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Abstract

In this study, we harnessed the properties of desert plants to synthesize silver nanoparticles to explore
potential antimicrobial solutions. Chrozophora plicata and Heliotropium curassavicum extracts were
used as green reducing agents to transform silver ions into nanoparticles. Our findings revealed novel
properties of C. plicata, which have not been reported before. Surface plasmon resonance peak at
453.6 and 431 nm for C. plicata and H. curassavicum, respectively, via ultraviolet (UV) spectral
analysis evidenced the successful fabrication of silver nanoparticles with particle sizes ranging from
4.3-8 and 3.1-6.97 nm respectively, which was validated by field emission scanning electron
microscopy (FE-SEM). X-ray diffraction analysis revealed that the crystal structure of these
nanoparticles had a face-centered cubic geometry. Fourier transform infrared spectrometry of the plant
extract showed strong signals corresponding to carbohydrates, proteins, and phenolics. Antibacterial
assays of the silver nanoparticles from C. plicata displayed zones of inhibition at 5 and 4 mm against
Staphylococcus aureus and Escherichia coli, respectively. Meanwhile, the silver nanoparticles from
H. curassavicum exhibited zones of inhibition against both pathogens at 10 and 7 mm, respectively.
The test samples were substantial inhibitors of S. aureus and E. coli biofilm formation since these
displayed ICs, values in the range of 8.88-10.57 mg/mL, which is as potent as the reference
ciprofloxacin. Consequently, the silver nanoparticles derived from these desert plants can be potential
drug candidates for treating respiratory and digestive tract infections alone or in combination with
existing antibiotics.

Keywords: biogenic synthesis; silver nanoparticles fabrication; desert plants extract; antimicrobial
activity; biofilm inhibition; nanotechnology; antibiotic resistance.
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Introduction

Nanotechnology is an emerging field that comprises
nanoparticles of remarkable abilities due to their large
surface area to volume ratio, unique catalytic activity,
and recently discovered electronic, optic, and
magnetic properties. Therefore, these nanoparticles
have potential applications in numerous fields like

biomedicine, pharmacology, nanobiotechnology,
agriculture, manufacturing and materials,
environment, electronics, energy collection, and

mechanical industries [1-3]. Although physical and
chemical methods have been extensively used to
synthesize metal nanoparticles, they are usually labor-
intensive, and produce
byproducts that can damage the environment and
living organisms [4-7]. Green synthetic methods
utilizing microorganisms and plants (or their extracts)
are currently being explored. Plant extracts contain
diverse = phytochemicals, including
polysaccharides, proteins, ascorbic acid, terpenoids,
flavonoids, phenolics, sterols, alcohols, alkaloids,
amines, and saponins [8, 9] that act as reducing
agents to impart nanoparticles with diverse structural
and morphological features [10, 11].

expensive, hazardous

enzymes,

Among several noble metal nanoparticles, silver
nanoparticles (AgNPs) are an arch product because
their inter-band transition energy is placed away from
the surface plasmon resonance energy [12, 13].
AgNPs possess properties,
antibacterial, antifungal, antiviral, antioxidant, and

various such as
anticancer. They also act as excellent catalysts in
degrading treating
complications, and wound healing [14—17]. Recently,

dyes, diabetes-related
AgNPs have been used to improve the efficiency of
antibiotics by damaging the microbial DNA [18]. Due
to their antimicrobial properties, silver nanoparticles
are also used in the production, storage, packaging,
and transportation of food products and other
kitchenware [19]. In agriculture, AgNPs act as
larvicidal agents, nano-fertilizers, and nano-pesticides
[20, 21]. Studies revealed that AgNPs are more potent
than the plant extracts used for their preparation. For
example, silver nanoparticles synthesized using the
bark extracts of Piceaabies and Pinusnigra exhibit
more potent antifungal, antibacterial, and antimitotic
properties than the bark extracts themselves [22].
Similarly, AgNPs synthesized using five different
aqueous plant extracts, including Berberis vulgaris,
Brassica nigra, Capsella bursa-pastoris, Lavandula

angustifolia, and Origanum vulgare, had improved
size and morphology and exhibited enhanced
activity  [23].
demonstrated that plant extracts used to prepare stable
AgNPs only reduce and stabilize these AgNPs and
thus can modulate immune and cytotoxic responses
[24].

antimicrobial Researchers also

Chrozophora plicata (CP) is a medicinal plant
growing in the Cholistan Desert near Bahawalpur,
Pakistan. Based on chemical analysis, C. plicata
leaves have been shown to contain triterpenoids,
sterols, alcohols, hydrocarbons, and phenolics like
flavonoids, coumarins, tannins,
phenanthrenes, quinones, and phenolic acids [25].
Phytochemical screening of C. plicata indicates the

presence of flavonoids, alkaloids (plicatanins A—C,

lignans,

speranberculatine  A), coumarins  (bilactone
plicatanone, methyl p-coumarate), sterols (f-
sitosterol),  a-glucosidase  (B-sitosterol-3-O-B-D-

glucopyranoside, apigenin-5-O-f-D-glucopyranoside)
[26, 27]. Heliotropium curassavicum (HC) is another
plant found in the Cholistan Desert that contains
many bioactive components, including pyrrolizidine
alkaloids, flavonoids, terpenoids, other alkaloids,
tannins, phenols, proteins, and steroids [28, 29].
Considering the diversity of the secondary
metabolites in C. plicate and HC, we utilized these
aqueous plant extracts to prepare AgNPs, which were
then characterized using several analytical techniques
in this study. We also evaluated their antibacterial and
anti-biofilm formation potential.

Experimental

Preparation of plant extract

Whole C. plicata and H. curassavicum plants were
collected during the flowering season (i.e., May
2022) from the fields
Bahawalpur. They were identified by Dr. Farrukh

around Civil Hospital,
Nisar, a plant taxonomist in the Department of
Biochemistry, Cholistan University of Veterinary and
Animal Sciences, Bahawalpur, Pakistan. The plant
specimens were cleaned with tap water several times
to remove impurities and dust particles, washed with
double distilled water, and dried under shade for 15
days. The dried material was chopped into small
pieces. The plant extracts were prepared using
deionized water, using a 1:10 (mL) volume ratio of
plant material to water, followed by heating at 75 °C
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for 90 min [30].
Synthesis of the AgNPs

Silver nitrate was obtained from Aldrich Chemical
Co. (St. Louis, MO, USA) and was used without
purification. Silver nitrate (0.09 g) was dissolved in
deionized water (100 mL) and heated at 70 °C. Then,
it was added dropwise into a filtered transparent
aqueous solution of the plant extract (250 mL) under
vigorous stirring for 20 min. The solution was stirred
vigorously at 80 °C for 3 h until the color of the
reaction mixture changed to dark brown and then
allowed to cool to room temperature. This color
change indicated the formation of AgNPs, which
were purified using ultracentrifugation (2 h at
45 000 r/min) and then re-dispersed in water [31].
The AgNPs synthesized from C. plicata and H.
curassavicum were named CP-AgNPs and HC-
AgNPs, respectively.

Characterization of AgNPs

The AgNPs
ultraviolet—visible (UV—Vis) absorption spectroscopy
with the Cary 60 UV—Vis spectrometer to confirm the

were characterized using

reduction process. X-ray diffraction (XRD) analysis
was performed using the EQUINOX 3000 XRD
instrument (Thermo Scientific, France). The Fourier
transform infrared (FTIR) spectra of the samples were
acquired using the Agilent FTIR Cary-630 ATR with
a KBr disk, ranging from 4 000 to 400 cm™. A
TESCAN MAIA3 field emission scanning electron
microscope (FE-SEM) equipped with an Octane Elite
EDAX detector was employed to perform FE-SEM
and energy-dispersive X-ray (EDX) studies on the
prepared samples.

Bioactivity assays
Disc diffusion antibacterial assay

The samples of the synthesized AgNPs were tested
against Gram-positive and Gram-negative bacteria
(Staphylococcus  aureus and Escherichia coli,
respectively). These strains were cultured for 24 h at
37 °C on nutrient agar (Oxoid, UK). The disc
diffusion method was used to determine the
antibacterial activity of the test samples. After
culturing the bacteria on a nutrient agar medium,
100 pL of culture suspension containing 107 colony-
forming units (CFUs)/mL was used to measure the
antibacterial activity of the NPs. Sterilized filter paper

discs (6 mm in diameter) were independently soaked

in the sample solution and then placed on the agar
plates inoculated with the test microorganisms.
Empty discs and discs containing ciprofloxacin
(30 pg/disc) (Oxoid, UK) were used as the negative
control and reference, respectively. The plates were
incubated for 2 h at 4 °C and then at 37 °C for 18 h.
The diameters of the growth inhibition zone in mm
(zone reader) were measured to evaluate the
antibacterial activity of the organisms compared to

the control [32, 33].
Biofilm inhibition assay

The biofilm formation inhibition assay was performed
using a previously reported method [34, 35]. Sterile
96-well plates were filled with 100 pL of nutrient
broth (Oxoid, UK) and 100 pL of test sample
solution, followed by adding 20 pL of the bacterial
culture suspension. Only nutrient broth was used as
the negative control. The plates were covered and
incubated aerobically at 37 °C for 24 h. Then, 220 pL
of sterile phosphate buffer was used to wash the
contents of each well thrice. The plates were shaken
vigorously to remove all non-adherent bacteria. Then,
220 pL of 99% methanol was added per well to fix
the remaining attached cells. After 15 minutes, the
plates were dried and stained for 5 min with 220 mL
of 50% crystal violet per well. After removing the
excess stain using tap water, the plates were air dried,
and 220 pL of 33% (v/v) glacial acetic acid per well
was added to resolubilize the dye bound to the
adherent cells. The optical density (OD) of each well
was measured at 630 nm using a microplate reader
(Bio Tek, USA). All the tests were performed in
triplicates, and the averages were calculated. The
bacterial growth inhibition (INH%) was calculated as
follows:

INH% = 100 - (OD630 sample * 100)/OD()30 control

Results and Discussion

Characterization of the synthesized AgNPs

UV spectral analysis

The solid crystalline powder of AgNPs was dispersed
in water to record the UV-Vis spectra. The
synthesized CP- and HC-AgNPs exhibit surface
plasmon resonance phenomenon at 453.6 and 431 nm,
respectively (Fig. 1), as shown previously [36, 37],
due to the combined vibration of the electrons in the
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Fig. 1 UV—Vis spectra of AgNPs: (a) CP-AgNPs (b) HC-AgNPs.

AgNPs that resonate with light waves. Therefore, this
preliminary data indicated the successful formation of
stable CP- and HC-AgNPs.

XRD analysis

Using (XRD), we confirmed the phase changes and
The
interface of the incident rays with the test sample
produces constructive interference and a diffracted
ray when conditions satisfy Bragg’s Law (ni=2d
sinf). The biosynthesized CP-AgNPs (Fig. 2(a))
showed XRD peaks at 260 corresponding to
38.1°(111), 44.3°(200), and 64.4°(220) (Table 1) of
(FCC) [38]
corresponding to the standard FCC structure, which
was compared with JCPDS file No. 04-0783 from

lattice structure of the prepared material.

the face-centered cubic silver

previous studies [36]. The average crystalline size
(D,) of CP-AgNPs was estimated by using the
following Debye—Scherrer equation:

D = KA/(Bcos 6)

where K is the Scherrer constant with a value of 0.9, A
is the wavelength of the X-ray, and usually, a Cu
source with 0.59 nm wavelength is used as a source, f§
denotes the full width at half maximum, and the
Bragg angle in radians is 6. The estimated crystalline
size was observed to be 6.96 nm.

XRD at 26 in the range of 35°-80° was detected for
the biosynthesized HC-AgNPs from three diffraction
signals (planes) appearing at 38.17°, 46.37°, and,
64.71° at 26, that matched with the (111), (200) and,
(220) planes of FCC silver (JCPDS file No. 84-0713)

(a) (i —— Chrozophora plicata (b) 2 — Heliotropium crussavicum
%
= (200) (220) z (111)
= N
2 z
£ =
& @311 5 *
= k=
3
20 40 60 80 20 40 60 80
20 (%) 20 (°)
Fig. 2 XRD pattern of both the AgNPs: (a) CP-AgNPs and (b) HC-AgNPs.
Table 1 Calculated crystalline sizes of CP-AgNPs and HC-AgNPs
CP-AgNPs HC-AgNPs
26 (°) FWHM (rad) Crystalline size (nm) 26 (°) FWHM (rad) Crystalline size (nm)
38.1 0.466 18.85 38.17 11.88 0.74
443 9.784 0.92 46.37 0.60 15.05
64.4 8.85 1.11 64.71 11.88 0.83
Mean value 6.96 Mean value 5.54
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(Fig. 2(b)). The unassigned peaks (marked with stars
in Fig 2(b)) were also observed, indicating the
crystallization of the bio-organic phase on the AgNP’
s surface [39]. Thus, the analyzed three signals of the
HC-AgNPs proved that the HC-AgNPs
crystalline. The size of the HC-AgNPs crystals was

WwEre

calculated (as mentioned in Table 1) from all the
signals collectively from Debye’s equation. The mean
size, calculated from all peaks, was 5.54 nm.

FTIR analysis

Fourier Transform infrared spectroscopy (FTIR) was
used to analyze the molecules in the plant extracts
involved in synthesizing the NPs (Fig. 3). The
observed intense FTIR bands were compared with the
previously reported standard values for identifying
the functional groups. Figures 3(a) and 3(b) show the
FTIR of the CP- and HC-AgNPs,
respectively. The broad absorption band at 3 247 cm™
and 3 047 cm™ (Fig. 3(a)) and 3 242 cm™ and 3 050
cm’' (Fig. 3(b)) corresponds to the O-H and C-H
stretching vibration of phenols; it can be assumed that

spectra

these phenolics are involved in the reduction of
AgNO; to Ag’. The sharp band at 1 628 cm™ (Fig.
3(a)) and 1 631 cm™ (Fig. 3(b)) could be assigned to
the C=0O stretching of the lactone/ketone or
carboxylic acid/anhydride group, respectively [40].
The dip at 1 402 cm™ (Fig. 3(a)) is due to the N=0O
bending of the nitro group. The band observed at 1
112 em™ (Fig. 3(a)) represents the C-O stretching of
esters [41, 42]. In the FTIR spectrum of HC-AgNPs
(Fig. 3(b)), the band at 2 920 cm™ was observed for
aliphatic C-H stretching, whereas the band at 1461
cm™' was due to the N=H stretching vibrations from
various proteins. The peak at 1 272 cm™ revealed the
stretching of nitro compounds present in the extract.
The dip at 1 272 cm™ can be assigned to the C=N
stretching vibration of amines [41, 43]. The bands

(a) —— Chrozophora plicata
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observed at 1 112 cm™ (Fig. 3(a)) and 1 011 cm™
(Fig. 3(b)) correspond to the C-O stretching
vibrations [44]. This spectral information shows that
the AgNPs must have been stabilized by the
biomolecules. Since the phytochemicals in both plant
extracts were screened and have also been reported in
the literature, phenolic compounds, flavonoids,
alkaloids, diterpenoids, and triterpenoids were found
in significant quantities [45—47]. This substantiated
the FTIR results and deduction of stabilizing the
AgNPs primarily by phenolic compounds along with

other metabolites.
FE-SEM analysis

The morphology and particle size of the
biosynthesized AgNPs were evaluated using FE-SEM
micrographs, while the particle size distribution was
analyzed using the dynamic light scattering (DLS)
histogram (Figs. 4 and 5). The results showed the
presence of nano-spheres with diameters ranging
from 4.3-8 and 3.1-6.97 nm for CP-AgNPs (Fig. 4)
and HC-AgNPs (Fig. 5), respectively. This size range
was consistent with the crystalline size calculated
from Debye—Scherrer’s equation. The presence of
large particles can be related to slow reaction speed
[48]. The synthesized AgNPs
distributed over a narrow diameter range in nm. The

were uniformly

obtained NPs were also perfectly stabilized via the
stabilizing and capping agents present in the plant
extracts as validating using FTIR analysis.

EDX analysis

The energy dispersive X-Ray spectroscopy (EDX)
analysis showed the successful synthesis of CP- and
HC-AgNPs and estimated the elemental composition
in percentages. The EDX profiles of the AgNPs
displayed prominent peaks for elemental silver and
small peaks for other elements (Fig. 6). The

(b) —— Heliotropium curassavicum
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Fig. 3 FTIR spectra of the AgNPs; (a) CP-AgNPs (b) HC-AgNPs.
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Fig. 4 (a) FE-SEM micrograph and (b) DLS histogram showing the particle size distribution of CP-AgNPs.
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Fig. 5 (a) FE-SEM micrograph and (b) DLS histogram showing the particle size distribution of HC-AgNPs.

characteristic optical absorption peak at 3 keV is due
to the surface plasmon resonance of the metallic
[49]. The
composition exhibited a high-intensity signal for Ag
and weak signals for O, S, P, and Ca atoms.
Moreover, the EDX analysis showed that the sample
contained 51.05% and 4.29% (weight percentage) of
silver biosynthesized from the C. plicata (Fig. 6(a))
and H. (Fig. 6(b)) extracts,
respectively.  As previously, the
percentage of Ag in the HC-AgNPs can be attributed

silver  nanocrystallites elemental

curassavicum

shown low
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Fig. 6 EDX pattern (a) CP-AgNPs (b) HC-AgNPs.

to the nature of secondary metabolites in this plant,
mostly pyrrolizidine alkaloids. This finding suggested
that as phenolics are usually involved in the
biosynthesis of AgNPs, higher concentrations of the
H. curassavicum extract can enhance the percentage
of Ag. Other signals observed for elemental Ag could
be due to the biomolecules bound to the surface of
AgNPs. The presence of S, P, and O peaks could be
attributed to the cellular components, including
carbohydrates, proteins, and other phytochemicals,
which probably act as stabilizing or capping agents in
synthesizing AgNPs [50]. These findings are
consistent with the FTIR results, which showed the
presence of functional groups involved in stabilizing
the nanoparticles.

Biological activities

Due to their morphological diversity, AgNPs exhibit
various biological activities, making them useful for
biomedical applications. In this study, the antibacterial and
anti-biofilm formation activities of AgNPs synthesized
using C. plicata (CP-AgNPs) and H. curassavicum (HC-
AgNPs) extracts were evaluated.

The antibacterial assay results showed that the CP-
AgNPs displayed moderate activity against S. aureus
and E. coli (zones of inhibition or ZOI of 5 mm and 4
mm, respectively (Table 2)). Meanwhile, the HC-

https://www.sciopen.com/journal/2150-5578
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Table 2 Antibacterial and anti-biofilm formation activities of CP-AgNPs and HC-AgNPs
Zone of inhibition (ZOI) (mm) Biofilm formation inhibition ICs, (mg/mL)
Organism
CP-AgNPs HC-AgNPs Ciprofloxacin CP-AgNPs HC-AgNPs Ciprofloxacin
S. aureus 5 10 27 10.16 10.57 8.33
E. coli 4 7 25 10.51 8.88 8.75

AgNPs exhibited significant activity against both
pathogens, as the ZOI for S. aureus and E. coli were
10 and 7 mm, respectively (Table 2). Previous studies
fully support our results, which showed that AgNPs
synthesized from various sources showed similar
antibacterial activities against S. aureus and E. coli
[51]. Shahverdi et al. studied the synergic effect of
AgNPs (reduced using Klebsiella pneumoniae culture
supernatants) with different antibiotics against S.
aureus and E. coli, which enhanced their activity
[52].

Although they displayed moderate antibacterial
activity, the potency of both CP- and HC-AgNPs in
inhibiting biofilms formed by S. aureus (ICs, = 10.16
and 10.57 mg/mL, respectively) and E. coli (ICs, =
10.51 and 8.88 mg/mL, respectively) was similar to
that of the standard drug ciprofloxacin (ICs, = 8.33
and 8.75 mg/mL, respectively) (Table 2). Previous
studies established that minor concentrations of
AgNPs do not directly damage bacterial cells. This
mechanism requires the dissolution of AgNPs to
release sufficient silver ions to inhibit the biofilm
formation by altering gene expression or inhibiting
quorum sensing within the biofilm. The level of
antibacterial activity of AgNPs has been shown to
depend on their size, as smaller NPs show higher
antimicrobial potential, probably because they can be
easily internalized by bacterial cells [53].

Pathogenic bacteria form biofilms consisting of
extracellular polysaccharides, DNA, and proteins for
survival [54]. These biofilms protect the bacteria
from various external stresses, including antibiotics,
making
Therefore, inhibiting biofilm formation can prevent
antimicrobial resistance [55], and biosynthesized

these bacteria resistant to antibiotics.

AgNPs can be the best option to overcome this
problem.

Conclusion

In this study, the aqueous extracts of Chrozophora
plicata and Heliotropium currasavicm were used to

synthesize AgNPs with antibacterial and anti-biofilm
forming properties. The synthesized materials were
characterized by detecting the color change in the
solution, UV-Vis and FTIR-spectroscopy, XRD,
SEM, and EDX analysis. The particle sizes of CP-
AgNPs and HC-Ag NPs ranged from 4.3-8 and
3.1-6.97 nm, respectively. The FTIR and UV-Vis
spectra revealed that specific biomolecules, including
phenolics, carbohydrates, and proteins, that are
common in AgNPs might contribute to stabilizing
AgNPs. The AgNPs synthesized from C. plicata (CP-
AgNPs) exhibited ZOIs of 5 and 4 mm against S.
aureus and E. coli, respectively, whereas AgNPs
synthesized from H. curassavicum (HC-AgNPs)
demonstrated ZOI against of 10 and 7 mm,
respectively. Both test samples displayed ICs, values
ranging from 8.88-10.57 mg/mL, similar to the
reference drug ciprofloxacin, indicating that they can
significantly inhibit biofilm formation by S. aureus
and E. coli. Hence, the AgNPs synthesized using the
desert plants, C. plicata and H. curassavicum, might
be potential candidates for developing future drugs to
combat various bacterial infections.
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