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ABSTRACT 

This thesis focuses on some topics in semi-parametric econometrics, particularly 

the use of semi-parametric methods of estimation to obtain robust inference. 

Chapter two proposes a study of the finite-sample performance of the heteroskedas

tic and autocorrelation consistent covariance matrix estimators (HAC). This perfor

mance is accessed through the bias of the first moment of HAC type estimators and 

the quality of the asymptotic normal approximation to the exact finite-sample distri

butions of HAC type Wald statistics of scalar linear hypothesis. 

In Chapter three, the use of the non-overlapping deleted-l jackknife is used to pro

pose a new approach to estimate the covariance matrix of the least square estimator 

in a linear regression model. This estimator is robust to the presence of heteroskedas

tldty and autocorrelation in the errors. 

Chapter four deals with improved estimation of regression coefficients through an 

alternative and efficient method of estimation regression models under heteroskedas

ticity of tmknown form. Kernel and average derivative estimation are used to estimate 

the conditional variance of the response variable where this conditional variance is 

assumed to be in an index form. 

Chapter five is concerned with the estimation of duration models under unobserved 

heterogeneity. This is a typical problem in mlcroer.onometrics and is in general due 

to differences among individuals. It is suggested a method of estimation based on a 

roughness penalty approach. 
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CHAPTER 1 - AN OVERVIEW 

1. THE USE OF SEMI-PARAMETRIC METHODS IN ACHIEVING 

ROBUST INFERENCE. 

This thesis focuses on some topics in semi-parametric econometric~, particularly 

the application of semi-parametric methods of estimation to obtain robust inference. 

It is a relatively wide area, including a large variety of econometric work and a de

tailed and comprehensive study of this subject is clearly beyond the scope of this 

thesis. Only some topics will be addressed here. 

Traditionaly, the statistical analysis of economic data is based on a specification 

of a parametric model depending on a finite number of unknown parameters. This 

parametric model is usually described as a functional relation between a dependent 

variable, y, and a set of observable covariates, x, and an unobservable error, c:, where 

y = g(x,B,c:), ()is an unknown parameter and g(.) is a known function. For this 

specification to be completed the parametric approach specifies the distribution of 

the error term. With these elements in hand, the maximum likelihood method can 

be applied to the estimation of B. If the model is correctly specified, it is well known 

that the maximum likelihood estimator (m.l.e.) has all desirable properties as con

sistency and efficiency. 

1 



However this framework has its limitations and can be misleading if not applied 

carefully. The literature is rich with examples concerning the consequences of depar

tures from the initial assumptions about the parametric model considered. This can 

lead to incorrect variance estimates or even inconsistency of the estimator. If some 

of the initial assumptions fails or can not be assumed or if there are components 

of the model that can not be parameterized, the semi-parametric approach appears 

as a valuable instrument [for a survey in semi-parametric methods in econometrics 

consider for example Robinson (1988) and Powell (1992)]. 

This thesis is concerned with the application of semi-parametric methods in two 

situations: misspecification of the assumptions concerning the error term as the in

dep~ndence and identically distributed (i.i.d) assumption and misspecification of the 

model by neglecting heterogeneity, in the context of duration models. The purpose is 

to use semi-parametric methods in order to make inferences that are robust to these 

problems. Chapters two to four address the first problem and chapter five addresses 

the second. 

Most of these chapters were originally developed as discussion papers and essays 

that have been organized in order to produce the five chapters of this thesis, where 

each one is self contained and independent of the others. 

Both mkroeconomic and macroeconomic. data present characteristics that can con

tribute to violate the assumption of i.i.d. errors. The reasons are heterogeneous pop

ulation in the first case and temporal dependency in the latter. It is well known that 

under these circumstances, the usual least square estimator is still consistent but the 

standard errors are incorrectly estimated. For this reason and because the pattern 

of the errors are unknown, the traditional procedure is to correct the standard errors 

through the estimation of robust standard errors. Among the estimators presented in 
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the literature, the estimator proposed in Newey and West (1987) has been suggested. 

However there is a lack of knowledge concerning its finite-simple properties and this 

problem will be studied here. 

Chapter two is concerned with the study of the Heteroskedasticity and Autocorrela

tion Consistent Covariance Matrix (HAC) estimators for the least-squares regression 

coefficients. Among the HAC type estimators the Newey and West (1987) estimator 

is considered to show the relation between its finite-sample performance and the de

sign generated by the regressors. This performance is assessed through the bias of 

the first moment of HAC type estimators and the quality of the asymptotic normal 

approximation to the exact finite-sample distributions of HAC type Wald statistics 

of scalar linear hypothesis. In this case Imhof procedure is used. A slight modifi

cation of the Newey and West estimator, based on a bias correction in the case of 

homoskedast.ic and non-ant.ocorrelated errors, is also presented. 

The recent development in non-parametric and semi-parametric methods of estima

tion opened the way to a growing research in econometrics. Having in mind these new 

resources and the fact that HAC estimators can be severely biased in small samples, a 

rather different approach is suggested. The deleted-l Jackknife with non-overlapping 

blocks and Average Derivative Estimation techniques are used in chapter three and 

four respectively to develop estimators that are robust to heteroskedasticity and/ or 

autocorrelation in the error term. These estimators can be viewed as alternatives and 

generalizations of some estimators presented in the literature. 

In part. three it is proposed a new approach to estimating the covariance matrix 

of the least square (henceforth LS) estimator in a linear regression model. This ap

proach was inspired by a previous paper of Carlstein (1986) concerning the use of 

subseries values for estimating the variance of a sample mean, based on dependent 

stationary data. This concept is extended to the estimation of the standard error of 
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the LS estimator in regression models. To deal with it and to avoid problems related 

to a possible lack of degrees of freedom, the non-overlapping deleted-l jackknife (or 

grouped jackknife) is used instead. This estimator is robust to the presence of het

eroskedastidty and autocorrelation in the errors. In another way it generalizes the 

heteroskedasticity consistent covariance matrix estimator (or the deleted-1 jackknife 

estimator, as is it known in the literature), to situations with non-independent sta

tionary errors. It is also an alternate to the estimator presented by Newey and West 

(1987). An application concerning the finite-sample performance of this estimator is 

also presented. 

Chapter four deals with improved estimation of regression coefficients through an 

alternative and efficient method of estimation regression models under heteroskedas

ticity of unknown form. In this case, the pattern of heteroskedasticity is first esti

mated non-parametrically and then used as weights via weighted (non-linear) least 

square estimation. Kernel smoothing and average derivative estimation (henceforth 

ADE) will be used to estimate the conditional variance of the response variable, where 

this conditional variance is assumed to be in an index form. This method is presented 

as a generalisation of Carrol's (1982) estimator where the conditional variance of the 

response variable is not restricted to be a function of the conditional mean of the 

response variable. A comparison is made through a Monte Carlo simulation. 

Chapter five is concerned with the estimation of duration models when unobserv

able individual effects are present. This problem can be viewed as a mixture model 

where the density of the unobservables is the unknown mixing density that is to be 

estimated using some appropriated method. Two different approaches have been con

sidered in the literature: one uses a parametric specification of the heterogeneity by 

assuming some mixing density; the other one uses nonparametric methods as, for ex

ample, the non-parametric maximum likelihood estimation. The first approach is too 

restrictive; the second one provides good estimates of the structural parameters but 
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the underlying mixing density is poorly estimated. In this chapter it is suggested an 

alternative approach towards this last problem, using a roughness penalt.y approach. 
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CHAPTER 2 - FINITE-SAMPLE PERFORMANCE OF THE 

HETEROSKEDASTICITY AND AUTOCORRELATION 

CONSISTENT COVARIANCE MATRIX ESTIMATORS 

1. INTRODUCTION 

In the econometric framework, the consequences of autocorrelated and heteroskedas

tic errors have been studied in the literature for a long time. These are common prob

lems associated with time series and cross sectional models, respectively, as it can be 

seen when some useful diagnostic tests are applied. In this context it is well lmown 

that if the errors are heteroskedastic and/ or autocorrelated, the usual estimator is 

still consistent but the standard errors are erroneous. 

If the form of autocorrelation and/or heteroskedasticity is known, there are appro

priated techniques to minimise this problem. However this is not what happens in 

general and several works have been developed to find a consistent estimator of the 

standard errors, robust to this kind of unlmown error structure. 

The key to finding such an estimator is due to Eicker (1963). He has shown in the 

case of heteroskedasticity of unknown order, that consistent estimation of the covari

ance matrix estimator of the least-squares (LS) regression coefficients does not require 

consistent estimation of the variance of the disturbance term. White (1980), MacK

innon and White (1985) and Chesher and Jewitt (1987), among others, have studied 
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heteroskedasticity consistent covariance matrix (henceforth HCCM) estimators. But 

when the errors are not independent other estimators will be needed. In a pioneering 

paper concerning Generalised Method of Moments estimation Hansen (1982) derived 

a heteroskedasticity and autocorrelation consistent covariance (henceforth HAC) es

timator. Since then several works have addressed this subject. Hansen and Singleton 

{1982), have applied this estimator in a non-linear rational expectations model; White 

(1984) dedicated a whole chapter to studying the properties of Hansen's type esti

mator for different structures of the errors; White and Domowitz (1984) applied this 

estimator to the non-linear regression; Wooldridge (1991) suggest the use of this 

estimator in robust diagnostics for non-linear models of conditional means and con

ditional variance; Newey and West (1987) presented a positive semi-definite matrix 

estimator; Andrews {1991) showed that all these estimators can be viewed as ker

nel esti~ators, presenting simultaneously a Monte Carlo study for different types of 

kernels. Moreover he advocates an HAC estimator that uses the Quadratic-Spectral 

kernel. In this context the estimators proposed by Hansen (1982) [see also White 

(1984)], Newey and West (1987) and Gallant (1987, pag. 533) correspond to estima

tors using truncated, Bartlett and Parzen kernels, respectively. Recently, Andrews 

and Monahan (1992) proposed a slightly different version and named it prewhitened 

kernel estimator, with vector autoregressions employed in the prewhitening stage. 

When one suspects for non-iid errors and little is known about their structure, the 

use of HAC type estimators in test statistics have been suggested by the authors 

being cited as a way to compute correct standard errors and therefore correct infer

ences. Furthermore its facility of computation is now accessable through econometric 

packages like Shazam. However little is known about their finite-sample properties. 

In a previous paper, Chesher and Jewitt (1987) developed finite-sample results for 

the HCCM estimators, showing that substantial bias can occur when the regression 

design contains points of high leverage. In what follows their results are extended to 

HAC estimators. 
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The remainder of this Chapter is organised as follows. In Section 2, are presented 

the HAC type estimators (in particular the Newey and West estimator) and some 

notation related to them, in the context of linear models. Additionally it is shown 

that HAC type estimators can be decomposed in a HCCM estimator and in an Au

tocorrelation Consistent Covariance estimator. The expectation and variance of this 

estimator are presented in Section 3. Section 4 is dedicated to the finite-sample per

formance of the Newey and West estimator, given particular attention to the effects of 

leverage points in the data. In this context three different error structures are consid

ered: independent, AR(l) and MA(l) errors. Section 5 is dedicated to the evaluation 

~ of the quality of the first-order asymptotic approximation to the null distribution of 

11 the Wald test, using the Newey and West estimator. Finally, Section 6 summarises 

I! 1! the main conclusions and presents some possible directions for future research. 
li 

2. HAC TYPE ESTIMATORS IN THE LINEAR MODEL 

The present work deals with the linear model, 

y = X(3 + c, (1) 

where y is ann X 1 vector of observations, X is an X k matrix of full column rank k 

with rows xi, f-1 is a kx1 vector of unknown parameters and cis an X 1 vector of errors 

with E(c I X)= 0 and E(cc1 I X)= n positive definite of order n X n. Additionally 

it is assumed that, conditional on X, the errors are covariance stationary. Under 

these assumptions, the covariance matrix of the LS estimator of (3, fJ = (X' X)-1 X'y, 

conditional on X is given by 
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In this expression X'OX can be decomposed in a suitable way by, 

n n-1 n 

X' OX= L: 7(0) x~xi+ L: L: 7(j) (x~xi-J + :v~_Jxi) , (3) 
i=O j=li=j+l 

where "((j) = E(cici-j) is the autocovariance function of order j and "f(O) the error 

variance that is assumed constant from now on. 

In the LS context, the direct estimation of n, substituting the unknown errors, Ei, 

by the residuals, E.i, leads to a degenerate estimator, due to the orthogonality condi

tion, X'€ = 0. If the errors are covariance stationary, the autocovariance function, 

E(ci€j), is a function of the difference, I i- j I· Additionally if one limits the attention 

to the case in which the autocovariance function of order I i - j I decreases as I i - j I 
tends to infinity, it seems reasonable to estimate X'OX considering only the most 

significant autocovariances. In the particular case of linear models, Hansen's (1982) 

estimator can be expressed as follows, 

n m n 

X' OX = L ~ x~xi+ L L fifi_J(x~xi-J + x~_Jxi) , (4) 
i=O j=li=j+l 

where m is a lag truncation that in general equals the number of non-zero auto

correlations of :<ci· If the structure of the errors is known a priori, for example if 

it is a moving average of order q, then such lag should be equal to q. When this 

structure is unknown White and Domowitz (1984) and Andrews (1991) proposed ap-

10 



propriated methods to choose the optimal value of m. However Hansen's estimator 

has the drawback of not always being positive semi-definite. To solve this problem, 

two techniques have been usually presented in the literature: time domain techniques 

due to Cumby, Huizinga and Obstfeld (1983) and Newey and West (1987), among 

others, and frequency domain techniques suggested initially by Hansen (1982) and 

adopted later by Andrews (1991, 1992)1• In what follows time the domain technique 

is considered, particularly the Newey and West estimator due to its simplicity of com

putation. These authors proposed a positive semi-definite HAC estimator, simply by 

smoothing the samples autocovariances in ( 4), 

n m n 

X' OX= L 4 x~xi+ L L ~(j, m) ei€i-j (x~Xi-J' + x~-jxi), (5) 
i=O i=li=j+l 

where 

K(j, m) = 1- j , 
m+1 

(6) 

is the weight associated with the autocovariance of order j (Having in mind the depen

dence of K(j, m) on m, henceforth Kj is considered for simplifying purposes). Using 

the methodology of Andrews (1991), the Newey and West estimator can be written as, 

!_X'OX = ~ ( j ) ~( ) 
T/, j~tn r.p Sn r j ' 

(7) 

1This technique is motivated by the fact that when x~e; is second order stationary, the estimator 

{1/n)X'nX is equal to 211" f(O) where f(O) is the estimator of the spectral density of xiei at frequency 

zero. 
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where 

' j?. 0 ' 

f(j) = 

cp (·) is a kernel2 and 811 is a bandwidth parameter, with 811 = m + 1. . 

When the structure of the errors is unknown a priori, the estimator of X'OX is 

still consistent if m increases at some appropriate rate with the sample size3 and the 

errors obey some regularity conditions concerning finite fourth moments and certain 

mixing sequences [see for example White (1984) and Newey and West (1987)). Keener 

and Kmenta (1991) have proposed an alternative and easily proof by r~stricting the 

size of the error correlations. Recently, Hansen (1992) in the context of kernel esti

mation showed a consistency proof under mild conditions about the errors' structure 

that requires only the existence of second moments. 

Putting X'OHX = I:f=1 ~x~xi and X'OAX = L:~1 Ef=Hl "'i fifi-i (x~Xi-j + 
~-jxi) in expression (5), the estimator of the covariance matrix becomes, 

(8) 
2In Newey and West cp(·) is the Bartlett kernel, 

{ 

1-[ X [ 

<p(x) = 

0 

l X[::=; 1, 

, otherwise . 

3For consistency purposes m = o(n114) [see for example Davidson and Mackinnon (1993), 

pag.611]. 
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where the first factor on the right hand side of (8) is the HCCM estimator due to 

White (1980), and the second term is an autocorrelation consistent covariance matrix 

estimator. 

In the following, the finite-sample performance of the Newey and West estimator 

and its relation to extreme leverage points are studied. This estimator is c.onsidered, 

among the HAC type estimators, for two main reasons: because it is one of the most 

well known and by the conclusion of Andrews (1991) that the differences (in per

formance) between HAC estimators are not large for the kernels considered in his 

simulation study. 

3. MOMENTS OF THE HAC ESTIMATORS 

In this Section, the first and second moments of the HAC type estimators are de

rived, for any chosen combination, w, of the parameters in jj. Therefore, Var(w'iJ) = 

~w is a scalar and thus can be expressed in vectorial form as, 

where z~ = w'(X' X)- 1X' is a 1 x k vector, @is the kroneker product and vec(ft) is a 

n2 
X 1 vector formed by stacking the columns of n. The first and second moments of 

~w evolve products of quadratic forms in normal variables ~nd the results of Magnus 

(1978) will apply. 

Theorem 1: Considering mi as the ith column of M =I -X(X'X)-1X', the first 

and second moment of the HAC estimators are given by the following expressions, 
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1. E(Ew) = (z~ Q9 z~)vec(3), where 3 is a nxn matrix defined as 3 = E(fi) = 

[E(fiii)] = [Ki-i m~nmi], i, j = 1, 2, ... , n, with Ko = 1; 

2. Cav(EwEv) = (z~ Q9 z~)r(zv Q9 Zv), where r is a n2 X n2 matrix defined as 

r = E[vec(fi)vec(fi)'] - E[vec(O)]E[vec(O)'] = [Ki-j Kz-k (mjfZmz m~nmi + 
mjftmk m~nmi)], i, j, l, k = 1, 2, ... , n, with Ko = 1. 

Proof: For the ith residual, fi = m~c. From Section 2 c can be expressed as 

c = ft112u, with u rv N(O, I). From now on let si = ft112mi and ~j = sisj + BjB~. 

To prove part 1 note that nij = Ki-jeifj = Ki-jm~n112uu'ft 1 12mj = Ki-jU1 sisjv, is 

a quadratic form in normal variables. Applying lemma 6.1 of Magnus, E(fiij) = 

Ki-j(1/2)E[u'~iu] = Ki-j(1/2)tr(~j) = Ki-jm~ftmil proving part 1. To prove 2 one 

needs to compute the expectation of vec(D)vec(ft)', with generic element wijWkt = 

Ki j fifjK1 r.iif;.. Following the same procedure, these elements can be expressed as a 

d t f d t • £ ' 1 ' bl ' ~ ~ I I I I pro uc o qua ra IC 10rms m norma vana es, I.e., WijWkz = Ki-jK!-k u Bisjuu SzBk'l..l. 

Rewriting this term as WijWkz = Ki-jKl-k (1/4) u' ~ju u' Azku, one can apply lemma 

6.2 of Magnus. Thus, E(GJii:Jkz) = Ki-jKt-k (1/4)[tr(Aij)tr(Azk) + 2tr(AijAtk)] = 

Ki-jKt-k(mjDmi m~Dmt + mjDmt m~nmi + mjftmk m;nmi) and finally, using the 

proof of part 1, the generic element of r follows D. 

4. BIAS OF THE HAC ESTIMATORS 

In this Section one shows that the finite-sample performance of the Newey and 

West estimator is related to the design of the matrix X. The importance of this 

design is more general than the purposes of this Chapter and should be evaluated, 

by using some diagnostic measure, in any applied econometric work. Such an impor

tance can be explained briefly as follows [see Pollock (1979), Chapter 5). Due to the 

fact that in the regression context the vector y does not belong to the space spanned 

by the columns of X, M(X), the system y = Xf3 is impossible. Therefore, the solu

tion to this problem can not be exact but approximated, where this approximation is 
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made in two main steps: first y is projected into y E M(X) by a projection matrix H, 

where fj = H y; the value of {3 is derived in the second step by minimising the distance 

between y and4 f)= xp. Considering the problem under the above explanation, the 

relation between estimated and true values, depends on the elements of the projection 

matrix, as can be seen by the following expressions: 

n 

fli = hiiYi+ L hiiYi ' 
. #=i 

n 

ei = (1 - hii)ci- L hijCj 
#i 

Knowing that hii is a measure of the distance of the point Xi from the bulk of the 

points in X, one remote point leads the regression hyperplane to pass near this point5
. 

This fact can be responsible for some undesirable non-linearities in the data pattern 

and therefore data points with leverage can worsen the finite-sample performance of 

the model. 6 . 

As pointed by Huber (1973), 8fh/8yi = hii and the inverse of hii can be thought 

as the equivalent number of observations that determine Yi· He also suggests points 

with hii > 0.2 to be classified as high leverage points. Others, like Belsley et al. 

(1980) define as high leverage observations with corresponding diagonal element of 

H greater than two times the mean of the hii 1
S (note that h = (1/n) Ei hii = k/n). 

Good references in these topics are Huber (1981), Cook and Weiseberg (1982) and 

Chatterjee and Hadi (1987). 

To assess the effect of leverage points on the finite-sample performance of the 

Newey and West estimator one requires some measure that allows us to confront it 

under slight perturbations made to the design. To deal with this, one will nse the 

4With this procedure one finds II= X(X'x)- 1X'. 
5When hii is high, fii is approximately equal to Yi and consequently the correspondent residual 

is approximately equal to zero. 
60ne factor associated with the presence of leverage points is me.ar:mrement error. 
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proportionate bias that is no more than the bias scaled by the true value. Thus, for 

any chosen combination, w, of the parameters in ~1, w/3, the proportionate bias of 
---

Var( w' lJ) = Ew is given by, 

or, 

--. z'Qz 
pb(~w) = ----;n , 

Z .l£Z 
(9) 

where z = Zw is considered for simplifying purposes and 

Q = E(fi)- n. 

Defining hi and Oi as the ith column of H and 0, respectively, the generic element of 

Q becomes, 

' j =0 i=1,2, ... ,n 

Qi,i-j = 
1'\,j (ni,i-j - h~ni-j-

n~hi-j + hiD.hi-j)- ni,i-j ' j = 1, ... ,m ' i = j + 1, ... ,n 
(10) 

, j>m , i = j + 1, ... ,n 

The dependence of Qi,i-j on the design of X is evident. What is not evident is the 



amount and the direction of this dependence. In a heteroskedastic model with non 

autocorrelated errors Chesher and Jewitt (1987) found appropriate bounds, in the 

finite-sample case, for the bias of the White's HCCM estimator and have shown a 

straight relation between this bounds and the design of the X matrix. However, if the 

errors are not independent their methodology7 does not seem to be possible because 

the matrix Q is not of a diagonal type, presenting a more complex structure. There

fore, as an alternative, the bias of the Newey and West estimator and its relations with 

the design of the X matrix will be studied via examples of three particular cases: in

dependent, AR(l) and MA(l) errors. In each case, homoskedastic errors are assumed. 

These examples allow us to draw a better idea of how important the design can be to 

explain the bias and if this importance depends on a particular structure of the errors. 

The main example considered in this Section, is the linear model (1) and the 

MacKinnon and White (1985) data8 , with 50 observations and three regressors, 

X = (XI X2 X3J, where X1 is a vector of ones and X 2 and X 3 are the rate of 

growth of real U.S. disposable income and the U.S. treasury bill rate, respectively, 

seasonally adjusted, for the period 1963-3 to 1974-4. The dependent variable is de

termined by the linear relation (1)' given a particular n matrix. 

4.1 Choice of the lag truncation 

One of the problems related to the computation of the Newey and West estimate 

is the derivation of the optimal value for the lag truncation parameter. White and 

Domowitz (1984) and Andrews (1991) gave some insight to this problem9 . Andrews 

(1991) in the context of kernel HAC estimators has derived automatic bandwidth 

7In particular the derivation of an algebraical expression for the eigenvalues, .A, solution to the 

characteristic polynomial IQ - .AD! = 0. 
8See table 3. 
9Recently Newey and West {1994) suggested a non-parametric method for automatically selecting 

the number of autocovariances to use in computing a HAC estimator. 
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estimators, where the value of the optimal bandwidth parameter is a function of 

the number of observations and the structure of X'f [see Andrews(1991), pgs. 832-

35, in particular his expressions (6.2) and (6.4) to (6.8)]. The structure of X'€ can 

be assessed specifying k univariate approximate parametric models for { Xatet} for 

a = 1, ... , k. The estimated parameters of these models are next used to compute 

the optimal m. However, in general, there is no a priori information about the best 

approximated parametric model and this fact can be seen as an inconvenience of the 

application of Andrews' method. 

Another possible problem, not yet studied, is the performance of these approxi

mate parametric models when the design of X has one or more leverage points and 

therefore, its effects on the derivation of the optimal value of m. Suppose for example 

that the sequences of observations { Xatft} ?=1 , for each a = 1, ... , k , are generated by 

a zero-mean AR(1) process. If contamination is added to the observed value Xatfl, 

l = 1, ... , n, one says that one isolated additive outlier occurs, in the terminology of 

Fox (1972). In this case the point (xa1_ 1fi_ 11 Xa1f 1) is an outlier in the response vari

able and (xalfl, Xal+1il+1) a leverage point. As a consequence, the usual LS method 

will yield biased parameter estimates, meaning that the resulting observations no 

longer obey the AR(1) model. Finally, Andrews' procedure gives an optimal value 

for m whichever the direction w has. As the following example suggests, this value 

should depend on this direction, particularly when the data contains one or more 

leverage points. 

Using the Mackinnon and White data and the model (1) with AR(1) errors, figures 

1a and lb show the proportionate bias of the Newey and West HAC estimator of 

132 and (13, respectively, as a function of correlation coefficient and lag truncation. 

Table10 1 shows the optimal value of the lag truncation associated with each value 

1°For each p this table gives the values of m in which the absolute value of the proportionate bias 

is minimmn. tn~(fJi), corresponds to the optimal lag truncation associated with the Newey and 
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of the correlation coe:fficient11 . By optimal value, one means the value for which the 

proportionate bias is minimum. As can be seen, the shape of the proportionate bias 

and the optimal value of the lag tnmcation associated with {12 and f3a are very differ

ent. This difference is due to the presence of a high leverage point in the Mackinnon 

and White data (the 48th data point) in the direction of {32 [see Chesher and Austin 

(1991), pag. 160]12. When measured by the diagonal elements of the hat matrix, 

the correspondent value associated with the 48th data point is h48,48 = 0.39, approxi

mately two times the limit value suggest by Huber and 6.5 times the mean of the hii 's. 

Table 1-0ptimal value for the optimal lag truncation as a function of p 

(AR(1) Errors, Mackinnon and White data) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 

0 

0 

1 

0 

2 

0 0 1 

3 4 5 

2 

6 

5 10 16 

8 12 13 

The same conclusions can be drawn for the case with MA(1) errors. The difference 

is only on the optimal value for the lag truncation that should be approximately equal 

to one [see table13 2 and figures 2a and 2b]. 

West estimator of Var(,Bi), i = 1,2. 
11 Note that what these pictures show are not simulated but e."~cact values. 
12Deleting this point, the proportionate bias and the optimal lag truncation associated with 132 

and /33 are approximately equal. 
13(} i'3 the parameter of the MA(l) process. 



Table 2-0ptimal value for the optimal lag truncation as a function of () and p 

(MA(1) Errors, Mackinnon and White data) 

p 0.00 0.10 0.192 0.275 0.345 0.400 0.441 0.470 0.488 0.497 

() 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

m*(,B2) 0 0 0 0 0 0 0 0 0 0 

m*(/33) 0 1 1 2 2 2 2 2 2 2 

In the following a fixed lag truncation for different structures of the errors is con

sidered. This simplification does not change the conclusions achieved for the relation 

between bias and leverage. 

4.2 Independent and Homoskedastic Errors 

With independent errors the generic element of Q. in expression (10) simplifies to, 

' j =0 i=1,2, ... ,n 

0 ' j>m , i=j+1, ... ,n 

and the proportionate bias (9) becomes, 

(12) 
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However this expression does not give us a good guidance to the knowledge of how 

large it can be. Following Chesher and Jewitt (1987), a better way is to bound the 

above expression by using the following mathematical device, 

z'Qz 
sup-,-= max(.Ai) , 

z z z 
. f z'Qz . (, ) m -,- = m1n "'i , 

z z z (13) 

where the .A/s are solutions of the characteristic equation, I Q - )..J I= 0. Unfor

tunately the computation of the eigenvalues by I Q - )..J I= 0 is not algebraically 

workable due to the fact that Q is a band matrix, with bandwidth equal to the lag 

truncation. 

Alternatively, if z is the eigenvector associated with the eigenvalue ).. it is well 

lrnown that (Q- )..J) z = 0. Therefore, for each i = 1:2, ... , n, and Zi =f. 0, 

(qii- .A) Zi+ L qij Zj = 0 ' 
#i 

and the generic expression for the eigenvalues becomes, 

or, by (11), 

A= qii+ L O'.ij qij ' 
#=i 

A = -hii- L x;li-jl O'.ij hij ' 
j.p. 

ii-Jism 
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with aij = Zj/Zi. Applying Gerschgorin's circle theorem (see for example Strang 

(1980)), "every eigenvalue of Q lies in at least one of the circles Ci, i = 1, 2, ... , n, 

where Ci has its centre at the diagonal entry qii and its mdi1ts equal to the ahsolute 

sum along the rest of the row". Therefore, assuming from now on that "'li-il are the 

weights defined by Newey and West, this theorem implies that 

I A + hii I s L Kli-il hij I ' 
#i 

li-,il~m 

and the eigenvalues of Q lie in the ith circle, i.e., A is bounded by, 

L Kli-jl I hij I sA s -hii+ 
Hi 

li-jj~m 

L Kli-jl I hij I . 
#i 

li-jl ~m 

(15) 

(16) 

To better evaluate this inequality, in particular the maximum and minimum value of 

the right and left hand side, respectively, one will make use of the following lemma 

[see for example, Cook and Weisberg (1982)), 

Lemma 1: The hat matrix, H, has the properties: 

1. if hii = 1 then hij = 0 for all j =/= i; 

2. if hi·i = 0 then hij = 0 for all14 j; 

4. if h7j = hii(l- hii) then I hij I is at its maximum value and hTk = 0 for all k =/= i, 

j. 

14Note that when X contains a constant column hii > n- 1 . 
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Proof: Due to the fact that H is an idempotent matrix, hii can be written as 

hii = Ej=1 h~j = h;i + h;j + L~:f=i.i h;r and 1 and 2 follows immediately. To prove part 

3 and 4 note that the above equality can be written as hii(1- hii) = hTi + E~:;t:i.j h;r 

(see Cook and Weisberg (1982) and Chatterjee and Hadi (1988)]. D 

Whichever the values of Kii-il and hij can be, it follows from lemma 1 that when 

hii -+ 1, Ai -+ -1 and when hii -+ 0, Ai -+ 0. As a first conclusion, downward bias . 
equal to its minimum value is attainable, when hii = 1. 

Part 3 and 4 of lemma 1 show a straight relation between hii and hij· Thus, 

for a given value of hii the maximum of A depends only on the sum of the right 

hand side of (16). Applying lemma 1 to this sum, its maximum value is attained at 

I hij I= h:/2(1- hii) 112 and15 I i- j I= 1. Therefore, having in mind these results 

and expression (13) one has, 

(17) 

Considering the Newey and West estimator one has, K 1 = mj(m + 1). In particular, 

if m = 1, A is limited above by 0.0591, when hii = 0.053. The question that arises at 

this point is to know if this limit can be attained. A theoretical answer to this ques

tion was not possible through this paper. However, from the examples considered, 

some of which are presented below, there are reasons to believe that the maximum 

eigenvalue of Q is not greater than zero. 

Additionally, inequality (16) or (17) shows a straight relation between proportion

ate bias and leverage. An illustration can be seen in the following example. Using 

the Mackinnon and White data and the linear model (1) with N(O, 1) errors, one will 

15Note that /ili-il decreases with ji- jj. 



control the leverage associated with the 48th data point in the direction of {32• For 

m = 1 figure 3 shows the proportionate bias and the bounds for the proportionate 

bias16 as a function of the leverage associated with the 48th data point. If the pro

portionate bias is sensitive to the leverage associated with the 48th data point then it 

should change, as h48,4s changes. In fact when h48,48 increases, the proportionate bias 

associated with (:J2 tends towards its minimum value. However such a dependence is 

not straightforward. It depends also on the particular direction considered. In this 

sense the Newey and West estimator is drastically downward biased if it is computed 

in a direction for which there exists an observation with a high leverage. 

In a second example, the relation between leverage points and the proportionate 

bias is assessed by considering a simple model with one regressor, 

{J i = 1 

1 'todd 

-1 i even 

where fJ E ~. In this case the proportionate bias, for all w, becomes, 

Forfixedn, when17 fJ---+ oo, h11 (b) = (62 / (62 +n-1)) ---+.1 andpb(t)---+ -1. This 

16With non-autocorrelated errors the proportionate bias is expressed by z'Qzf z' z. The supremum 

and infimum of this ratio over z are given by the maximum and minimum of the >.i 's values, 

respectively, solutions of the characteristic equation l Q - >.I l= 0. 
17In a regression problem with one regressor L~=l hii = 1. Therefore when hu-+ 1 , hii-+ 0 for 

all i =f. 1. 
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relation is pictured in figure 4 and as can be seen, the proportional bias is negative. 

When 8 ---+- 1, hii(o) ---+- 1/n, the design becomes well balanced, where each point 

contributes equally to the regression line. In this case the proportionate bias depends 

only on the value of the lag truncation with a maximum value of -1/n (when m = 0) 

and a minimum value that tends towards -1 as m approaches n. The value of the 

proportionate bias is only explained by the autocorrelation structure of the residuals 

that are never independent, even though when errors are independent. 

4.3 Non-independent and homoskedastic errors 

In this subsection, model (1) and the Mackinnon and White data are considered in 

two situations: AR(1) errors and MA(l) errors. In the case of AR(1) errors, figures 

5a and 5b show the proportionate bias of the Newey and West and LS estimators 

associated with fj2 and 'fia, respectively, as a function of the correlation coefficient, 

with m = 2 and p E [0, 0.9) in steps of 0.1. For the moment, three points should be 

kept in mind: 1) The LS variance estimator is not dominated by the Newey and West 

estimator and for small values of pit performs better18 ; 2) the shape of the propor

tional bias associated with the variance estimators of jj2 and19 jj3 are very different 

and 3) the absolute value of the bias increases significantly when p approaches the 

upper limit20
• As seen above, this difference in the shape of the proportionate bias 

is due to the presence of a leverage point in the direction of {32 • Therefore, if the 

proportionate bias is sensitive to this kind of observations, then deleting this point 

should have some effect on it. In fact the deletion of this point leads to a change in 

the shape and, in general, a reduction (in absolute value) in the proportionate bias 

associated to /32 [see figs.6a and 6b). 

18 A slight modification of the NW estimator with improved results for small values of p will be - -

presented in the next section. 
19Selecting w 1 = [0 1 OJ and w 1 = [0 0 1 J respectively. 
201t should be noted that part of thi'S increasing is due to the fact that the value of the lag 

truncation is fixed. 
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Another interesting problem is the knowledge of the proportionate bias for all pos

sible directions w E ~, considering expressions similar to (13), with the difference 

that the denominator is now given by z'Oz . Letting, for example Amax = max(Ai), 

the vectors z* that satisfy, 

z'Qz 
-,;:;- = Amax, 
Z ~£Z 

are the eigenvectors associated with Amax, solutions to (Q- Amaxn) z = 0. To these 

vectors the proportionate bias (9) attains its maximum value. However because the 

matrix X is fixed, expression (13) should be evaluated with care. The main reason is 

that both Amax (Amin) and z depend on the design of X and therefore the supremum 

(in:finum) over z should be calculated subject to the restriction of X fixed. Otherwise, 

if X changes, resulting for example from the evaluation of expressions similar to (13), 

the eigenvalues no longer will be the same. In this sense and having in mind the 

relation z* = X(X' Xt 1w*, the direction for which the proportionate bias attends 

its maximum becomes equal to w* = X' z* (i.e., a linear combination of the rows 

of X, where the parameters of this combination are the elements of the eigenvector 

associated with Amax)21 • The proportionate bias and its bounds, viewed as function 

of p, are pictured in figure 7. 

In order to eliminate some of the drawbacks associated with the evaluation of the 

supremum and in:finum of (9), the effects of leverage points on the bounds of the 

proportionate bias will be assessed by means of, 

w'Aw 
sup-- = max(-\i) , 

w w'Bw 
'nf w' Aw _ . ( , ) 
1 -B -rmn -"i , 
w w' w 

21The same kind of reasoning could be made to min(>.i)· 
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with A= (X'X)- 1X'QX(X'X)- 1 and B = (X'X)- 1X'rlX(X'X)- 1• The advantage 

of this expression is that w does not depend on X and all the dynamic of this matrix 

is incorporated in A and B. Therefore these bounds can be controlled in an appro

priated manner by changing the design of the X matrix. As before these effects will 

be assessed controlling the leverage associated with the 48th point. Figures 8 a), b) 

and c) present these results form = 2 and p equal to 0.2, 0.5 and 0.8, respectively. 

The first conclusion extracted from these pictures is that leverage points seem to 

affect both the lower and upper bounds. However, the way in which each one of 

these bounds is affected depends on the value of p. The second conclusion is that the 

effect on the lower bound is more important for small values of p. When p = 0.8, 

for example, this bound does not seem to be influenced for h48,48 < 0.9, approxi

mately. However, while the lower bmmd remains constant the upper bound change 

with h48,48· The third conclusion is that h 48,48 does not affect both, lower and upper 

bounds altogether (when one changes the other remains constant). Finally there is 

a possibility of upward bias for a moderate leverage associated with a high value 

of p. This is the case of the proportionate bias of the Newey and West estimator of 

Cov({J':l.), showed in figure Sc. However, this possibility should be evaluated with care, 

due to the non-monotonicity of the upper bound, relatively to h48,4s. When p = 0.8 

the maximum bias is attainable for h48,48 approximately equal to 0.5. 

Figures 9 a), b) and c) present the same results for the case of MA(l) errors, with 

m = 1 and 0 equal to 0.2, 0.5 and 0.8, respectively. The only difference to the above 

case is that the bmmds appear to be less pronmmced and more robusts to leverage, 

particularly the upper bound. 
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4.4 Modified Newey and West Estimator 

In this Section a slight modification of the Newey and West estimator is presented. 

This modification is based on an additive bias correction for the particular case of in

dependent and homoskedastic errors. Multiplicative corrections are also possible but 

only for the diagonal entries of X'ftX. With independent errors the autocorrelation 

structure of the residuals can only be eliminated by an additive term. 

It is well known that even when errors are homoskedastir. and independent, con

ventional least-squares residuals never have these properties. In particular E(en = 

o-2(1- hii) and E(fifj) = -a2hij· Therefore instead of X'OX given in expression (7) 

the following estimator of X'DX is suggested, 

n m n 

X'O* X= L (~ + &2hii)x~xi+ L L Kj (iifi-j + &2hi,i-i)(x~Xi-j + x~_jxi) , (19) 
i=l j=li=j+l 

where &2 = L:f=1 qj(n- k). With homoskedastic and independent errors, E(fj:U) = 

~w = a 2(X'X)-1 . Moreover this estimator (as well the Newey and West estimator) 

is asymptotir.ally unbiased sinr.e hii -t 0 as n -t oo. 

To prove the positive semi-definiteness of the modified Newey and West estimator, 

consider (19) expressed in matrix form as, 

X'O* X =X' OX+ &2 X'QX 

with the elements of Q defined as the symmetric of (11). 

Theorem 2: The modified Newey and West estimator is positive semi-definite. 

Proof. For a proof it is sufficient to apply theorem 1 of Newey and West (1987) to 

the second term of the right hand side of the above expression. By doing that X 1QX 
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is positive semi-definite and the result of the theorem follows.D 

A bias comparison between the modified Newey and West, Newey and West and 

LS estimators are pictured in figure 10 and 11, using the Mackinnon and White data, 

for AR(1) and MA(1) errors, respectively. As it can be seen by these pictures, the 

proportionate bias of the modified Newey and West Estimator associated with fj3 

performs better than the other estimators for the values of p and (} in the interval 

[0, 0.9]. However,· this conclusion is not clear if the proportionate bias is computed 

in a direction of a covariate with an important leverage as can be seen from pictures 

lOa and 11a. 

5. THE FINITE-SAMPLE DISTRIBUTIONS OF 

HETEROSKEDASTICITY AND AUTOCORRELATION ROBUST 

WALD STATISTIC 

The subject of this Section is a natural extension of the results presented above. In 

the econometric framework, it is well known that hypothesis tests require a consistent 

estimator of scale. However when this estimator presents an important bias, as in 

the case of the Newey and West estimator and the sample size is not large enough, 

it is important to know how this fact can affect inferences based on the asymptotic 

distribution. For this reason this Section is concerned with the performance of the 

first order asymptotic normal approximation to the finite-sample distribution of the 

Wald test statistic, when the variance estimator of fJ is HAC type. 

Mackinnon and White (1985) provided Monte Carlo estimates of the exact sizes of 

nominal5% and 1% two-sided tests under the null hypothesis, using different HCCM 

estimators of fJ. However the estimates obtained by Monte Carlo simulation depend 
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on the regression design. Thus, the conclusions derived from this procedure can be 

very misleading, as shown by Chesher and Austin (1991). These authors derived the 

exact finite-sample distributions of heteroskedasticity robust Wald statistics of scalar 

linear hypotheses in the normal linear model. Moreover they showed a straightfor

ward relation between the regression design and the quality of these approximations. 

In this Section their methodology is extended to the case in which the variance 

estimator of fj is HAC type. In particular, the quality of the asymptotic normal 

approximation to the finite sample distribution of the test is assessed in the case 

of independent and AR(1) errors for different configurations of the design of the X 

matrix. 

C~msidering the linear model presented in Section 2, the Wald test statistic for the 

hypothesis Ho: w' (3 = Wo is given by, 

w'/i- Wo t= ~ 
(w':Ew)l/2 

(20) 

In the following, consider that the null hypothesis is true. Thus, if X obey to some 

suitable conditions as the Grenander conditions [see for example Judge et al. (1985)), 

t converges in law to the standard normal distribution. Deviations of the finite sample 

distribution oft from its asymptotic distribution will be the measure of the quality 

of this test statistic. 

Assuming w'f3 = w0 , the numerator of t2 can be written as, 

(w'{i- w0? = u'Au 
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where A= n112zz'n112 and z was defined in Section 4. For the denominator one has 

as well, 

w''Ew = z'Oz = u' Bu 

where B = 2:i=l zin
112

mimin
112

zi + 2 2:j=12:r=j+l Ki-jZjn
112

mjmin
112

zi. Both, nu

merator and denominator of t 2 , are quadratic. forms in normal variables and the 

distribution of t 2 can be calculated using the procedure given by Imhof (1961). Due 

to the fact that A and Bare symmetric matrices, it follows that A- c2 B is also sym

metric, being possible the spectral decomposition, A- c2 B = LD.L', with L' L = I. 
As a consequence, when w' p = w0 one has, 

n 

P(t2 < c2
) = P[u'(A- c2 B)u < 0] = P[2: rJoi < 0] , (21) 

i=l 

where ri = u'li "" N(O, 1), li is the ith column of L and 8i the eigenvalue associated 

with li. Finally, the probability in the left hand side of (21) is computed by the 

following, 

n 1 1 /
00 

sinO(v) 
P(t2 < c2

) = P[I:r;oi < 0] =- +- ( ) dv, 
i=l 2 7r o vp v 

(22) 

where, 

n 

B(v) = 0.5 L arctan(8iv) 
i=l 

n 

p(v) =IT (1 + 8lv2)1/4 
i=l 
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Because the null distribution of t is symmetric around zero, its determination from 

the distribution of t2 is possible, having in mind the relation, 

P(t2 < c2
) = 2P(t < c)- 1 

for any scalar c > 0. 

Considering the linear model (1) and the Mackinnon and White data, Figures22 

12 to 15 show upper halves of the exact finite-sample distribution functions of the 

Wald tests, using the Newey and West estimator with a fixed lag tnmcation, when 

the errors are independent and AR(1). In this case p = 0.2, p = 0.5 and p = 0.8, 

respectively. In each of these Figures one considers the hypotheses /32 = 0 on the left 

and /33 = 0 on the right. 

From these pictures, one condudes that the exact distribution is less well approx

imated by the standard normal distribution as the correlation coefficient increases. 

However the quality of this approximation seems to depend on the particular hy

potheses considered. The distribution function of the Wald test moves far to the 

right of the standard normal in the /33 = 0 case and to the left in the /32 = 0 case. As 

seen before the main reason for this difference in the shape of the exact distributions 

is due to the presence of the 48th leverage point. Deleting this point [figure not pre

sented] both distributions present the same shape. 

A more accurate way to evaluate the dependence of the exact distribution on the 

regression design is by controlling the leverage associated with one particular obser

vation, following the same methodology described in Section 3. Figures 16 to 18 show 

22Each point of the exact distribution was computed using expressions (22) and (23). 
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upper halves of the exact distribution for different values of the autocorrelation of the 

errors. In each of these pictures the 48th point is equal to (1, 6), with 8 E ~replaced 

by some appropriated value, corresponding to h48,48 equal to 0.13, 0.34, 0.56 and 

0.81. With independent errors [see figure 16), as the leverage associated with the 48th 

point increases, the exact distribution moves far to the right of the standard normal, 

presenting long tails. However, with AR(l) errors, particularly for high values of p, 

this effect should be evaluated with care, due to the non monotonicity between h48,48 

and the shape of the exact distribution. For low and high values of h48,48 the exact 

distribution is to the right of the standard normal. For moderate values of h48,48 the 

exact distribution moves to the left of the standard normal, presenting a greater peak. 

A possible reason for this behaviour can be due to the upward bias of the Newey and 

West estimator, as seen in subsection 4.3. 
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Figure 1 Oo: Pr. Bios of NW, M_NW and LS Estimator {Pz) 

Mackinnon and White Data, AR(1) Errors 
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Figure 1 Ob: Pr. Bios of NW, M_NW and LS Estimator {p3) 

Mackinnon and White Data, AR( 1) Errors 
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Figure 11 a: Pr. Bios of NW, ~LNW and LS Estimator (p2 ) 

Mackinnon and White Data, MA(1) Errors 
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Figure 11 b: Pr. Bios of NW, M_NW and LS Estimator (p3) 

Mackinnon and White Data, MA( 1) Errors 
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Figure 12o: Exact Distribution Function end Normal Aproximotion 
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Figure 12b: Exact Distribution Function end Normal Aproximotion 
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Figure 16: Exact Distribution Function 

Leverage Associated with the 48th point 
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Leverage Associated with the 48th point 
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Table 3 

Mackinnon and White Data 

X2 X3 X2 X3 

1 1.095 3.281 26 0.411 7.318 
2 1.451 3.499 27 0.628 7.263 
3 1.991 3.538 28 2.048 6.752 
4 2.839 3.481 29 1.010 6.375 
5 1.242 3.504 30 -0.513 5.358 
6 1.159 3.685 31 1.970 3.863 
7 0.994 3.900 32 1.141 4.206 
8 1.335 3.879 33 0.103 5.050 
9 2.651 3.860 34 0.576 4.234 

10 1.812 4.159 35 0.866 3.435 
11 0.788 4.631 36 0.846 3.748 
12 0.359 4.597 37 1.715 4.241 
13 1.168 5.048 38 3.163 4.851 
14 0.970 5.246 39 2.088 5.640 
15 1.387 4.534 40 0.853 6.608 
16 0.917 3.657 41 0.684 8.388 
17 0.760 4.345 42 0.610 7.462 
18 0.799 4.787 43 -1.476 7.600 
19 1.306 5.065 44 -0.070 8.268 
20 1.694 5.510 45 -0.058 8.286 
21 0.242 5.226 46 -0.965 7.336 
22 0.654 5.581 47 -0.740 5.873 
23 0.282 6.138 48 5.486 5.401 
24 0.867 6.240 49 -1.456 6.337 
25 1.814 7.047 50 0.785 5.684 

Source: Mackinnon and White (1985) 

X2- Rate of growth of real U.S. disposable income (1963-3 to 1974-4). 

X3- U.S. treasury bill rate (1963-3 to 1974-4). 

57 



6. CONCLUDING REMARKS 

In this Chapter it is suggested that HAC estimators can be severely biased in finite 

samples, where the importance of this bias depends on the correlation structure of 

the errors and on the design of X. Downward bias can be severe if p is high and X 

is quasi-well balanced23 or if p is small but X contains points with a high leverage. 

When pis high and. the design suffers from the presence of leverage points, upward 

bias is possible. Some of these conclusions were drawn by using some examples, for 

the particular case of the Newey and West estimator. 

The computation of HAC type estimators is related with the derivation of the opti

mal value for the lag truncation. One of the best proposals in the literature is due to 

Andrews (1991). However his method is not easily applicable and as shown in Section 

2, suffers from some drawbacks. Anyway these conclusions should not be generalized 

without f'urther investigation. 

In the case of independent errors and considering a well balanced design, Newey 

and West estimator is downward biased. This bias becomes more important in the 

presence of leverage points, which tend to its minimum value as hii increases towards 

one. Additionally, it was also seen that this sensitivity to leverage depends on the 

direction considered1 particularly when the variance of w' ~is computed in the direc

tion of a covariate that suffers from a leverage in its direction. 

In the case of non-independent errors the Newey and West estimator can be upward 

biased when there is a leverage point associated with a high value of p. However this 

relation is not monotone as one has seen in the particular case of Mackinnon and 

White data. Moreover the effects of leverage points in the case of MA(1) errors seem 

23By this one means a design without leverage points. 
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to be less pronounced than in the case of AR(l) errors. 

The modified Newey and West estimator performs better than the Newey and West 

estimator, in particular for moderate autocorrelations in the errors and if the data 

does not have leverage points. Moreover, this estimator is asymptotically equivalent 

to the Newey and West estimator. 

A suggestion fdr future research is the study of the performance of HAC type 

estimators, considering different HCCM estimators. As seen in Section 2, HAC esti

mators can be given as a sum of White's HCCM estimator and an Autocorrelation 

Consistent Covariance Matrix estimator. 

The use of the Newey and West estimator in the Wald tests can produce very mis

leading inferences. In a design without leverage points the exact distribution is not 

well approximated by the standard normal and the accuracy of this approximation 

becomes worse when the autocorrelation of the errors increase toward 1. As a conse-

quence the null hypotheses is rejected very often. 

One important conclusion derived from this study is that HAC estimators should 

be used with some precautions. In some cases, particularly for small value of the 

error autocorrelation, as shown in Figures 10-11, its bias can be even worse than of 

the traditional LS standard errors. In the particular case of the Newey and West 

estimator, a possible solution to this problem is to use the modified Newey and West 

estimator. On the other hand if the value of the error autocorrelation is moderate 

or high and if the data does not suffer from the presence of leverage points, the bias 

in the Newey and West estimator lead to very misleading inferences [one reminds 

Figures 14-15]. To avoid these sort of problems one suggests as a first step the com

putation of the autocorrelation of the residuals. Unless this value is small the Newey 
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and West estimator should not be used. 
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CHAPTER 3 - HETEROSKEDASTICITY AND AUTOCORREIJATION 

CONSISTENT COVARIANCE MATRIX ESTIMATOR WITH 

IMPROVED FINITE-SAMPLE PROPERTIES: AN APPROACH 

BASED ON A GROUPED JACKKNIFE ESTIMATOR 

1. INTRODUCTION 

Heteroskedastic and antocorrelated errors are common problems in a regression 

framework. Neglecting this problem can severely affect inference due to incorrect 

computation of standard errors. This has led to a substantial literature concerning 

robust covariance matrix estimators. Examples include the works of White (1980), 

MacKinnon and White (1985) and Chesher and Jewitt (1987), in the heteroskedas

tic case and Hansen (1982), Newey and West (1987) and Andrews (1991), in the 

heteroskedastic and autocorrelated · case. In this Chapter a new approach derived 

from the subseries values of Carlstein (1986) and the grouped jackknife of Quenouille 

(1956) is suggested. 

In the iid case the Jackknife and Bootstrap have been widely used as techniques 

to estimate the variance of a general linear statistic. Both of these techniques are 

! based on replicas of a general statistic computed from the data. The advantage of 
.:i 

J its application is in a bias reduction. However, they lead to incorrect results when 

I dependence in the data is neglected. To avoid this problem one can use snbsamples 
il ·! or blocks of observations, constructed in an appropriate manner, in order to preserve 
l 

' f 
:f 

i ~ 



this dependence. 

In a recent paper, Carlstein (1986) suggests a new approach by using subseries 

(or blocks) of values to compute the variance of a general statistic from a stationary 

sequence. Let {Yi, -oo < i < +oo} be a strictly stationary a-mixing sequence1. 

For n observed values y1 , Y2, ... , Yn, Carlstein considered the computation of CJ2 = 

Var{Tn}, where Tn = Tn(Yb Y2, ... , Yn) is a general statistic. To deal with it he 

suggested dividing the original sample into g non-overlapping blocks of length l such 

that each one preserves the original dependence of the data. Using this device he 

moves from the original problem of n dependent entities to g < n independent2 

entities Z.i = Yil+I, Yi1+2, ... , YiZ+l, i = 0, 1, ... ,g- 1. The proposed estimator for CJ
2 

is [see Carlstein (1986), page 1173] 

where st1 is the value of the statistic ~il(Zi) computed in each block i = 0, 1, ... , g -1 

and sis the mean. With these remarks in mind, Carlstein's estimator is nothing more 

than the nsual sample variance amongst the standardized block values. 

In the particular case of a sample mean, the subseries value technique of Carlstein 

is identical to the grouped jackknife [see Quenouille (1956) for a definition of grouped 

jackknife], i.e., deletion of blocks is the same as selecting blocks. Moreover for more 

1The idea of a-mixing is associated with situations in which events are independent asymptoti

cally. For a sequence X 1 , X2, ... of random variables, let an be a number such that 

I P(A n B) - P(A)P('.B) I~ an 

for A E a(X1 , ... ,Xk), B E a(Xk+n,Xk+n+l, .. . ), and k ~ 1, n ~ 1 where a(·) is a a-field. If 

an ---+ 0 as n---+ oo the sequence {Xn} is said to be a-mixing. See for example White (1984), page 

44-45. 
2To be more precise this should be viewed approximately in finite samples. However, due to the 

definition of a-mixing, they are independent asymptotically. 
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general statistics as the LS estimator, deletion is better than selection [see Kiinsch 

(1989), page 1218]. 

Extensions of Carlstein paper are given in the literature. Ki.insch (1989) allows 

for overlapping blocks and downweighting blocks of consecutive observations, instead 

of deletion. Politis and Romano (1994), using bootstrap methods, have proposed a 

variant where the length of each consecutive block is a random variable. 

In what follows I extend the Carlstein method to a regression model. To fix ideas 

and for simplifying purposes consider the linear model, 

y=X/3+c, (1.1) 

where y is an n x 1 vector of observations, X is a n X k matrix of full column rank 

k, ,B is a k X 1 vector of unknown parameters and c is an X 1 vector of errors with 

E(c I X) = 0 and E(cc1 I X) = n positive definite of order n X n. Additionally it 

is assumed that, conditional on X, the errors are second-order stationary, i.e., the 

disturbance covariances die out fast enough. The estimation of this model for each 

non-overlapping block can cause some problems due to a lack of degrees of freedom. 

For this reason the deletion approach seems to be more reasonable. 

The remainder of the Chapter is organised as follows. In Section 2 the notation 

and the derivation of the covariance matrix estimator is presented. Section 3 deals 

with the first moment of the grouped jackknife estimator. This will be used in Sec-. 
tion 4 where some results concerning the finite-sample performance are shown. A 

comparison with the Newey and West (1987) estimator is also made. 
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2. NOTATION AND ESTIMATOR 

In this Section the non-overlapping deleted-l jackknife estimator of the covariance 

of fJ is derived. Consider the set of indices, 

Ii = { iln + 1, iln + 2, ... , iln + ln}, (2.1) 

where ln is the m~mber of deleted observations from the n X (k + 1) matrix [y X] 

with #(Ii) = ln and Yn = n/ln is the number of non-overlapping subsamples from the 

original sample of n elements. Let M =I- X(X'X)- 1X', where I is the identity 

matrix of order n. In this notation the LS estimator after dropping the observations 

indexed by the set Ii will be, 

(2.2) 

where3 Mlili is a square matrix of order ln with the rows and columns of M indexed 

by the elements in the set h The difference jj(Ii) -!J if properly scaled, can be viewed 

as measure of the joint influence of the observations index by Ii on fJ [see Cook and 

Weisberg (1982), page 136]. Let e1i be a selection matrix of order ln X n such that, 

(2.3) 

Then (2.2) can be rewritten as, 

(2.4) 

t and the grouped jackknife estimator of [3 as, 
'! i 3If l'viJ;I; is singular consider MI;I; = 0 as suggested by Cook and Weiseberg (1982). 



(2.5) 

After some algebraical procedures [see appendix Al] it is straightforward to prove 

that the grouped jackknife estimator of the covariance matrix of~ is given by the 

following expression, 

where Gn and ftn are square matrices of order n defined as follows, 

M-1 
hh 0 

0 M-1 
Gn = 

12h 

0 0 

and 

g.,-1 

D(fii0J = 2: e~.fhE'Iieii = 
i==O 

0 

0 

0 

0 

M-1 
lgn-llgn-1 

0 

0 

0 

0 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

with 0 an square null matrix of order ln. These matrices are block diagonal where 

the dimension of each block equals ln. As can be seen from expressions (2.7) to (2.9), 
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the estimator given in (2.6) is a function of blocks of the residuals and therefore Carl

stein's results will apply. In particular (2.6) can be viewed as a mean of covariances 

computed over each block of length ln. The consistency of this estimator can be 

proved under the following assumptions. 

Assumption 1. Let hii, i = 1, 2, ... , n be the diagonal elements of the hat matrix 

H = X(X'Xt 1X'. It is assumed that max(hii) --t 0, as n --too. 

Assumption 2. The number of elements in each block is a function of the sample 

size such that ln = o( n). 

Theorem 1 (L2 consistency). Define the covariance matrix of Pas 

nEn ~ ( x~x) -1 

X' E~f!)X (X~ X) -
1 

where limn_,.00 [X' E(c:c:')X]/n = <P. Given assumptions 1 and 2, ifthe error component 

of the model (1.1) is an a-mixing sequence and if [Xj.M1~}/'1J4 is uniformly integrable 

then nf:n ---t E as n --too, where f:n is the estimator of En defined in (2.6). 
L2 · 

Proof. : see Appendix A2. D 

Note that as n --t oo one achieves an infinite number of subsamples with an infinite 

number of elements matching the original autocorrelation structure of the population. 

Moreover, due to the a-mixing assumption these subsamples are asymptotically in-

dependent. 

An interesting result concerning this estimator is that it generalizes the deleted-

1 jackknife estimator of variance, discussed in the paper of MacKinnon and White 

(1985). For the independent case, ln = 1, one has 
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M-1 
li li - (1- hiit1 

€ji - fi 

G.n - diag{(1- hiit1
} 

D(f1ie'rJ - diag{er} 

3. FIRST MOMENT OF THE GROUPED JACKKNIFE ESTIMATOR 

OF THE VARIANCE 

In this Section one derives the first moment of (2.6). The goal is to present in the 

next Section a study concerning the finite-sample performance of the estimator being 

presented. 

.---

Let w be any chosen combination of the parameters in jj. Therefore, Var(w' jj) = ~w 

is a scalar and thus can be expressed in vectorial form as, 

where z~ = w'(.X'.X)-1 X' is a kxl vector,@ is t~e kroneker product and vec(GnfinGn) 

is a n 2 X 1 vector formed by stacking the columns of GnflnGn. 

The first moment of the grouped jackknife estimator of the variance is given by 

E(~w) = (z~@ Zw)vcc[3] (3.1) 



t 
I 
I 
I 
! 
f 

. i 
! 

where 3 is an X n matrix defined as 3 = G11 E(fin)Gn with 

MI1!1M]1 0 0 

E(On) = 
0 M12 !1M]

2 0 1 
(3.2) --MOM, 

9n 

0 0 M !1M' lgn -1 Ign -1 

4. APPLICATION 

This Section deals with the finite-sample performance of the variance estimator ~w, 

for some linear combination w of fj. With purposes of notational simplification let w 
.--..-

be a vector that select elements of fj, !Jj, j = 1, 2, ... , k, such that f;w = ll ar(!Jj)· 

As a measure of its performance one will consider the proportionate bias 

For a relative measure of its performance, pb(~w) is confronted with the proportionate 

bias of the Newey and West (1987) estimator4 because this has been suggested as the 

robust estimator to be used in the non-iid case. This estimator can be expressed by 

where B = [bii] is a band matrix with generic element 

4
See Passos (1994) for a study concerning the finite-sample properties of the Newey-West 

estimator. 



e~ , j=i 

o , 1 j- i 1> m 

where 

"' .. _ 1 _ .:.....:1 J_· -_~__,_· I 

~3 - m+ 1 

is the Bartlett kernel and m = l - 1 is a bandwidth. In this notation, when for 

example m = 0 (l = 1), Ew is the White's (1980) estimator and :Ew is the deleted-1 

jackknife. 

In what follows one considers two different situations: model without covariates, 

Yi = fJ, + ci, where fJ, = X' (3 is a constant and i = 1, 2, ... , 50 (Case 1) and models 

with two covariates, Yi = f3o+xilf31 + xi2f32+ci with designs specified as follows: Case 

2- f3o = 0 and (xil xi2), i = 1, 2, ... , 100 define a well balanced design in a circle [see 

Chesher and Austin (1991)]; Case 3- X1i rv N(O, 1) and X2i rv x2(5), i = 1, 2, ... '100. 

For all cases the error component cis an AR(1) process, 

where ui ~ N(0,1), i = 1,2, ... , nand p E [0, 0.8]. 

Case 1: In this case P, = (1/n) 2::~1 Yi is the sample mean and f: = Ew is a scalar. 

For each p E [0, 0.8] Tables 1.1 and 1.2 (see Appendix) and Figures 1.1 and 1.2 below 

show the values of the proportionate bias computed at ln E [1, 25], associated with 
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f: and ~' respectively. The first conclusion to draw from these results is that the 

grouped jackknife performs significantly better than the Newey and West estimator 

whatever the value of ln is. However for high values of p, pb(E) seems to attain its 

minimum for values of ln higher than the correspondent minimum of pb(~). The 

reason is due probably to a reduction of the number of blocks as ln increases (note 

that n = lngn) which can result in less accurate estimates. The second conclusion, is 
- -

that the bias of :E is almost zero for a good choice of ln. In third place, :E appears 

to stabilize around its first moment after some value of ln is reached. This is a very 

desirable property meaning that one minimizes the loss of an incorrect value of ln 

by increasing its value. For example, if p = 0 any value of ln in the range (1, 25) 

proportionate an estimate with an insignificant bias. However less bias is usually 

associated with a bigger variance and we should be careful without further research 

in thjs field. Finally, the proportionate bias appears to be slightly inferior when n/ln 

is an integer then in a neighbourhood of it. This can be due to the presence of 

one block (the last one) with less elements then the others and therefore it can be 

improved through some appropriate correction factor. 
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Figure 1.1: Proportionate Bios - Grouped Jackknife 
Without Covoriates and Af~(1) Errors 

Figure 1 .2: Proportionate Bios - Newey and West estimator 
Without Covariates and AR( 1) Errors 
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Case 2: Due to the symmetry inherent to this design only the results associate 

with the first covariate are shown. The introduction of covariates does not change 

the conclusions reached above as can be seen from figures 2.1 and 2.2 [see also Tables 

2.1 and 3.1 in Appendix]. The jackknife estimator appears to be less biased than the 

Newey and West estimator. When p varies from 0 to 0.8 the proportionate bias is less 

then 0.1, in absolute value, for a wide strip of l values. On the other hand and once 

more, the wave effect due to the non-integer division, n/ln, is evident, particularly 

for higher values of l. 

Figure 2.1: Proportionate Bios - Grouped Jackknife (/31) 
Two Covariates and AR( 1) Errot·s 

74 



f 
r 
I. 

i 
I 

Figure 2.2: Proportionate Bios of Newey and West estimator ({3 1) 

Two covariates and AR(1) Errors 

Case 3: In the two cases presented the designs have some good properties in order 

to access the performance of the grouped-jackknife estimator of the variance, viewed 

only as a function of ln. The idea was to isolate the effect of the design in the perfor

mance of the estimator. In these cases the estimator seems to perform relatively well 

and better than the Newey and West estimator, so far as first moments are concerned. 

However, Passos (1994) showed that the performance of the Newey and West estima

tor is sensitive to the design of the covariates, particularly when this design contains 

leverage points [see also Chesher and Jewitt (1987) in the case of heteroskedasticity 

consistent covariance matrix estimators]. In this case a more realistic design that 

allows for the presence of leverage points is considered. 

Once more, from the results presented, the 'grouped jackknife estimator of the 

variance appears to perform better than the Newey and West estimator. For any 

value of p and for an appropriate value of ln the proportionate bias is less than 0.1 

in absolute value [see Figures 3.1 to 3.4 above and tables 3.1 to 3.4 in appendix]. 

Considering for example p = 0.3, the proportionate bias computed in the direction 
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of !Ja, is less than 0.1, in absolute value, for alll71 =f 25 in the range {1, ... , 25}. For 

p = 0.6 one has the same conclusion for allln =f {11, 12, 14, 18, 19, 24, 25}. 

The wave effect is in this case much more pronounced. Another source of expla

nation, that is more likely in a non-balanced design, is due to the presence of joint 

influential observations [see Cook and Weisberg (1982), chapter 3]. Note that ~(li) 

enters in the definition of the covariance matrix estimator of fj. Moreover, as pointed 

out in Section 2, fj(li) - fj is a measure of the joint influence of the observations index 

by h Thus, large 'Values of fj(Ii), with respect to some metric, can explain this wave 

effect. To avoid this problem two solutions are possible: a) given l,, the g values 

of fj(li), for i = 0, 1, ... , g, can be trimmed in some appropriated metric [see Cook 

and Weisberg (1982)], redefining (2.6) as a trimmed estimator; b) since this wave 

effect depends on the design, they can be easily identified as peaks in a plot of the 

variance estimate against ln. Thus, values of ln with associated peaks should not be 

considered as candidates. If for example we have some a priori information about 

the structure of the errors that lead to some value of ln and if this value correspond 

to a peak simply consider another value in this neighbourhood. 

Figure 3.1: Proportionate Bias - Grouped Jackknife ({3 1 ) 

Non Balanced Design - Two Covoriotes and AR(1) Errors 
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Figure 3.2: Proportionate Bios - Grouped Jackknife ((3?) 
Non Balanced Design - Two Covariates and AR(1) Enors 

Figure 3.3: Proportionate Bias of Newey and West Estimator (13 1 ) 

Non Balanced Design - Two Covmiotes and AR(1) En·ors 
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Figure 3.4: Proportionate Bios of Newey and West Estimator (/3?) 
Non Balanced Design - Two Covariates and AR( 1) Errors 

5. FURTHER COMMENTS 

In a linear regression framework, the deleted-l jackknife with non-overlapping 

blocks (or the grouped jackknife) is used in this Chapter as a technique to compute 

the covariance matrix of !J, robust to departures of the iid errors if the covariances 

die fast enough as the sample size increases. 

It is also pointed out two interesting features concerning this estimator: it can be 

viewed as a generalization of the deleted-1 jackknife (ln = 1) to the non-independent 

case and the finite-sample study of Section 4 reveals a desirable stability of the es

timator around its first moment, for a wide range of ln values. This last property is 

relatively important having in mind the nonexistence of straightforward procedure to 

determine the value of ln. 

A possible direction for further research is an extension of this procedure to over-
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6. APPENDIX 

[Al] Derivation of the covariance matrix estimator of /3: 
The derivation of the estimator presented in (2.6) is straightforward, requiring only 

some simple but tedious algebra. To achieve expression (2.2) one will make use of 

the following Lemma [see Cook and Weisberg (1982), page 210): 

Lemma: If A and D are nonsingular matrices of order k and m, respectively, B 

of order k x m and C of order k X m, the inverse of the sum (A+ BDC') is given as 

follows: 

From this Lemma and the fact that /3(1i) can be expressed as 

result (2.2) follows immediately [see also Cook and Weiseberg (1982), page 136). 

Moreover, one can rewrite expression (2.5) as 

9n-l 

where i~ (e~iMii1ie1i) = Gn and e1i and Gn are defined as in (2.3) and (2.7), 

respectively. Having in mind these results one has 
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where the first term inside brackets is a sum of block diagonal matrices of the form 

0 0 0 

0 0 

0 0 0 

[A2] Proof of Theorem 1: Rewriting expression (2.6) as, 

and assuming that limn--->oo(X' Xjn) = Q is a finite positive definite matrix, it is 

well known that the consistency of nEn depends on the asymptotic behaviour of 

the matrix ~n = (X'GnflnGnX)jn. For simplifying purposes and without loss of 

generality consider the one regressor case with X= x. Fro~ (2.8) one has 

or, in terms of summation 
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where SJ• = (1/ln)xj,Mi)/I.i and 8 is the sample mean of the SJ/s. This expression 

is similar to Carlstein estimator of the variance and therefore the £2-consistency of 

~n follows from Theorem 2 of Carlstein [see Carstein (1986), pages 1174-75]. 
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TABLE 1.1: Case 1- Proportionate Bias- Grouped Jackknife Estimator 

I 
p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ln 

1 0.000 -0.182 -0.334 -0.464 -0.575 -0.671 -0.755 -0.830 -0.896 

, 2 -0.000. -0.100 -0.201 -0.303 -0.405 -0.507 -0.609 -0.711 -0.813 

3 -0.001 -0.070 -0.142 -0.221 -0.307 -0.401 -0.505 -0.620 -0.744 
i 4 -0.002 -0.054 -0.110 -0.173 -0.244 -0.328 -0.428 -0.545 -0.684 I 

' 
5 -0.000 -0.041 -0.084 -0.133 -0.192 -0.264 -0.356 -0.472 -0.620 

f 6 -0.003 -0.040 -0.079 -0.122 -0.174 -0.239 -0.323 -0.434 -0.584 
! 
f 7 -0.002 -0.035 -0.068 -0.105 -0.150 -0.206 -0.282 -0.387 -0.537 

I 8 -0.005 -0.034 -0.064 -0.098 -0.138 -0.189 -0.259 -0.358 -0.506 

9 -0.009 -0.033 -0.059 -0.089 -0.125 -0.172 -0.237 -0.333 -0.479 

10 0.000 -0.020 -0.042 -0.067 -0.097 -0.137 -0.193 -0.280 -0.422 

11 -0.014 -0.034 -0.056 -0.081 -0.111 -0.151 -0.206 -0.291 -0.430 
I 12 -0.009 -0.029 -0.051 -0.075 -0.103 -0.139 -0.189 -0.266 -0.397 

I 13 -0.011 -0.028 -0.045 -0.065 -0.089 -0.121 -0.167 -0.240 -0.369 

I 14 -0.024 -0.040 -0.058 -0.077 -0.102 -0.134 -0.179 -0.251 -0.376 
I 15 -0.024 -0.040 -0.058 -0.078 -0.102 -0.134 -0.178 -0.246 -0.365 

16 -0.013 -0.030 -0.047 -0.066 -0.089 -0.117 -0.156 -0.217 -0.328 

17 -0.010 -0.022 -0.035 -0.049 -0.068 -0.091 -0.126 -0.183 -0.291 

18 -0.033 -0.045 -0.058 -0.072 -0.090 -0.114 -0.149 -0.205 -0.312 

19 -0.048 -0.060 -0.073 -0.088 -0.106 -0.130 -0.164 -0.220 -0.325 

20 -0.057 -0.069 -0.082 -0.097 -0.115 -0.139 -0.174 -0.229 -0.332 

21 -0.059 -0.071 -0.084 -0.100 -0.118 -0.142 -0.177 -0.231 -0.330 

22 -0.055 -0.067 -0.081 -0.096 -0.114 -0.139 -0.172 -0.225 -0.319 

23 -0.044 -0.056 -0.070 -0.086 -0.104 -0.127 -0.159 -0.208 -0.295 

24 -0.026 -0.039 -0.052 -0.067 -0.084 -0.104 -0.132 -0.175 -0.256 

25 -0.000 -0.008 -0.017 -0.027 -0.039 -0.055 -0.078 -0.116 -0.194 

82 



TABLE 1.2: Case 1 - Proportionate Bias - Newey and West Estimator 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

mn 
0 -0.020 -0.198 -0.348 -0.474 -0.583 -0.678 -0.760 -0.833 -0.898 

1 -0.040 -0.138 -0.236 -0.334 -0.432 -0.530 -0.627 -0.725 -0.822 

2 -0.059 -0.125 -0.194 -0.268 -0.349 -0.439 -0.536 -0.644 -0.760 

3 -0.078 .-0.128 -0.180 -0.238 -0.305 -0.382 -0.474 -0.582 -0.710 

4 -0.097 -0.137 -0.179 -0.226 -0.281 -0.348 -0.432 -0.537 -0.669 

5 -0.115 -0.149 -0.184 -0.224 -0.270 -0.329 -0.404 -0.503 -0.636 

6 -0.134 -0.162 -0.193 -0.227 -0.267 -0.318 -0.386 -0.479 -0.609 

7 -0.152 -0.177 -0.204 -0.233 -0.269 -0.315 -0.376 -0.462 -0.589 

8 -0.169 -0.192 -0.216 -0.242 -0.274 -0.315 -0.371 -0.451 -0.573 

9 -0.187 -0.207. -0.229 -0.253 -0.282 -0.319 -0.369 -0.444 -0.561 
. i 10" -0.204 -0.223 -0.242 -0.265 -0.291 -0.325 -0.371 -0.441 -0.552 ! 

11 -0.221 -0.238 -0.256 -0.277 -0.301 -0.332 -0.375 -0.440 -0.546 

12 -0.238 -0.254 -0.271 -0.289 -0.312 -0.341 -0.381 -0.442 -0.543 

13 -0.254 -0.269 -0.285 -0.303 -0.324 -0.351 -0.388 -0.445 -0.541 

14 -0.270 -0.284 -0.299 -0.316 -0.336 -0.361 -0.396 -0.450 -0.542 

15 -0.286 -0.299 -0.313 -0.329 -0.348 -0.372 -0.405 -0.456 -0.543 

16 -0.302 -0.314 -0.328 -0.342 -0.360 -0.383 -0.414 -0.463 -0.546 

17 -0.317 -0.329 -0.342 -0.356 -0.373 -0.394 -0.424 -0.470 -0.550 

18 -0.332 -0.343 -0.356 -0.369 -0.385 -0.406 -0.435 -0.478 -0.555 

19 -0.347 -0.358 -0.369 -0.382 -0.398 -0.418 -0.445 -0.487 -0.561 

20 -0.361 -0.372 -0.383 -0.396 -0.410 -0.429 -0.456 -0.496 -0.567 

21 -0.376 -0.386 -0.396 -0.409 -0.423 -0.441 -0.466 -0.505 -0.573 

I 22. -0.390 -0.399 -0.410 -0.421 -0.435 -0.453 -0.477 -0.514 -0.580 
I ·r 23 -0.403 -0.413 -0.423 -0.434 -0.447 -0.464 -0.488 -0.524 -0.587 
~ 

24 -0.417 -0.426 -0.436 -0.447 -0.459 -0.476 -0.499 -0.533 -0.595 

25 -0.430 -0.439 -0.448 -0.459 -0.471 -0.487 -0.509 -0.543 -0.602 

I 
; 
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TABLE 2.1: Case 2- Proportionate Bias- Grouped Jackknife Estimator (~1) 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ln 

1 0.010 -0.173 -0.327 -0.457 -0.568 -0.665 -0.749 -0.822 -0.886 

2 0.021 -0.081 -0.184 -0.287 -0.390 -0.492 -0.594 -0.695 -0.793 

3 0.031 -0.041 -0.116 -0.196 -0.283 -0.379 -0.483 -0.595 -0.713 

4 0.043 -,0.010 -0.066 -0.128 -0.200 -0.285 -0.385 -0.501 -0.634 

5 0.054 0.011 -0.034 -0.085 -0.145 -0.219 -0.311 -0.426 -0.565 

6 0.062 0.025 -0.015 -0.059 -0.113 -0.179 -0.264 -0.375 -0.516 

1 0.072 0.038 0.003 -0.037 -0.085 -0.144 -0.221 -0.325 -0.464 

8 0.080 0.051 0.020 -0.015 -0.057 -0.111 -0.182 -0.281 -0.419 

9 0.095 0.068 0.039 0.008 -0.029 -0.076 -0.139 -0.229 -0.361 

10 0.109 0.088 0.065 0.039 0.007 -0.034 -0.091 -0.175 -0.302 

11 0.115 0.092 0.068 0.042 0.011 -0.027 -0.080 -0.158 -0.279 

12 0.115 0.094 0.072 0.047 0.016 -0.022 -0.075 -0.151 -0.269 

13 0.123 0.106 0.087 0.065 0.039 0.006 -0.041 -0.113 -0.226 

14 0.136 0.118 0.098 0.076 0.050 0.017 -0.026 -0.090 -0.193 

15 0.134 0.119 0.103 0.084 0.062 0.033 -0.008 -0.071 -0.173 

16 0.140 0.124 0.107 0.087 0.064 0.034 -0.007 -0.067 -0.161 

17 0.159 0.146 0.133 0.118 0.100 0.077 0.043 -0.008 -0.094 

18 0.140 0.127 0.114 0.098 0.079 0.054 0.020 -0.033 -0.120 

19 0.146 0.132 0.118 0.101 0.082 0.056 0.022 -0.029 -0.109 

20 0.182 0.172 0.162 0.151 0.137 0.119 0.093 0.054 -0.013 

21 0.158 0.148 0.138 0.126 0.112 0.093 0.061 0.026 -0.042 

22 0.138 0.128 0.117 0.105 0.090 0.011 0.044 0.002 -0.067 

23 0.131 0.120 0.109 0.097 0.082 0.062 0.035 -0.006 -0.071 

24 0.144 0.134 0.123 0.110 0.095 0.016 0.052 0.016 -0.037 

25 0.179 0.173 0.167 0.160 0.151 0.139 0.123 0.099 0.060 
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TABLE 2.2: Case 2- Proportionate Bias- Newey and West Estimator (fJI) 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

mn 
0 -0.020 -0.198 -0.347 -0.473 -0.581 -0.675 -0.756 -0.828 -0.889 

1 -0.040 -0.137 -0.235 -0.332 -0.429 -0.526 -0.622 -0.716 -0.807 

2 -0.059 -0.124 -0.193 -0.267 -0.347 -0.434 -0.529 -0.632 -0.740 

3 -0.077 T0.127 -0.179 -0.236 -0.302 -0.377 -0.466 -0.569 -0.684 

4 -0.095 -0.135 -0.177 -0.223 -0.278 -0.343 -0.423 -0.521 -0.640 

5 -0.113 -0.146 -0.181 -0.220 -0.266 -0.322 -0.394 -0.486 -0.603 

6 -0.130 -0.158 -0.188 -0.222 -0.261 -0.311 -0.375 -0.461 -0.574 

7 -0.146 -0.171 -0.197 -0.227 -0.261 -0.305 -0.363 -0.442 -0.550 

8 -0.161 -0.183 -0.207 -0.233 -0.264 -0.303 -0.356 -0.429 -0.532 

9 -0.176 -0.196 -0.217 -0.241 -0.269 -0.304 -0.352 -0.419 -0.517 

10 -0.189 -0.208 -0.227 -0.249 -0.275 -0.307 -0.351 -0.413 -0.505 

11 -0.202 -0.219 -0.237 -0.257 -0.281 -0.311 -0.351 -0.409 -0.496 

12 -0.215 -0.230 -0.247 -0.265 -0.287 -0.315 -0.352 -0.407 -0.489 

13 -0.226 -0.241 -0.256 -0.273 -0.294 -0.320 -0.355 -0.405 -0.483 

14 -0.237 -0.250 -0.265 -0.281 -0.300 -0.325 -0.357 -0.405 -0.479 

15 -0.247 -0.259 -0.273 -0.288 -0.306 -0.329 -0.360 -0.405 -0.475 

16 -0.256 -0.268 -0.281 -0.295 -0.312 -0.334 -0.363 -0.406 -0.473 

17 -0.264 -0.276 -0.288 -0.302 -0.318 -0.338 -0.366 -0.407 -0.470 

18 -0.272 -0.283 -0.294 -0.307 -0.323 -0.342 -0.369 -0.408 -0.469 

19 -0.279 -0.289 -0.300 -0.313 -0.328 -0.346 -0.372 -0.409 -0.467 

20 -0.285 -0.295 -0.306 -0.318 -0.332 -0.350 -0.374 -0.410 -0.466 

21 -0.291 -0.300 -0.311 -0.322 -0.336 -0.353 -0.377 -0.411 -0.465 

22 -0.296 -0.305 -0.315 -0.326 -0.339 -0.356 -0.379 -0.412 -0.464 

23 -0.301 -0.310 -0.319 -0.330 -0.343 -0.359 -0.381 -0.413 -0.463 

24 -0.305 -0.314 -0.323 -0.334 -0.346 -0.361 -0.382 -0.414 -0.462 

85 



~- :~~;~~-

l 
)' " 
F 
!:· 
r 

r 
I 
v TABLE 3.1: Case 3- Proportionate Bias - Grouped Jackknife Estimator (fil) 
i: 
! 

I p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
f ln 
f 

I 
1 0.047 0.043 0.033 0.018 -0.004 -0.034 -0.072 -0.119 -0.180 

2 0.046 0.038 0.025 0.006 -0.020 -0.053 -0.093 -0.143 -0.205 
I 3 0.045 0.047 0.043 0.033 0.016 -0.009 -0.043 -0.087 -0.145 
I 
I 4 0.051 ,0.047 0.043 0.038 0.031 0.020 0.004 -0.020 -0.059 

I 5 0.048 0.063 0.080 0.099 0.116 0.129 0.134 0.126 0.096 

6 0.047 0.047 0.042 0.035 0.026 0.015 0.004 -0.008 -0.026 

7 0.053 0.060 0.065 0.066 0.063 0.058 0.051 0.042 0.029 

8 0.050 0.051 0.054 0.05'7 0.060 0.062 0.061 0.054 0.032 

9 0.042 0.044 0.043 0.039 0.030 0.014 -0.011 -0.050 -0.114 

10 0.048 0.054" 0.059 0.062 0.062 0.05'7 0.044 0.020 -0.029 

i1 0.056 0.062 0.065 0.06'7 0.066 0.062 0.054 0.042 0.013 

12 0.048 0.039 0.029 0.019 0.009 0.000 -0.004 -0.001 0.012 

13 0.038 0.034 0.029 0.021 0.012 0.002 -0.010 -0.026 -0.049 

14 0.056 0.059 0.063 0.068 0.0'73 0.079 0.091 0.116 0.170 

15 0.058 0.066 0.075 0.087 0.100 0.11'7 0.142 0.184 0.260 

16 0.030 0.036 0.042 0.047 0.051 0.053 0.051 0.044 0.023 

17 0.032 0.035 0.037 0.039 0.039 0.039 0.039 0.041 0.048 

18 0.032 0.037 0.040 0.044 0.047 0.051 0.056 0.061 0.061 

19 0.039 0.047 0.055 0.062 0.069 0.076 0.086 0.106 0.150 

20 0.061 0.070 0.080 0.092 0.106 0.122 0.143 0.1 '70 0.202 

21 0.045 0.050 0.053 0.053 0.052 0.051 0.051 0.05'7 0.077 

22 0.044 0.049 0.054 0.061 0.069 0.080 0.093 0.10'7 0.112 

23 0.038 0.039 0.041 0.044 0.047 0.052 0.060 0.071 0.081 

24 0.046 0.044 0.043 0.043 0.046 0.052 0.062 0.076 0.092 

25 0.067 0.077 0.091 0.108 0.129· 0.154 0.181 0.212 0.256 
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TABLE 3.2: Case 3 - Proportionate Bias - Grouped Jackknife Estimator (fj2) 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
ln 

1 0.048 0.05'7 0.061 0.060 0.055 0.043 0.022 -0.013 -0.075 
2 0.053 0.066 0.016 0.081 0.080 0.013 0.056 0.024 -0.037 
3 0.053 0.046 0.036 0.021 0.002 -0.022 -0.053 -0.091 -0.162 
4 0.051 Q.044 0.034 0.020 0.003 -0.018 -0.046 -0.086 -0.146 
5 0.050 0.054 0.058 0.060 0.059 0.055 0.044 0.022 -0.021 
6 0.062 0.069 0.075 0.019 0.081 0.019 0.072 0.055 0.019 
'7 0.045 0.042 0.036 0.026 0.012 -0.008 -0.035 -0.011 -0.141 
8 0.050 0.048 0.043 0.036 0.027 0.017 0.001 -0.005 -0.024 
9 0.056 0.059 0.060 0.061 0.061 0.059 0.054 0.043 0.015 

10 0.056 0.058 0.061 0.064 0.061 0.061 0.062 0.044 0.002 
11 0.042 0.058 0.073 0.086 0.091 0.104 0.101 0.011 0.009 
12 0.104 0.105 0.108 0.112 0.119 0.131 0.153 0.196 0.2'72 
13 0.045 0.043 0.041 0.035 0.025 0.008 -0.022 -0.072 -0.153 
14 0.062 0.073 0.083 0.093 0.100 0.105 0.107 0.110 0.121 
15 0.06'7 0.069 0.072 0.016 0.081 0.081 0.095 0.100 0.096 
16 0.043 0.040 0.034 0.025 0.014 -0.002 -0.022 -0.046 -0.072 
17 0.068 0.065 0.064 0.064 0.064 0.064 0.063 0.060 0.056 
18 0.094 0.106 0.119 0.133 0.150 0.1 '72 0.202 0.246 0.312 
19 0.073 0.084 0.091 0.113 0.132 0.156 0.187 0.231 0.291 
20 0.077 0.074 0.074 0.0'76 0.080 0.081 0.098 0.116 0.140 
21 0.013 0.004 -0.005 -0.014 -0.022 -0.028 -0.033 -0.038 -0.047 
22 0.028 0.035 0.043 0.052 0.061 0.070 0.071 0.056 0.005 
23 0.043 0.037 0.031 0.023 0.014 0.004 -0.005 -0.011 -0.017 
24 0.100 0.105 0.110 0.115 0.121 0.132 0.153 0.196 0.272 
25 0.100 0.104 0.106 0.108 0.109 0.110 0.113 0.123 0.142 
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TABLE 3.3: Case 3 - Proportionate Bias - Newey and West Estimator (~J) 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

mn 

1 -0.053 -0.057 -0.065 -0.079 -0.098 -0.125 -0.159 -0.201 -0.255 

2 -0.061 -0.065 -0.074 -0.088 -0.109 -0.136 -0.170 -0.213 -0.268 

3 -0.071 -0.074 -0.081 -0.093 -0.108 -0.130 -0.158 -0.194 -0.242 

4 -0.080 -0.084 -0.090 -0.100 -0.114 -0.133 -0.159 -0.193 -0.240 

5 -0.090 -0.093 -0.098 -0.107 -0.119 -0.136 -0.159 -0.189 -0.232 

6 -0.100 -0.103 -0.107 -0.115 -0.126 -0.141 -0.161 -0.187 -0.225 

7 -0.110 -0.112 -0.116 -0.123 -0.133 -0.147 -0.165 -0.188 -0.222 

8 -0.119 -0.121 -0.124 -0.131 -0.140 -0.153 -0.169 -0.192 -0.226 

9 -0.128 -0.130 -0.133 -0.139 -0.147 -0.159 -0.175 -0.197 -0.231 

10 -0.138 -0.139 -0.142 -0.148 -0.156 -0.167 -0.182 -0.203 -0.237 

11 -0.147 -0.148 -0.151 -0.156 -0.164 -0.175 -0.189 -0.210 -0.243 

12 -0.156 -0.157 -0.160 -0.165 -0.173 -0.183 -0.197 -0.217 -0.249 

13 -0.165 -0.166 -0.169 -0.174 -0.182 -0.192 -0.205 -0.225 -0.256 

14 -0.1'74 -0.175 -0.178 -0.183 -0.190 -0.200 -0.213 -0.233 -0.263 

15 -0.183 -0.185 -0.187 -0.192 -0.199 -0.209 -0.222 -0.240 -0.271 

16 -0.192 -0.194 -0.197 -0.201 -0.208 -0.217 -0.230 -0.249 -0.279 

17 -0.201 -0.203 -0.206 -0.210 -0.217 -0.226 -0.239 -0.257 -0.287 

18 -0.210 -0.212 -0.215 -0.219 -0.226 -0.235 -0.247 -0.264 -0.293 

19 -0.219 -0.221 -0.223 -0.228 -0.234 -0.243 -0.254 -0.271 -0.299 

20 -0.227 -0.229 -0.232 -0.236 -0.242 -0.250 -0.261 -0.276 -0.304 

21 -0.236 -0.237 -0.240 -0.244 -0.250 -0.257 -0.268 -0.283 -0.310 

22 -0.245 -0.246 -0.249 -0.253 -0.258 -0.265 -0.275 -0.290 -0.316 

23 -0.254 -0.255 -0.258 -0.262 -0.267 -0.274 -0.284 -0.298 -0.324 

24 -0.263 -0.264 -0.267 -0.271 -0.276 -0.283 -0.293 -0.307 -0.332 

25 -0.272 -0.273 -0.276 -0.280 -0.285 -0.292 -0.301 -0.315 -0.340 
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TABLE 3.4: Case 3 - Proportionate Bias - Newey and West Estimator (!J'J.) 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ·0.8 

mn 

1 -0.054 -0.047 -0.043 -0.043 -0.047 -0.058 -0.076 -0.107 -0.163 

2 -0.064 -0.062 -0.063 -0.068 -0.078 -0.093 -0.115 -0.149 -0.206 

3 -0.075 -0.075 -0.077 -0.082 -0.091 -0.104 -0.124 -0.155 -0.206 

4 -0.085 ,-0.086 -0.088 -0.093 -0.101 -0.113 -0.131 -0.158 -0.204 

5 -0.094 -0.096 -0.099 -0.104 -0.112 -0.123 -0.140 -0.167 -0.212 

6 -0.103 -0.105 -0.108 -0.114 -0.121 -0.133 -0.150 -0.178 -0.224 

7 -0.113 -0.115 -0.118 -0.123 -0.131 -0.143 -0.160 -0.187 -0.233 

8 -0.122 -0.124 -0.128 -0.133 -0.141 -0.152 -0.169 -0.197 -0.244 

9 -0.133 -0.135 -0.139 -0.144 -0.152 -0.164 -0.181 -0.208 -0.254 

10 -0.144 -0.146 -0.149 -0.155 -0.162 -0.174 -0.191 -0.218 -0.263 
11 -0.154 -0.156 -0.160 -0.165 -0.172 -0.184 -0.201 -0.227 -0.271 

12 -0.164 -0.166 -0.169 -0.174 -0.181 -0.193 -0.209 -0.236 -0.278 

13 -0.174 -0.176 -0.179 -0.183 -0.191 -0.201 -0.218 -0.243 -0.285 

14 -0.183 -0.185 -0.188 -0.192 -0.199 -0.210 -0.226 -0.251 -0.292 

15 -0.192 -0.194 -0.197 -0.201 -0.208 -0.218 -0.234 -0.259 -0.299 

16 -0.201 -0.203 -0.206 -0.210 -0.216 -0.226 -0.242 -0.266 -0.305 

17 -0.210 -0.212 -0.214 -0.218 -0.224 -0.234 -0.249 -0.273 -0.310 

18 -0.219 -0.220 -0.223 -0.226 -0.232 -0.242 -0.256 -0.279 -0.316 

19 -0.228 -0.229 -0.231 -0.234 -0.240 -0.249 -0.263 -0.286 -0.322 

20 -0.236 -0.237 -0.239 -0.242 -0.247 -0.256 -0.270 -0.292 -0.327 

21 -0.244 -0.245 -0.247 -0.249 -0.254 -0.263 -0.276 -0.298 -0.333 

22 -0.252 -0.253 -0.255 -0.257 -0.262 -0.270 -0.283 -0.304 -0.339 

23 -0.261 -0.262 -0.263 -0.266 -0.270 -0.278 -0.291 -0.312 -0.347 

24 -0.269 -0.270 -0.272 -0.274 -0.279 -0.287 -0.300 -0.321 -0.355 

25 -0.278 -0.279 -0.280 -0.283 -0.288 -0.295 -0.309 -0.329 -0.364 
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CHAPTER 4 - ADAPTING FOR HETEROSKEDASTICITY OF 

UNKNOWN FORM: AN APPROACH VIA ADE 

1. INTRODUCTION 

Heteroskedastkity is an econometric problem ass~dated with the non-constancy 

of the error variance and arises in numerous applications as in the analysis of cross

section data. Neglecting this problem can lead to invalid inferences about the model 

due to erroneous standard errors. One common solution has been given in the lit

erature through robust standard errors [see White (1980)]. Another solution is a 

two-step estimator through generalized least squares estimation. 

Much of the recent literature has been concerned to efficient estimation and testing 

under heteroskedasticity. An example is the efficient estimation under weak distribu

tional assumptions. It is also well known that one of the most common restrictions 

is the assumption that some location measure of the conditional distribution has a 

known functional form [for a good survey of this kind of models see Powell (1992)]. 

In such a case, Chamberlain (1987) has shown th~t the maximum efficiency is attain

able via weighted least squares (WLS) estimation with weighted proportional to the 

inverse of the conditional variance of the response variable. However this estimator 

depends on a sequence of weights that in general are lmknown and methods to deal 

with this problem have been proposed in the literature. 
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One possibility is based on a parametric correction, when the pattern of the error 

variance is a function of a known skedastic function. In this case a large econometric 

literature appeared in the last two decades, studying possible parametric forms for 

the error variance as well as its properties [see for example Greene (1993), chapter 

4]. In a model with one regressor a simple plot against the residuals can give some 

guidance to identify this parametric form. However in a general context this approach 

seems to be infeasible. 

Another possibility can be based in the particular structure of the model's family 

considered. For example, in a Poisson regression model the weight is known to be 

equal to the conditional mean function. Moreover, in the case of quasi-maximum

likelihood estimation of a conditional mean, Gourieroux, Monfort and Trognon (1984) 

have shown that using a likeHhood in the linear exponential family results in a im

plicit choice for the weighting function. 

In a general context, Carrol (1982) and Robinson (1987) have proposed efficient 

estimation using nonparametric methods to handle the weight sequence. Recently 

Andrews (1994) generalized this approach, proving yin-consistency and asymptotic 

normality of estimators that minimize a criterion function that depends on some 

nonparametric preliminary estimator1 . He also provides an application to semipara

metric WLS estimators of partially parametric regression models. Having in mind 

these results, the approaches of Carrol and Robinson as well as the method proposed 

in this chapter can be viewed as particular cases. 

In this chapter one presents an estimator alternative to Carrol and Robinson for 

a general model under the assumption that the conditional expectation has a known 

1 Andrews (1994) page 43, define these estimators as MINPIN estimators: '( .. .) estimators that 

MINimize a criterion function that may depend on a Preliminary Infinite dimensional Nuisance 

parameter estimator'. 
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functional form. Kernel and average derivative estimation (henceforth ADE) will be 

applied to estimate the conditional variance. This method presents some advantages: 

a) it provides a natural test for heteroskedasticity, simply by assessing the statistical 

significance of the ADE; b) it allow us a straightforward identification of the covari

ates responsible for the presence of heteroskedasticity and c) it generalizes Carrol's 

approach. 

The Chapter is prganized as follows. In Section 2 is presented the estimation 

method of the weight sequence. The assumptions of Andrews (1994) are considered 

for the asymptotic normality of WLS estimator. These assumptions are discussed 

for the particular case considered in this chapter. Section 3 presents two alternatives 

tests for heteroskedasticity: a Wald test and a score based test. Furthermore a test 

for the validity of the conditional variance assumption is also presented. The rea

son is that the efficiency of the WLS is strongly dependent on the validity of this 

assumption. The test is based on a similar one proposed by Wooldridge (1990) in a 

parametric context. Section 4 presents a Monte Carlo study. The main purpose is to 

access the finite sample performance of the estimator presented and to confront these 

results with the method suggested in Carrol (1982). Finally Section 5 presents some 

concluding remarks. 

2. THE ESTIMATOR 

In this Section one presents a two-step efficie;nt estimator for models where the 

conditional mean restriction has a known :hmctional form. To fix ideas consider an 

independent sample {(yi, xi), i = 1, 2, ... , n} from an absolutely continuous (k +I)

variate distribution function with joint density f(y, x) = f(y I x)f(x), where y E ~ 

is the dependent variable and x E ~ a vector of k-variate regressors. 
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ASSUMPTION 1: The true regression function has the following expression, 

E(y I x) = g(x, 00 ), (2.1) 

where Oo E 8 C ~is an unknown k x 1 vector to be estimated and g(x, 0) is a known 

real-valued function, measurable on ~k for each 0 E 8 and continuous on 8. 

Under this conditional expectation assumption it is well known [see Chamberlain 

(1987)] that the maximum attainable efficiency is given by the weighted (nonlinear) 

least squares estimator (henceforth WNLS ), with weight equal to the inverse of 

Var(y I x) = a-2(x). If in particular a-2(x) were known and equal to the true value 

a-;(x) the WNLS estimator of 0, Bn, could be easily computed as2 

(2.2) 

with first-order condition 
n 

dn(O) = ~ Ld(zi,O,a-~(xi)) 
i=l 

1 ~ rr ( . O)' Yi- g(xi, 0) 
- n L...J v og Xt, 2 ( ·) 0 , 

i=l (To Xz 

where Vog(xi, 0) is a vector of derivatives and Zi = (yi,xi)· Expanding dn(O) around 

00 and solving for On - 00 gives 

where 0 lies on the line segment joining On and 00 • The asymptotic normality of 

2Given Assumption 1, the existence of On is ensured by Lemma 2 of Jennrich (1969). 
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On can be easily settled through a uniform weak law of large numbers [see An

drews(1992,1994)] together with a CLT for a sequence of rv's, such as the Lindeberg

Feller CLT. 

Theorem 1: Let No c 8 be a neighbourhood of 00 where Ba is an interior point 

of the parameter space 8. Define S = limn-.oo Var[n- 112 L:~· d(zi, 00 , a;(xi))] and 

n = limn-.oo(1/n)l:~'V9 Rd(zi,Bo,O";(xi)). Consider the following assumptions, 

(c) d(zi,e,a;(xi)) is continuously differentiable in f) on No, \fi;::: 1 and these

quences {d(zi,e,a;(xi)): i;::: 1} and {'V9d(zi,e,a;(xi)): i;::: 1} satisfies 

uniform weak law of large numbers over No. Moreover it is assum~d that d( 0) = 

liiDn__,00 (1/n) L:~ Ed(zi, e, a;(xi)) and D(O) = liiDn__,oo(1/n) L:~ E\lod(zi, 0, a;(xi)) 

exist uniformly over No and are continuous at Oa with respect to some pseudo

metric on No for which Bn ~ 00 • 

(d) The matrix D is non-singular. 

Under the above the sequence {On} satisfies, 

Proof. Assumption (a) is easily verified by uniform weak law of large numbers [see 

for example Potscher and Prucha (1989), Lemma 3.1 or Andrews (1994), Theorem 

A-1]. Considering the first term of the right hand side of (2.2) and using assumption 

(a), (c) and Lemma 3 of Jennrich (1969), it is straightforward to show that, 

n n 

n- 1 L \78 d(zi, 7J, a;(xi)) = n- 1 L 'Vod(zi, Bo, a~(xi)) + op(1) 
i=1 i=1 

and th11s 
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Given assumption (b) and (d) the result of the theorem follows.D 

If {zi : i ;:::: 1} is independent it is also straightforward to show that S = D and the 

asymptotic covariance of e simplifies to, 

However in a general Gontext (J~(xi) is unknown and thus an asymptotically efficient 

WNLS estimator requires a consistent estimator of (J;(xi)· Robinson (1987) (see also 

Stone (1977)] proposed in the linear model (g(x, 0) = x'O) a consistent estimator of 

(J2 (x) through k-Nearest Neighbour (k-NN) estimation3 , given by 

where wij is a weight dependent on some metric defined on ~k and fi = Yi- x'eLs 

with OLs a preliminary consistent estimator of(}, e.g., least squares estimator. Car

rol's (1982) approach differs from the above in the computation of the weight wij 

where 0'2(xi) is the nonparametric Nadaraya-Watson kernel estimator4 • However this 

approach can be infeasible. The problem is that the rate of convergence of kernel 

estimators is slow if the number of the covariat~s is large (see Hardie (1990), pag. 

91]. To handle this problem he tries a dimension reduction technique, assuming that 

the variance of the error term is an unknown function of the mean response variable, 

3For an exposition of this method see for example Ilardle (1990). 
4 Carrol gives a proof of the asymptotic normality of the WLS estimator only in the univariate 

case, where x E fR. In the multivariate case see Hidalgo {1992). 
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i.e., o-2 [g(x, B)] = o-2(x'B) with B replaced by Ou-1• Considering situations in which 

o-2(x'B) = x'B, Carrol's assumption is easily checked in models like the Poisson, but 

not in general and thus it can be very restrictive. In what follows a similar approach 

is used but with a more general assumption. 

ASSUMPTION 2: The conditional variance is in an index form, 

Var(y I x) = o-~(x) 

(2.5) 

where ( 0 E Z C ~is a vector of unknown parameters not necessarily equal to Bo and 

mo(·) E Mp is a vector-valued function defined on some Euclidean Space Mp where 

p is a pseudo-metric. 

In order that expression (2.5) can describe a variance, the set Mp should be re

stricted as follows. Let X C ~k be the set of all possible realizations of x and X* an 

open and bounded subset of X. For any ( E Z and x E X let Xc C ~ be the set 

of all possible realizations of x'(. For some pseudo-metric p consider as in Andrews 

(1994) only those functions m(·) E Mp such that, 

for any small~> 0 and q > 1/2. For a given norm p these restrictions guarantee the 

finiteness and the non-negativity of the conditional variance. 

Defining the error component of the model as £i = Yi - g(xi, B), the conditional 

variance (2.5) can be rewritten as 

(2.6) 
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For a preliminary y'ri- consistent estimator of 0, fiLs, replace cl in the above expres

sion to t;. Expanding t; around 00 one has, e'f = c; + ~i(n) where ~.i(n) -+ 0 as 

n increases and thus for n sufficiently large E(e'f) ~ E(cl}. However it remains the 

problem of the unknown quantity (. To estimate ( one will apply average derivative 

estimator (henceforth ADE) of Stoker (1986) and Hardle and Stoker (1989) to esti

mate ( and then non-parametric kernel estimation to handle the tmknown function 

m(·). 

The basic idea underlying ADE, due to Stoker (1986), is to measure the local effects 

of changing x on tJ-, 8m(x'()j8x, as the average of these effects, 

b = E [8m(x'()l 
x 8x ' 

(2.7) 

where the expectation is computed over x. Simplifying the derivative in brackets one 

has 

[
8m(x'()l 

b =Ex B(x'() ( = "((, (2.8) 

so that b is proportional to (. Therefore the average derivative, b, determines (up 

to a scale and, provided 1 =/= 0, one can replace (by bin (2.6), with m(·) obeying the 

normalisation E[8m(x'b)/8(x'b)] = 1. 

To estimate b one of the following estimators ca:ri be used: (a) direct estimator; 

(b) indirect estimator and (c) slope estimator. Asymptotically they are equivalent as 

shown recently by Stoker (1991). In what follows, the indirect estimator of Hardie 

and Stoker (1989) is considered. 

Applying integration by parts in (2.7) (see Stoker (1986), Theorem 1] one has 
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(2.9) 

where l(x) = - f'(x)j f(x) is the score of the marginal density .f(x). Therefore one 

can define the ADE estimator of fJ as the sample analog [see Hardie and Stoker (1989)] 

(2.10) 

where!;, = I[A(xi) > b] is an indicator function that trims values greater than some 

bound b = bn such that b ----+ 0 as n ----+ oo, h = hn is the bandwidth parameter with 

h----+ 0 as n ----+ oo and k(xi) is the estimated density function at xi. In particular at 

any x the estimator of .f(x) is defined as 

k (x) = ! ~ t k( X - Xi) ' 

n h J=l h 

where k(·) is a kernel function that obeys some regularity conditions [see Hardie and 

Stoker (1989)]. 

Given an estimate of fJ one forms the quantity v = x'8n and the relation between f 

and x'8n will be estimated by nonparametric kernel estimator 

n ~ 

_1 """k(V-Vj )~~ 
nh1 ~ h' 6 J 

m( v) = ---=1-·=-=-~---~
_1 """ k(v-v.;) 
nh1 ~ h' 

j=l 

where h' is define as above. Considering 

k(7?-) 
Wj = n ~ 

I: kC~~i) 
j=l 
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one has 

that is similar (in form) to the estimator presented by Carrol (1982) and Robinson 

(1987). 

Assumptions required for the consistency and asymptotic normality of ADE and 

Nadaraya-Watson kernel estimator can be seen for example in Hardie and Stoker 

(1989). 

From now on one addresses to the study of the asymptotic distribution of the 

WNLS estimator of(), Bn, given as a solution of (2.2) but with the conditional vari

ance of y estimated consistently by (2.11). More precisely what is the effect in the 

distribution of en when in the expansion (2.3) o-;(x) is replaced by a2(x) = m(x'(). 

To answer this question one has to show first that the replacement of ( to ( does not 

change the asymptotic properties of m(· ). If assumption 3 is true and (known then 

the one regressor nonparametric estimator m(·) consistently estimate m(·) (see for 

example Hardie (1990), proposition 3.1.1]. Using Theorem 3.1 of Hardie and Stoker 

(1989) (is Vn consistent to ( 0 and therefore one can use (in place of ( without 

changing the convergence rate of m(-) [see Hardie and Stoker (1989), Theorem 3.3]. 

Similar result was obteined by Carrol (1982) with ifLs replacing(. 

Since m is consistent to m 0 in probability it seems reasonable that replacing o-;(x) 

by m in (2.3) provides us a vn-consistent and asymptotic normal estimator of e. 
A proof of this assertion in a general framework of semiparametric WLS estimators 

of partially parametric regression models is given in Andrews (1994). To prove the 

asymptotic normality of Bn one needs to introduce some additional assumptions as 
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well the definition of stochastic equicontinuity [see Andrews (1991,1994)]. 

Definition [Andrews (1994)]: Define an empirical process 

n 

vn(m) = n-112 L {d(zi, Bo, m)- E[d(zi, Bo, m)]} 
i=l 

where mE Mp. The sequence {vn(m)}i is stochastically equicontinuous at mo if all 

sequences {rii.n}i satisfying p(mn, mo) ~ 0 lead to vn(rii.n)- vn(mo) ~ 0. 

Following Andrews (1994) this definition represents 'a stochastic and asymptotic 

version of the concept of the continuity of a function'. 

ASSUMPTION 3 (Andrews (1994)]: replacing a-;(x) in (2.3) to m = m(x'b) the 

following assumptions are sufficient for the asymptotic normality of Bn: 

(a) Bn ~ Bo E e c ~k and Bois an interior point of e. 

(b) m lies in a pseudo-metric space Mp wp-t 1 and m ~ m 0 E Mp with respect to 

the pseudo-metric p, i.e, p(m, mo) ~ 0. 

(e) the sequence {vn(·): n ~ k} is stochastically equicontinuous at moE M. 

(f) d(z-i, B, m) is continuously differentiable in B on No, Vm E M, Vi ~ 1 and the 

sequences { d( Zi, B, m : i ~ 1} and {V' 8d( zi, B, m) : i ;:::: 1} satisfy uniform weak 

law of large numbers over No X M. Moreover it is assumed that d(B, m) = 

exist uniformly over No X M and are continuous at (80 , m0 ) with respect to 

some pseudo-metric on No X M for which (B, m) ~ (Bo, mo)· 
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(g) The matrix D is non-singular. 

As pointed out by Andrews (1994) the 'difference between this assumption and as

sumptions commonly used to establish asymptotic normality of nonlinear par-ametric 

estimators is the appearance of (b), (c) and (e)'. Sufficient conditions for assumption 

3(e) can be seen in Andrews(1991,1994). Assumption 3(a) is proved by Andrews 

(1994), Theorem A-1. Assumption 3(c) is an orthogonality assumption which means . 
that the asymptotic distribution of 1f does not change if .a~ (X) is replaced to m. This 

assumption requires n114-consistency of m to m0 • A proof for the case g(x, (}) = x'(} 

can be seen in Carrol (1982), Theorem 5.2. In the non-linear case if g(x, B) is suffi

ciently smooth in a neighbourhood of (}o the n 114-consistency of m follows. Therefore 

assumptions (b) and (c) of Andrews can be replaced by the assumption of n 114-

consistency of m. However the validity of this assumption requires some primitive 

conditions about the kernel k(·), bandwidth and the first derivative of g(x, (}) [see 

assumptions A4-A7 and Theorem 5.2 of Carrol (1987)]. 

Theorem 2: Given assumption 3, 

(2.12) 

~ N(O,~) 

where .E = n-1sn-I' and is the asymptotic covariance matrix (2.4) if the sequence 

{ Zi : i > 1} is independent. 

Proof. See Andrews 1994, Theorem 1 and 2. 
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3. TESTING THE HETEROSKEDASTICITY AND THE VARIANCE 

ASSUMPTION 

Under the conditional variance given by assumption 2 and having in mind t.he 

interpretation of the ADE, a test for heteroskedasticity can be based on the hypothesis 

H0 : 8 = 0 against H1 : 8 =/:- 0. One possibility is the evaluation of Ho through the 

Wald statistic [see Hardle and Stoker (1989)) 

(3.1) 

where, in this case, R = Ik is the identity matrix of order k, r0 = 0 and E6 is the 

estimator of the covariance matrix of 8 [see for example Hardle and Stoker (1989) for 

a definition of i38 ]. If Ho is true then W "'x2(k). 

Another possible test is a score type test. Assuming m(O) = 0"2 suppose that one 

has to decide if the data {(yi, xi) : i = 1, ... , n} was generated from f (y I x; (), m( x'8)) 

or f(y I x; 8, 0"2). To deal with this one can approximate the density f(y I x; 8, m(:r;'8)) 

by taking Taylor series approximations around 8 = 0. Retaining terms to second order 

in the elements of 8 and rearrange one has, 

(3.2) 

where summation from 1 to k is to be performed over the indices in subscripts, 
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i,j = 1, 2, ... ,k, and 

m' 

m" 

8ln .f(y I x; fJ, m(x'ti)) I 
8m(x'o) 6=0 

fPln.f(y I x;B,m(x'c5)) I 
- 8m(x'o) 2 6

=
0 

dm(x'o) I 
d(x'o) 6

=
0 

d2m(x'o) 
d(x'o)2 1.5=o 

and subscripts indicates elements of vectors. 

If Ha is true one expects that the score, 

8lnf(y I x;fJ,m(x'o)) I _ ' '( I ·f) 2) 
Do 6=o- xim F y x, ,() , (3.3) 

is approximately equal to zero. As it can be seen this quantity is similar to the result 

attained by Breush and Pagan (1979), suggesting that the shape of the function m(·) 

is irrelevant when testing for heteroskedasticity. Note that the same conclusion can 

be extended to the Wald test presented above. 

If the conditional variance assumption is misspecifi.ed the WNLS is still consistent 

but inefficient due to invalid standard errors and therefore infeasible for inferences 

purposes. For this reason the question that arises at this point is to assess the validity 

of the index form (2.5) under the conditional mean restriction (2.1). 

In a parametric context Wooldridge (1990, 1991) pointed out that if the conditional 

variance is correctly specified any function of the covariates should be uncorrelated 

with e2
- E(e2 I x). Having in mind this result the test can be based on the hypothesis 
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Hu : E(c2 I x) = m(x'8) against the general alternative H1 : B(e2 I ;r) = m"'(x) 

where m*(·) is any unspecified function of the covariates. The significance of this 

independence can be assessed through a t-test of the LS estimated coefficient of a2 

in the auxiliary regression, 

(3.4) 

where in the right hand side of (3.4) m*(xi) is the nonparametric kernel smoother. 

4. APPLICATION 

This Section deals with the computation of standard errors under heteroskedas

ticity, using the ADE and the Carrol's approach. In particular it is presented a 

Monte Carlo study. The purpose is to access the finite sample performance of the 

method presented in Section 2 and to show that in some cases, particularly when 

the pattern of the heteroskedasticity is significantly different from the pattern of the 

mean response model (e.g., when the subspace generated by them are orthogonal), 

the approach suggested in this chapter provides better results than Carrol's, due to 

its flexibility. As a reference for comparison, the standard errors computed from the 

true weighted sequence are used. 

In what follows the model considered is the linear regression model 

where i = 1, 2, ... , 50, Yi is the ith observed value, Xi= [x1i x2i] is a fixed 1 X 2 row 

vector, a is a unknown parameter, () is a 2 x 1 vector of unknown parameters and Ei 

is the error term. It is assumed that Ei "' N(O, 0) and n is a diagonal matrix with 

elements given by 
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where ( and is a 2 X 1 vector of unknow parameters. For the true parameters of this 

specification it is considered a = 1, () = [0.6 0.8]' and ( = [-0.8 0.6]. Because 

the distributions of many estimators depend c.rucially on the way the regressors are 

distributed [see C~esher and Peters (1994)] two different designs are considered: m 

design 1, xli, X2i '""N(O, 1); in design 2 Xli rv N(O, 1) and X2i rv x2(1). 

Given the model and the covariates, 1000 Monte Carlo replications are considered 

to produce the results that follows. All computations were done in GAUSS. 

The estimation procedure has two steps: in the first step the residJlals are com

puted from fi = Yi - a_Ls - xJfLs, for each i = 1, 2, ... , 50 where a_LS and fJLs are the 

least squares estimates. Given the residuals, (and m(.) are estimated by applying the 

results of Section 2. For the kernel function it is considered the gaussian kernel5 . In 

all the examples presented, the bandwidth considered is 1.0 and 0.3 for ADE and the 

nonparametric kernel estimation of m(.), respectively. In the estimation of m(.) the 

bandwidth is computed by Generalized Cross Validation (GCV). In the estimation 

of ( there is not a simple and useful procedure to compute the bandwidth. However, 

Hardie and Stoker (1989) pointed out that Monte Carlo experience suggests that rea

sonable small-sample performance is obtained by setting the bandwidth in the range 

of one to two standard deviations of the predictors. To avoid unbounded situations, 

L = I[J;.(xi) > b] in expression (2.10) is considered with b = 0.06, meaning that 6% 

of the observations with the smallest estimated density are dropped (in this case, 3 

observations). 

5 0ther kernels are possible but the results do not change significantlly [see for example Hardie 

(1990)]. 
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In the second step the estimated variance is then used as the weighted sequence in 

the computation of the WLS estimate of 0. Tables6 1.1 to 2.2 and Figure 1A to 2F 

summarize the results achieved in a 1000 Monte Carlo replications. 

The estimated values of() presented in Table 1.1 and 1.2, for all four estimators, 

are unbiased as expected. The first moment is not affected even if the weighted 

sequence is incorrectly estimated. Aditionally, these estimators are consistent and 

asymptotically n0rmal. The finite-sample distribution functions of the standartized 

estimators are not different from the asymptotic results (see the QQ-plots in Figures 

1B-1E and 2B-2E, for the ADE and Carrol approaches]. However, the efficiency of 1J 

depends crucially on the particular estimator considered. If the functional form of 0"
2 

is correct, it is well known that the WLS estimator of() attains (2.4) asymptotically. 

In the example considered in this Section, the weighted sequence, O"?, is incorrectly 

estimated using Carrol's procedure (as well as the OLS). As a consequence, Carrol's 

estimator leads to invalid standard errors for B with asymptotic covariance matrix 

exceeding those given from expression (2.4). In the finite-sample case considered in 

this Section the std(iJ) of the WLS-Carrol estimator appears much bigger than the 

std(iJ) of the WLS(CJ2 ) estimator. Among all the estimators considered, the WLS

ADE is the most efficient. This can be seen in Table 1.1 and 2.1. 

6WLS(a2 ) means the values of the WLS estimator of 0, using the true values a 2 ; WLS-ADE is 

for the values of the WLS estimator of 0, using the method proposed in this chapter; WLS-Carrol is 

for the estimator proposed in Carrol (1982) and OLS is for the values of the least squares estimator 

of 0. The values presented are computed over a 1000 Monte Carlo replications. 
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Table 1.1: Design 1 -Comparison of results 

01 02 std(01) std(02) 

WLS(0"2
) 0.596 0.799 0.163 0.124 

WLS-ADE 0.597 0.799 0.183 0.136 

WLS-Carrol 0.604 0.798 0.221 0.179 

OLS 0.594 0.796 0.241 0.216 

Table 1.2: Design 1 - Results from ADE 

( -0.791 0.549 

std(() (0.162) (0.216) 

Table 2.1: Design 2- Comparison of results 

jjl ()'2 std(01) std{02 ) 

WLS(0"2) 0.597 0.797 0.208 0.251 

WLS-ADE 0.597 0.791 0.228 0.301 

WLS-Carrol 0.591 0.804 0.267 0.365 

OLS 0.589 0.790 0.311 0.385 

Table 2.2: Design 2 - Results from ADE 

( -0.739 0.557 

std(() (0.208) (0.318) 
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Due to its flexibility, the ADE approach seems to produce good estimates of the 

variance of the error term of the linear model and these estimates are better than 

those given from Carrol's method if the first moment is used, in this case, the mean 

of the estimated a2 in 1000 Monte Carlo replications [see Figures 1A and 1C and 

Figures 2A and 2C, for the designs 1 and 2, respectively]. The ADE of ( appears 

slightly biased as can be seen from Table 3.1 below. This is probably a reflex of the 

sample size that is relatively small. However, this bias does not have an important 

effect in the bias .of Ci[. 

Table 3.1: Proportionate bias of(, [Pb(() = E(()/(- 1 J 

Pb((I) Pb((2) 

Design1 -0.0113 -0.0850 

Design 2 -0.0763 -0.0717 

110 



o. 

Q.i' 
0 
() 

"' 
0' 
0 
_J ...__.. 

0 
Q) 0 
() ~ 
c 
0 
·c 
0 
> 
"-
2 
"-w 

I 
0 

0 

'-· 

Figure 1 A: ErrOl" Variance Estimation (ADE and Nanparametric) 
E(e21x)=Exp(xt) 

-----------... l + True values \ 1. 
- - Mean values 

1\ 1\ 
+ 

I 

\ I\ I\ ll 
1\ I ~ I ~ II + + • ~~ T 

+ 
It t \ I I 

I /1 , I I • 'I h 
I • I I /\ ii ll T I \ I \I 1 I l A 1 \ I • /J I 1 I 

\ t 1 l I I \ t \I 1 • J I II I I I I /\ 1 1 I lJ \ J J 
\ J I I I t ~ .., t' \ / :;: l I \ I I I ~ ,t \ I l f\ I + 

J 11 \I ; + 

\I ' I \I If \ 1 \I \I 
+ \1 I \I . .,1 

1 
+ + + + 

+ 
+ 

+ 
+ 

5 10 15 20 25 30 35 40 45 50 

- ....... ~ ... ·~··'···" .. --.--....,...~---- .; ___ ~·~~-··•-'···"""""""''""''~:~ .. .:..,:_ •. -: .. ____ .~: .. _.. ... ~t· 

Figure 1 8: 00 Plot - $, 
Weight Least Squares - Design 1 

T,---~~--~--~----~~~------~~----~ 

"' ., 
:g 
g 
0 
-co 
!l 
0 

E 
:;;: -
"' I w 

"' ., 

"' I 

"' I 

... 
I 

... 

== -c 
0 
:::> 
0 
-co 

"' 0 
-~ 
8 I 

-4 

"' I-

-~ 

'/_; 

.:r 

-2 -1 0 2 

Reference Ouontiles: N{0.1) 

Fi9ure 1 C: 00 Plot - P2 
Weight Least Squares - Design 1 

/!' 
71- /·· 

3 4 

1~~~--~~----_.~--~--~--~~ 
-4 -3 -2 -1 c 2 3 

Referer.ce Qucntiles: N(O. i) 



·---··:~-·-·'-'·"'--· -·-'--· -·-· '"-.. •··· ·-·····-·. 

1.<' 

:~··· 

Figure 1 E: QQ Plot - p, 
Weight Least Squares - Design 

Tr---~--~~--~--~--~----~~~--~ 

"' 

~ c: 
0 
::> 

0 

~ 0 

0 

E 
~ I 
w 

"' I 

"' I 

.... 
I 

-4 -3 -2 -1 0 1 2 3 4 

Reference Ouontiles: N(O. 1) 

A 

Figure 1 F: QQ Plot - P2 
Weight Laost SQuar-es - Design .. 

/ 
"'t / 

:.'l ..:? 
c: 
0 
::> 
0 

" ., 
0 
E ~ 
~-en I 
w 

"' I 

7t . ·/ 
/ 

/ 

.. 
I 

-4 -3 -2 -1 c 1 2 3 4 

Reference Quantiles: N(O. 1) 



f·-' 

, ... ' .. 

----. 
Q) 

0 
u 
([) 

01 
0 
_j 
~ 

Q) 
u 
c 
0 
'i: 
0 
> 
'-

2 
~ 

0 

0 
a 

0 

Figure 2A: Error Variance Estimation (ADE and f,Jonparometric) 
E(c:21x)= Exp(xO 

True values l 
Mean values 

I 
I I I I • + ~ 
I ~ + I I 1\ II I I • I I I I 
1\/1 11:/it /1 II A Ill~ 

\I I I 1 I \j I I I + I I t I i I I i . I I I I 
A • I I 1/ \ 1 I I\ .A- I /I I 1 I I ,

1
1 1\ I 1 I 

I I + I 1 I 1 • I . I I 1 I •\ ' I I \ I 
I f. ,I 1 '\ !, I ( 11 1 I \ f.\l 1/ \I 
I+ +\ I •+•'/ 
I + I I 

5 10 15 20 25 30 35 40 45 50 

···-------~·:·--~~:'\--:'""-·"'·~..-...:....:..-._ ·_,_. -;'.-.:----> 

" Figure 28: 00 Plot - jl 1 
Weight Least Squares - Design 2 

Tr---~--~~--~--~--~----~--~--~ 

~ 
" c: 
0 

" 0 
'0 0 

!! 
0 

.s 
~ I 

N 
I 

..., 
I 

_/'--· 
/·· 

1L_-4----~-~3-------2~~---~,----~o------~,----~2~----~3--~~4 

~ 
~ 
0 

" 0 
'00 

!! 
0 

.s 
~I 

N 
I 

..., 
I 

Reference Ouantiles: N{O. 1) 

" Figure 2C: 00 Plot - {1 2 
Weight Least Squares - Design 2 

~ 
/~::..-

/··· 

/' 

/~ 

/<· 

1L-----~--------------~-----------------------J -4 -3 -2 -1 0 1 2 3 

Reference Ouantiles: N(0.1) 



0 
~ 

Q) 

0 
0 
(J) 

(J) 

0 
_j 
~ 

Q) 
0 
c 
0 

·;:: 
0 
> 

0 
"- 0 

2 w 

0 

::-.. 

. 
/ 

Figure 20: Error v.,•iance Estimation - Carrol (1982) 
E( t 21x) = Exp(x() 

True values 
Mean values 

. . P. 
I / • .l- • I \ / \ J\ \ I / I \ 1\ . ! \ 

1 1 11 1.11 1 ,.,;1 ~~ • n'"\ 
+ • \ / _ I \ ' I \ I•\ / • I; f \I \ I - I\ ., \/ 

5 10 15 20 25 30 35 40 45 50 

,. 
Figure 2E: QQ Plot - il2 

Weight Least Squares - Design '2 

yr-~~~~----~--~--~~----~--~~ 

~ 
" 0 

" 0 

2 0 

0 

:§ -
(;]I 

"' I 

,.., 
I 

.:········ 

r~4~----~3----~2~-----~,----~o~----~,----~2~----~3----~4 
Reference Quantiles: N(0.1) 

" Figure 2F: QQ Plot - {i3 
Weight Least Squares - Design 2 

~r-~~----~----~----------~--~----~----~ 

"' 

"' ~ g 
" 0 
.,o 
2 
.§ 
~ 1 

"' I 

..., 
I 

// 

~~_.--~----_.~--~~_. __ ._ __________ ~------~_.--~ 
-4 -3 -2 -1 0 , 2 3 4 

Reference Ouontiles: N(O. 1) 



5. CONCLUDING REMARKS 

The WNLS estimator, ff, presented in this chapter can be viewed as a generaliza

tion of Carrol's (1982) estimator where the variance is modelled as a function of the 

mean. The estimator is vfn"-consistent and asymptotic normal and if the conditional 

variance assumption is correct it attains (2.4) asymptotically. Furthermore, because 

(converge at the'same rate as ~sit might be expected that the finite-sample per

formance of ff and Carrol's estimator are similar. 

As can be seen from Section 2, the use of ADE provides another advantage if com

pared with Carrol's estimator. It provides a natural test for heteroskedasticity, simply 

by assessing the statistical significance of the ADE and it allow us a straightforward 

identification of the covariates responsible for the presence of heteroskedasticity. 

The Wald and score type based tests for the detection of heteroskedasticity are 

shwon to be irrespective of the shape of m( ·). To avoid incorrect standard errors a 

specification test for the variance assumption is also presented. 
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To estimate 0, some method is required to handle the unknown density, h(v). Two 

major approaches have been considered in the literature: one uses a parametric spec

ification of the heterogeneity by assuming a known density function, h(v). In this 

case, the marginal g(y) = J g(y, v )dv has a known expression and the estimated values 

J of (} can be obtained from maximum likelihood methods [see for example Lancaster 
i j (1979)]; the other one uses nonparametric methods of estimation as the nonparamet-

ric maximum likelihood estimation (NPML) [see for example Heckman and Singer 

(1984a, 1984b)] and the maximum penalized likelihood method suggested by Huh 

and Sickles (1994). 

The first one has the disadvantage of being too restrictive. In general, heterogene

ity is modelled using a gamma specification of the density function. However there 

is not any reason to assmne such a density other than because of its simplicity of 

computation and therefore this can easily lead to a misspecified model. Additionally, 

if the hazard function is fully parameterized, this way of handle the problem is in the 

origin of over parameterization and consequently to the observational equivalence of 

two different sets of distributions. This leads to the problem of identifiability and it 

will not be addressed here [for a good reference on identifiability in the context of 

duration models see for example Lancaster (1990)]. 

The second approach, popularized by Heckman and Singer (1984a) in the context 

of duration models, is based on the NPML estimator of h(v). This estimator comes 

from the statistical literature on mixture models in particular from the works of Laird· 

(1978) and Lindsay (1983a, 1983b) ·[see also Lindsay (1995)]. These authors showed 

that the NPML estimator of h( v) is a finite mixture of m points of support with 

log-likelihood ftmction 

n m 

lnL =2: In L f(Yi I Vj)Pj (1.1) 
i=l j=l 
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where m is estimated along with P and () (if y = y( (), x)) and the P's are mass points 

associated with the v's. The algorithm usually used to estimate this mixture model 

is the EM algorithm. In the context of a duration model this algorithm is described, 

for example, in Lancaster (1990). 

Heckman and Singer {1984b) showed, from the examples considered in their paper, 

that the application of the NPML estimator does not produce an adequate estimate 

of the tmderlying lsteterogeneity distribution. The problem is that if the true distri

bution is continuous the NPML estimates provides in general few points of positive 

mass1. Additionally, the shape generated by these points are in general not smoothed. 

Recently, Huh and Sickles {1994) gave some contribution towards the lack of 

smoothness through Maximum Penalized Likelihood Estimation (MPLE) 2
• Basically, 

they estimate the parameters of a duration model by using a smoothed version of the 

joint density, g(y, v), where the log-likelihood function of the conditional density is 

n n 

In L = L lng(yi, vi)- L ln h(vi) (1.2) 
i=l i=l 

To estimate the parameters of this model, prior knowledge on h( v) is necessary. To 

handle this 

tmknown quantity, they suggested the log penalized likelihood function, 

n 

In L = L lng(yi, vi)- .XO(g) (1.3) 
i=l 

where .X is the smoothness parameter and r2(g) is a measure of roughness. In this case 

the effects of heterogeneity are being ignored where the penalty term smooth out the 

misspecified density of duration time. They suggested and followed another variant 

1The method determines the points of support and they can not be controlled externally. 
2This method was introduced by Good and Gaskins (1971) and developed by Montricher, Tapia 

and Thompson (1975). 
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of this by using a mass point method to integrate out the density, the first term in the 

right hand side of (1.3). This approach is a smoothed version of the method suggested 

by Heckman and Singer (1984b ). For the penalized term they consider the squared 

norm of the second derivative of the hazard function with respect to the covariates. 

Both of these approaches share a common problem. The NPML estimator is based 

on the estimation of the heterogeneity mass points but they have the problem of a 

lack of smoothness. Moreover, as shown from these authors, the practice dictates 

that the mass point method does not provides enough points of support that allows 

an easily identification of the density of the tmobservables, particularly when the true 

underlying density is continuous. The MPLE applies smoothed methods, solving the 

first problem but not the second one. 

In this chapter it is suggested an alternative method based on roughness penalties, 

as in Huh and Sickles (1994), but using a different methodology in order to achieve 

better estimates of the density of the unobservables. The purpose of this chapter 

is the estimation of density of the unobservables more than the estimation of the 

structural parameters. Some of the reasons for doing this are as follows: the use 

of the estimated density as a reference to access misspecifications of the model in 

a parametric specification of heterogeneity; to identify multimodality in the density 

of the heterogeneity. In this case, if the heterogeneity is due to differences among 

individuals, this method can be useful in the identification of groups of individuals 

with similar patterns. 

This paper is organized as follows. Section 2 starts with the presentation of the 

model and the estimator in a general context of a mixture model. These results are 

then generalized to a regression model with an application to a duration model. In 

this case it is assumed that the implied duration distribution is in the Weibull family. 

Section 3 presents some examples to evaluate the performance of the method in prac-
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tice. Section 4 concludes this chapter with some additional remarks and conclusions. 

2. MODEL AND ESTIMATOR 

Consider that Yb Y2, ... , Yn are realizations of a random variable Y with density 

g(y). It is assume<;! that the density g(y) is unknown but satisfies the equation 

g(y) = j f(y I v) h(v) dv (2.1) 

where f(y I v) is a known density, h(v) an unknown density function and v E V. The 

problem that I address in this chapter is the estimation of the mixing density func

tion, h(v). Results for the existence of solutions of (2.1) can be viewed, for example, 

in Wahba (1990). 

Methods of estimating h(v) can be related to the structure of f(y I v). A special 

and very well known case is derived if f(y I v) = f(y- v). This is a convolution 

problem and finds application in econometrics when the covariates are measured with 

error. In this particular case, estimation methods are available in the literature if the 

distribution of U = Y- V is known [for an overview on deconvolution see for example 

Carrol et al (1995), Chapter 12]. 

In the general case, the solution to· this problem by inversion of (2.1) is not new 

in the statistical and mathematical literature. This problem also appears designated 

as Fredholm Integral Equation of the first kind in the mathematical literature or as 

mixture model in the statistical literature. It is also known to be an ill-posPA prob

lem [see for example Tikhonov, et al. (1977)] in the sense that small perturbations 

in g(y) can result in large fluctuations in the solution, h(v). As an example let h(v) 

122 



be the solution of (2.1) and add to it the function hrn(v) = sin(m v). For any inte

grable function f(y I v) it is well known that 9m(v) = J .f(y I v) hm(v) dv -+ 0 as 

m-+ oo. Therefore only an infinitesimal change 9m in g causes a finite change hm in h. 

To stabilize the solution of (2.1) the regularization method have been proposed [for 

an overview see for example Tikhonov and Arsenin (1977)] 3 . 

Using some method of discretization, consider (2.1) rewritten as a linear operator, 

operating on the vector h = h( v) of order m X 1, 

9n=A h (2.2) 

where 9n of order n X 1 is some nonparametric estimate of g = g(y) (or g itself 

if known) and A is a n x m matrix with elements f(Yi I Vj), i = 1, ... ,n and 

j = 1, ... , m. It is assumed that 9n = g + E.n where E.n is the error incurred in ap

proximating g by 9n and E.n-+ 0 as n-+ oo. As a first approach, if the same number 

of y's and v's is recorded, m = n, the solution to this problem can be viewed as an 

inversion problem or if m < n as a regression problem. However, this approach seems 

to be less straightforward than it appears because the densities in (2.1) are assumed 

continuous. One of the problems is that as the grid becomes finer the rows and/ or 

columns of A become closer and the calculation will become unstable due to the 

singularity of A. The degree of this closeness depends on the variability of f(y I v) 

with less variable functions meaning more unstable situations. Additionally, even if 

this is not reason for concern, the solution of the inversion problem is not in general 

smoothed. 

One possible solution to the first problem can be attained through some appro-

3Tikhonov define regularization method as the method of constructing approximate solutions, in 

a mathematical point of view. 
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priated discretization method. One possible rule can be the consideration of a grid 

indexed to the variability of .f(y I v), with a finer grid in areas were the variability is 

high. To the second problem it is usual to add some penalty term that accounts for 

roughness. 

For general functions, not necessary density functions, with g(.) known, Phillips 

(1962) suggested an approximate solution, solving (2.1) at discrete points Yi = i/n, 
i = 1, 2, ... , n by finding h at points v = (1/n, ... , njn) in order to minimize the 

quantity 

where the second term in the right hand side is a penalty term for roughness and ..\ 

controls the smoothness of the solution h>.. 

However, for the problem considered in this paper, some additional restrictions 

are required. Basically, it is necessary to impose that h( v) 2: 0 for all v E V and 

fv h( v) = 1. Moreover it is of interest not to restrict the domain of y and v to the 

[0, 1] interval. 

With these remarks in mind and using the notation (2.2) the idea is to find a 

solution h>. that minimizes 

subject to 

h(v) 2: 0 , 
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where O(h) is a measure of roughness. As a measure of roughness it. is usual to 

consider the second derivative [see for example Silverman (1986)] 

(2.4) 

Other approaches to the problem include the work of Mendelsohn and Rice (1982). 

These authors suggested the use of B-splines4 in the representation of h [see also 

Wahba (1990)]. 'In this case, the idea is to choose h to minimize ll9n - A h.JJ 

where his represented as a linear combination of B-splines with fixed knot locations, 

h(v) = L:~=l (3iBAv) and thus (Ah)(v) = L:~=l /3i(ABi)(v) where Bi is the lh B

spline of degree k -1 corresponding to the knot sequence 71 , ••. , Tp+k. The coefficients 

(3i are computed from a least squares fit of A h to 9n and the integral (ABi)(v) is nu

merically evaluated using Simpson's rule. The instability of solving (2.1) is controlled 

by p that is the analog of A in the roughness penalty approach. For h to be a proba

bility density additional constraints are imposed. Because f Bi(v)dv = (Tj+k- Tk)/k 

and BAv) > 0 the problem becomes min,a ll9n- A hJI subject to (3 2: 0 and c'/3 = 1, 

where Cj = (Tj+k- Tj)/k, j = 1, 2, ... ,p. 

In the roughness penalty approach, (Ah)(v) is computed using summation rather 

than numerical integration (through its B-spline representation). To deal with it some 

discretization method is needed. One possible solution to overcome the problem of 

the unknown v's can be based on the knowledge of f(y J v), by looking at v as if 

they were parameters. Given the data y1 , ... , Yn and solving the first order condition 

4B-splines (B stands for basis) can be defined in terms of truncated power functions and divided 

difference operators. As an example, the B-spline of degree 1 for the knots ti, . .. , ti+2 is a tent 

function on [ti, ti+2J, defined as 

Hi(x) = (ti+2- x)+- (ti+l- x)+ _ (ti+l- x)+- (ti- x)+ 
ti+2 - ti+l ti+l - ti 

where ( u) + = u if u 2 0 and 0 otherwise. 
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81nf(y I v)/8v = 0 in v it is possible to write the maximum and minimum values 

of vas a function of the maximum and minimum of y. For example, if f(y I v) = 

vexp{ -yv} one has, from the first order condition, v = 1/y and min(v) = 1/ max(y) 

and max( v) = 1/ min(y). In another way, the range of v is setting over which f (y I v) 

should have its support. Knowing these values we can define a mesh of m equally 

spaced points5 between min(v) and max(v). Therefore, defining ~j = f(Yi I vj), 

Yni = Yn(Yi), hi= h(vi) where Vj E (min(v),max(v)), A 2hj = hi+1- 2hj + hj-1 and 

Avi = Vj- Vj-1 the minimization problem (2.3) becomes, 

(2.5) 

subject to 

{ 
E Av·h· = 1 . 1 J J 
J= 

hj ~ 0. 

This is a quadratic optimization problem and methods of solution are available in the 

literature. 

The consistency of the method being presented can be based in the results of 

Mendelsohn and Rice (1982). They prove the consistency of the method in a related 

problem where h( v) is a B-spline. However, their proof is not dependent on a specific 

form assumed by h( v) and therefore the same results apply here with m = m( n) -+ oo 

and A = A( n) -+ 0 as n -+ oo. Under the assumptions presented by Mendelsohn and 

Rice, llg- Ahn II -+ 0 a.s. and this implies6 II ho- hn II -+ 0 a.s., where for each n, hn is 

the unique function minimizing llYn- Ahnl! and h0 is the true density, i.e., Aho =g. 

5The method provides a range for m. The number of m remains an open question. 
6As pointed out by Mendelsohn and Rice (1982), what makes this implication true is the fact 

~ 

that ho, hand g are probability densities. 
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No results on rates of convergence are available. 

This method has however the inconvenience of the presence of the constraints 

conditions. It is possible to introduce some simplification through some appropriate 

transformation of the parameter space to eliminate these constraints. Instead of 

estimating hone can estimate a function of it, P = P(h), with generic element 

exp(hj) 
m 
2:: exp(hj) 
j=1 

j = 1,2, ... ,m. (2.6) 

Considering this transformation and using matrix notation, the unconstrained version 

of (2.5) can be written7 as 

R( h),.) = (gn - AP)' (gn - AP) + >.P'W'W P (2.7) 

where W is a band matrix of order (m- 2) X m that summarises the second difference 

operator, defined as 

1 -2 1 0 0 0 0 

0 1 -2 1 0 0 0 

0 0 1 -2 0 0 0 
W= 

0 0 0 0 -2 1 0 

0 0 0 0 1 -2 1 

The parameter >. makes the trade-off between goodness of fit and roughness and its 

value can be given by the subjective choice method (see Bartoszynski, et al. (1981)] 

or estimated by minimizing the cross validation function [see for example Green and 

Silverman (1994)] 

7 Another possibility is to penalize h instead of P. However it is not clear, without further 

research, which one produces better results. 
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1 n 2 
CV(A) = - L (9ni - ~P(h(i))) 

n i=l 

where P(h(i)) is them x 1 vector of estimated parameters computed without obser

vation i. Since this is a non-linear problem and to avoid the computation of h,(i) for 

each i = 1, ... , n it is suggested the use of approximative methods where 

~h . rv ~h (82 R(h)) -1 (8R(h)) 
{-t) '""' + . 

8h8h' (i) {)h (i) 

The in dice ( i) in the last two terms of the right hand side of the above expression 

means the inverse hessian and the score computed without observation i [a similar 

procedure can be viewed in Wahba (1990)]. 

Following an approach as in Chesher (1996), the estimated variance of the estimator 

presented, P = P(h), is based on a first order approximation of the score 8R(/1,>.)/8h>.. 

This suggests a sandwich estimator of the covariance matrix (see Efron and Tibshirani 

(1993), page 310]8 , 

cov(P(h)) = 8P(h) {(8
2
R(h))-

1 

(~ a~(h)8~(h)') (8
2
R(h))-

1

} 8P(h). 
8h 8h8h' ~ 8h {)h >.=0 8h8h' {)h 

(2.8) 

The extension to the regression case is straightforward and can be made by consid

ering the observations given as Yi = y(xi, B) where Xi is a vector of covariates and(} 

a vector of parameters. This case introduces the complication of the presence of the 

unknown (} that should be estimated altogether with P. The following steps in the 

estimation process are suggested: 

8Note that the parameter of interest is not the vector h but the vectorial function P(h). 
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Step 1: given(} determine y; 

Step 2: estimate g(y) using some non parametric method; 

Step 3: estimate Pas the minimizer of (2.5) or (2.7); 

Step 4:. given P estimate() by parametric maximum likelihood 

m 

li(O) = L f(Yi I Vj)Pj 
j=l 

Step 5: from B form a new y and return to step 2. 

(2.9) 

As an example, let the spell duration, T, be a non-negative random variable with 

conditional hazard ftmction defined as 

O(t I x,v) = 77t77 -
1 exp{x',6}v, v:2:':0 (2.10) 

where t is the observed duration, x is a k X 1 vector of observable covariates, v is a 

random variable that summarizes the unobserved characteristics, 7J is a scalar and ,6 

a k X 1 vector of parameters. From these results, the density of spell duration is given 

as 

f(t I x,v) =11t11- 1 exp{x',6}vexp{-t11 exp{x',6}v}. (2.11) 

Considering y = t11 exp{ x' ,6} the above expression simplifies to 

f(y I v) = vexp{ -yv} (2.12) 

and steps 1-5 can be applied to estimate 7], ,6 and P. 
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Censoring is also easily introduced in this model. If Yi represents the time of a 
! 
I' completed spell, censored observations are given by Yi = min(yi, Yc) and di = l(Y.i < 

Yc), where Yc is the censored time of an incomplete spell and I is an indicator function 

with di = 1 if Yi < Yc· Assuming these results the conditional density function of y is 

f(Yi I v) = 
exp{ -yi v} 

The range of v values can be computed using proposition 11 of Heckman and Singer 

(1984a). For uncensored observations the first order condition 8f(Yi I v)/8v = 0 

leads to v = 1/Yi and v E (1/Ymax, 1/ymin]· For censored observations v E (0, 1/Ymin]· 

3. APPLICATION 

This section presents some illustrative examples with two cases: model without 

covariates and model with covariates. In all cases it is assumed that the trne density 

of heterogeneity is of gamma type, 

ciY 
h(v) = f(!) exp{-av}v7 -

1 (3.1) 

and the density of spell duration is defined as in (2.12). From these assumptions,· 

the true marginal distribution of spell duration9 , F(y) = J F(y I v) h(v)dv, has the 

following expression, 

F(y) = 1- ( 1 + ~) --y. 

9 Using distribution functions, the marginal F(y) = J F(y I v)dH(v) can be easily estimated 

using histogram methods. This avoid the boundary problems resulting from the application of 

non-parametric kernel density estimation. 
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In practice the data y is known but not its distribution. For its estimation one can 

apply a large variety of non-parametric methods. In the examples that follows I 

considered 

-- 1 F(yi) = -#l(y < Yi), i = 1,2, ... ,n 
n 

where #l(y < Yi) is a function representing the number of y's less then Yi- In all 

cases it is considered n = 100 observations. 

Case 1: Model without covariates and (o:,/) = (2,2)- Figures 1.1 to 1.4 repre

sent the true and estimated density of heterogeneity for different values of A. The 

estimated density was compu~ed using the unconstrained problem (2.7). The range 

of the v's values were computed as shown in section 2. Knowing the maximum and 

minimum values of v, m = 40 equally spaced points are used with a step of 0.15. 

Note that m and the step are chosen in order to avoid the presence of extreme points 

in the range of v. The reason is that for y near zero v = 1/y is very high and these 

high values of v provide no additional information to the estimated density. 

The method of cross validation, traditionally used to computed the optimal value 

of A does not work very well in the this case. The problem is probably associated 

to the use of the first order approximation in the computation of h(i). These results 

are summarized in Figure 1.5. A very fine grid of A values were chosen to show the 

problems associated with the application of this method. 

Standard errors of P shown in Figures 1.2 to 1.4 are plotted as upper bounds of 

pointwise 95% intervals around P, P + 1.96 se(P), to give an ide.a of the variability 

of P. The standard errors were computed from expression (2.8). 
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Case 2: Model with one covariate and (a,'Y) = (1,3)- This case is summarized 

through Figures 2.1 to 2.4 and the estimated densities were computed using the con

straint problem (2.5). Apart from the criterion function used, this case is rather 

similar to case 1 with the difference that now the data, y, depends on some unknown 

parameters that have to be estimated as seen in section 2. Considering the hazard 

function (2.10), this corresponds to case 1 withy= t''~exp{x'/3}. Moreover, it is 

assumed that Xi = [1 xli] and Xli rv N(O, 1), i = 1, ... , 100. The true parameters 

of the model are /3o = ,81 = 17 = 1. For the v's values it is considered m = 60 equally 

spaced points with a step of 0.15. 

Tablel: Case2- Estimated Parameters as a function of>. 

>. Tl 731 se(fi) se(!JI) 

0 1.126 0.945 0.143 0.147 

0.00006 1.135 0.965 0.143 0.141 

0.6 1.152 0.994 0.145 0.147 

100 1.239 1.065 0.152 0.158 

The first conclusion that can be extracted from these Figures is that the estimated 

densities seem to perform relatively well10 (if compared with the true density) for 

some appropriate value of >.. Moreover, the shape of the estimated density seems not 

to change significantly for a wide range of >. values. This is a good property if >. is 

chosen subjectively. 

Another interesting property, already notice by Heckman and Singer (1984a) in the 

case of NPML estimator, is that in general, one has good estimates of the structural 

10To corroborate the conclusions extracted from the examples presented, a Monte Carlo simulation 

is required. 
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parameters even if the h( v) is poorly estimated. This is also true in this case as can 

be seen in Table 1 by varying the value of A. 
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