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A deep latent variable model is a powerful method for capturing complex distributions. These

models assume that underlying structures, but unobserved, are present within the data. In

this dissertation, we explore high-dimensional problems related to physiological monitoring

using latent variable models. First, we present a novel deep state-space model to generate

electrical waveforms of the heart using optically obtained signals as inputs. This can bring

about clinical diagnoses of heart disease via simple assessment through wearable devices.

Second, we present a brain signal modeling scheme that combines the strengths of proba-

bilistic graphical models and deep adversarial learning. The structured representations can

provide interpretability and encode inductive biases to reduce the data complexity of neural

oscillations. The efficacy of the learned representations is further studied in epilepsy seizure

detection formulated as an unsupervised learning problem. Third, we propose a framework

for the joint modeling of physiological measures and behavior. Existing methods to com-

bine multiple sources of brain data provided are limited. Direct analysis of the relationship

between different types of physiological measures usually does not involve behavioral data.

Our method can identify the unique and shared contributions of brain regions to behavior

and can be used to discover new functions of brain regions. The success of these innova-

tive computational methods would allow the translation of biomarker findings across species

and provide insight into neurocognitive analysis in numerous biological studies and clinical

diagnoses, as well as emerging consumer applications.
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Chapter 1

Introduction

1.1 Motivation

The modeling of physiological signals stands as a cornerstone in contemporary neuroscience

and cardiology research, providing a powerful framework for understanding the intricate

processes underlying the generation of signals in the heart and brain. These models, of-

ten constructed using computational methods, offer invaluable insights into the complex

interactions among biological variables and serve as invaluable tools for hypothesis testing

and experimental design. At the heart of physiological modeling lie equations that describe

the interrelations among variables governing the dynamics of synthetic time series. These

equations, typically derived from existing data or informed by domain expertise, describe

the temporal evolution of physiological phenomena. By systematically altering parameters

within these equations, researchers can explore a wide range of scenarios, uncovering novel

insights and validating theoretical predictions. Previous studies in neuroscience and car-

diology have leveraged computational models (Niederer et al., 2019; Glomb et al., 2020)

providing principal laws, empirically validated rules, or other domain expertise, typically

1



presented as general, time-dependent, and nonlinear partial differential equations.

With regard to electroencephalogram (EEG) signals, neural mass models represent a promi-

nent paradigm for understanding the complex dynamics of large populations of neurons.

One such influential model is the Jansen-Rit model (Jansen et al., 1993; Jansen and Rit,

1995). This model emerged as a lumped parameter representation of a cortical column,

specifically designed to capture the dynamics of human EEG rhythms and visual evoked po-

tentials. Building upon earlier work by Lopes da Silva and Katznelson, the Jansen-Rit model

retains non-linearities within the cortical column, thus offering a more biologically realistic

description of neuronal activity. At its core, the Jansen-Rit model is based on the interac-

tion between two distinct populations of neurons within the cortical column: pyramidal cells

and local excitatory/inhibitory interneurons. Each population contributes to the generation

and modulation of EEG signals through intricate synaptic connections and feedback loops.

The model describes the dynamics of postsynaptic potentials using a set of coupled differ-

ential equations, which are formulated to capture the complex interplay between excitatory

and inhibitory neuronal populations. These equations are typically rewritten as a system

of first-order differential equations, resulting in a six-dimensional dynamical system that

encapsulates the behavior of the cortical column.

In terms of the electrocardiogram (ECG) signal, the McSharry et al. (2003) model is a sig-

nificant contribution, providing a framework for understanding the complex dynamics of

cardiac rhythms. This model provides a mathematical description of the electrical activ-

ity of the heart through a system of three ordinary differential equations. Central to the

model is the recognition of the distinct components of the ECG waveform, each of which

corresponds to specific cardiac events and functions. The typical sequence begins with the P

wave, representing atrial depolarization, followed by the QRS complex, reflecting ventricular

depolarization, and concludes with the T wave, indicating ventricular repolarization. By cap-

turing the temporal relationships between these waveform components, the model provides

2



insights into the underlying physiological processes driving cardiac activity. Moreover, the

constructed simulator offers the flexibility to manipulate various attributes of the produced

ECG signals. Researchers can adjust parameters such as the interval between waves, the

magnitude of P-waves and Q-waves, and the average and standard deviation of heart rate

patterns. Additionally, the model allows for the exploration of frequency-domain aspects of

heart rate variability, providing insights into the dynamic regulation of cardiac rhythm.

Although electrophysical models based on differential equations have been instrumental in

understanding physiological signals, they come with inherent limitations. These models

often rely on strong assumptions, can be computationally intensive, and may suffer from

model misspecification issues. Consequently, there is a growing emphasis on developing

more powerful and flexible models capable of handling diverse types of medical time series

data. Medical time series data exhibit complex multidimensional dependencies, including

spatio-temporal dependencies in biosignals and multimodal dependencies across physiological

measures and behaviors. One of the key challenges is effectively modeling spatio-temporal

dependencies in biosignals. Biosignals such as EEG and ECG are inherently dynamic and

exhibit spatial variations across different body regions. Another challenge lies in integrating

multiple modalities of medical data. In modern healthcare settings, patient data often

comprise a diverse array of measurements from different sensors and modalities, including

physiological signals, imaging data, and clinical observations. These presents significant

challenges for modeling and analysis in biomedical research and clinical practice.

In recent decades, the exponential growth of data collection in various medical applications

has paved the way for the emergence of data-driven approaches capable of unlocking valu-

able insights and addressing complex challenges in healthcare. These approaches leverage

advanced computational techniques to analyze large volumes of data, uncover underlying

structures, and utilize extracted information for tasks such as predictive modeling and pat-

tern recognition. A significant breakthrough in this domain has been the integration of
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probabilistic modeling and deep learning techniques. This fusion of methodologies combines

the expressive power of deep neural networks with the probabilistic framework, enabling the

parameterization of rich probabilistic distributions over latent variables. By incorporating

established or desired inductive biases, these models can effectively capture the complex rela-

tionships and uncertainties inherent in medical data. Two prominent classes of models that

have propelled recent progress are variational autoencoders (VAEs) and generative adver-

sarial networks (GANs), both belonging to the broader category of deep generative models.

These models offer scalable and efficient solutions for unsupervised learning of complex,

high-dimensional data distributions.

This thesis aims to explore a diverse category of sequential and multimodal models, with a

particular focus on their application to complex spatio-temporal physiological measures. By

leveraging these models, we seek to unlock valuable insights from unlabeled datasets, paving

the way for a deeper understanding of dynamic physiological processes.

1.2 Outline and contributions

Chapter 2 first presents the pertinent techniques employed in both clinical practice and

research for physiological monitoring, offering crucial insights into the body’s internal con-

dition. We focus on biosignals obtained through sensors either on or inside the body, like

surface ECG and EEG. Subsequently, we introduce probability theory, graphical models, and

latent variable models, which underpin all the methods discussed later in this dissertation.

Chapter 3 presents a sequential modeling of ECG signals from photoplethysmography

(PPG). PPG is a cost-effective and non-invasive technique that utilizes optical methods

to measure cardiac physiology. PPG has become increasingly popular in health monitoring

and is used in various commercial and clinical wearable devices. Compared to electrocardiog-
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raphy (ECG), PPG does not provide substantial clinical diagnostic value, despite the strong

correlation between the two. Here, we propose a subject-independent attention-based deep

state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms.

The model is not only robust to noise but also data-efficient by incorporating probabilistic

prior knowledge. To evaluate our approach, 55 subjects’ data from the MIMIC-III database

were used in their original form, and then modified with noise, mimicking real-world sce-

narios. Our approach was proven effective as evidenced by the PR-AUC of 0.986 achieved

when inputting the translated ECG signals into an existing atrial fibrillation (AFib) detector.

ADSSM enables the integration of ECG’s extensive knowledge base and PPG’s continuous

measurement for early diagnosis of cardiovascular disease.

Chapter 4 presents a deep generative model of EEG signals that provides not only a

stochastic procedure that directly generates data but also insights to further understand the

neurological mechanisms. Specifically, we propose a generative and inference approach that

combines the complementary benefits of probabilistic graphical models and GANs for EEG

signal modeling. We investigate the method’s ability to jointly learn coherent generation and

inverse inference models on the CHI-MIT epilepsy multi-channel EEG dataset. We further

study the efficacy of the learned representations in epilepsy seizure detection formulated as

an unsupervised learning problem.

Chapter 5 introduces a method for joint cognitive modeling of neural signals and human

behavior. As the field of computational cognitive neuroscience continues to expand and gen-

erate new theories, there is a growing need for more advanced methods to test the hypothesis

of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled

the combination of neural and behavioral models into a single unifying framework. How-

ever, these approaches require manual feature extraction, and lack the capability to discover

previously unknown neural features in more complex data. Consequently, this would hinder

the expressiveness of the models. To address these challenges, we propose a Neurocogni-
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tive Variational Autoencoder (NCVA) to conjoin high-dimensional EEG with a cognitive

model in both generative and predictive modeling analyses. Importantly, our NCVA enables

both the prediction of EEG signals given behavioral data and the estimation of cognitive

model parameters from EEG signals. This novel approach can allow for a more comprehen-

sive understanding of the triplet relationship between behavior, brain activity, and cognitive

processes.

Chapter 6 concludes the main contributions of this dissertation and discusses some direc-

tions for future work.
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Chapter 2

Background

2.1 Physiological Signals

2.1.1 Electrocardiogram (ECG or EKG)

Electrocardiography (ECG) is fundamental in diagnosing and managing cardiac health . By

recording the heart’s electrical activity, the ECG provides crucial insights into its rhythm,

rate, and muscular functionality. This non-invasive tool quantifies voltage differences be-

tween points on the body’s surface over time, enabling clinicians to assess the heart’s perfor-

mance with precision. At its core, an ECG captures the electrical signals generated by the

heart with each beat. These signals, represented graphically as waves and complexes on the

ECG tracing, reflect the coordinated sequence of events during the cardiac cycle, including

atrial depolarization, ventricular depolarization, and ventricular repolarization. Key among

its features is the identification of the R-wave, marking the onset of ventricular contraction

that propels blood from the heart into the aorta, a pivotal event in the cardiac cycle. In

clinical settings, traditional 12-lead ECG devices provide a comprehensive view of the heart’s
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electrical activity from multiple angles. By delivering 12 concurrent ECG signals, these de-

vices offer invaluable insights into irregularities and pinpoint specific areas of concern within

the heart. Recent advancements have seen the integration of single-lead ECG sensors into

wrist-worn devices, bringing cardiac monitoring closer to everyday life. These compact gad-

gets, featuring electrodes on the wrist and an additional point of contact, offer a simplified

yet effective means of evaluating heart rhythm and certain functional aspects.

2.1.2 Photoplethysmogram (PPG)

Photoplethysmogram (PPG) signals are obtained through the emission of light from a light-

emitting diode (LED) onto the skin, followed by the assessment of the light either reflected

back from the skin surface or transmitted through bodily tissues. This fundamental principle

underpins its application in a variety of devices, from wrist-worn wearables to medical-grade

pulse oximeters. The PPG signal tracks variations in blood volume over time, particularly

in arterial blood. As the arterial pulse wave reaches the measurement site, typically at the

fingertip or earlobe, it triggers detectable changes in blood volume, generating characteristic

waveforms in the PPG signal. Each heartbeat manifests as a distinct peak in the PPG

waveform, reflecting the pulsatile nature of blood flow and pressure within the arteries. A

major benefit of PPG sensors is their capability to record physiological signals passively,

without the need for user involvement, in contrast to wrist-worn ECG sensors which require

active user engagement during the collection of signals. This ease of use, coupled with their

non-invasive nature, has propelled the widespread adoption of PPG sensors in consumer

wearable devices for tracking heart rate, heart rate variability, and cardiac rhythm. However,

it is important to recognize that the PPG signal is susceptible to noise, stemming from factors

such as motion artifacts, ambient light interference, and variations in skin perfusion.
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2.1.3 Electroencephalogram (EEG)

Electroencephalography (EEG) provides invaluable insights into the electrical activity of the

brain. By recording the synchronized post-synaptic currents primarily in cortical pyramidal

neurons (Nunez and Srinivasan, 2006), EEG offers a unique window into cognitive processes,

neural dynamics, and neurological disorders. Over the years, EEG has become a cornerstone

in both clinical diagnostics and cognitive research, enabling researchers and clinicians to delve

deep into the complexities of brain function. Broadly categorized into spontaneous potentials,

such as sleep rhythms, and evoked potentials, which are time-locked responses to external

stimuli, EEG captures brain activity with high temporal resolution. Operating on the scale

of milliseconds, EEG is capable of detecting rapid changes in neural activity, making it a

powerful tool for studying dynamic brain processes. However, despite its temporal precision,

EEG possesses inherent limitations in spatial resolution. The electrical signals detected at

the scalp originate from currents that propagate through head tissues via volume conduction,

resulting in a low spatial resolution. While EEG can provide insights into broad patterns of

brain activity, its ability to localize specific neural sources is limited. Nevertheless, EEG has

found extensive applications in both clinical and research settings. In clinical practice, EEG

is used to diagnose and manage various neurological conditions, including epilepsy, sleep

disorders, stroke, and Alzheimer’s disease. In the realm of cognitive sciences, EEG offers

insights into sensorimotor pathways, memory, language processing, and general intelligence.

One of the key advantages of EEG lies in its affordability, portability, and suitability for real-

time observation. Unlike other brain imaging techniques that require specialized equipment

and expertise, EEG can be deployed with minimal resources, making it accessible to a wide

range of researchers and clinicians. However, EEG analysis is not without challenges. EEG

signals are non-stationary, exhibit a poor signal-to-noise ratio, and exhibit high variability

among individuals, posing significant obstacles to the development of generalized models for

EEG analysis.
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2.1.4 Frequency Domain Representation

A univariate time series signal of length T consists of a sequence of real-valued data points

x = (x0, . . . , xT−1) ∈ RT , each representing observations of a specific phenomenon. Observa-

tions in a time series are generally interdependent, and grasping this dependency is crucial

for recognizing various phenomena as they appear. In the frequency domain, a time series

is analyzed by decomposing it into sinusoids that vary in amplitude and phase.

Assuming the periodic nature of the time series x = (x0, . . . , xT−1), we can represent each

element xt with an equation

xt =
T−1∑
k=0

Xke
j2πkt

T (2.1)

where Xk ∈ C, k = 0, . . . , T − 1, represent the Fourier coefficients. Each element xt in

the time series is broken down into T frequency components ej2πkt/T , k = 0, . . . , T − 1,

each scaled by the Fourier coefficients. In the discrete FT (DFT), the time series x is

expressed via the Fourier coefficients Xk = (1/T )v∗
kx, k = 0, . . . , T − 1, where vk :=[

1, ej2πk(1)/T , ej2πk(2)/T , . . . , ej2πk(T−1)/T
]
. The collection of vectors {v0, . . . ,vT−1} forms an

orthogonal basis for the T -dimensional complex vector space. Each Fourier coefficient thus

serves as an independent representation of a subcomponent of the entire time series. The

conversion of the time series into the frequency domain can be efficiently performed using

the fast FT (FFT) algorithm, while the transformation from the frequency domain back to

the time domain is accomplished using the inverse DFT.
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2.2 Probabilistic Graphical Models

2.2.1 Random Variables and Probabilities

Definition 1 (Random Variable).

In a random experiment with a sample space S, a function X maps each element s ∈ S to

a single real number X(s) = x. This function X is known as a random variable (r.v.).

Typically, random variables are represented by capital letters, while the values they take are

denoted by lowercase letters. The term univariate distribution will be used to describe the

distributions of a single random variable, indicated by the non-bold x. The term multivari-

ate distributions will apply to distributions involving multiple random variables, typically

represented as a vector with bold x.

Definition 2 (Discrete Random Variable and Probability Mass Function).

1. A random variable X is termed discrete if its range consists of countable values.

2. If X is a discrete r.v., the function P (X = x) is called the probability mass function

(PMF) of X.

3. The PMF of any discrete r.v. X must adhere to these two criteria:

• Nonnegativity: P (X = x) > 0 if x = xi for some i, and P (X = x) = 0 otherwise.

• Summation to 1:
∑∞

i=1 P (X = x) = 1.

Definition 3 (Continuous Random Variable and Probability Density Function).

1. A r.v. X is defined as continuous if there is a function p(.) such that for every real
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number x, the cumulative distribution function (CDF) is given by FX(x) = P (X ⩽

x) =
∫ x
−∞ p(x) dx.

2. For a continuous r.v. X, the function p(.) in FX(x) =
∫
p(x) dx is known as the

probability density function (PDF).

3. The PDF of any continuous r.v. X must meet the following two criteria:

• Nonnegativity: p(x) ≥ 0.

• Integration to 1:
∫∞
−∞ p(x) dx = 1.

The term ”probability distribution” will be applied to both discrete probability mass func-

tions and continuous probability density functions in our discussions. The specific use of the

term will be inferred based on the context.

Definition 4 (Exponential Family of Probability Distributions).

1. The exponential family of probability distributions is a set of PDFs or PMF’s charac-

terized by the following form:

p(x | η) = h(x) exp
{
T (x)Tη − A(η)

}
(2.2)

Here, x represents a specific value of a r.v. X,T (x) is the sufficient statistic, and η is

the natural parameter. The function A(η) is known as the log-partition function and

h(x) is the base measure.

2. A fundamental property of PDFs or PMFs in the exponential family is expressed by:

E[T (x)] = ∇A(η) (2.3)

12



Here, ∇A(η) denotes the gradient of A(η). This property highlights the relation-

ship between the expected value of the sufficient statistic and the gradient of the

log-partition function.

The exponential family includes many well-known distributions such as the normal, exponen-

tial, Poisson, and gamma distributions, among others (Wainwright et al., 2008). One of the

key advantages of distributions in the exponential family is their mathematical tractability,

which simplifies parameter estimation, hypothesis testing, and model interpretation.

2.2.2 Graphical Models

(a) Directed graphical models

(b) Undirected graphical models

Figure 2.1: Examples of different probabilistic graphical models.

Probabilistic Graphical Models (PGMs) (Koller and Friedman, 2009) serve as a structured
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framework for representing and reasoning about complex probabilistic relationships among

multiple variables. One of the key advantages of PGMs lies in their ability to handle un-

certainty and variability efficiently. As the number of variables grows, managing probability

distributions becomes increasingly complex. In many real-world scenarios, understanding

these relationships and making informed decisions based on uncertain data is essential.

At their core, PGMs leverage graphs to visually depict probabilistic relationships between

variables. These graphs consist of nodes, which represent random variables, and edges, which

denote probabilistic dependencies between variables. Random variables can be classified as

either observed, with their values determined by the problem, or latent, with their values

remaining unknown.

There are two main types of PGMs: directed graphical models, also known as Bayesian

networks, and undirected graphical models, also called Markov Random Fields. Bayesian

networks utilize directed edges to represent influential relationships between variables, while

Markov Random Fields capture the concept of local interactions among variables through

undirected edges.

Representing domain knowledge through graphical structures

One notable aspect of PGMs is the inherent structure of graph representations, which directly

implies a factorization of the joint distribution over random variables. In a graphical model,

every graph structure entails a specific factorization of the joint distribution. For instance, in

a directed graphical model, such as the one shown in Figure 2.1a (right), the joint distribution

factors according to conditional probabilities associated with each node:

P (X1, . . . , X4) = P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X2, X3) (2.4)
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Similarly, considering the model depicted in Figure 2.1b (left), the joint distribution can be

expressed as a product of clique potentials, where each clique represents a set of variables

that are directly connected:

P (X1, . . . , X9) =
1

Z

∏
ci∈C

ϕi (xc) (2.5)

where C represents all cliques within the graph , specifically every pair of connected nodes,

ϕi(xc) refers to the clique potentials, which are scalar values given to each possible combi-

nation of variables within the clique xc, and Z is the normalization constant.

This factorization has practical implications, as we need only track parameters associated

with each conditional probability or clique potential. By exploiting this structured repre-

sentation, significant parameter savings can be achieved compared to a full join distribu-

tion. Additionally, the development of a graphical model typically requires integration with

domain experts. Such integration encourages careful deliberation of the choice and inter-

connections of random variables in the model. For example, the grid structure observed

in Figure 2.1b suggests spatial correlations among variables, akin to those found in image

pixels. Furthermore, graphical models enable the utilization of structural properties of the

underlying data distribution to simplify the computation of probabilistic queries. One no-

table advantage is the simplification of independence properties, facilitated by the graph’s

topology.

Independence properties

By leveraging insights from graph theory and probability theory, graphical models offer a

structured approach to probabilistic reasoning. An essential aspect of understanding these

relationships lies in studying independence properties among the distributions over random

variables within the graphical model:
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• Marginal Independence. Marginal independence occurs when two random variables are

independent of each other, irrespective of the values of other variables. In graphical

models, this independence is evident when there is no direct connection (edge) between

the variables. For instance, in a directed graphical model, if there is no directed path

between two variables, they are considered marginally independent. Mathematically,

marginal independence implies that the joint distribution factorizes into the product

of marginal distributions for each variable.

• Conditional Independence. Conditional independence arises when two random vari-

ables become independent given the values of a third set of variables. In graphical

models, conditional independence statements reveal when observing certain variables

render others independent. This concept is crucial for understanding the influence

and interaction between variables. Conditional independence relationships are often

inferred from the graph’s structure, where paths between variables indicate possible

dependencies or influences.

In directed graphical models, a unique type of conditioning exists that causes variables,

which are marginally independent, to become dependent. This concept of ”explaining away”

refers to a phenomenon where the evidence observed for one variable increases or decreases

the probability of another variable being responsible for the same observation, depending

on their shared dependencies. Consider a simple scenario represented by a DGM where

variables A and B capture potential causes of chest pain (variable C): heart attack and

indigestion, respectively, as shown in the graph A → C ← B. As the doctors gather more

information about the patient’s symptoms and medical history, they can start to narrow

down the potential causes. For example, if the patient also shows symptoms like sweating

and shortness of breath, which are commonly associated with heart attacks, this evidence

increases the likelihood of a heart attack being the cause of the chest pain. Consequently,

the probability of indigestion decreases.
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The Markov blanket of a random variable refers to a set of variables in a graphical model

that, when conditioned on, renders the random variable independent of all other variables

in the graph. Specifically, for any random variables X and Y in the graphical model G, the

Markov blanket (MB) of X is defined as the minimal set of variables such that conditioning

on this set renders the conditional independence of X and Y :

P (X | MB(X), Y ) = P (X | MB(X)) (2.6)

In undirected graphical models, the Markov blanket of a random variable consists of all its

neighboring variables. In directed graphical models, the Markov blanket includes a node’s

parents, its children, and its children’s co-parents.

2.3 Latent Variable Models

In the realm of machine learning, one of the fundamental challenges is to accurately model

and understand the underlying probability distributions p(x) governing high-dimensional

data. High-dimensional data, such as images, text documents, and sensor readings, often

exhibit complex structures and dependencies that are not easily captured by simple para-

metric models. Modeling these complex probability distributions is crucial for various tasks,

including generative modeling, anomaly detection, and density estimation. Generative mod-

els aim to learn the underlying data distribution and generate new samples that resemble

the original data. Anomaly detection algorithms rely on accurate probability estimates to

identify deviations from normal behavior. Density estimation techniques seek to estimate the

probability density function of the data, enabling various downstream tasks such as sampling

and likelihood evaluation.

Introducing an unobserved latent variable z with lower dimensionality than observed vectors
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and defining a conditional distribution p(x | z) for the data is a powerful approach in proba-

bilistic modeling, particularly in scenarios involving high-dimensional data. This framework

allows us to capture complex correlations in the observed variable x by leveraging the la-

tent variable z, which serves as a compact representation of underlying factors influencing

the data. In this framework, the latent variable encodes meaningful information about the

structure and content of the observed data. For example, in the context of modeling medical

data, z could encapsulate latent representations of various attributes such as disease sub-

types or phenotypes, biomarker signatures, and other relevant features. To formalize this

probabilistic model, we introduce a prior distribution p(z) over the latent variables, repre-

senting our beliefs about the likely configurations of z. This prior distribution encodes any

prior knowledge or assumptions about the latent space. We then compute the joint distribu-

tion over observed and latent variables, denoted as p(x, z), which describes the probability

of observing a particular data point x along with its corresponding latent representation z:

p(x, z) = p(x | z)p(z) (2.7)

Introducing a latent variable in the model enables us to express the complex marginal dis-

tribution p(x) as a more tractable joint distribution, which consists of the conditional dis-

tribution p(x | z) and the prior distribution p(z). Typically, simpler distributions such

as exponential family distributions are used to define the conditional distribution p(x | z)

and the prior distribution p(z). Exponential family distributions have desirable properties,

including tractable normalization constants, which make them computationally efficient for

modeling purposes. Once we have the joint distribution p(x, z), we can obtain the desired

data distribution p(x) by marginalizing over the latent variables:

18



p(x) =

∫
p(x, z)dz =

∫
p(x | z)p(z)dz (2.8)

By applying Bayes’ theorem, we can calculate the posterior distribution p(z | x) as

p(z | x) = p(x | z)p(z)
p(x)

(2.9)

which allows inference of the latent variable given the observation.

Latent variable models offer a framework to describe the generative process behind the

observed data. This process can be interpreted as follows:

1. Sampling Latent Variables: To generate a new data point, we first sample a latent

variable z(s) from the prior distribution p(z). This latent variable captures unobserved

factors or features that influence the generation of the data.

2. Generating Observations: Once we have sampled z(s), we use it to sample a new obser-

vation x(s) from the conditional distribution p(x | z(s)). This conditional distribution

captures the relationship between the latent variables and the observed data, allowing

us to generate realistic data points.

Latent variable models (LVMs) are particularly effective when the data lie in a manifold, a

lower-dimensional structure embedded within the higher-dimensional data space. By cap-

turing the essential characteristics of the data manifold, LVMs can effectively model the

underlying data distribution while reducing the dimensionality of the representation. LVMs

serve not only as black-box density models but also as interpretable frameworks for incor-
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porating prior knowledge about the generative process underlying the data. Probabilistic

graphical models, such as Bayesian networks or Markov random fields, provide a principled

way to encode dependencies among variables and incorporate domain knowledge into the

joint distribution p(x, z).

This dissertation is centered on non-linear LVMs, specifically those utilizing deep neural

networks, termed Deep Latent Variable Models (DLVMs). DLVMs are adept at modeling

complex, high-dimensional data distributions, yet they necessitate approximate inference due

to the intractability of the integral in Equation (2.8), which lacks an analytic solution. Sub-

sequent chapters will explore variational auto-encoders (VAEs) and generative adversarial

networks (GANs), which combine principles from deep learning and latent variable models

to create highly flexible distributions using deep neural networks.

2.3.1 Posterior Inference

In latent variable models, the posterior distribution updates our understanding of the latent

variables based on the data observed. It is essential for probabilistic reasoning, facilitating

prediction, inference, and the learning of model parameters. To approximate the complex

posterior distribution, two main types of methods are utilized, each balancing accuracy with

computational efficiency:

1. Sampling. Sampling techniques, including Markov Chain Monte Carlo (MCMC) ap-

proaches, offer an approximation of the posterior distribution through sample genera-

tion. These techniques produce samples from the posterior distribution, enabling the

estimation of expectations and the execution of inference via Monte Carlo integration.

A notable advantage of sampling techniques is their ability to provide precise outcomes

with unlimited computational resources. Nevertheless, they often require significant

computational effort and may not efficiently handle large datasets. Moreover, assessing
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convergence and verifying the quality of the samples can pose difficulties.

2. Deterministic Approximation. Deterministic approximation methods approximate the

posterior distribution analytically by employing parametric distribution families or

specific factorizations. Techniques such as variational inference and expectation prop-

agation are examples. These approaches are scalable and efficient, thus appropriate

for handling large datasets. Nonetheless, they cannot ensure precise outcomes, even

with unlimited computational resources, because of the fundamental approximations

involved. Despite these constraints, deterministic approximation methods remain pop-

ular due to their computational manageability and ability to scale.

Variational Inference

Variational inference (VI) (Jordan et al., 1999) leverages the calculus of variations to ap-

proximate the posterior distribution p(z | x) by finding an approximate distribution q(z)

that minimizes the Kullback-Leibler (KL) divergence between the variational distribution

and the true posterior. The KL divergence between q(z) and p(z | x) is defined as:

KL[q(z)∥p(z | x)] = −Eq(z)
[
log

p(z | x)
q(z)

]
(2.10)

The goal of variational inference is to find a good approximation q(z) that minimizes this KL

divergence. However, the intractability of the posterior p(z | x) makes direct optimization

challenging. To address this, we introduce the evidence lower bound (ELBO), denoted as

F(q), which is defined as:
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−Eq(z)
[
log

p(x, z)

q(z)

]
(2.11)

The ELBO serves as a lower bound on the marginal likelihood log p(x). By maximizing the

ELBO with respect to q(z), we indirectly minimize the KL divergence, as the KL divergence

is equal to log p(x)−F(q).

In practice, the variational distribution q(z) is often constrained to a parametric family

(e.g., Gaussian distribution) to make the optimization tractable. The parameters of this

distribution are then optimized to maximize the ELBO. This trade-off between flexibility

and tractability ensures that the variational approximation q(z) is both expressive enough

to capture the posterior distribution and computationally feasible to work with.

In essence, VI offers a principled approach to approximate complex posterior distributions,

facilitating efficient and scalable inference within probabilistic models. By framing the in-

ference problem as an optimization task, VI inference reduces the complexity of inference to

a simpler optimization problem.

Expectation Propagation

Unlike variational inference, which minimizes the KL divergence from a chosen approxima-

tion to the true posterior, expectation propagation (EP) (Minka, 2013) minimizes the reverse

KL divergence, which is defined as:

KL[p(z | x)∥q(z)] = Ep(z|x)
[
log

p(z | x)
q(z)

]
(2.12)
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It is important to note that EP does not necessarily minimize the KL divergence but can

be freely implemented with any divergence measure. When q(z) belongs to the exponen-

tial family, which is commonly the case, the minimization of the reverse KL divergence

simplifies to the alignment of natural parameters. In EP, the goal is to approximate the pos-

terior distribution p(z) with a set of factors Q(z) such that each factor qi(z) approximates

the corresponding factor fi(z) in the exact posterior factorization. This approximation is

achieved by minimizing a sequence of local Kullback-Leibler (KL) divergences between the

exact factors and the EP approximating factors.

The EP approximation for p(z) is given by:

Q(z) =
n∏
i=0

qi(z) (2.13)

where qi(z) represents the EP approximating factors and Q(z) is the global approximation.

To find the parameters for determining the approximate factors qi(z), EP minimizes a se-

quence of local KL divergences:

q0(z) = argmin
q0(z)∈Q

KL
(
f̃0(z)∥q0(z)Q\0(z)

)
q1(z) = argmin

q1(z)∈Q
KL

(
f̃1(z)∥q1(z)Q\1(z)

)
...

qn(z) = argmin
qn(z)∈Q

KL
(
f̃n(z)∥qn(z)Q\n(z)

)
(2.14)

where Q denotes the space of possible approximate factors, f̃i(z) = fi(z)Q
\i(z) is the tilted
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distribution, and Q\i(z) is the cavity distribution obtained by removing the current KL

minimizer qi(z) from Q(z).

Each KL divergence minimization problem in the above equations is solved by exclusively

optimizing qi(z) instead of the EP global approximation. Therefore, expectation propagation

is considered a local approximation algorithm as each KL divergence is minimized locally

with respect to a selected EP approximating factor.

In EP, convergence is not guaranteed because the local KL divergence minimization does not

necessarily ensure that the KL divergence is minimized from the exact posterior distribution

to the EP global posterior approximation. Despite the absence of formal convergence guaran-

tees, EP remains a widely used and effective approximate inference algorithm in probabilistic

modeling due to its flexibility and applicability to a variety of models.

2.3.2 Parameter Learning

In parameter learning for latent variable models, we aim to estimate the optimal parameters

θ⋆ of the model given a training set comprising N data points {xi}Ni=1. The likelihood

pθ(x | z) and the prior pθ(z) are assumed to belong to families of distributions parameterized

by unknown parameters θ.

The optimal parameters θ⋆ can be learned using Maximum Likelihood Estimation (MLE),

which involves maximizing the log-likelihood function L(θ):

L(θ) =
N∑
i=1

log pθ(x
i) (2.15)

Given that the latent variable zi is different for each data point xi, but the parameters θ
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are shared across all data points, we can express the log-likelihood as the sum of individual

terms Li(θ):

L(θ) =
N∑
i=1

log

∫
pθ(x

i, zi)dzi︸ ︷︷ ︸
Li(θ)

(2.16)

In practice, the marginal density of the observations pθ(x) is often intractable and needs to

be approximated. One approach is to use the evidence lower bound (ELBO), denoted as

Fi(θ, q), which provides a lower bound to log pθ(x) for any distribution q(z) over the latent

variables:

Li(θ) ≥ Fi(θ, q) = Eq(z)
[
log

pθ(x, z)

q(z)

]
(2.17)

By maximizing the total ELBO F(θ, q) =
∑N

i=1Fi(θ, q) with respect to θ and q(z), we can

learn the parameters of the model. The variational distribution q(z) can be interpreted as

an approximation to the posterior distribution pθ(z | x), and the ELBO coincides with the

log-likelihood only when q(z) equals the true posterior distribution.

In practice, the variational distribution q(z) is often constrained to a particular parametric

family to make the optimization tractable, and the parameters of this distribution are opti-

mized along with the parameters θ of the model. Therefore, by maximizing the ELBO, we

indirectly maximize the log-likelihood, enabling parameter learning in latent variable models.
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Expectation Maximization

The Expectation Maximization (EM) algorithm (Dempster et al., 1977) provides a system-

atic approach for maximizing the likelihood function in models with latent variables. It

iteratively alternates between two steps: the E-step, where the posterior distribution over

latent variables is estimated, and the M-step, where the model parameters are updated based

on the estimated posteriors.

Starting with initial parameters θ0, the EM algorithm iterates until convergence as follows:

1. E-step (Expectation): Given the current parameters θk, estimate the posterior distri-

bution over latent variables, denoted as qk+1(z), by maximizing the ELBO Fi(θk, q)

with respect to q(z). In many cases, this step involves solving a posterior inference

problem, aiming to find an approximation to the true posterior distribution pθk(z | x).

If the posterior is intractable, approximate inference methods can be employed.

2. M-step (Maximization): Fixing the estimated distribution over latent variables qk+1(z),

update the parameters θk+1 by maximizing the ELBO Fi(θ, qk+1) with respect to θ.

This step involves optimizing the model parameters using techniques such as gradient

ascent.

For simpler classes of models where exact inference is possible, each EM iteration guarantees

not to decrease the marginal likelihood after each combined step. Specifically, after the E-

step, where θk is held fixed, the ELBO equals the log-likelihood. Subsequently, maximizing

the ELBO in the M-step does not decrease the log-likelihood.

In summary, the EM algorithm offers a systematic and effective approach for optimizing

model parameters when latent variables are involved. By iteratively refining the estimates

of the latent variables and updating the model parameters, EM enables efficient learning in

latent variable models even when exact inference is not feasible.
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Chapter 3

PPG-to-ECG Signal Translation For

Continuous Atrial Fibrillation

Detection via Attention-based Deep

State-Space Modeling

3.1 Introduction

The measurement of the electrical activity generated by an individual’s heart, known as an

electrocardiogram (ECG), typically requires the placement of several electrodes on the body.

ECG is considered the preferred method for monitoring vital signs and for the diagnosis,

management, and prevention of cardiovascular diseases (CVDs), which are a leading cause

of death globally, accounting for approximately 32% of all deaths in 2017 according to Global

Burden of Disease reports (Allen, 2007). It has also been demonstrated that sudden cardiac

arrests are becoming more prevalent in young individuals, including athletes (sudden, 2020).
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Regular ECG monitoring has been found to be beneficial for the early identification of CVDs

(Rosiek and Leksowski, 2016). Among heart diseases, atrial fibrillation (AFib) is adults’

most common rhythm disorder. Identifying AFib at an early stage is crucial for the primary

and secondary prevention of cardioembolic stroke, as it is the leading risk factor for this

type of stroke (Olier et al., 2021). Advancements in electronics, wearable technologies, and

machine learning have made it possible to record ECGs more easily and accurately, and to

analyze large amounts of data more efficiently. Despite these developments, there are still

challenges associated with continuously collecting high-quality ECG data over an extended

period, particularly in everyday life situations. The 12-lead ECG, considered the clinical gold

standard, and simpler versions, such as the Holter ECG, can be inconvenient and bulky due to

the need to place multiple electrodes on the body, which can cause discomfort. Additionally,

the signals may degrade over time as the impedance between the skin and electrodes changes.

Consumer-grade products such as smartwatches have developed solutions to address these

issues. However, these products require users to place their fingers on the watch to form a

closed circuit, making continuous monitoring impossible.

Figure 3.1: A PPG-ECG waveform pair. PPG signals can often become contaminated by
noise.

One potential solution to these issues is to use a mathematical method to derive ECG data

from an alternative, highly correlated, non-invasive signal, such as the photoplethysmogram
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(PPG), which can be easily acquired using various wearable devices, including smartwatches.

PPG is more convenient, cost-effective, and user-friendly. PPG has been increasingly adopted

in consumer-grade devices. This technique involves the use of a light source, usually an LED,

and a photodetector to measure the changes in light absorption or reflection as blood flows

through the tissue. ECG and PPG signals are inherently correlated as both are influenced

by the same underlying cardiac activity, namely the depolarization and repolarization of the

heart. These contractions lead to changes in peripheral blood volume, which are measured

by PPG. Figure 3.1 shows the relationship between ECG and PPG waveforms. Although

there are established standards for interpreting ECG for clinical diagnosis, the use of PPG is

still mostly limited to measuring heart rate and oxygen saturation (Reisner et al., 2008). By

translating PPG to ECG signals, clinical diagnoses of cardiac diseases and anomalies could

be made in real-time.

Few research works attempted to synthesize ECG from PPG signals. In (Banerjee et al.,

2014), a machine learning-based approach was proposed to estimate the ECG parameters,

including the RR, PR, QRS, and QT intervals, using features from the time and frequency

domain extracted from a fingertip PPG signal. Additionally, Zhu et al. (2019); Tian et al.

(2020) proposed models to reconstruct the entire ECG signal from PPG in the frequency

domain. However, the performance of these approaches relied on cumbersome algorithms for

feature crafting. With recent advances in deep learning, Vo et al. (2021); Sarkar and Etemad

(2021); Chiu et al. (2020) leveraged the expressiveness and structural flexibility of neural

networks to build end-to-end PPG-to-ECG algorithms. However, the models suffer from

data-hungry problems as they do not explicitly model the underlying sequential structures

of the data. In addition, complex deep learning models cannot run efficiently on resource-

constrained devices (e.g., wearables) due to their high computational intensity, which poses

a critical challenge for real-world deployment (Lee et al., 2020). Furthermore, deterministic

models face difficulties in effectively generalizing to noisy data.
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To address these challenges, we propose a deep probabilistic model to accurately estimate

ECG waveforms from raw PPG. The contributions of this work are three-fold:

• We present a deep generative model incorporating prior knowledge about the data

structures that enable learning on small datasets. Specifically, we develop a deep

latent state-space model augmented by an attention mechanism.

• The probabilistic nature of the model enhances its robustness to noise. We demonstrate

this by evaluating the model on data corrupted with Gaussian and baseline wandering

noise, replicating real-life situations.

• Our method is effective not only in healthy subjects but also in subjects with AFib.

It is orthogonal and complementary to existing AFib detection methods (Hong et al.,

2020) by simply providing the translated ECG to any pre-trained models. This would

enhance the performance of existing models by enabling uninterrupted monitoring,

thereby facilitating the early detection of cardiovascular disease.

3.2 Methodology

3.2.1 Probabilistic Modeling of ECG from PPG signals

We are given a dataset D :=
{
(x1,y1) , . . . ,

(
xN ,yN

)}
with the i-th observation yi ∈ Rny ,

i.e., ECG signals of ny time samples, depending on xi ∈ Rnx , i.e., PPG signals of nx time

samples. Throughout the paper, superscript i is omitted when we refer to only one sequence

or when it is clear from the context.

We aim to learn a generative process with a latent-variable model comprising of a parametric

non-linear Gaussian prior over latents pθz(z | x) and likelihood pθy(y | z,x). The learning
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process minimizes a divergence between the true data-generating distribution and the model

w.r.t θ:

argmin
θ

KL (pD(y | x)∥pθ(y | x))

= argmax
θ

EpD(y|x) [log pθ(y | x)]
(3.1)

where pθ (y | x) =
∫
pθy (y | z,x) pθz (z | x) dz is the conditional likelihood/evidence of data

point y given condition x, approximated by averaging over the latent z.

Nevertheless, estimating pθ(y | x) is typically intractable. This issue can be mitigated by

introducing a parametric inference model qϕ(z | x,y) to construct a conditional variational

evidence lower bound on the conditional log-likelihood log pθ(y | x) as follows

L(x,y; θ, ϕ)

≜ log pθ(y | x)−KL (qϕ(z | x,y)∥pθ(z | x,y))

= Eqϕ(z|x,y)
[
log pθy(y | z,x)

]
−KL (qϕ(z | x,y)∥pθz(z | x))

(3.2)

Taking the likelihood model pθy(y | z,x) to be a decoder, the latent inference model

qϕ(z | x,y) to be an encoder, and the prior model pθz(z | x), a conditional variational

autoencoder (CVAE) (Kingma and Welling, 2013; Sohn et al., 2015) considers this objec-

tive from a deep probabilistic autoencoder perspective. Here θ and ϕ are neural network

parameters, and learning takes place via stochastic gradient ascent using unbiased estimates

of ∇θ,ϕ
1
n

∑n
i=1 L (xi,yi; θz, θy, ϕ).

3.2.2 State-Space Modeling of ECG from PPG Signals

In the previous section, we consider the networks that process the entire time series as a

whole, which do not explicitly model the underlying sequential natures of the data. This may

31



lead to resource-inefficient learning. Here, propose to address the problems by leveraging

the quasi-periodic nature of the physiological signals.

ECG Generative (Decoding) Process from PPG

We consider nonlinear dynamical systems with observations yt ∈ Rnrr , i.e., RR intervals or

the time elapsed between two successive R peaks on the ECG, depending on control inputs

xt ∈ Rnpp , i.e., PP intervals or the time elapsed between two successive systolic peaks on

the PPG. We choose the peaks to segment the signals as they are the most robust features.

Corresponding discrete-time sequences of length T are denoted as y1:T = (y1,y2, . . . ,yT )

and x1:T = (x1,x2, . . . ,xT ).

Given an input PPG x1:T , we are interested in a probabilistic model p (y1:T | x1:T ). Formally,

we consider

p (y1:T | x1:T ) =

∫
p (y1:T | z1:T ,x1:T ) p (z1:T | x1:T ) dz1:T (3.3)

where z1:T represents the latent sequence associated with the given model. This implies that

we are considering a generative model that incorporates a latent dynamical system with an

emission model p (y1:T | z1:T ,x1:T ) and transition model p (z1:T | x1:T ).

To derive state-space models, we make certain assumptions regarding the state transition

and emission models, as shown in Figure 3.2:

p (z1:T | x1:T ) =
T−1∏
t=0

p (zt+1 | zt,x1:T ) (3.4)

p (y1:T | z1:T ,x1:T ) =
T∏
t=1

p (yt | zt) (3.5)

Equations 3.4 and 3.5 make the assumption that the current state zt includes all the relevant
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information about both the current observation yt and the next state zt+1, given the current

control input xt.

Figure 3.2: The graphical model for ECG translation from PPG. Shaded nodes represent
observed variables. Clear nodes represent latent variables. Diamond nodes denote deter-
ministic variables. Variables xt,yt, and ct represent PP intervals, RR intervals, and context
vectors, respectively. αt,i are attention weights defines how well two intervals xi and yt are
aligned. The attention mechanism is shown only at time step 2.

In contrast to the DKF model of (Krishnan et al., 2015, 2017), our model takes into account

the entire input signal x1:T for each output yt via an attention mechanism (Bahdanau et al.,

2014). Note that there are usually misalignments between the PPG and ECG cycles. There-

fore, it is difficult to construct optimal and exact sample pairs. This attention mechanism

not only helps to add more context to generate ECG segments, but also helps to address the

problem of misalignment.

Let us define ct a sum of features of the input sequence (PP intervals), weighted by the

alignment scores:

ct =
T∑
i=1

αt,ixi (3.6)

αt,i =
exp (s (zt−1,xi))∑n
i′=1 exp (s (zt−1,xi′))

(3.7)
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The alignment function s assigns a score αt,i to the pair of input at position i and output at

position t, (xi,yt), based on how well they match. The set of αt,i are weights defining how

much of each source segment should be considered for each output interval.

Both state transition (prior) and emission models are non-linear Gaussian transformations

parametrized by neural networks θz and θy :

pθz(zt+1 | zt,x1:T ) = N (zt+1 | µθz(zt, ct+1),σ
2
θz(zt, ct+1)); (3.8)

pθy(yt | zt) = N (yt | µθy(zt), I) (3.9)

where µ and σ2 are the means and diagonal covariance matrices of the normal distributions

N , I is the identity covariance matrix.

Latent State Inference (Posterior Encoding) Process

Figure 3.3: The graphical model at latent state inference time. Variables yt,ht, gt, and zt
represent respectively RR intervals, backward, forward recurrent states, and latent states.

Unlike a deterministic translation model, the process needs to find meaningful probabilistic

embeddings of ECG segments in the latent space. We want to identify the structure of the

parametetrized posterior distribution qϕ (z1:T | y1:T ). Notice that we made a design choice
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to perform inference using only y1:T . We chose this with the conditional independence

assumption that PPG segments do not provide more information than ECG segments alone.

The graphical model in Figure 3.2 shows that the zt node blocks all information coming

from the past and flowing to zt+1 (i.e., z1:t−1 and y1:t), leading to the following structure as

in Figure 3.3:

qϕ (z1:T | y1:T ) = qϕ (z1 | y1:T )
T−1∏
t=1

qϕ
(
zt+1 | zt,yt+1:T

)
(3.10)

where

qϕ(zt+1 | zt,yt+1:T ) = N (zt+1 | µϕ(zt,yt+1:T ),σ
2
ϕ(zt,yt+1:T )) (3.11)

Training Process

The objective function becomes a timestep-wise conditional variational lower bound (Kingma

and Welling, 2013; Sohn et al., 2015; Krishnan et al., 2017):

log pθ(y | x) ≥ L(x,y; θy, θz, ϕ) ≜

T∑
t=1

E
qϕ(zt|yt:T )

[

reconstruction︷ ︸︸ ︷
log pθy (yt | zt)︸ ︷︷ ︸

emission model

]

− β
regularization︷ ︸︸ ︷

KL (qϕ (z1 | y1:T ) ∥pθz (z1 | x1:T ))

− β
T−1∑
t=1

E
qϕ(zt|yt:T )

[

regularization︷ ︸︸ ︷
KL( qϕ (zt+1 | zt,yt:T )︸ ︷︷ ︸

posterior inference model

|| pθz (zt+1 | zt,x1:T )︸ ︷︷ ︸
prior transition model

)]

(3.12)

where β controls the regularization strength. During training, the Kullback–Leibler (KL)

losses in the regularization terms ”pull” the posterior distributions (which encode EEG

segments) and the prior distributions (which embed PPG segments) towards each other. We
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learn the generative and inference models jointly by maximizing the conditional variational

lower bound with respect to their parameters.

3.2.3 Neural Network Architectures

Let us denote W , v, and b the weight matrices.

Score Model: The alignment score α in Equation 3.7 is parametrized by a feedforward

network with a single hidden layer, and this network is jointly trained with other parts of

the model. The score function s is in the following form:

s (zt−1,xi) = v⊤
s tanh (W s [zt−1;W xxi] + bs) (3.13)

Prior Transition Model: We parametrize the transition function in Equation 3.8 from zt

to zt+1 using a Gated Transition Function as in (Krishnan et al., 2017). The model is flexible

in choosing a non-linear transition for some dimensions while having linear transitions for

others. The function is parametrized as follows:

gt = sigmoid(W g3 ReLU (W g2 ReLU (W g1 [zt; ct+1] + bg1) + bg2) + bg3)

dt = W d3 ReLU (W d2 ReLU (W d1 [zt; ct+1] + bd1) + bd2) + bd3

µθz(zt, ct+1) = (1− gt)⊙ (W µz [zt; ct+1] + bµz) + gt ⊙ dt

σ2
θz(zt, ct+1) = softplus

(
W σ2

z
ReLU (dt) + bσ2

z

)
(3.14)

where I denotes the identity function, and ⊙ denotes element-wise multiplication.

Emission Model: We parameterize the emission function in Equation 3.9 using a two-

hidden layer network as:

µθy (zt) = W e3 ReLU (W e2 ReLU (W e1zt + be1) + be2) + be3 (3.15)
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Posterior Inference Model: We use a Bi-directional Gated Recurrent Unit network

(Chung et al., 2014) (GRU) to process the sequential order of RR intervals backward

from yT to yt+1 and forward from yt+1 to yT . The GRUs are denoted here as ht =

GRU
(
W yyT , . . . ,W yyt+1

)
and gt = GRU

(
W yyt+1, . . . ,W yyT

)
, respectively. The hid-

den states of the GRUs parametrize the variational distribution, which are combined with

the previous latent states for the inference in Equation 3.11 as follows:

h̃t =
1

3
(tanh (W hzt + bh) + ht + gt)

µϕ(zt,yt+1:T ) = W µh̃t + bµ

σ2
ϕ(zt,yt+1:T ) = softplus

(
W σ2h̃t + bσ2

) (3.16)

All the hidden layer sizes are 256, and the latent space sizes are 128. Input and output

segments at each timestep are of size 90. We use Adam (Kingma and Ba, 2014) for opti-

mization, with a learning rate of 0.0008, exponential decay rates β1 = 0.9, and β2 = 0.999.

We train the models for 5000 epochs, with a minibatch size 128. We set the regularization

hyperparameter β = 0 at the beginning of training and gradually increase it until β = 1 is

reached at epoch 1250.

3.3 Experiments

3.3.1 Dataset

The MIMIC-III Waveform Database Matched Subset (Moody et al., 2020; Johnson et al.,

2016a) was used for the experiments. The database contains recordings collected from pa-

tients at various hospitals. Each session has multiple physiological signals, including PPG

and ECG signals, sampled at a frequency of 125 Hz. We used the records of 43 healthy sub-
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jects and 12 subjects having AFib, including 30 males and 25 females, 23-84 years old. The

dataset is made publicly available 1. Each record duration is 5 minutes. The first 48 s of each

record were used as the training set, the next 12 s as the validation set, and the remaining 228

s as the test set. The preprocessing steps, including filtering, alignment, and normalization,

were performed as described in (Tang et al., 2022). We applied HeartPy (Van Gent et al.,

2019; van Gent et al., 2019) to identify peaks in PPG signals. Each long signal is split into

4-s chunks. Each peak-to-peak interval was linearly interpolated to a length of 90 during

training, which is the mean length of the intervals in the training set. The original interval

length information can be preserved by making it an additional feature along with each nor-

malized interval. Alternatively, we can apply padding instead of interpolation. However, we

found that these did not contribute to improving the performance under the experimental

setting. Original PP interval lengths were used as RR interval lengths in translated ECG

signals during testing. This can be justified, as PPG recordings are used to analyze heart

rate variability as an alternative to ECG (Lu et al., 2009; Aschbacher et al., 2020). Noise was

added to the signals for robustness evaluation. The amplitudes of the baseline noise signals

are 0.3, 0.4, and 0.1, and the frequencies are 0.3, 0.2 and 0.9 Hz, respectively. Gaussian noise

of standard deviation 0.3.

3.3.2 Evaluation Metrics

ECG Translation from PPG

Pearson’s correlation coefficient (ρ) measures how much an original ECG signal y1:T and its

reconstruction ŷ1:T co-vary:

ρ =
(y1:T − ȳ1:T )

⊤ (ŷ1:T − ¯̂y1:T )

∥y1:T − ȳ1:T∥2 ∥ŷ1:T − ¯̂y1:T∥2
(3.17)

1https://github.com/khuongav/dvae ppg ecg
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Root Mean Squared Error (RMSE) measures the differences between the values of the original

signal and its reconstruction:

RMSE =
∥y1:T − ŷ1:T∥2√

ny
(3.18)

Signal-to-Noise Ratio (SNR) compares the level of the desired signal to the level of undesired

noise:

SNR = 20 log
∥y1:T∥

2
2

∥y1:T − ŷ1:T∥
2
2

(3.19)

AFib Detection

Performance was measured by the Area under the Receiver Operating Characteristic (ROC-

AUC), the Area under the Precision-Recall Curve (PR-AUC), and the F1 score. The PR-

AUC is considered a better measure for imbalanced data.

3.3.3 Implementation and Results

ECG Translation from PPG

Table 3.1 shows the performance of our model and compares it with other models in terms

of means and standard deviations of ρ, RMSE and SNR. The correlation between the signals

generated by our model and the reference signals is statistically strong, with a value ρ of

0.858. Also, low values of RMSE (0.07) and high SNR (15.365) show strong similarities

between them and reference ECG signals. When the attention mechanism is not applied on
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Table 3.1: ECG translation performance of different models. The top three rows show
models’ performance on healthy subjects, while the fourth row shows the performance on
both the healthy and AFib subjects. If not specified, healthy subjects and clean signals is
the default setting. The LSTM model (Tang et al., 2022) is subject-dependent, while the
P2E-WGAN (Vo et al., 2021) and our model are subject-independent.

Correlation RMSE (mV) SNR (dB)

ADSSM 0.858 ± 0.174 0.07 ± 0.047 15.365 ± 11.053

ADSSM
w/o attention 0.823 ± 0.194 0.08 ± 0.047 13.013 ± 10.537

ADSSM
(healthy sub.,
noisy sig.) 0.847 ± 0.174 0.076 ± 0.049 13.887 ± 10.58

ADSSM
(healthy &
AFib sub.) 0.804 ± 0.22 0.078 ± 0.05 12.261 ± 11.328

P2E-WGAN 0.773 ± 0.242 0.091 ± 0.052 9.616 ± 9.252

LSTM
(sub. dependent) 0.766 ± 0.234 0.093 ± 0.053 8.189 ± 9.560

the input PPG, there is a notable decline in performance, with ρ falling to 0.823, RMSE

increasing to 0.08, and SNR decreasing to 13.013. This underscores the importance of the

mechanism in providing relevant contexts for translation. The third row shows our model’s

performance on the noisy dataset. The negligible drop in metrics from 0.858 to 0.847 (ρ), 0.07

to 0.76 (RMSE), and 15.365 to 13.887 (SNR) demonstrates the robustness of our model. We

attribute this to the probabilistic nature of the model, which better handles the measurement

noise. As expected, the model performed worse on subjects with AFib due to the erratic

patterns of the AFib signals (no visible P waves and an irregularly irregular QRS complex).

In the next section, we show that the synthetic AFib signals are beneficial to the downstream

detection task.

The P2E-WGAN model (Vo et al., 2021), a 1D deep convolutional generative adversarial

network (4,064,769 parameters) for signal-to-signal translation, was recently proposed to

translate PPG into ECG signals from a large number of subjects. P2E-WGAN achieved
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significantly lower performance than our model (645,466), requiring almost six times the

parameters. Our model is less affected when data is scarce, which is common in healthcare.

On the other hand, the LSTM model (Tang et al., 2022) is a deep recurrent neural network

that was also recently proposed and built separately for each subject. The performance of

our model, trained in a cross-subject setting, surpassed that of the LSTM model trained

separately for each subject. These results prove the effectiveness and efficiency of our pro-

posed sequential data structure. Further work with a larger number of subjects having AFib

is needed to demonstrate that we can extend the model to new individuals. In addition,

exploring strategies to manage the class imbalance problem (Johnson and Khoshgoftaar,

2019), which arises from the fewer AFib records compared to the healthy ones, would be

beneficial.

In Figure 3.4, translated ECG waveforms are plotted with respect to the reference ECG

waveforms of different heart rates. We can see that the model closely reconstructed the

waveforms and maintained their essential properties, such as the missing P waves of the AFib

ECG. In addition, we can be informed of the translation uncertainty by using a posterior

on the latent embedding to propagate uncertainty from the embedding to the data. More

specifically, with a distribution p(z) on the latent feature our predictions will be pθ (y | x) =∫
pθy (y | z) pθz (z | x) dz. This would make the model more trustworthy and give patients

and clinicians greater confidence in using it for medical diagnosis (Begoli et al., 2019). Future

studies are expected to investigate methods to develop a fully Bayesian model and introduce

a more flexible latent space (Tran et al., 2023; Bendekgey et al., 2024). Such advancements

are advantageous in the medical field, particularly when data availability is limited or when

uncertainty quantification and learning interpretable representations are essential.
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Table 3.2: AFib detection performance. The performance on the translated ECG is evaluated
when the MINA model (Hong et al., 2019) is trained on real ECG but tested on synthetic
ECG. The fusion performance is when the MINA model is extended to receive both real ECG
and synthetic ECG inputs. x% random time samples are omitted, simulating intermittent
ECG recording, while synthetic ECG is always available.

Real ECG Translated ECG

ROC-AUC 0.995 ± 0.006 0.99 ± 0.004
PR-AUC 0.987 ± 0.013 0.986 ± 0.007

F1 0.985 ± 0.009 0.944 ± 0.014

Fusion 30% missing 50% missing 70% missing

ROC-AUC 0.992 ± 0.006 0.99 ± 0.006 0.99 ± 0.009
PR-AUC 0.986 ± 0.011 0.982 ± 0.012 0.981 ± 0.016

F1 0.971 ± 0.01 0.969 ± 0.012 0.956 ± 0.046

AFib Detection

We evaluated the performance of our model on the benefits of the translated ECG for the

AFib detection task. To do so, we used a state-of-the-art AFib detection model, Multilevel

Knowledge-Guided Attention (MINA) (Hong et al., 2019), trained on real ECG signals, each

of 10 s, and tested against synthetic. It should be noted that any pre-trained AFib detection

model can be used in our pipeline. Table 3.2 reveals the mean detection performance of the

model in the translated ECG that is close to that of the real ECG, ROC-AUC of 0.99 vs.

0.995, PR-AUC of 0.986 vs. 0.987, and F1 of 0.944 vs. 0.985. This implies that our model

allows for the combined advantages of ECG’s rich knowledge base and PPG’s continuous

measurement.

Furthermore, we extended the ability of the MINA model to receive real and translated ECG

signals by incorporating the translated frequency channels into the model. In this scenario,

both ECG and PPG signals can be measured simultaneously. This setting requires retraining

of the MINA model on the fused real and synthetic ECG signal data set. To simulate the

real-life setting where ECG measurement is intermittent while PPG input is continuous, we

randomly zeroed out time samples with different probabilities: 30%, 50%, and 70%. As
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shown in the bottom results of Table 3.2, the performance remains almost unchanged in the

fusion mode across the omission thresholds. Additionally, the model learns to utilize the

sparse real ECG to marginally improve performance against only the translated ECG.

3.4 Conclusion

In this work, we present a novel attention-based deep state-space model to generate ECG

waveforms with PPG signals as input. The results demonstrate that our model has the

potential to provide a paradigm shift in telemedicine by bringing about ECG-based clinical

diagnoses of heart disease via simple PPG assessment through wearable devices. Our model,

trained on a small and noisy dataset, achieves an average Pearson’s correlation of 0.847,

RMSE of 0.076 mV, and SNR of 13.887 dB, demonstrating the efficacy of our approach. Sig-

nificantly, our model enables the AFib monitoring capability in a continuous setting, assisting

a state-of-the-art AFib detection model to achieve a PR-AUC of 0.986. Being a lightweight

method also facilitates its deployment on resource-constrained devices. In our future work,

we aim to validate the generalizability of the model with other pairs of physiological signals.

Our method allows for the screening and early detection of cardiovascular diseases in the

home environment, saving money and labor, while supporting society in unusual pandemic

situations.
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(a) Clean input PPG (b) Clean input PPG

(c) Noisy input PPG (d) Noisy input PPG

(e) AFib input PPG (f) AFib input PPG

Figure 3.4: Examples of the translated ECG signals. In each subfigure: the top panel shows
the input PPG waveform and the bottom panel shows the reconstructed ECG waveform
compared with the reference waveform. The average ECG waveform (dark blue) of all
possible pulses overlaid on each individual pulse (light blue).
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Chapter 4

Composing Graphical Models with

Generative Adversarial Networks for

EEG Signal Modeling

4.1 Introduction

Electroencephalogram (EEG) is a non-invasive technique that measures the spontaneous

electrical activity of the brain. EEG has been a driver of studies from basic neurological

research to clinical applications. EEG modeling is essential to understanding the underlying

mechanisms that generate brain signals and serve to design experiments and test hypotheses

in silico. There exist extensive prior works on EEG computational models (Glomb et al.,

2020) that derived principled neuroscience laws, empirically validated rules, or other do-

main expertise. Those are often in the form of general time-dependent and nonlinear partial

differential equations. Nevertheless, they rely on strong assumptions which are not always

generalizable. Further, those are slow to simulate and often suffer from model misspecifica-
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tions.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) provide a powerful frame-

work and tools for machine learning, especially for deep representation learning and gener-

ative models. Over the past few years, GANs have witnessed tremendous advancements

and achieved state-of-the-art performance in a variety of prominent tasks, including photo

editing, video prediction, text generation, and signal synthesis (Jabbar et al., 2020; Vo et al.,

2021). As a data-driven method, GANs are flexible and do not depend on rigid assumptions.

Therefore, GANs hold great potential in modeling the inherent stochasticity and extrinsic

uncertainty of EEG signals.

Recent work (Hartmann et al., 2018; Aznan et al., 2019; Pascual et al., 2019) applying

GANs in EEG synthesis tend to simply characterize the spatio-temporal characteristics of

EEG data subject to latent spaces of basic distributions, e.g., Gaussian or uniform distri-

butions. Such assumptions impose limitations in capturing the intrinsic dependence among

latent variables. Also, the GANs require deeper networks to synthesize longer sequences,

which are computationally expensive and challenging to train, e.g., vanishing or exploding

gradient problems. Moreover, the lack of inference capability in vanilla GANs hinder in-

sight into structural information of EEG signals. On the other hand, probabilistic graphical

models (Koller and Friedman, 2009; Wu et al., 2015) enable inference through structured

representations but often lack the capability to model arbitrarily complex distributions.

To address these challenges, we propose a novel GAN-based approach for EEG signal mod-

eling that couples deep implicit likelihoods (Mohamed and Lakshminarayanan, 2016) with

structured latent variable representations to combine their complementary strengths. Our

method uses graphical models for representing underlying structures of the signals, and

applies ideas from the Graphical-GAN (Li et al., 2018) for effectively learning not only a

generative model mapping from latent distributions to complex high-dimensional EEG data

space but also an inverse inference model mapping from the data space to the latent space.
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Our study paves the way for leveraging implicit probabilistic models to comprehensively

investigate the mechanisms that generate brain waves.

4.2 Methodology

4.2.1 EEG Signal Synthesis with GANs

A GAN is a generative model trained by a pair of neural networks in a game-theoretic ap-

proach (Goodfellow et al., 2014). In GANs, a discriminator neural network D is trained to

distinguish real from synthetic EEG signals, while a neural generator network G is trained

to generate EEG signals from a latent space to make them indistinguishable by the discrim-

inator. With EEG signal x drawn from data generating distribution q(x), z drawn from

noise prior pz, and p(x) is the generator’s distribution over synthetic data, G and D jointly

optimize the following objective:

LGAN(G,D) = Ex∼q(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))]

= Ex∼q(x)[logD(x)] + Ex∼p(x)[log(1−D(x))]

(4.1)

The discriminator is expected to output a high probability for a valid EEG signal and a low

probability for a synthesized one, corresponding to the values of logD(x) and log(1−D(G(z)),

respectively. G and D are trained simultaneously until G is able to successfully fool D.

Following the proofs in (Goodfellow et al., 2014), given a fixed generator G, the optimal

discriminator is given by D∗(x) = q(x)
q(x)+p(x)

Under an optimal discriminator D∗, the generator minimizes the Jensen-Shannon (JS) di-

vergence, which attains its minimum if and only if p(x) = q(x).
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4.2.2 Conjoining GANs with Bayesian Networks

Generative and Inverse Inference Process

(a) Generative model - p

(b) Inverse inference model - q

Figure 4.1: Directed graphical models for EEG signal modeling. Each time step corresponds
to a δ-second multi-channel signal. Shaded nodes represent observed variables. Clear nodes
represent latent variables. Directed edges indicate statistical dependencies between variables.

As shown in Figure 4.1, we model the generative process and the inverse inference process by

a generative model and an inverse inference model in the Bayesian network. The framework

exploits a Gaussian mixture model (GMM) to characterize the static latent variable structure

with its capability to approximate arbitrary distributions, and a Markov model for the

dynamic latent characterization. We use the notations p and q to denote the generative and

inverse inference models.

48



The joint distribution of the generative model p is

p(x1:T , v1:T , z, k, c)

= p(k)p(z | k)p(c)
T∏
t=1

p(vt | vt−1)p(xt | z, vt, c)
(4.2)

where p(k) and p(c) are simple prior distributions for Gaussian mixture indicator k and

condition c, e.g., a categorical distribution and a uniform distribution, p(z | k) models

a component selecting procedure for sampling noise z which encodes the temporal-spatial

relationships invariant across time, vt’s form a first-order Markov chain, with p(v1|v0) ∼

N (0, I), to encodes the temporal relationships variant across time, p(xt | z, vt, c) specifies

the conditional probability of the data at each time step t given noise z, state vt, and

condition c, and is of interest for the final generation.

The distribution function p(x1:T , v1:T , z, k, c) is parametrized as generator neural networks.

It consists of three parts: zp = G1(k
p), vpt+1 = G2(v

p
t , ϵt), ϵt ∼ N (0, I), and xpt = G3(z, v

p
t , c).

G1 is responsible for a mapping from the input prior to a mixed Gaussian distribution with

respect to kp. G2 transitions to a new state vpt given the previous state. G3 uses noise zp,

state vpt , and condition c to generate the synthetic δ-second EEG signal xpt .

The joint distribution of the inverse inference model q is

q(x1:T , v1:T , z, k, c)

= q(x1:T )q(z | x1:T , c)q(k | z)
T∏
t=1

q(vt | xt)
(4.3)

where each latent variable of the Markov structure is assumed to be independent using the

mean-field approximation (Jordan et al., 1999). q(x1:T ) is the empirical data distribution,

q(z | x1:T , c), q(vt | xt), and q(k | z) are of interest for the inference. Contrary to p(vt+1 | vt),

q(vt | xt) models a dynamic tracing procedure for reconstructing the hidden features vt. In
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contrast to p(z | k), q(k | z) models a component tracing procedure for reconstructing the

Gaussian mixture indicator k.

The distribution function q(x1:T , v1:T , z, k, c) is parametrized as extractor neural networks.

It consists of three parts: zq = E1(x
q
1:T , c), v

q
t = E2(x

q
t ), and kq = E3(z

q). E1 and E2 are

responsible for a mapping from original signals to noise zq and state vqt , respectively. E3

infers within the latent space from zq to kq.

Learning Process

Our goal is to learn the parameters of the generative model p and the inverse inference model

q by jointly minimizing the Jensen-Shannon (JS) divergence

JS(q(x1:T , v1:T , z, k, c)∥p(x1:T , v1:T , z, k, c)) (4.4)

Expectation Propagation (EP) (Minka, 2013), a deterministic approximation algorithm, is

proposed to utilize the locally structured data following (Li et al., 2018). The joint distribu-

tions can be factorized in terms of a set of factors FG = {(k, z) , (vt, vt−1) , (xt, vt, z, c)}. For

a factor a, the divergence of interest is

JS (q(a)
∏
b ̸=a

q(b)∥p(a)
∏
b̸=a

p(b)) (4.5)

EP iteratively minimize a local divergence in terms of each factor individually with the

assumption that
∏

b̸=a q(b) ≈
∏

b ̸=a p(b). The divergence becomes

JS (q(a)
∏
b ̸=a

q(b)∥p(a)
∏
b̸=a

q(b)) (4.6)
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Using the same proof sketch as in (Li et al., 2018), the divergence for factor a is approximated

as

JS (q(x1:T , v1:T , z, k, c)∥p(x1:T , v1:T , z, k, c))

≈ Eq
[
log

2q(a)

p(a) + q(a)

]
+ Ep

[
log

2p(a)

p(a) + q(a)

] (4.7)

The divergences are further averaged over all local factors as

1

|FG|

Eq
∑
a∈FG

log
2q(a)

p(a) + q(a)

+ Ep

∑
a∈FG

log
2p(a)

p(a) + q(a)

 (4.8)

Individual parametric discriminators Da can be employed to estimate the local divergences

as follows

max
ψ

1

|FG|
Eq

∑
a∈FG

log (Da(a))

+
1

|FG|
Ep

∑
a∈FG

log (1−Da(a))

 (4.9)

where ψ denotes the parameters in all discriminators. The discriminative models distinguish

between the variables from the generative model p and those from the inverse inference model

q as synthetic and original, respectively.

Optimization Objective

Three discriminators D3, D2 and D1 receive local variable pairs, i.e., (k, z), (vt, vt−1),

(xt, vt, z, c), from either the generative model p or the inverse inference model q, separately.

The adversarial loss is as follows
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LGAN(G∗, E∗, D∗)

= Eq
[
logD3 (k

q, zq) + logD2

(
vqt , v

q
t−1

)
+ logD1 (x

q
t , v

q
t , z

q, c)
]

+ Ep
[
log (1−D3 (k

p, zp)) + log
(
1−D2

(
vpt , v

p
t−1

))
+ log (1−D1 (x

p
t , v

p
t , z

p, c))]

(4.10)

All components are trained simultaneously in an adversarial process. Let θ and ϕ denote the

parameters of G∗ and E∗, respectively. Iteratively, D∗ learn to maximize Equation 4.10 by

updating ψ, while G∗ and E∗ learn to minimize Equation 4.10 by updating corresponding

parameters θ and ϕ, respectively.

In order to ensure the global consistency of an entire signal across time steps, a frequency

domain loss is added as

Lf (G∗) = ∥r̄(xqi,1:T )− r̄(x
p
i,1:T )∥1 + ∥φ̄(x

q
i,1:T )− φ̄(x

p
i,1:T )∥1 (4.11)

where r̄ and φ̄ refer to the average magnitude and phase across signals i in a batch, respec-

tively. They are computed by a fast Fourier transform (FFT). Hence, the total objective is

min
G∗,E∗

max
D∗
LGAN + λLf (4.12)

4.2.3 Network Architectures and Training Hyperparameters

Table 4.1 presents the architectures of the deep neural networks. Each time step corresponds

to a 1-second EEG signal (δ = 1). All the feature maps have 96 channels. Leaky ReLU

activation functions are applied to all layers, with the slope 0.1 to stimulate easier gradient
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Table 4.1: Network architectures. Models having similar architectures are grouped
together.

G2,D3,D2 G3

Linear 512, (SN), lReLU Linear 1536, lReLU
Linear 512, (SN), lReLU Reshape 96x16
Linear 256, (SN), lReLU Upsample

G2 Linear 32 Conv 6, BN, lReLU X 4
D3 Linear 1, SN, Sigmoid Conv 6, BN, lReLU
D2 Linear 1, SN, Sigmoid Conv 1, Tanh

D1 E2,E1

Get xt or x[1,T ] (concatenated along channels)
Conv 1, lReLU - 96x256
Conv 6, BN/SN, lReLU

Conv 6, Stride 2, BN/SN, lReLU
X 4

Reshape 1536
Get vt, z, c

Linear 256, SN, lReLU
E2 Linear 32
E1 Linear 128

Join features of xt, vt, z, c
Linear 512, SN, lReLU
Linear 1, SN, Sigmoid

flow. Batch normalizations (BN) (Ioffe and Szegedy, 2015) are used at each convolutional

layer of the generators and extractors. Spectral normalizations (SN) (Miyato et al., 2018) are

applied to the discriminators to constrain their Lipschitz constants. c are subject embeddings

as one-hot vectors. The sizes of z, k, and vt, and ϵt are set at 128, 6, 32, and 16 respectively.

G1 and E2 are single-layer neural networks. We use the reparameterization trick (Kingma

and Welling, 2013) to estimate the gradients with the continuous variable z, and the Gumbel-

Softmax trick (Jang et al., 2016) (the temperature of 0.1) to estimate the gradients with the

discrete variable k.

λ is set at 0.1 to have the training process driven mainly by the adversarial loss. In order

to mitigate the issue of slow learning in regularized discriminators, a higher learning rate

is provided to the discriminators than the generators and extractors by the Two Time-

scale Update Rule (TTUR) (Heusel et al., 2017). The models are trained with the Adam
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optimizer with the initial learning rate of 0.0004 for D∗, the learning rate of 0.0001 for G∗

and E∗, and the exponential decay rates β1 = 0.5 and β2 = 0.999. All weights are initialized

using a zero-centered Gaussian distribution with a standard deviation of 0.02. We make the

implementation publicly available 1.

4.3 Experiments

4.3.1 Dataset

The 23-channel interictal EEG recordings from the CHB-MIT epilepsy dataset (Shoeb, 2009)

are used for the experiments. The dataset consists of scalp EEG from pediatric subjects with

intractable seizures. We select a subset of 6 patients (chb01-03, chb05-06, chb10) having the

same measurement setup, including males and females, 1.5-14 years old. Interictal periods are

extracted at least 4-hour away before a seizure onset and after the seizure ends. The signals

are low-pass filtered with a cut-off frequency at 50 Hz and scaled to the range [−1, 1]. Overall,

the dataset contains 43593 signals, from which 70% are used for training and validation, and

the other 30% are used as the test set. Each signal is 10-second long (T=10), at a sampling

rate of 256 Hz. Additionally, 339 ictal EEG signals are extracted for evaluating epilepsy

seizure detection performance.

4.3.2 Evaluation Metrics

Sliced 2-Wasserstein distance (SWD) (Bonneel et al., 2015; Flamary et al., 2021) quantifies

the cost of transforming one distribution to another. It is an approximation to the 2-

1https://github.com/khuongav/Graphical-Adversarial-Modeling-of-EEG
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Wasserstein distance using 1D projections for a closed-form solution and is defined as

SWD2(µ, ν) = E
θ∼U(Sd−1)

[
W2

2 (θ#µ, θ#ν)
] 1

2 (4.13)

where µ and ν are two probability measures, θ#µ stands for the pushforwards of the pro-

jection Rd ∋ X 7→ ⟨θ,X⟩, and U
(
Sd−1

)
is the uniform distribution on the hypersphere of d

dimensions.

Spectral entropy (SEN) measures the uniformity the of signal energy distribution in the

frequency-domain. It is given by

H(x) = −
fs/2∑
f=0

P (f) log2[P (f)] (4.14)

where P is the normalised power spectral density, and fs is the sampling frequency of signal

x.

Reconstruction error (REC) measures the differences between the values of an original signal

and its reconstruction x̃ as

REC = ∥xq1:T − x̃
q
1:T∥1 (4.15)

4.3.3 Results and Discussion

Table 4.2 presents the performance of our proposed approaches and the comparison with the

BiGAN/ALI model (Dumoulin et al., 2016; Donahue et al., 2016). We denote its conditional

version as C-BiGAN/ALI. GMMarkov-GAN is our model characterized by Gaussian mixture

and Markov latent structures, while Markov-GAN is only with the Markov structure. C-

BiGAN/ALI is the GAN with an inference capability but without a latent variable structure,
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Table 4.2: Performances of different GAN models in interictal EEG signal synthesis and
reconstruction tasks.

SWD REC SEN
Original data 0.620 ± 0.070
GMMarkov-GAN 1.16e-2 0.0474 ± 0.0392 0.608 ± 0.063
Markov-GAN 1.34e-2 0.0494 ± 0.0413 0.636 ± 0.070
GMMarkov-GAN (w/o FFT) 1.70e-2 0.0519 ± 0.0438 0.585 ± 0.074
Markov-GAN (w/o FFT) 1.78e-2 0.0530 ± 0.0391 0.583 ± 0.069
C-BiGAN/ALI 2.13e-2 0.0562 ± 0.0415 0.539 ± 0.066

Figure 4.2: Last 10-second of a 30-second synthetic 23-channel EEG signal by the
GMMarkov-GAN model, conditioned on patient 3. 5 channels with the highest standard
deviations are shown.

in which the latent space is a simple Gaussian, and data at each timestep are generated

independently.
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Both the graphical GANs achieve significantly lower SWD, REC, and SEN differences than

C-BiGAN/ALI, indicating that they are better at capturing the characteristics of EEG

in both time and frequency domains. Besides, by encoding the invariant spatial-temporal

features of EEG signals subject to the flexibility of a Gaussian mixture, GMMarkov-GAN

enjoys better performance (SWD of 0.0173, REC of 0.0519, and SEN difference of 0.035) than

the Markov-GAN. We attribute this to GMMarkov-GAN being able to learn a structured

clustering of the latent space as shown in Figure 4.3. These results prove the effectiveness

of our proposed data structures and confirm our inverse inference strategy.

By training with the additional FFT loss, GMMarkov-GAN enjoys the highest performance

(SWD of 0.0116, REC of 0.0474, and SEN difference of 0.012). It should be noted that the

frequency-domain loss added little time for training, yet it noticeably improved the results.

In Figure 4.2, synthetic multi-channel EEG signals are plotted. The signals are naturally

realistic across channels and show good fits in different frequency bands. Although our model

is trained on 10 second-long signals, it can generate much longer sequences of 30 seconds,

thanks to the Markov structure.

To demonstrate the efficacy of our generative and inverse mapping approach for auxiliary

tasks, we further evaluated our approach in epilepsy seizure detection. As the model is

trained on the interictal EEG signals, seizure segments are detected with reconstruction

error thresholds in an anomaly detection framework. Figure 4.4 shows a high detection

performance from our model by the ROC curve with the area under the curve of 0.92,

competitive with contemporary approaches in supervised learning (Siddiqui et al., 2020).

We plan to build on these results in our future work for interpreting more encoded features

in the low-dimensional manifolds and further investigate the partial mode collapse issue of

GANs (Bau et al., 2019).
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(a) C-BiGAN/ALI

(b) GMMarkov-GAN

Figure 4.3: t-SNE visualization of the static latent spaces.

4.4 Conclusion

In this work, we proposed an EEG modeling scheme that combines the strengths of prob-

abilistic graphical models and generative adversarial networks. Our experimental results

demonstrate that our method effectively characterized EEG latent variable structure via a

Gaussian mixture and a Markov model. The structured representations can provide inter-

pretability and encode inductive biases to reduce the data complexity of neural oscillations.
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Figure 4.4: ROC curve for epilepsy seisure detection.

Our approach holds promise to new generative applications in neuroscience and neurology.

Future directions include generalizing learning and inference algorithms with more compli-

cated structures to truly model the underlying relationships at different scales spanning from

the single cell spike train up to macroscopic oscillations.
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Chapter 5

Deep Latent Variable Joint Cognitive

Modeling of Neural Signals and

Human Behavior

5.1 Introduction

Current approaches to understanding brain function emphasize the search for statistical

relationships between human behavior and individual physiological measures (EEG, fMRI,

fNIRS, etc.; e.g. Itthipuripat et al., 2019). Behavioral measures, such as accuracy and speed

of responses, reflect latent cognitive processes that underlie decision making that are not

observed directly and must be inferred by cognitive models (Lee and Wagenmakers, 2014).

An ongoing challenge in computational cognitive neuroscience research is formulating the link

between brain activity and latent cognitive processes. Here, we present a novel approach

that allows a theoretical account of the cognitive process of decision-making, and artificial

neural networks to estimate a joint latent space to link cognitive parameters to both neural
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signals and behavioral measures. This joint latent space model is a valuable new framework

for computational cognitive neuroscience, allowing for new forms of inference and hypothesis

generation.

Previous work has focused on neurocognitive relationships between human neural data and

behavioral data in decision-making tasks (Nunez et al., 2015, 2017, 2019; Lui et al., 2021;

Turner et al., 2013, 2016). The hierarchical Bayesian models used in these projects make

strong predictions about the relationships between brain activity and the speed of decision-

making. These models typically make use of the drift-diffusion model (DDM; Ratcliff and

McKoon, 2008), a widely-used cognitive model in decision-making, as their generative model

of choice and reaction time data. To integrate neural signals, these models require knowl-

edge of previously discovered features of the neural data (e.g., known functional signals in

the cognitive neuroscience literature) that are then linked by prescribed (usually linear) re-

lationships to the latent cognitive variables in a Bayesian hierarchical model. The resulting

neurocognitive models test the relationship between neural signals and cognitive variables,

and enhance the accuracy of predictions of behavior directly from brain signals (Turner

et al., 2016; Nunez et al., 2017). This can be thought of as one domain of the larger field of

model-based cognitive neuroscience (Forstmann and Wagenmakers, 2015).

A limitation of this approach is that we must know in advance which brain signals are possibly

linked to cognitive functions. However, advances in frameworks and tools for neuroscience

allow for the discovery of previously unknown neural features that we could use to explain

latent cognitive variables. Ideally, such frameworks operate across observations, experimental

manipulations, and individual differences. Deterministic models that leverage deep learning

have been proposed for learning feature representation of EEG data to analyze and decode

brain activity (Roy et al., 2019). As a notable example, Sun et al. (2022) have proposed a

SincNet-based neural network that made use of EEG signals to learn the latent cognitive

variables of the DDM on individual decisions. This approach identifies time windows of
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information processing and frequency bands that can be used to predict latent processes

directly from EEG data as a trial-level association between neural features, choice, and

response time.

This work aims to develop a deep probabilistic method for linking neural data from EEG

to the latent parameters of a cognitive model. The innovation of our work lies in the use of

a theoretical account of the cognitive process. This theoretical account drives the analysis

of neural and behavioral measures. The framework allows for one-step, joint inference on

integrative neurocognitive models that map EEG and behavior into a joint latent space.

Uniquely, this new approach has the potential to allow us to generate task-relevant EEG

signals from behavioral data, and predict modulation of EEG signals by cognitive model

parameters. By combining the exploratory potential of modern latent variable methods with

the theoretical appeal of human-interpretable cognitive model parameters, the proposed

technique can be used to make predictions of brain signals and cognitive parameters in

future experiments to test neurocognitive theories.

5.2 Neurocognitive Variational Autoencoders

5.2.1 Generative EEG Modeling with VAEs

Consider first a data set P def
= {D1, . . . ,DM} containing M subjects, where each subject

Dm
def
= {x1, . . . ,xI} consists of I trials xi ∈ RC×T that are EEG signals of C channels by T

time samples. Throughout the paper, the subscript m is omitted when we refer to only one

subject or when it is clear from the context.

For each subject m, we aim to learn an EEG generative process with a latent-variable model

comprising of a fixed Gaussian prior over latent variables p(z) = N (z | 0, I), where I is
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(a) Generative Process

(b) Regularized Discriminative Process

Figure 5.1: The Neurocognitive VAE. After the generative process (a) learns the joint latent
neurocognitive variables (Section 5.2.2), the regularized discriminative process (b) retrofits
its hierarchical latent space to the joint latent space (Section 5.2.3). Inference networks
q and Generation networks p contain neural network parameters θ and ϕ. Black arrows:
flows of operations. Red arrows: loss functions. MSE and WFPT stand for Mean Squared
Error and Wiener First Passage Time, respectively. The heatmaps represent the probability
distributions in the latent spaces. Plasma color maps are for the drift-diffusion variables
(zC ∈ R3), while greenery color maps are for residual neural variables (zN ∈ R32). Blue
blocks contain µ and σ, which are the parameters of the multivariate Gaussian latent spaces.
Gray blocks contain z sampled (∼) from the distributions. The variables x and y represent
EEG signals and choice-RTs, respectively. Each trapezoid represents a different convolutional
neural network (see Table 5.2 for detailed architectures).
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the identity covariance matrix, and a parametric non-linear Gaussian likelihood pθ(x | z).

The learning process finds θ such that the Kullback-Leibler (KL) divergence is minimized

between the true data generating distribution pD and the model pθ:

argmin
θ

KL (pD(x)∥pθ(x))

= argmax
θ

EpD(x) [log pθ(x)]

(5.1)

where pθ(x) =
∫
Z pθ(x | z)p(z)dz is the likelihood of data point x, approximated by aver-

aging over the latent z.

Nevertheless, estimating pθ(x) is typically intractable. This issue can be mitigated by in-

troducing a parametric inference model qϕ(z | x) to construct a variational evidence lower

bound on the log-likelihood log pθ(x) as follows:

L(x; θ, ϕ)
def
= log pθ(x)−KL (qϕ(z | x)∥pθ(z | x))

= Eqϕ(z|x) [log pθ(x | z)]−KL (qϕ(z | x)∥p(z))

(5.2)

Taking the likelihood model pθ(x | z) to be a decoder and the inference model qϕ(z | x)

to be an encoder, a variational autoencoder (VAE; Kingma and Welling, 2013; Sohn et al.,

2015) considers this objective from a deep probabilistic autoencoder perspective. Here, θ

and ϕ are neural network parameters, and learning takes place via stochastic gradient ascent

using unbiased estimates of ∇θ,ϕ
1
n

∑n
i=1 L (xi; θ, ϕ).

In the following sections, we extend the traditional VAE to create the Neurocognitive VAE

(NCVA) (Figure 5.1). This model allows us to model a joint distribution of neural and

behavioral data. Instead of a training technique that encourages disentanglement, as in β-

VAE (Higgins et al., 2016), NCVA imposes restrictions on latent space by using a cognitive

model that provides interpretability and controllable generation.
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5.2.2 Disentangled Cognitive Latent Space of EEG

Now consider the data Dm
def
= {(x1,y1) , . . . , (xI ,yI)}, consisting, on the one hand, of N

trials of the EEG data xi and, on the other hand, of the corresponding choice response times

(choice-RT) yi. Both xi and yi are associated with a context vector ci (where the applicable

context might be an experimental condition; say, noise conditions ci). For mathematical

simplicity, the context vector c is not mentioned when we refer to one of the data modalities.

Crucially, we propose a generative model with two sources of variation: zC , which is cogni-

tively specific, and zN , which captures any residual neural variations left in x. We assume

the approximate posterior qϕ(zN , zC | x) has the following fully factorized form:

qϕ (zN , zC | x) = qϕN (zN | x) qϕC (zC | x)

qϕN (zN | x) = N
(
zN | µϕN

(x), diag
(
σ2
ϕN

(x)
))

qϕC (zC | x) = N
(
zC | µϕD

(x), diag
(
σ2
ϕD

(x)
)) (5.3)

A Gaussian prior over latent variables p(zC) can be chosen for each subject. We use subject

priors obtained from a Bayesian hierarchical fitting of a DDM using the Markov chain Monte

Carlo (MCMC) (Nunez et al., 2019).

We learn the generative model by maximizing the lower bound on log pθ(x,y) as:

L(x,y; θ, ϕN , ϕC)

= Eqϕ(zN ,zC |x) [log pθ(x | zN , zC) + log p(y | zC)]

−KL (qϕN (zN | x)∥p(zN))

−KL (qϕC (zC | x)∥p(zC))

(5.4)

where pθ(x | zN , zC) = N (x | µθ(zN , zC), I) and p(y|zC) can be any neurocognitive likeli-

hood. This work applies the Wiener First Passage Time distribution (WFPT; Navarro and

65



Fuss, 2009) corresponding to the lower boundary:

p(y|zC)

= Wiener (RT | α, τ, δ)

=
π

α2
e−

1
2(αδ+δ2(RT−τ))

×
+∞∑
k=1

[
k sin

(
πk

2

)
e−

k2π2

2α2 (RT−τ)
]

(5.5)

The probability at the upper boundary is obtained by setting δ′ = −δ. zC comprises of three

parameters including drift rate δ, boundary α, non-decision time (ndt) τ . The bias towards

correct or incorrect responses is fixed at 0.5, that is, the starting point is always unbiased.

The joint inference is performed using only EEG x to ensure that encoder θC would learn to

extract neural features that are tailored to cognitive parameters, without relying on choice-

RT y. This has the advantage of providing more accurate trial-level parameter estimates

that are associated with the EEG data.

Note that the dimension of the cognitive space is significantly lower than that of the residual

neural space. This facilitates the representation of the variation in neural signals only through

flexible zN . Maximizing the likelihood of observing neural signals does not guarantee decoder

θ utilizing zC to output x. In the next section, we present an approach to capture the

correlation between behavior and cognition, as well as the mapping of the variability of

behavior and cognition to neural signals.

5.2.3 Structured EEG Modeling from Behavior

Here, we propose a discriminative model regularized by the generative model learned in

the previous section. We aim to discriminatively learn the distribution of the cognitive

parameters conditioned on behaviors, and the distribution of the neural latent variables
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conditioned on cognitive parameters. The joint latent space inferred from the behavior can

be factorized into the two-level latent space as follows:

qϕB (zN , zC | yi) = qϕ2B (zN | zC) qϕ1B (zC | yi) (5.6)

Inspired by Suzuki et al. (2016), we learn the following approximations, w.r.t parameter ϕ1
B:

EpD
[
KL

(
qϕC (zC | x) | qϕ1B(zC | y)

)]
(5.7)

and w.r.t parameter ϕ2
B:

EpD
[
KL

(
qϕN (zN | x) | qϕ2B(zN | zC)

)]
(5.8)

By decomposing the KL divergences as in Hoffman and Johnson (2016); Vedan-

tam et al. (2017), we effectively minimize KL
(
qavgϕC

(zC | x) | qϕ1B(zC | y)
)

and

KL
(
qavgϕN

(zN | x) | qϕ2B(zN | zC)
)
, where qavgϕ (z | x) = Ep(x|y) [qϕ(z | x)]. As there is lit-

tle posterior uncertainty once conditioned on an EEG signal xi, the approximations are

close to the average posterior induced by each of the EEG xi associated with similar y.

Having fit both the generative and discriminative models, we can now explore the three-way

relationship between behavior, brain activity, and cognitive processes.
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5.3 Experiments

5.3.1 EEG and Behavioral Dataset

We used behavioral and EEG data collected while participants performed a two-alternative

forced-choice task where they had to decide whether a Gabor patch presented with added

dynamic noise is higher or lower spatial frequency (for details, see Experiment 2 by Nunez

et al., 2019). Task difficulty was manipulated by adding spatial white noise to manipulate

the quality of the perceptual evidence available to make the discrimination. The signal

and the noise flickered at 30 and 40 Hz frequencies, respectively. 4 participants performed

the task in blocks of trials at 3 added noise levels (low, medium, and high). Each subject

performed approximately 3000 trials over 7 experimental sessions, while 128 channels of

EEG and behavioral data were recorded. The independent component analysis (ICA)-based

artifact rejection method was used on EEG data to remove eyeblinks, electrical noise, and

muscle artifacts. A subset of 98 EEG channels were selected, excluding channels located in

the outer ring. EEG data were bandpass filtered to 1 to 45 Hz in the frequency domain and

then downsampled from 1000 Hz to 250 Hz in the time domain prior to data analysis. The

data for each subject were divided into 80% for training and validation and the remaining

20% for testing.

5.3.2 Results

To validate the neurocognitive modeling approach, we first examine the trial-by-trial vari-

ability of the parameters within each subject and the generalization of the model to unseen

data. Figures 5.2a and 5.2c show the trial-by-trial correlations between estimated DDM

posteriors and observed choice-RTs in the training data from neural signals and behavior,

respectively. Spearman correlations between fitted drift rates (δ) and choice-RTs are nega-
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Table 5.1: Comparison of the sum of Wiener negative log-likelihood (−
∑

log Wiener (RTi |
ωi)) of four subjects on the test sets. ω̄ represents the median fitted cognitive parameters
from the training set.

Subjects ωtest
i ω̄train

s1 −0.018 0.212
s2 −0.244 0.159
s3 0.264 0.735
s4 0.031 0.230

tively strong. At the same time, there are strong positive correlations between boundaries

(α) and choice-RTs, as well as between non-decision time and choice-RTs. The estimates in

NCVA are regularized by the subject priors obtained from a Bayesian hierarchical fitting of a

DDM using MCMC Nunez et al. (2019). The model was individually fitted for each subject

using choice-RT and accuracy only and accounted for between-condition variability within

subjects. Clear clusters of drift rates and non-decision-time estimates depending on the

noise conditions can be seen, though boundary estimates are highly overlapped. It is worth

noting that uncertainties in the estimates can be inspected from the figures through the

posterior covariance. Understandably, the uncertainties in the estimations from choice-RTs

are significantly higher than from EEG signals, which agree with the theoretical derivations

in Section 5.2.3. Figures 5.2b and 5.2d also demonstrate a satisfactory generalization to

unseen data. The drift rates positively correlate with choice-RTs, whereas the boundaries

and non-decision time negatively correlate with choice-RTs. The model successfully learns

to extract the neural features that account for the choice-RT variability at each trial. To

evaluate whether obtaining trial estimates of cognitive parameters improved the model of

choice and choice-RT data, Table 5.1 presents the Wiener likelihood test for the neurocog-

nitive generalization ability to unseen data. The results show that the use of single-trial

predictions of cognitive parameters ωi provides higher likelihood than the median estimates

ω̄ fitted from the training data. This implies that single-trial estimates better account for

new data compared to median estimates.
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Figure 5.4a shows the average of signals generated by the neurocognitive autoencoder when

given a set of approximately 800 test choice-RTs compared to the average of actual signals

associated with the same choice-RTs. At the selected electrodes, the window of interest is

100 ms pre-stimulus to 500 ms post-stimulus, which captures the N200 waveform. The gen-

erated and original signals appear visually similar in the timing and amplitudes of the peaks

and troughs. Figures 5.4b, 5.4c, and 5.4d depict the trial-averaged frequency spectra and

corresponding ERP waveforms of the reconstructed signals. Regarding the frequency spec-

tra, the most important features are the 30 and 40 Hz peaks, which correspond to the flicker

frequency of the signal (Gabor patch) and spatial white noise, respectively. Interestingly,

the generative model learns to structure output the steady-state visually evoked potentials

(SSVEPs) that occur in response to a visual stimulus flickering at different frequencies, even

though it was never explicitly encoded in the model. Moreover, in the low noise condition

(b), the 30 Hz peak is large and the 40 Hz is small, while in the high noise condition (d),

the 30 Hz peak is reduced and the 40 Hz peak is enhanced. In terms of ERP waveforms,

the model captures the relationships of the N200 peak latencies with respect to the additive

noise conditions. Higher additive white noise in the stimulus effectively increases the latency

and decreases the amplitude of the N200. We focus on the N200 signal because the original

study (Nunez et al., 2019) found strong relationships between N200 latency and choice-RT,

and thus the N200 is a good validation of our model. These prove the convergence of the

model in optimizing the lower bound of the conditional likelihood mapping from behavioral

data to EEG features, which effectively encodes differences in the stimuli presented to the

subjects in the latent variable space.

In addition to evaluating traditional ERP estimates (trial-averaged), we also assess the single-

trial ERP estimate (channel-averaged). To increase the signal-to-noise ratio to better detect

the N200, the first singular-value decomposition (SVD) component obtained from the ERP

response is taken as a channel weighting function. More details of the SVD method can be

seen at (Nunez et al., 2019). Figure 5.6 shows the performance of the model in learning the
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N200 feature in each trial. As shown in Figure 5.6, the distributions of the single-trial N200

peak latencies, as well as the amplitudes calculated from the generated signals, closely match

those of the original signals at three different noise levels. The peak amplitude distribution

is somewhat broader than the original data’s generated distribution. Importantly, the model

can generate the variability of the N200 latency with the experimental manipulation of low,

medium, and high noise, systematically increasing the N200 latency in the generated signals.

Figure 5.8 represents the sensitivity analysis of the choice-RT and drift-diffusion parameters

regardless of the noise conditions. In the left column, we examine the sensitivity of the

neural signals generated by the choice-RTs. We can see similar patterns across subjects

where the increases in choice-RTs lead to significant declines in the 30 Hz and the rises of

the N200 latencies. This confirms the minimization approach of the KL divergence between

the latent spaces inferred from the behavioral data and the neural signals. Power at 40 Hz

reflecting the neural response to the noise also changes according to the choice-RTs, though

the pattern is not as strong as the subjects suppressed the noise signal in all conditions.

One of the powerful tools for exploring the relationship between cognitive processes is to

examine the sensitivity of neural signals to cognitive parameters. The middle and right

columns of Figure 5.8 depict the effect of hypothetical modulations of drift rates and non-

decision time on the generated neural signals. The results show that our model reveals the

intricate interactions between cognitive parameters and neural signals, which is consistent

with prior discoveries in the cognitive modeling literature. As the non-decision time is faster,

the N200 latencies are shorter, and the 30 Hz peaks are larger. Accordingly, the amplitudes

of the N200 peaks are more prominent, though not shown in the figures for clarity. The same

interactions are observed with the increase in drift rates, representing evidence accumulation.

Again, the effects on 40 Hz peaks are weaker and depend on the subjects. We did not observe

the effects of the boundary separation (caution) on the neural signals. The effect can be

reversed with slower non-decision times and lower drift rates. The strongest effects can be
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seen when both parameters influence neural signals. This demonstrates the effectiveness of

the designs of the hierarchical latent variables inferred from choice-RTs and the disentangled

latent space produced by the EEG data.
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(a) Fitted from EEG (training data)

(b) Predicted from EEG (test data)

(c) Fitted from choice-RTs (training data)

(d) Predicted from choice-RTs (test data)
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Figure 5.3: Drift-diffusion single-trial parameter estimations from correct responses of sub-
ject s1. The parameters are constrained by the subject priors resulting from a Bayesian
MCMC modeling (without EEG data). Scatter plots illustrate the relationship between the
parameters and the observed choice-RTs for each trial. The top two rows are posterior infer-
ences from neural signals, while the bottom two are from behaviors. The left column shows
the drift-rate (δ) estimates, the middle column shows boundary (α) estimates, and the right
column presents non-decision time (ndt) estimates. The correlations between the choice-
RTs and the inferred DDM parameters are consistent with what is expected. On top of each
panel are the Spearman correlation coefficients (ρ). The covariances of the inferred param-
eters are indicated by circles, which correspond to contours having one standard deviation.
For clarity, each circle is magnified 300 times.
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(a) EEG data at the selected electrodes

(b) Low noise condition

(c) Medium noise condition

(d) High noise condition
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Figure 5.5: Performance of the model in reconstructing 98 EEG channels of subject s1 by
averaging ≈ 800 predicted EEG trials from ≈ 800 choice-RTs in the test set. Time point
zero denotes the time point of stimulus onset. The first row displays the original (blue) and
generated (orange) trial-averaged EEG data at the pooled electrodes. The x-axis denotes
the time in milliseconds from stimulus onset, and the y-axis denotes the signal amplitude.
The second, third, and fourth rows are (left) frequency spectra and (right) EEG signals
averaged over all test choice-RT trials (≈ 800/3 per condition). The signals on the right are
low-pass filtered at 15 Hz for clarity of N200 peaks. Each colored line corresponds to one
reconstructed EEG channel. In low-noise conditions, the spectra show a strong peak at the
Gabor flicker frequency of 30 Hz, and the ERP waveform shows a shorter N200 latency and
larger peak amplitude. Under high-noise conditions, the spectra show a strong peak at the
noise flicker frequency of 40 Hz, and the ERP waveform shows a longer N200 latency and a
smaller peak amplitude.
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4

Figure 5.6: Performance of the model in reconstructing single-trial N200 peaks from choice-
RTs in four subjects. The dotted lines are references to the original data. The distributions
of (left) single-trial N200 peak latencies across three noise conditions and (right) the N200
peak amplitude statistics are shown. Single-trial observations of the peak latency of N200
are found using the SVD method (Nunez et al., 2019) for each subject and noise condition.
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4
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Figure 5.8: Sensitivity analysis of choice-RTs and latent drift-diffusion parameters on EEG
signal generation in four subjects. The left column presents the effects of choice-RTs on
the output neural signals. The blue bars represent the power at 30 Hz, while the red bars
represent the power at 40 Hz. The orange bars show the N200 latencies. The middle column
shows the changes in the single-trial N200 distribution w.r.t to hypothetical changes in the
cognitive parameters. The yellow distribution represents the reference data, while the blue
and red ones correspond to modified parameter settings that decrease or increase the N200
latencies, respectively. The modification in subject s4 (ndt ± 0.05, δ± 0.3) is different from
other subjects. The right column characterizes the changes in 30 Hz and 40 Hz peaks w.r.t
to the changes in the same cognitive parameters.

5.4 Conclusion

In this work, we proposed a joint behavioral and EEG modeling approach driven by a cog-

nitive model of decision making. The experimental results demonstrate the effectiveness

of our Neurocognitive VAE in simultaneously modeling high-dimensional EEG signals and

low-dimensional behavioral data. Remarkably, the model learns essential task-relevant neu-

ral features, e.g. N200 peaks and SSVEP, without explicit specification in the optimization

objective. Furthermore, the model captures how these features modulate behavior, specif-

ically discovering relationships between brain activity and behavior consistent with other

models based on prior knowledge. This suggests that the Neurocognitive VAE helps uncover

neural signals linked to behavioral data by mapping to a structured latent space. Compared

to the aforementioned published joint models (Nunez et al., 2015, 2017, 2019; Lui et al.,

2021; Turner et al., 2013, 2016), our end-to-end model is capable of inferring task-relevant

EEG features from behavior without prior knowledge of which features to optimize. The

structured latent space allows the learning of behavioral variability to drive the EEG data

generation process, leading to the prediction of the structure of EEG features in relation

to the stimuli used in the experiments (N200 and SSVEP) and the behavioral performance

(choice-RT). In addition, the model allows us to directly map the variability of cognitive pa-

rameters to neural signals, allowing for theoretical predictions that guide future experimental
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studies. It should be noted that our framework does not serve to refine the functional form

of process-oriented computational models. Instead, it presumes a set of fixed assumptions;

in the DDM, a constant drift rate and boundary separation within trials. Importantly, our

framework can be generalized to encompass any other neural measures combined with any

cognitive model to explain behavior, provided that the cognitive model expresses a closed-

form likelihood of behavioral data. Importantly, by parameterizing the likelihood by a deep

neural network receiving neural data as input, trial-level parameter inferences are made

possible. In this research, we assume a DDM posterior with a diagonal covariance matrix.

This could lead to an overestimation of the variance of the marginal posteriors if the true

posterior has dependencies. It would be beneficial to investigate the use of a full covariance

matrix as an alternative. It is important to mention that our validation process focused on

correct responses. Due to the low number of incorrect responses compared to correct ones,

we lack confidence in interpreting the results in this study for the incorrect trials, although

the direction of the trial-level parameter fits was consistent with the results for correct trials.

We anticipate future research to explore strategies to address the class imbalance problem in

deep learning models (Johnson and Khoshgoftaar, 2019). Further work with a larger dataset

is needed to demonstrate that we can extend the model to new individuals. In principle,

this would potentially allow us to predict brain activity in clinical populations with known

behavioral differences.

Data and Code Availability Statement

The dataset analyzed during the current study is available on https://zenodo.org/record/

8381751, and the implementation of the model is in the following repository https://

github.com/khuongav/neurocognitive_vae.
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5.5 Supplementary Materials

5.5.1 Neural Network Architectures and Training Hyperparame-

ters

The inferential and generative processes are parameterized by deep neural networks, as shown

by the flows in Figure 5.1. Table 5.2 details the architectures of the five networks. The input

EEG signals are of size 98 x 250 (1 second of data of 98 channels at 250 Hz). The feature

extraction layers in the EEG and cognitive encoders are similar to Vo et al. (2022). All the

feature maps have 128 channels. Leaky ReLU (lReLU) activation functions are applied to

all layers, with a slope of 0.1 to stimulate easier gradient flow. Batch normalizations (BN)

(Ioffe and Szegedy, 2015) are used in each convolutional layer of the encoders and decoders.

Self-attention layers (Zhang et al., 2019) are applied in the encoders and decoders to better

account for long-range relationships in time series. c are noise condition embeddings as one-

hot vectors (size 3). The size of zN is set at 32 as increasing the dimension did not lead to

any improvement in performance on a validation set.

In Equation 5.4, the term log p(y | zC) is weighted by λ = 2 to scale up the likelihood

of low-dimensional behavior. The KL terms are weighted by β = 20. The KL terms are

normalized to balance the KL divergence loss and the reconstruction loss. Please refer to

Sections 4.2 and A6 of (Higgins et al., 2016) for further information. The optimization of

qϕC (zC | x) is divided into two stages. We first optimize the network w.r.t drift rate δ and

boundary α, while non-decision time τ is set to 0.93 ·RTmin for each subject, approximating

the results of the Bayesian MCMC modeling Nunez et al. (2019). Having trained ϕC for

δ and α, we can proceed to train only the last fully connected layer that predicts τ . This

procedure is to circumvent the difficulty of simultaneously optimizing the network for the

boundary and the non-decision time on the experimental data. We used Adam (Kingma and

Ba, 2014) for optimizations, with a learning rate of 5e-4 and exponential decay rates β1 =

0.9 and β2 = 0.999.
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Table 5.2: Neural network parametrization

EncoderN − qϕN
(zN | x) EncoderC − qϕC

(zC | x) Decoder - pθ(x | zN ,zC)
maps EEG signals to neural latents maps EEG signals to cognitive latents reconstructs EEG signals

Dropout(0.3) Get zC

Conv 1, lReLU, 128 x 250 Conv 1, lReLU, 128 x 250 Linear 128, lReLU
Conv 6, BN, lReLU

X 2
Conv 6, BN, lReLU, Dropout(0.7) Linear 32, lReLU

Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Concat zN , c
Self Attention Self Attention Conv Transp 8, Stride 4, 512 Channels, BN, lReLU

Conv 6, BN, lReLU
X 2

Conv 6, BN, lReLU, Dropout(0.7) Conv Transp 8, Stride 4, 256 Channels, BN, lReLU
Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Self Attention

Reshape 2048, Concat c Reshape 2048, Concat c Conv Transp 6, Stride 3, 128 Channels, BN, lReLU
Linear 32 (mean zN ) Linear 1 (mean δ), Linear 1 (logvar δ) Conv Transp 6, Stride 3, 128 Channels, BN, lReLU
Linear 32 (logvar zN ) Linear 1, Softplus (mean α) Self Attention

Linear 1 (logvar α) Conv Transp 10, Stride 2, 98 Channels
Linear 1, Softplus (mean ndt)

Linear 1 (logvar ndt)

Encoder2β − q2β (zN | zC) Encoder1β − q1β (zC | yi)

maps cognitive latents to neural latents maps behaviors to cognitive latents
Linear 128, lReLU Linear 128, lReLU
Linear 128, lReLU Linear 128, lReLU

Concat c Concat c
Linear 64 Linear 6

5.5.2 Simulation Studies

We assessed our ability to recover true non-decision time (NDT) and drift rate by simulating

response time data and EEG signals. Response time data were simulated from a drift-

diffusion model with trial-to-trial variability in NDT and evidence accumulation rate (i.e.,

drift rate). To simulate EEG signals with a known relationship with DDM parameters, we

specifically focused on N200 due to the significant associations between N200 latency and

NDT reported by Nunez et al. (2019). In our new experiments, we additionally observed

a substantial relationship between drift rate and N200 latency, which we included in the

simulation. Boundary separation was not included in the simulation, as we did not find any

neural correlates of variability in boundary separation, and those are usually only found in

tasks with trial-level accuracy feedback (Cavanagh and Frank, 2014; Nunez et al., 2024).

To simulate single-trial EEG signals, we shifted the true averaged ERP waveform based on

each sample of trial-level NDT, using a linear regression slope of 1, as in Nunez et al. (2019).

EEG noise was obtained from the original data, using independently sampled segments that

did not include responses to stimuli. The resulting ERP and EEG waveforms were then

combined to generate artificial EEG signals for each trial that carried the N200 latency
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information and was associated with choice and response time.

It is evident from the results in Figure 5.9 that the model can accurately recover the original

distributions of trial-specific parameters. In particular, the generating and recovered distri-

butions strongly overlap, and the correlation plots indicate that our single-trial estimates of

cognitive parameters exhibit good correlations with the reference parameters.

(a) Parameter distributions

(b) Parameter correlations

Figure 5.9: Drift-diffusion parameter estimates from neural signals in a simulation of trial-
level choice RTs and EEG signals. The top panels show the overlap between the recovered
and the original distributions of trial-specific drift-rate and NDT. The reference values for the
drift rate and NDT are drawn from the normal distributions N (1.5, 0.2) and N (0.3, 0.05),
respectively. The bottom scatter plots illustrate the relationship between the recovered pa-
rameters and the original parameters each trial. ρ are the Spearman correlation coefficients.

5.5.3 Experimental Tasks

Nunez et al. (2019) incorporated data from two experiments to test the hypothesis that N200

peak-latencies track Visual Encoding Time (VET). Both experiments required participants
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to determine whether a Gabor stimulus had high or low spatial frequency content. The tasks

took place in a dark room with participants fixating on a small spot while responding to the

stimuli presented on a 61 cm LED monitor.

Figure 5.10: Example stimuli of the cue and response intervals of medium noise conditions
(Nunez et al., 2019). In the response phase, participants identified the spatial-frequency
target represented by each Gabor, using their left hand to press a button for a target with a
low spatial frequency (2.4 cpd) and their right hand for a target with a high spatial frequency
(2.6 cpd). N200 waveforms were calculated time-locked to the onset of the Gabor stimulus
during the response intervals. The visual noise altered at a frequency of 40 Hz, while the
Gabor signal modulated at 30 Hz, inducing 40 Hz and 30 Hz electrocortical responses that
monitor attention to both noise and signal.

In these experiments, Gabors were sinusoidal grating patterns with a Gaussian falloff of

contrast. The high and low spatial frequencies of the target Gabors were 2.4 and 2.6 cycles

per degree visual angle (cpd) respectively. The experiments involved three conditions of

visual noise contrast: high, medium, and low. Visual noise was displayed both before and

concurrently with the Gabor targets at regular intervals. Example stimuli are given in

Figure 5.10. Participants used a button box to respond, pressing with the left hand for

low spatial frequency targets and the right hand for high spatial frequency targets. They

maintained fixation on a central spot while identifying the spatial frequency of the Gabor

stimuli embedded in noise.

EEG data was recorded using a 128-channel Geodesic sensor net. The visual noise changed

at 40 Hz, and the Gabor signal flickered at 30 Hz, evoking specific electrocortical responses.
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The primary objective was to assess whether N200 peak-latencies recorded by EEG reflected

VET across varying visual noise conditions, thereby shedding light on the timing involved

in perceptual decision-making processes.

5.5.4 Decision-Making Models - The Drift-Diffusion Model

(DDMs)

The Drift-Diffusion Model (DDM) is a sequential sampling model of decision making. The

model assumes that decision-making is the result of the accumulation of evidence in favor

of one option or another. The evidence is represented by a random walk process, where the

evidence accumulates over time, and the decision is made when the accumulated evidence

exceeds a threshold.

Mathematically, the DDM is described by a set of equations that govern the accumulation

of evidence and the decision-making process. The basic equation for the DDM following a

Wiener process (Figure 5.11) is

dx = δdt+ ςdW (5.9)

where dx is the evidence step, dt is the time step and ςdW denotes a Gaussian noise with a

scale ς. The drift rate δ and the diffusion coefficient ς are parameters that describe the aver-

age rise in change over a unit interval during evidence accumulation and the instantaneous

variation in the rate of change, respectively. The variance can be fixed at 1 for mathematical

explicitness and simplicity. The distance between two options is described as the bound-

ary separation, or α. The beginning position of evidence accumulation, which shows a bias

toward one of the two options, is encoded by the parameter β. When β is 0.5, the begin-

ning point is halfway between the two borders, and the evidence-building process can begin

unbiasedly between the two options. Visual encoding time prior to evidence accumulation

and motor execution time following evidence accumulation could be written as τe and τm,
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Figure 5.11: The DDM is illustrated in action during a two-choice task, with non-decision
time shown in green. Following the visual encoding period, the decision variable (DV)
begins evidence accumulation and reaches either the upper or lower limit for each trial. The
black vector depicts the average rate of evidence accumulation. The blue curve depicts the
distribution of response times when choice 1 is successfully picked, while the red curve depicts
the distribution of reaction times when choice 2 is correctly selected. When the DV drifts
towards the incorrect boundary owing to random noise, incorrect decisions are made. The
distribution of reaction times for incorrect trials is depicted by the dotted curve. EEG data
for each trial, processed using singular value decomposition to highlight N200, is shown on
top that track the start of evidence accumulation.

respectively. Only the total of the two processes, non-decision time τ , can be observed with

behavior alone.

The probability density function (pdf) of the Wiener diffusion model is bivariate (with one

dimension for the latency (t) and one for the binary choice (c)); its analytical form can be
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approximated as



Wiener (t, c = 0;α, β, τ, δ)

=
π

α2
e−

1
2(2αβδ+δ2(t−τ)) ×

+∞∑
k=1

[
k sin(πkβ)e−

1
2

k2π2

α2 (t−τ)
]

Wiener (t, c = 1;α, β, τ, δ)

= Wiener (t, c = 0 | α, 1− β, τ,−δ)

(5.10)

Efficient methods for the computation of the Wiener diffusion model density and distribution

functions exist (Navarro and Fuss, 2009), making it a highly tractable model. In this work,

β is set at 0.5, so that the starting point is always unbiased at z = βα.
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Chapter 6

Conclusions

6.1 Contributions

The growing accessibility of medical time series data is propelling the advancement of math-

ematical models and techniques that can analyze it broadly and efficiently. This dissertation

is a move towards this goal, motivated by the recent achievements in probabilistic modeling

and deep learning.

In this dissertation, we have constructed integrated frameworks that combine concepts from

latent variable models, state-space models, and deep learning to model multidimensional de-

pendencies in physiological signals. These frameworks are capable of modeling complex data

distributions across various applications. This is accomplished through the development of

probabilistic models that utilize deep neural networks to parameterize the underlying condi-

tional distributions. Deep learning architectures serve as powerful function approximators,

enabling the model to automatically extract features essential for wide applicability. Recent

developments in deep learning can be seamlessly integrated into this framework.

The approaches proposed in this dissertation offer versatile frameworks for representing and

learning from diverse types of physiological measures. By efficiently processing unlabeled

datasets, these models enable the discovery of hidden structures and patterns, facilitating
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data-driven hypothesis generation:

1. Deep State-Space Model for Heart Electrical Waveforms (Vo et al., 2023). This ap-

plication has significant potential for clinical diagnoses, especially since it allows for

heart disease assessment through wearable devices. The use of optically obtained sig-

nals as inputs adds to the innovation, potentially making diagnosis simpler and more

accessible.

2. Brain Signal Modeling with Probabilistic Graphical Models and Deep Adversarial Learn-

ing (Vo et al., 2022). Combining these two approaches is promising for encoding neural

oscillations’ complexity while maintaining interpretability. Moreover, applying these

techniques to epilepsy seizure detection as an unsupervised learning problem could lead

to earlier and more accurate diagnoses, improving patient outcomes.

3. Joint Modeling of Physiological Measures and Behavior (Vo et al., 2024). This ap-

proach shows potential in tackling the modern challenge in amalgamation of diverse

medical data sources. By analyzing the relationship between physiological measures

and behavior, our method could uncover new insights into brain function and poten-

tially revolutionize our understanding of neurocognitive processes.

6.2 Future Work

Every progression in a field brings forth a set of unanswered queries, usually more complex

than the ones preceding them. Regarding the deep latent variable models (DLVMs) pre-

sented in this thesis, several open questions exist, the resolution of which could enhance our

comprehension of their working principles as well as to better exploit their modeling power.

• Ensuring patient safety when implementing medical machine learning methods for

clinical applications necessitates robust models. A key characteristic of robust models

is their resilience to out-of-distribution (OOD) data, meaning they can still provide
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accurate predictions when encountering data that differ from the training set. Such

OOD data might include samples from varied patient demographics, different medical

equipment and laboratory methods. Future research should focus on assessing the

adaptability of the DLVMs to OOD data and enhancing model resilience against such

data by leveraging established strategies in the field (Zhou et al., 2022; Wang et al.,

2022).

• Probabilistic graphical models offer a principled approach to incorporating prior knowl-

edge and structured frameworks into the model, utilizing current message-passing al-

gorithms for approximate inference. A crucial yet difficult task for broader adoption

of DLVMs is developing a message-passing library that seamlessly works with existing

deep learning libraries (Johnson et al., 2016b; Bendekgey et al., 2024).

• Choosing the optimal model parameterization for a specific application can be chal-

lenging. This category of models derives all the complexities associated with defining

the precise network architecture, such as the number of layers, units, and activation

functions, from its deep learning components. Therefore, identifying a systematic

method for hyperparameter optimization that is effective across different applications

is essential (Yu and Zhu, 2020; He et al., 2021).

• Recent progress in physics-informed deep learning (Raissi et al., 2019; Nabian and Mei-

dani, 2020) integrates the advantages of deep learning methods with physical principles

to improve both model efficacy and generalization. In this approach, deep learning

models are enhanced with a regularization term that serves as prior knowledge, reflect-

ing the fundamental laws and penalizing deviations from these governing equations.

Investigating DLVM approaches that adhere to any specified law of electrophysics, as

characterized by stochastic differential equations, would be advantageous.

90



Bibliography

Allen, J. (2007). Photoplethysmography and its application in clinical physiological mea-
surement. Physiol Meas., 28(3):1–39.

Aschbacher, K., Yilmaz, D., Kerem, Y., Crawford, S., Benaron, D., Liu, J., Eaton, M.,
Tison, G. H., Olgin, J. E., Li, Y., et al. (2020). Atrial fibrillation detection from raw
photoplethysmography waveforms: A deep learning application. Heart rhythm O2, 1(1):3–
9.

Aznan, N. K. N., Atapour-Abarghouei, A., Bonner, S., Connolly, J. D., Al Moubayed, N.,
and Breckon, T. P. (2019). Simulating brain signals: Creating synthetic eeg data via
neural-based generative models for improved ssvep classification. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Banerjee, R., Sinha, A., Choudhury, A. D., and Visvanathan, A. (2014). Photoecg: Photo-
plethysmographyto estimate ecg parameters. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4404–4408. IEEE.

Bau, D., Zhu, J.-Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., and Torralba, A. (2019).
Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 4502–4511.

Begoli, E., Bhattacharya, T., and Kusnezov, D. (2019). The need for uncertainty quantifica-
tion in machine-assisted medical decision making. Nature Machine Intelligence, 1(1):20–23.

Bendekgey, H. C., Hope, G., and Sudderth, E. (2024). Unbiased learning of deep gener-
ative models with structured discrete representations. Advances in Neural Information
Processing Systems, 36.
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