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Abstract
Background/Aims: The physiological phenotype of individuals can influence and shape real-
life phenomena in that it can contribute to the development of specific characteristics that can 
affect the immune response to specific stimuli. In this study we aimed to understand whether the 
sphingosine/sphingosine-1-phoshate (S1P) axis can modulate the immunotype of circulating 
cells. Methods: To pursue this goal, we performed bioinformatic analyses of public datasets. 
Results: The transcriptomic profile of healthy subjects of GSE192829 dataset identified two 
clusters with different transcriptional repertoire. Cluster 1 expressed higher levels of enzymes 
for S1P formation than cluster 0 which was characterized by enzymes that lead to ceramide 
formation, which represent the opposite metabolic direction. Inference analysis showed that 
cluster 1 was higher populated by monocytes, CD4+ T and B cells than cluster 0. Of particular 
interest was the phenotype of the monocytes in cluster 1 which showed an immunosuppressive 
nature compared to those in cluster 0. The role of S1P signature in healthy PBMCs was 
confirmed with other dataset analyses, supporting that circulating monocytes positive to the 
ceramidase, unlike the negative ones, had an immunosuppressive phenotype characterized 
by hub immunosuppressive markers (i.e. TYROBP, FCER1G, SYK, SIRPA, CSF1R, AIF1, FCGR2A, 
CLEC7A, LYN, PLCG2, LILRs, HCK, GAB2). This hub genes well discriminated the immunotype 
of healthy subjects. Conclusion: In conclusion this study highlights that S1P-associated hub 
markers can be useful to discriminate subjects with pronounced immunosuppression.
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Introduction

The physiological phenotype of individuals is widely described according to the variation 
of intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors [1]. Because 
this aspect can influence and shape the physiological homeostasis and then the response of 
each individual to the real-life phenomena, the goal of this study was to understand whether 
the biological axis of sphingosine/sphingosine-1-phosphate (S1P) could affect the immune 
system activity.

Sphingolipids are components of the cellular membranes and can behave as second 
messengers to regulate cell homeostasis. Their synthesis or degradation is related to 
endogenous and exogenous environmental stimuli that can direct immune responses [2]. 
The balance among different sphingolipids, such as sphingomyelin, ceramide, sphingosine, 
S1P, toward one sphingolipid or the other can alter the phenotype of either circulating [3] or 
structural immunocompetent cells [4-5]. In our previous studies, we proved that the activation 
of Toll-like receptor 9 (TLR9) increased the pro-inflammatory cytokines release via the 
induction of a ceramide/S1P imbalance in favor of S1P that, in the context of the lung tumor 
microenvironment, fostered tumor proliferation [4]. The activation of cell surface receptors 
and the nuclear S1P receptor 3/sphingosine kinase II (S1PR3/SPHK II) axis facilitated tumor 
cell proliferation [5], highlighting S1P as a pro-tumor driver due to the pro-inflammatory 
signature. In addition, circulating S1P exacerbated the pro-inflammatory milieu inducing the 
release of both TNF-α and IL-6 in a S1PR3-dependent manner [3], leading to suppose that 
S1P can orchestrate circulating immune cells toward a specific phenotype as well as toward 
an inflammatory profile that could influence the biological homeostasis. Therefore, this 
study has been designed to understand the variation of the human immune system activity 
and outline whether S1P-related enzymes/proteins could affect the physiological status 
of circulating blood cells. To pursue this goal, we evaluated the transcriptomic profile of 
Peripheral Blood Mononuclear Cells (PBMCs) obtained by healthy subjects taking advantage 
of public datasets of RNAseq. We identified two clusters of healthy individuals with different 
transcriptional repertoire; specifically, we characterized a sub-group of healthy individuals 
with a pronounced metabolism of S1P and an enrichment of immunosuppressive monocytes 
that could intervene in the establishment of specific immune reactions.

Materials and Methods

Bulk RNAseq database
Public bulk RNAseq data derived by GSE192829 dataset (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE192829), was obtained by transcriptomic analysis of PBMCs of 11 healthy subjects, 
comprising n=3 males and n=8 females. Subjects did not have any pathology or hematological alteration, 
and they had never smoked. The age of the enrolled subjects was of 44.5±10.2 (mean±standard deviation) 
[6]. Supplementary Table 1 reports healthy subjects’ characteristics.

Single cell (sc) RNAseq database
The public scRNAseq dataset GSE235857 (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE235857) was analyzed. It comprises data from PBMCs obtained from 6 healthy subjects, 
comprising n=3 males and n=3 females. The age of the enrolled subjects was of 26-37 years old [7].

Python analysis
The analysis of bulk RNAseq data (GSE192829) was performed using Python programming language 

(version 3.11.4) and Scanpy toolkit (version 1.9.5). The dimensionality of the dataset was reduced using 
Uniform Manifold Approximation and Projection (UMAP) implemented by the “scanpy.tl.umap” function. 
Leiden algorithm was used for clustering via “scanpy.pp.neighbors” and “scanpy.tl.leiden” function. The 
applied parameters were as follows: number of neighbours = 50 (n_neighbours=50), number of principal 
components = 40 (n_pcs=40) and resolution = 1 (resolution=1). Statistics and differentiation scores of the 
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differentially expressed transcripts (DETs) in each cluster was performed using the “scanpy.tl.rank_genes_
groups” function. A supervised analysis based on S1P-related genes was performed sorting out genes with 
significant expression scores.

The analysis of scRNAseq data (GSE235857) was similarly performed using Python programming 
language (v.3.11.4) and Scanpy toolkit (v.1.9.5). Doublets were removed using the SOLO algorithm 
implementation from Scvi-tools [8]. Only high-quality cells were selected filtering out cells with over 3500 or 
less than 200 unique feature genes and with a mitochondrial gene ratio of more than 8%. The outliers were 
data with less than three cells and with high numbers of counts. Highly variable genes were determined using 
“scanpy.pp.highly_variable_genes” function with Seurat settings. We computed the Principal Component 
Analysis (PCA) and UMAP to reduce the dimensionality of dataset employing “scanpy.tl.pca” and “scanpy.
tl.umap” functions, respectively. The parameters of the analysis were as follows: n_neighbors=20, n_pcs=10 
and resolution=0.5. Subsequently, we computed Wilcoxon rank-sum test-based statistics and differentiation 
scores of all genes in each cluster using the “scanpy.tl.rank_genes_groups” function.

Monocytes clusters were manually annotated for each sample according to known gene markers and 
then performed subclustering using lower resolution allowing an appropriate split of cell clusters. The 
expression of immunosuppressive genes were highlighted using “scanpy.pl.dotplot”.

TIMER 2.0 analysis
To evaluate the immune profile of PBMCs deriving from healthy donors (GSE192829), TIMER webserver 

(http://timer.cistrome.org, version 2.0) was used. The immune cells analysis was carried through cibersort 
deconvolution method.

Gene Set Enrichment Analysis (GSEA)
To understand the cell status and immune perturbations between the two clusters of healthy subjects 

obtained by Python analysis of bulk RNAseq data (GSE192829), a gene set enrichment analysis was 
performed with GSEA 4.3.2 (https://www.gsea-msigdb.org/gsea/index.jsp), according to ImmuneSigDB 
gene sets containing 4872 gene sets, part of C7 immunologic signature gene set database (c7.all.v2023.1.Hs.
symbols.gmt), part of Molecular Signatures Database (MSigDB). The following parameters were set: 
number of permutation: 1000; phenotype labels: cluster 1 vs cluster 0; collapse/remap to gene symbol: 
collapse; permutation type: gene set; chip platform: Human_Gene_Symbol_with_Remapping_MSignDB.
v2023.1.Hs.chip; enrichment statistic: weighted; metric for ranking gene: Signal2Noise; gene list sorting 
mode: real; gene list ordering mode: descending; max size: 500; min size: 15. The normalized enrichment 
score (NES) was applied to account for differences in gene set size and in correlation between gene sets and 
the expression dataset. GSEA determines NES as follow: NES=actual ES/mean (ESs against all permutations 
of the dataset).

STRING analysis
To characterize the enriched monocytes derived by the PBMCs belonging to cluster 1 compared to 

cluster 0, a functional enrichment analysis was performed on 435 transcripts obtained by GSEA analysis 
(Supplementary Table 2), using the STRING database (https://string-db.org; version 12.0 since July 26, 
2023). For STRING analysis, the following setting were used: high confidence 0.7; max number of interactions 
was set at 20 interactors; for the Markov Cluster (MCL) clustering, the inflation parameter was 1.8.

Statistical analysis
Data are reported as median and represented as scatter dot plots. Statistical differences were assessed 

with two-tailed Mann–Whitney U test. p values less than 0.05 were considered significant. The statistical 
analysis was performed by using GraphPad prism 10.1.0 version (San Diego, CA, USA).
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Results

The transcriptional profiling of healthy PBMCs identifies two clusters characterized by a 
differential S1P signature
The analysis of bulk RNAseq of GSE192829 identified two clusters (Fig. 1A, blue dots vs 

orange dots). Cluster 0 (Fig. 1A, blue dots) included 6 out of 11 (54.4%) samples, of which 
3 were obtained from males (DK20193B_01, _02, _09; Fig. 1B, light blue rectangles) and 
3 from females (DK20193B_03, _05, _11; Fig. 1B, light pink rectangles). Cluster 1 (Fig. 1A, 
orange dots) included 5 females out of 8 (62.5%) which represented 45.6% of all samples 
(DK20193B_04, _06, _07, _08, _10; Fig. 1B, light pink rectangles).

This analysis reveals that although without any pathological alteration, PBMCs from 
healthy donors can be subclustered, most likely reflecting distinct biological states of 
individuals, regardless of sex.

To understand the differential profile that characterized the two clusters, the expression 
score obtained by bioinformatic analysis of the transcripts was evaluated. We found that 
healthy PBMCs in cluster 1 (Fig. 2A, orange bars) showed an over-expression of transcripts 
of the enzymes involved in the de novo biosynthetic pathway of S1P (Supplementary Fig. 1), 
compared to cluster 0 (Fig. 2A, blue bars). Specifically, serine palmitoyl-transferase (SPT) 
subunits (serine palmitoyl-transferase long chain base subunit 1 and 2, SPTLC1 and SPTLC2, 
and serine palmitoyl-transferase small subunit A, SPTSSA) and 3-ketodihydrosphingosine 
reductase (KDSR), enzymes involved in the first two steps of the de novo synthesis of S1P 
(Supplementary Fig. 1), together with the ceramide synthase 2, 4, 5 and 6 (CERS2, 4, 5 
and 6) and dihydroceramide desaturase 1 (DEGS1), key enzymes for ceramide synthesis 
(Supplementary Fig. 1), were over-transcribed in cluster 1 compared to cluster 0 (Fig. 2A, 
orange bars vs blue bars). Instead, serine palmitoyl-transferase small subunit B (SPTSSB), 
ceramide synthase 1 and 3 (CERS1 and 3) were not detected, while only dihydroceramide 
desaturase 2 (DEGS2) was over-transcribed in cluster 0 and not in cluster 1 (Fig. 2A).

To note, ceramide, the sphingosine precursor, can also derive from the hydrolysis of 
sphingomyelin (Supplementary Fig. 1), mediated by acid (sphingomyelin phosphodiesterase 
1, SMPD1) and neutral (sphingomyelin phosphodiesterase 2, 3 and 4, SMPD2, 3 and 4) 
sphingomyelinase. All 4 isoforms of the enzyme SMPD were over-transcribed in cluster 1 
compared to cluster 0 (Fig. 2B, orange bars vs blue bars).

Fig. 1. Transcription profile analysis 
of healthy subjects-derived peripheral 
blood mononuclear cells (PBMCs). The 
transcriptional profile analysis of 11 
healthy donors including n=3 males 
(DK20193B_01, _02, _09) and n=8 females 
(DK20193B_03, _04, _05, _06, _07, _08, 
_10, _11) deriving from public database 
GSE192829 was carried through Python 
programming language (v.3.11.4) and 
Scanpy toolkit (v.1.9.5). A) The Uniform 
Manifold Approximation and projection 
(UMAP) revealed the distinction of two 
clusters, cluster 0 (0, blue dots) and cluster 1 (1, orange dots), on the basis of a different transcriptional 
repertoire. B) Cluster 0 included 6 out of 11 samples, of which 3 males (DK20193B_01, _02, _09; light blue 
rectangles) and 3 females (DK20193B_03, _05, _11; light pink rectangles), while cluster 1 included 5 out of 
11 samples, all females (DK20193B_04, _06, _07, _08, _10; light pink rectangles). Leiden algorithm-based 
clustering method via scanpy.pp.neighbors and scanpy.tl.leiden functions was applied with the following 
parameters: number of neighbors = 50, number of principal components = 40 and resolution = 1.

Figure 1
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The synthesis of the 
ceramide is driven towards 
sphingosine via the activation 
of the acid (N-acylsphingosine 
amidohydrolase 1, ASAH1), 
neutral (N-acylsphingosine 
amidohydrolase 2, ASAH2) 
or alkaline (alkaline 
ceramidase 1, 2 and 3, ACER1, 
2 and 3) ceramidase. Once 
synthesized, sphingosine is 
then phosphorylated into S1P 
by sphingosine kinase I and II 
(SPHK I and II) (Supplementary 
Fig. 1). We found that ASAH1, 
ACER2, SPHK I and SPHK 
II transcripts were over-
expressed in cluster 1 compared 
to cluster 0 (Fig. 2C, orange 
bars vs blue bars), further 
confirming the balance towards 
the sphingosine/S1P pathway 
in cluster 1. Instead, ASAH2 and 
ACER1 were not detected, while 
ACER3 was over-transcribed in 
cluster 0 (Fig. 2C).

These data imply that 
both de novo synthesis and 
sphingomyelin hydrolysis lead 
towards ceramide production, 
focal metabolite for the 
synthesis of sphingosine and 
then S1P in cluster 1, whereas 
in PBMCs from cluster 0 these 
two biosynthetic pathways 
were blocked. In support, 
S1P inactivating enzymes 
(Supplementary Fig. 1) 
s p h i n g o s i n e - 1 - p h o s p h a t e 
phosphatases 1 (SGPP1) and 
sphingosine-1-phosphate lyase 
(SGPL1) were over-expressed 
in cluster 0 compared to cluster 
1 (Fig. 2D, blue bars vs orange 
bars), moving the balance 
towards the ceramide synthase, 
opposite to sphingosine 
phosphorylation. SGPP2 was 
not detected in both clusters.

To confirm the involvement 
of S1P signaling pathway in 
cluster 1 rather than in cluster 0, 
the expression of S1P receptors 
(S1PRs) was evaluated. PBMCs 

Fig. 2. Sphingosine-1-phosphate (S1P) metabolic signature 
analysis in healthy donors-derived PBMCs clusters. The 
differential transcriptional profile of cluster 0 and cluster 1 
was evaluated through the expression score of python analysis-
derived transcripts. The enzymes involved in the de novo 
biosynthetic pathway of sphingosine-1-phosphate (S1P) (A) 
and in the sphingomyelin hydrolysis (B), the ceramidases and 
sphingosine kinases (C), S1P inactivating enzymes (D) and S1P 
receptors (S1PRs) (E) are shown. The differentiation scores of 
the differentially expressed transcripts (DETs) in each cluster was 
calculated using the “scanpy.tl.rank_genes_groups” function. Serine 
palmitoyl-transferase long chain base subunit 1 and 2 (SPTLC1 and 
SPTLC); serine palmitoyl-transferase small subunit A (SPTSSA); 
3-ketodihydrosphingosine reductase (KDSR); ceramide synthase 
2, 4, 5 and 6 (CERS2, 4, 5 and 6); dihydroceramide desaturase 1 
and 2 (DEGS1 and 2); sphingomyelin phosphodiesterase 1, 2, 
3 and 4 (SMPD1, 2, 3 and 4); acylsphingosine amidohydrolase 
1 (ASAH1); N-acylsphingosine amidohydrolase 2 (ASAH2); 
alkaline ceramidase 2 and 3 (ACER2 and 3); sphingosine kinase 
I and II (SPHK I and II); sphingosine-1-phosphate phosphatases 1 
(SGPP1); sphingosine-1-phosphate lyase (SGPL1); sphingosine-1-
phosphate receptor 1, 2, 3, 4 and 5 (S1PR1, 2, 3, 4 and 5).
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belonging to cluster 1 showed an over-transcription of S1PR1, S1PR2, S1PR3 and S1PR4 
(Fig. 2E, orange bars vs blue bars), but not in cluster 0. S1PR5 prevailed in cluster 0 (Fig. 2E).

Taken together these data highlight that healthy subjects can have a heterogenous 
state of circulating blood cells, clustered in differential subpopulation according to S1P 
metabolism/synthesis and signaling.

S1P positive cell cluster associates with circulating CD4+ T cells and monocytes
PBMCs comprise circulating mononuclear cells, including monocytes, T cells, B cells, 

dendritic cells (DCs) and natural killer (NK) cells. To evaluate the immune profile of the two 
clusters that we highlighted, TIMER 2.0 webserver was used. The deconvolution performed 
using the cibersort method, revealed that CD4+ T cells and monocytes were the most 
represented cells of both cluster 0 and 1 (Fig. 3A, blue and yellow slices respectively), along 
with a smaller percentage of CD8+ T cells, B cells, NK cells, myeloid DCs (mDCs), macrophages 
and neutrophils (Fig. 3A, red, pink, brown, orange, green and violet slices respectively). In 
particular, CD4+ naïve T cells were significantly more present in cluster 1 compared to cluster 
0 (Fig. 3B), while there were no differences in CD4+ memory resting T cells (Fig. 3C) and CD8+ 
T cells (Fig. 3D) between the two clusters. CD4+ memory activated T cells, regulatory T cells 
(Treg), T helper and gamma delta T cells were not detected. PBMCs belonging to cluster 1 
showed a significant increase of memory B cells (Fig. 3E) and monocytes (Fig. 3F), while 
naïve B cells, plasma cells, macrophages M0, M1 and M2 were not detected in both clusters. 
Activated mast cells were significantly increased in cluster 1 (Fig. 3G), although they were 
less present than the other immune cells. Resting mast cells, eosinophils and neutrophils 
were not detected. No differences emerged between the two clusters in activated NK (Fig. 
3H), resting NK (Fig. 3I) and activated mDCs (Fig. 3J).

The immune profile analysis revealed that cluster 1 was especially enriched of CD4+ 
naïve T cells and monocytes compared to cluster 0.

To understand the immune phenotype of the cells represented in the two clusters, a 
GSEA analysis was performed according to ImmuneSigDB gene sets, part of C7 immunologic 
signature gene set database (c7.all.v2023.1.Hs.symbols.gmt). We found that 4861 out of 
4872 gene sets were upregulated in cluster 1 whereas cluster 0 counted only 11 upregulated 
gene sets out of 4872. The heatmap in Fig. 4A shows the top-50 genes upregulated in cluster 
1 (Fig. 4A, grey) compared to cluster 0 (Fig. 4A, yellow). The dataset showed that 47.8% 
(12275) of genes in cluster 1 with a correlation area of 83.4% was upregulated, whereas 
cluster 0 was characterized by 52.2% (13387) of genes with a correlation area of 16.6% (Fig. 
4B).

The analysis of the enrichment score (NES) of significantly higher expressed genes 
(FDR<0.25) showed that cluster 1 was especially enriched of monocyte-associated genes, 
which prevailed over mDCs and plasmacytoid DCs (pDCs) (Fig. 4C). Supplementary Fig. 2A 
and 2B show the heat maps of 199 genes more representative in each gene sets for each 
sample.

Taken together these data show that cluster 0 and cluster 1, show a differential role of 
the sphingosine/S1P pathway that besides the metabolic, can also impact on the immune 
phenotype.

S1P positive cluster associates with immunosuppressive monocytes.
To characterize the monocytes enriched in cluster 1, which had a higher metabolism 

of the ceramide in favor of S1P formation, the gene sets resulting from GSEA analysis were 
subjected to a STRING analysis. 435 transcripts enriched in the monocytes of cluster 1 
compared to cluster 0 were highlighted; the duplicates were eliminated (Supplementary 
Table 2). The MCL algorithm was run, and 57 sub-clusters were identified (Supplementary 
Fig. 3A and 3B). Sub-cluster 1, the more representative gene set (34 out of 435 transcripts) 
(Supplementary Fig. 3A and 3B, red bubbles), included 34 targets involved in the immune 
response regulation (Fig. 5A). Among these, we considered those interacting with a score > 
0.9 in order to abolish false positives. In the subcluster 1, 10 genes out of 34 did not have a 
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score > 0.9 (BCL6, FGR, FPR1, LST1, P2RY13, PILRA, ITGAM, LCP2, FYB1, MNDA) (Fig. 5A, 
grey square). The other two networks of hub genes (Fig. 5A, blue and violet rectangular) 
were associated with the induction of an immunosuppressive microenvironment. The first 
network included TYROBP, TREM1, FCER1G, SYK, SIRPA, SPI1, CSF1R and AIF1 (Fig. 5A, PPI-
Network 1, blue rectangular and Fig. 5B, blue circle); TYROBP, FCER1G, SYK, SIRPA, CSF1R 
and AIF1 were statistically increased in cluster 1 compared to cluster 0 (Fig. 6A, C, D, E, 
G, H, orange bar vs blue bar), while TREM1 and SPI1 were tendentially over-expressed in 
cluster 1 compared to cluster 0, although not significantly (Fig. 6B, median cluster 0: 7.5 vs 

Fig. 3. Immune profile analysis of healthy donors-derived PBMCs clusters. TIMER 2.0 webserver (http://
timer.cistrome.org) was used to evaluate the immune profile that characterized cluster 0 and cluster 
1 obtained by python analysis. A) Proportion of immune cells in cluster 0 and cluster 1 carried through 
cibersort deconvolution method. Expression of CD4+ naïve T cells (B), CD4+ memory resting T cells (C), CD8+ 
T cells (D), memory B cells (E), monocytes (F), activated mast cells (G), activated NK (H), resting NK (I) and 
activated myeloid dendritic cells (mDCs) (J) in cluster 0 (blue bars) vs cluster 1 (orange bars). Data are 
reported as median (confidence interval = 95%) and represented as scatter dot plots. Statistical differences 
were assessed with two-tailed Mann–Whitney U test.

Figure 3

B C D

E F G

H I J

Cluste
r 0

Cluste
r 1

0.0

0.1

0.2

0.3

0.4

0.5

C
D

4+
 n

aï
ve

 T
 c

el
ls

(C
ib

er
so

rt
-A

B
S)

p=0.0087

Cluste
r 0

Cluste
r 1

0.0

0.1

0.2

0.3

0.4
C

D
4+

 m
em

or
y 

re
st

in
g 

T 
ce

lls
(C

ib
er

so
rt

-A
B

S)

Cluste
r 0

Cluste
r 1

0.00

0.05

0.10

0.15

M
em

or
y 

B 
ce

lls
(C

ib
er

so
rt

-A
B

S)

p=0.0173

Cluste
r 0

Cluste
r 1

 

0.0

0.1

0.2

0.3

0.4

0.5

M
on

oc
yt

es
(C

ib
er

so
rt

-A
B

S)

p=0.0043

Cluste
r 0

Cluste
r 1

 

0.000

0.005

0.010

0.015

0.020
A

ct
iv

at
ed

 m
as

t c
el

ls
(C

ib
er

so
rt

-A
B

S)
p=0.0498

Cluste
r 0

Cluste
r 1

 

0.00

0.05

0.10

0.15

A
ct

iv
at

ed
 N

K
(C

ib
er

so
rt

-A
B

S)

Cluste
r 0

Cluste
r 1

 

0.00

0.02

0.04

0.06

0.08

 R
es

tin
g 

N
K

(C
ib

er
so

rt
-A

B
S)

Cluste
r 0

Cluste
r 1

 

0.000

0.005

0.010

0.015

0.020

0.025

A
ct

iv
at

ed
 m

DC
s

(C
ib

er
so

rt
-A

B
S)

Cluste
r 0

Cluste
r 1

0.00

0.05

0.10

0.15

0.20

C
D

8+
 T

 c
el

ls
(C

ib
er

so
rt

-A
B

S)

A



Cell Physiol Biochem 2024;58:156-171
DOI: 10.33594/000000691
Published online: 17 March 2024 163

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2024 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Terlizzi et al.: S1P and physiological immunotype variability

Fig. 4. Gene set enrichment analysis (GSEA) of healthy donors-derived PBMCs cluster 1 vs cluster 0. A 
gene set enrichment analysis was performed with GSEA 4.3.2 (https://www.gsea-msigdb.org/gsea/index.
jsp) according to ImmuneSigDB gene sets, part of C7 immunologic signature gene sets database (c7.all.
v2023.1.Hs.symbols.gmt) on 26467 transcripts from cluster 1 vs cluster 0 obtained by python analysis. A) 
Heatmap showing the top 50 transcripts for up-regulation or down-regulation in each phenotype (cluster 
1, grey vs cluster 0, yellow). B) Ranked gene list correlation profile plot showing the positive and negative 
correlation between the ranked genes and the phenotypes (cluster 1 vs cluster 0). C) Enrichment plots of 
monocytes vs myeloid dendritic cells (mDCs) and monocytes vs plasmacytoid dendritic cells (pDCs) gene 
sets in cluster 1 compared to cluster 0.
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median cluster 1: 14; and Fig. 6F, median cluster 0: 68 vs median cluster 1: 86). TYROBP, 
FCER1G, SYK and SIRPA were in common with the second network, which also included 
BLNK, FCGR2A, CD79A, CLEC7A, LYN, PLCG2, LAT2, LILRA1-2-5-6, LILRB1-2-3, HCK, GAB2 
(Fig. 5A, PPI-Network 2, violet square and Fig. 5B, violet circle). Except for BLNK (Fig. 6I) and 
LILRA6 (Fig. 6S), the others transcripts were significantly increased in cluster 1 compared 
to cluster 0 (Fig. 6J, L, M, N, Q, R, T, U, V, W, X); CD79A, LAT2, LILRA1 were tendentially over-
expressed in cluster 1 compared to cluster 0, although not significantly (Fig. 6K, median 
cluster 0: 63 vs median cluster 1: 101; Fig. 6O, median cluster 0: 45.5 vs median cluster 1: 68; 
Fig. 6P, median cluster 0: 23.5 vs median cluster 1: 35).

Fig. 5. STRING analysis 
of healthy donors-derived 
PBMCs clusters. A STRING 
analysis was performed on 
435 transcripts enriched 
in the monocytes from 
cluster 1 compared to 
cluster 0, and 57 sub-
clusters were obtained; 
only the transcripts with 
an interacting score > 0.9 
were considered. A) The 
sub-cluster 1 included 
34 targets involved in 
the immune response 
regulation; 24 out of 34 
were immunosuppressive 
targets, of whom 8 
belonging to protein-
protein interaction (PPI)-
Network 1 (TYRO Protein 
Tyrosine Kinase-Binding 
Protein (TYROBP), 
Triggering receptor 
expressed on myeloid cells 
1 (TREM1), Fc Fragment of 
IgE Receptor Ig (FCER1G), 
Spleen tyrosine kinase 
(SYK), Signal Regulatory 
Protein Alpha (SIRPA), 
Spi-1 proto-oncogene 
(SPI1), colony-stimulating 
factor-1 receptor (CSF1R), 
Allogeneic inflammatory 
factor-1 (AIF1); blue square) and 20 belonging to PPI-Network 2 (TYROBP, FCER1G, SYK, SIRPA, B Cell 
Linker (BLNK), Fc Gamma Receptor IIa or CD32 (FCGR2A), B-Cell Antigen Receptor Complex-Associated 
Protein Alpha Chain (CD79A), C-Type Lectin Domain Containing 7A or Dectin-1 (CLEC7A), Lck/Yes-Related 
Novel Protein Tyrosine Kinase (LYN), Phospholipase C Gamma 2, PLCγ2 (PLCG2), linker for activation of T 
cells family member 2 (LAT2), leukocyte immunoglobulin-like receptor A 1-2-5-6 (LILRA1-2-5-6), leukocyte 
immunoglobulin-like receptor B 1-2-3 (LILRB1-2-3), Hemopoietic Cell Kinase (HCK), GRB2 Associated 
Binding Protein 2 (GAB2); violet square); TYROBP, FCER1G, SYK and SIRPA were in common between the 
two networks. 10 out of 34 targets did not have a score > 0.9 (B-cell lymphoma 6 protein, BCL6; Tyrosine-
Protein Kinase Fgr, FGR; Formyl Peptide Receptor 1, FPR1; Leukocyte Specific Transcript 1, LST1; Purinergic 
Receptor P2Y13, P2RY13; Paired Immunoglobin Like Type 2 Receptor Alpha, PILRA; Integrin Subunit Alpha 
M, ITGAM; Lymphocyte Cytosolic Protein 2, LCP2; FYN Binding Protein 1, FYB1; Myeloid Cell Nuclear 
Differentiation Antigen, MNDA) (grey square). B) Venn diagram of 24 immunosuppressive targets belonging 
to sub-cluster 1. The functional enrichment analysis was by means of STRING database (https://string-db.
org; version 12.0 since July 26, 2023).
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Fig. 6. Expression of sub-cluster 1 immunosuppressive targets. The transcripts expression of TYROBP 
(A), TREM1 (B), FCER1G (C), SYK (D), SIRPA (E), SPI1 (F), CSF1R (G), AIF1 (H), BLNK (I), FCGR2A (J), CD79A 
(K), CLEC7A (L), LYN (M), PLCG2 (N), LAT2 (O), LILRA1-2-5-6 (P, Q, R, S), LILRB1-2-3 (T, U, V), HCK (W), 
GAB2 (X) in cluster 0 and cluster 1 from healthy donors-derived PBMCs (GSE192829) is shown. Data are 
represented as scatter dot plots indicating the median (confidence interval = 95%). Statistical differences 
were assessed by means of two-tailed Mann–Whitney U test.
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The other more representative STRING-derived sub-clusters (Supplementary Fig. 3A 
and 3B) included genes mostly involved in the regulation of carbohydrate (sub-cluster 2, 
with 25 out of 435 transcripts; Supplementary Fig. 3A and 3B, light brown bubbles) or 
neuronal (sub-cluster 3, with 20 out of 435 transcripts; Supplementary Fig. 3A and 3B, 
brown bubbles) metabolic processes, not correlated to the activation/regulation of immune 
system. The remaining sub-clusters (from sub-cluster 4 to sub-cluster 57; Supplementary 
Fig. 3A and 3B) showed no interactions with FDR > 0.9.

Altogether these data show that healthy subjects-derived PBMCs belonging to cluster 1 
and characterized by an increased transcription of enzymes for S1P synthesis, are enriched 
of immunoregulatory genes.

To verify whether an enhanced S1P metabolism/synthesis in monocytes was correlated 
to their immunosuppressive phenotype, a scRNAseq analysis of 6 healthy donor-derived 
PBMCs (GSE235857) was performed (Fig. 7A). The monocytes were characterized (Fig. 7A, 
cluster 4, violet highlighted dots) and sub-clustered (Fig. 7B). The expression of ASAH1, 
key enzyme for S1P synthesis [3-5], was evaluated in each sub-cluster. First, we found 
that the monocytes cluster (Fig. 7A, cluster 4, violet highlighted dots), sub-clustered in 
two different populations in all samples, according to ASAH1 expression (Fig. 7B, ASAH1 
positive, orange dots vs ASAH1 negative, blue dots). To characterize the two sub-clusters 
of monocytes (ASAH1 positive, sub-cluster 0, orange dots in Fig. 7B vs ASAH1 negative, 

Fig. 7. Monocytes sub-clusterization according to ASAH1 expression. A) Uniform Manifold Approximation 
and projection (UMAP) representative of the scRNAseq analysis of 6 healthy volunteers-derived PBMCs 
from GSE235857 dataset; the monocytes were grouped in cluster 4 (violet dots). B) According on ASAH1 
expression, the monocytes cluster, sub-clustered in two different populations (ASAH1 positive, sub-cluster 
0, orange dots vs ASAH1 negative, sub-cluster 1, blue dots); the score value of ASAH1 was reported into the 
dendrogram; the color code (light orange to dark red) displays the mean expression of ASAH1 mRNA, and 
the circle size indicates the fraction of cells in the groups. Data were analyzed according to the Scanpy based 
on Python by using the following parameters: n_neighbords=20; n_pcs=10; resolution=0.5
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Fig. 8. Immunosuppressive markers expression in monocytes ASAH1 positive vs ASAH1 negative. A public 
dataset of scRNAseq (GSE235857) of 6 healthy volunteers-derived PBMCs was analyzed. The expression of 
TYROBP (A), TREM1 (B), FCER1G (C), SYK (D), SIRPA (E), SPI1 (F), CSF1R (G), AIF1 (H), BLNK (I), FCGR2A 
(J), CD79A (K), CLEC7A (L), LYN (M), PLCG2 (N), LAT2 (O), LILRA1 (P), LILRA2 (Q), LILRA5 (R), LILRA6 
(S), LILRB1 (T), LILRB2 (U), LILRB3 (V), HCK (W), GAB2 (X) in ASAH1 positive monocytes sub-cluster 
(sub-cluster 0) and in ASAH1 negative monocytes sub-cluster (sub-cluster 1) are shown. The dendrograms 
(representative of a one sample from scRNAseq analysis), report the score value of each immunosuppressive 
markers; the color code (light orange to dark red) displays the mean expression of each marker, and the 
circle size indicates the fraction of cells in the groups. Data were analyzed according to the Scanpy based on 
Python by using the following parameters: n_neighbords=20; n_pcs=10; resolution=0.5.
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sub-cluster 1, blue dots in Fig. 7B), the expression of 24 hub immunosuppressive targets 
(TYROBP, TREM1, FCER1G, SYK, SIRPA, SPI1, CSF1R, AIF1, BLNK, FCGR2A, CD79A, CLEC7A, 
LYN, PLCG2, LAT2, LILRA1-2-5-6, LILRB1-2-3, HCK, GAB2), before identified (Fig. 5B), 
was evaluated. Surprisingly, ASAH1 positive sub-cluster 0 showed an immunosuppressive 
phenotype unlike ASAH1 negative sub-cluster 1 (Fig. 8A-X; data shown for 1 representative 
sample out of 6). Specifically, 3 out of 6 samples over-expressed 23 out of 24 genes of the 
hub immunosuppressive markers; 2 out of 6 samples over-expressed 22 out of 24 genes of 
hub immunosuppressive markers, and 1 out of 6 samples over-expressed 15 out of 24 of hub 
immunosuppressive markers.

These data show that, in physiological conditions, an enhanced S1P metabolism/
synthesis in monocytes can shape toward an immunosuppressive phenotype.

Discussion

In this study, we have stratified healthy individuals based on the transcriptomic profile 
of circulating cells, obtaining two clusters, characterized by a differential immunophenotype 
that have a differential profile of S1P-dependent metabolism/pathway. Higher balance 
towards the formation of S1P can be at the basis of a different risk to have immune-related 
dysfunctions, depending on the phenotype of monocytes (Fig. 9). Specifically, we found that:

1. Blood cells can have a different transcriptional repertoire (cluster 0 vs cluster 1), 
regardless sex;

2. A differential transcriptomic profile based on S1P metabolism/synthesis can 
discriminate among healthy subjects;

3. Cluster 1 over-expresses the enzymes involved in S1P synthesis and its receptors, 
while the cluster 0 over-expresses S1P inactivating enzymes, implying a ceramide/
sphingosine/S1P imbalance between the two clusters;

4. The two clusters are characterized by significant genetic differences in the immune 
landscape, in that healthy subject-derived PBMCs are enriched of monocytes in 
cluster 1 compared to cluster 0;

5. Cluster 1 monocytes have an immunosuppressive profile;
6. An enhanced S1P metabolism/synthesis can shape monocytes as immunosuppressive.

Fig. 9. The variability of the physiological immune response is dependent on the sphingosine-1-phosphate 
(S1P) metabolism. A heterogenous population of healthy individuals, clusters based on a different 
transcriptional repertoire and presents a different immunological reactivity, dependent on a high variability 
in the S1P metabolism/pathway in monocytes.
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Our data highlights that an altered S1P metabolic signature together with 
immunosuppressive monocytes could represent a keystone of the biological variability and 
variation in terms of immune response. This concept could reflect on the development of 
specific immune-related disorders.

S1P is a lipidic mediator regulating several physiological processes, such as cell growth, 
apoptosis, trafficking, differentiation and activation of immune cells, inflammation, cellular 
architecture, vascular tone control and permeability, cardiac function [9], but its metabolic 
alteration can be prognostic for the development and progression of diseases. Indeed, an 
imbalance in S1P pathway and signaling has been associated to the pathogenesis of psoriasis 
[10], multiple sclerosis (MS) [11], inflammatory bowel disease (IBD) [12], rheumatoid 
arthritis (RA) [13], systemic lupus erythematosus (SLE) [14], asthma [15], and tumors 
[16]. In our previous studies, we also demonstrated that a pronounced S1P metabolism/
synthesis is involved in the exacerbation of the inflammatory pathway associated to lung 
cancer [17-18] and that S1P is able to orchestrate immune circulating cells towards lung 
cancer associated-inflammatory signature [3]. Therefore, a better understanding of the 
mechanisms by which individuals’ immune system varies might help to develop therapies 
that target such mechanisms to modulate the immune response, either to alleviate an 
immune-mediated disorder, such as chronic inflammatory disease or allergy, or to potentiate 
a desired immune response.

Cluster 1 of PBMCs had an increased transcription of S1P synthesis enzymes and of 
its receptors, associated with an enrichment of immunosuppressive monocytes. Monocytes 
are a central component of the innate immune system because they are able to switch their 
phenotype from a homeostatic state to a pro-inflammatory state. However, depending 
on the type of stimulus, monocytes can undergo specific polarization and thus acquire 
distinct functional phenotypes associated to poor immune system reactivity [19]. In the 
case of cluster 1, the overexpression of S1P-related enzymes leads to suppose that these 
monocytes are more likely susceptible to polarize towards a phenotype that does not block 
inflammation but that, rather, facilitates a chronic latent inflammation. Indeed, our analysis 
of scRNAseq confirms the hypothesis that when S1P metabolism/synthesis is enhanced in 
healthy monocytes, they present an over-expression of immunosuppressive markers that, in 
physiological conditions, could alter their immune activity.

An important issue of this study is that an imbalance in S1P metabolism/signaling in 
favor of S1P activity can lead to immunosuppression that can either reduce the immune 
response to infections or lead to chronic inflammatory diseases, but on the other hand it 
could also represent a defense mechanism from the host to avoid autoreactive immune cells. 
Furthermore, the identification of the stimulus/i that trigger an imbalance of the ceramide/
sphingosine/S1P axis during a physiological status, is still an unresolved question. Despite 
these limitations, our findings propose a still uninvestigated correlation between the 
sphingolipid metabolism/pathway and the phenotypic switch of healthy monocytes. While 
cluster 0 shows a reduced S1P synthesis correlated to an unchanged immune profile, cluster 
1, as well as being characterized by an increased transcription of S1P synthesis enzymes 
and related receptors, is predominantly enriched in immunosuppressive monocytes and 
over-expresses hub transcripts (TYROBP, TREM1, FCER1G, SYK, SIRPA, SPI1, CSF1R, AIF1, 
BLNK, FCGR2A, CD79A, CLEC7A, LYN, PLCG2, LAT2, LILRA1-2-5-6, LILRB1-2-3, HCK, GAB2) 
associated with the induction of an immunosuppressive microenvironment. Furthermore, 
only ASAH1 positive monocytes showed an enrichment of immunosuppressive markers that, 
instead, were down-regulated in ASAH1 negative monocytes, highlighting S1P signaling/
pathway as a potential driver of the phenotypical switch of the monocytes in physiological 
conditions, affecting the susceptibility of healthy individuals to immune system-mediated 
diseases, such as inflammatory and/or autoimmune disorders up to cancer.

Nevertheless, this study has some limitations: 1. the study was based on bioinformatic 
data that should be proved in the real-life world, taking into consideration epidemiologic 
datasets (if publicly available) and delineate a predictive trajectory to understand what type 
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of disorder this cluster of subjects could be driven to; 2. future proteomic studies, in vitro 
and ex vivo, will be necessary in order to correlate and corroborate the S1P signature to 
the induction of an immunosuppressive phenotype in monocytes; 3. the number of subjects 
was limited; 4. systemic parameters, such as hormonal landscape of these subjects was not 
available. Regarding this latter point, it has to be noted that cluster 1 was solely comprising 
females (5 out of 8), whereas cluster 0 was comprising 3 males and 3 females. The 3 females 
from cluster 0 were younger than or were 45, meaning that most likely the hormonal and 
endocrine system was not altered. However, the median age of females in cluster 1 was of 
46 years, not so different than those from cluster 0, although the latter median age was of 
40. Males in cluster 0 had a median age of 42. This implies that further studies need to be 
performed and that more information are required in published datasets.

The identification of two clusters among the healthy subjects using PBMCs, and 
the positivity/negativity of the monocytes to S1P signature, may reflect the reality of 
heterogeneous clinical contexts, and will be of increasing importance for machine learning 
approaches, in order to maximize efforts to translate a better basic understanding of 
immune variability into new clinical decisions. Therefore, understanding when and how an 
individual stable immune system state is established might help us promote the long-term 
immunological health for all sub-populations. S1P axis could therefore be one of the target 
pathways to focus on when comparing differential clinical conditions.
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