]
DT [157]
LSTM [158,176]
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representative ANNs variants in boiler combustion optimization,
including back propagation (BP), extreme learning machine
(ELM), decision tree (DT), long short-term memory recurrent
neural network (LSTM).

In Ref. [174], in order to improve the performance of ELM, an
improved extreme learning machine was proposed. A new
method was adopted to generate hidden layer input weights and
deviations, and a new hidden layer activation function was
presented. In order to verify the validity of the proposed model, a
330 MW boiler combustion process was modeled and good
results were obtained. Liang et al.” established a multi-objective
model of boiler combustion using an optimized extreme learning
machine network to predict boiler thermal efficiency and NO,
emissions. In Ref. [177], a scheme for boiler combustion in
functional power plants was proposed. In this study, the ANN and
LSSVM were used to conduct Monte Carlo experiments and
interval adjoint dominance analysis, which reduced some
operating variables. The experimental results showed that the
efficient generation of ANNs under the unit load of a power plant
was obviously more effective. In Ref. [178], a CFBB gasifier/steam
turbine/proton exchange membrane (PEM) fuel cell integrated
system was developed. The system contains many
thermochemical, biochemical, and physical processes. The ANN
was established after combining the reaction principle and CFBB
gasifier operating parameters. This model could accurately predict
the output parameters of the PEM fuel cell and provide
corresponding guidance. In Ref. [179], in order to predict the bed
temperature of CFBB more accurately, after analyzing the
chemical combustion process of coal-fired units, it is considered
that different coal types have a great impact on the prediction of
bed temperature. In order to solve this problem, the coal type
information was added to the initial deep neural network (DNN)
model. In the experiments on two real CFBBs, the proposed
model accurately predicted the bed temperature. Booth and
Roland™” optimized boiler operation by using online learning
neural networks, adjusted fuel quality fluctuations, and improved
operational flexibility according to equipment performance
changes caused by wear and maintenance activities. In addition,
some boiler combustion optimization techniques have been
applied at power plant sites. For example, Ultramar developed
boiler combustion optimization software using statistical methods.
The smart process of emerson company (SPEC) was based on
ANN, used optimization techniques to optimize the boiler
combustion process, and was successfully applied to the Warsaw
Ostroleka power plant™*. Pegasus has designed and developed the
NeuSIGHT system and the PowerPerfect system. Using the data
from DCS, the optimal control of boiler combustion is realized
through the ANN". Zhou et al."*” established an ANN for low
NO, combustion performance of high-capacity boilers by using
the nonlinear dynamic characteristics and self-learning
characteristics of ANN. The model can predict the NO, emission
concentration and unburned carbon content under different
working conditions. Combined with the optimization algorithm,
the optimal operating conditions for low NO, combustion were
found. In Ref. [143], the improved ELM model was used to
optimize the operation parameters of a 700 MW CFBB to reduce
NO, emissions. In addition, the proposed algorithm was
compared with several other advanced algorithms to obtain better
results and stronger robustness. The thermal efficiency of a
600 WM boiler was predicted using the ANN model, and the
results demonstrated that the proposed method was more
accurate in predicting the thermal efficiency of the boiler and
other indicators. Finally, the model was tested using statistical
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methods"*.

2.2.2 SVRs

References [185-188] wused different artificial intelligence
optimization algorithms to optimize the hyper-parameters in
support vector machines to obtain the optimal model of boiler
combustion and then optimized the obtained model under multi-
parameter conditions by using the optimization algorithm to
achieve the goal of reducing the emission of boiler pollutants and
improving the thermal efficiency of the boiler. An online
combustion optimization system was designed to reduce the NO,
concentration generated by combustion. SVR and random forest
models were used to verify the neural network model®. In order
to meet the needs of bed temperature prediction, a dynamic
model for predicting 300 MW CFBB by using LSSVM and
delayed order group optimization technology™. On the basis of
feature selection, the ensemble learning model was applied to
decompose and combine the data subset based on LSSVM to
predict NO, emissions"®. In Ref. [190], the adaptive LSSVM
algorithm was used to establish the CFBB combustion model, and
a two-step learning strategy was designed and verified by a
nonlinear model. In Ref. [191], the Gaussian process model was
used to establish the CFBB combustion model, and the SVM
model was compared and verified.

2.2.3 Others DM techniques

In Ref. [192], the ensemble learning method was applied to CFBB
historical combustion data to predict the unit. Random forest
prediction results showed that radial position has the greatest
impact on local mass flux and species separation. The overall mass
flux had the greatest impact on local particle concentration, while
the impact on local clustering characteristics was relatively weak.
In addition, if large enough datasets were used, the ensemble
learning model could be trained as a model with good predictive
ability without any understanding of how it works. This study
emphasized the value of machine learning methods in CFBB
optimization. In Ref. [193], a NO, emission prediction method
based on the stacking generalized ensemble method (SGEM) was
proposed. The PCA method was combined to select the relevant
variables. In SGEM, the ensemble learning model was constructed
with a back propagation neural network (BPNN), SVR, and DT as
the basic models, and linear regression (LR) as the meta-model.
Through experimental verification, the proposed method has high
accuracy in predicting NO, emissions. In order to predict the
thermal efficiency and NO, emission concentration of CFBB
boilers, a deep bidirectional learning machine was proposed and
compared with the same type of ELM". In order to balance
boiler thermal efficiency and emission control, a reinforcement
learning architecture based on LSTM and deep Q-network
structure was developed'™.

3 Future Direction and Research Challenge

With the continuous development of computer technology, many
foreign companies have launched several boiler combustion
optimization systems. In the 1990s, Pegasus Corporation of the
United States developed the first NeuSIGHT system based on
neural network modeling for power systems, which worked well
in the capacity efficiency of coal-fired power plants at the time".
Based on this system, by adding a computer off-line simulation
function and dynamic prediction function, the company has
developed a Power Perfecter system with even better performance.
This system can reduce NO, emission by 10%-30% while
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improving boiler thermal efficiency by 0.5%-2.5%, and the
optimization effect is very satisfactory. Ultramax has introduced
the Ultramax system, which has been successfully used in more
than 30 countries and regions™’. Using multiple optimization
algorithms to model artificial neural network parameters
optimally, Emerson eventually developed a SmartProcess system
that has improved thermal efficiency by approximately 0.6% and
reduced NO, emissions by approximately 13% for the 200 MW
coal-fired unit at the Ostroleka power plant in Warsaw". The
GNOCISPLUS combustion optimization system, developed by
Powergen based on historical operating data of power stations, has
been applied in 37 power stations in the UK and the US. The
system uses a neural network modeling approach as a tool to
control emissions of NO, and other pollutants by combining it
with the plant’s intelligent control system. This system uses neural
network modeling as a tool to control the emission of polluting
gases such as NO, by combining it with the intelligent control
system of the power plant. In addition, many DCS manufacturers,
such as Honeywell, Siemens, Emerson, etc, have added
combustion optimization control strategies to their mature control
system products.

Although there are many combustion optimization systems
available, the algorithms and techniques they use are relatively
simple. On the other hand, these systems have made good impact
abroad. However, China is a vast country with diverse coal quality
conditions and a very complex combustion environments.
Therefore, it is difficult for foreign systems to play a good role in
guiding optimization in China. Further research and design of
combustion optimization systems are needed in China"”. Some of
the mainstream research directions and challenges are listed
below.

3.1 Combustion data processing

Most power plants are currently using DCS systems or SIS
systems to upgrade their information technology, in which a large
amount of historical boiler operation data is stored in the DCS
system or SIS system. Although these massive data help to model
the boiler combustion system, the boiler operation site is complex
and the information collected by different testing devices is more
chaotic and disorderly, which requires the use of effective data
mining methods to process these system data and then select
effective data to build the boiler combustion model.

Based on a data-driven model, Ref. [198] monitors the actual
boiler efficiency and its desired efficiency. The method was based
on an information-theoretic variable ordering of the massive data.
In the data processing of ultra-supercritical units, the model
structure is a transfer function matrix through dynamic analysis,
and the data-driven multivariate model parameters are proposed
in the form of intelligent identification combined with
evolutionary algorithms for data mining, and the work done
further provides a reference for boiler control™”.

For data models, the quality of the dataset is very important. It
is important to extract more effective information from the large
amount of data obtained from DCS for boiler combustion
optimization.

3.2 Feature selection and feature reconstruction

The boiler combustion system is a nonlinear, strongly coupled,
large hysteresis system. Its operating parameters are numerous
and have complex coupling relationships with each other. If many
parameters are directly used as inputs to the black-box model to
construct the boiler combustion system model, it will inevitably
make the input information of the model redundant and thus
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weaken the generalization ability of the model™”. Therefore, when
constructing the boiler combustion model, it is necessary to
analyze the correlation between the operating parameters that
affect the combustion characteristics of the boiler and then
eliminate the correlation between the variables.

This study is divided into two main categories. One category is
the use of feature extraction. Reference [201] uses a deep Q
network (DQN) and an LSTM module to extract features of the
combustion process from the DCS operating data. The other
category is the use of feature reconstruction. Reference [92] used
the mutual information (MI) algorithm to calculate the
importance of the actual variables, analyzed them to determine the
variables of interest, and then reconstructed the modeled data.

After using the feature selection technique for boiler
parameters, the performance of the data model was improved™>*",
and further research on the technique of boiler feature selection is
important to improve boiler combustion optimization.

3.3 Boiler combustion modeling

Advanced computational intelligence techniques are introduced
into boiler combustion optimization. Based on historical data of
boiler combustion, combustion models are built using machine
learning methods, such as neural networks™, support vector
machines”” > *, random forests"”*, etc. On the established
model, the thermal efficiency and pollutant emission
concentration of the boiler are optimized using population
intelligence optimization techniques to achieve safe and efficient
low-pollution combustion of the boiler.

These algorithms are capable of modeling the data of boiler
combustion and have great advantages in modeling complex
systems. It can extract the mapping relationship between the
sample input and the target output by learning from a large
amount of sample data. However, the traditional neural network
relies too much on the random initial values of the network and
also suffers from the problems of difficulty to determine the
network model and slow learning speed. The parameters of
support vector machines also rely too much on empirical
knowledge. Therefore, its application in boiler combustion
optimization needs to be further improved and perfected.

3.4 Knowledge-driven optimization

The data obtained from DCS are plagued by uncertainties and
deficiencies. Hybrid prediction techniques for process control
systems are the norm today and involve a combination of data-
driven and knowledge-driven models.

Reference [209] generated an artificial neural network
prediction tool using Visual Basic GUI and combined it with
expert knowledge for predicting the spray values of a 500 MW
boiler within the allowed tolerances. Reference [210] considers the
structure of distributed support systems and proposes an
integration framework based on a distributed architecture that
includes expert knowledge and collaboration techniques, tools that
work with decision-makers to enrich their knowledge.

The combination of expert knowledge and problem knowledge
guides the combustion optimization of the boiler to good effect. It
is of good practical importance to further study the combination
approach.

3.5 Multi-objective optimization

Most of the current boiler combustion optimization methods and
techniques are only optimized for a single objective, just
optimizing boiler NO, emissions or thermal efficiency. There are
relatively few studies that simultaneously perform multi-objective
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integrated optimization of both. The existing algorithms mainly
include immune cell subpopulation multi-objective optimization
algorithm™", multi-objective bee colony algorithm™?, multi-
objective teaching and learning optimization algorithm"”, etc.
However, these methods are not designed with the characteristics
of combustion problems, and the comprehensive optimization
capability needs further improvement.

3.6 Low carbon policy

To achieve the target task of carbon peaking and carbon
neutrality, China has increased the efforts of boiler energy saving
and emission reduction, and implemented a series of policy
measures such as coal power structure optimization and
transformation and upgrading, coal-fired industrial boiler energy
saving and environmental protection comprehensive upgrading
project, etc. The level of boiler energy saving and environmental
protection has been significantly improved.

While reducing NO,, SO,, and other polluting gases, CO,
emissions need to be further reduced. For example, CO, has been
reduced by a new method of using flue gas heat in cascade™. A
process simulation of a conventional plant was set up in Ref. [214]
using Aspen plus, resulting in a CO, recovery rate of 96.24% for
the whole system. In the future, the CO, emission concentration
can be further reduced in terms of the structural design of power
generation boilers”” and optimization of various parameters®*.

4 Conclusion

This paper provided a complete investigation of the applications
of intelligent optimization algorithms in boiler combustion
optimization. It mainly included the commonly used EC
algorithms and analyzed the advantages and disadvantages of each
algorithm. In addition, the problems and challenges in future
boiler combustion optimization were pointed out and discussed.

The survey shows that EC technologies are widely used in the
field of boiler combustion optimization because of their high
search efficiency. Each algorithm has its characteristics, e.g., GAs
can retain genetic characteristics in the process of evolution, the
update mechanism of PSOs is simple, the computational cost is
relatively small, TLBOs have high global search ability, and so on.
Therefore, the improved versions of these EC technologies can
better optimize the boiler combustion process and deserve further
study.

Although the current stage of works has achieved good
optimization results, there are still many issues that need further
in-depth research, such as, pre-processing of boiler combustion
data, feature selection and feature reconstruction of combustion
process parameters, numerical and data-based modeling, using
knowledge-driven assisted optimization, and meeting low-carbon
policy requirements. In addition, the algorithms need to have
certain generalization performance as the corresponding policies
are developed.
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