
UC Riverside
UCR Honors Capstones 2023-2024

Title
THE ROLE OF ENVIRONMENT IN THE EVOLUTION OF CRANIAL CAPACITY IN HUMANS

Permalink
https://escholarship.org/uc/item/43w893tr

Author
Harnett, Joshua J

Publication Date
2024-07-24

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43w893tr
https://escholarship.org
http://www.cdlib.org/


THE ROLE OF ENVIRONMENT IN THE EVOLUTION OF CRANIAL CAPACITY IN

HUMANS

By

Joshua Jeon Seon Harnett

A capstone project submitted for Graduation with University Honors

May 9, 2024

University Honors
University of California, Riverside

APPROVED

Dr. Sang-Hee Lee
Department of Anthropology

Dr. Richard Cardullo, Howard H Hays Jr. Chair
University Honors



ABSTRACT

Over the last 2 million years, the human brain has undergone an extraordinary

evolutionary journey, expanding in size to nearly thrice that of our ancient ancestors, Homo

habilis. This remarkable growth far surpasses the evolutionary changes seen in other primates,

indicating a unique path of human development. Scientists have suggested a wide range of

factors to explain the dramatic increase in brain size, including environmental, dietary, social,

and climatic influences. This paper uses environmental data joined with hominid fossil data to

create a prediction model using linear regression. Four different models are created, with the

most significant model showing that environment variables along with time explain 21 percent of

the variance found in cranial capacity over the past 7 million years.
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INTRODUCTION

In the vast expanse of Earth's history, the environmental transformations brought about

by geological events have played a pivotal role in shaping the course of human evolution. The

collision of continents, the rise of majestic mountain ranges like the Himalayas, and the

consequent shifts in global climate have been instrumental in altering the landscapes our

ancestors once roamed. These monumental changes, such as the transformation of dense

rainforests into vast savannas in Africa, set the stage for a series of evolutionary challenges and

opportunities (Mercader 2002). This foundation is crucial for understanding the development of

human cranial capacity and brain size, highlighting the importance of environmental factors in

molding the habitats and ultimately the evolutionary paths of our ancestors.

The study of the evolution of human cranial capacity has been a topic for research for

centuries. The various studies that have been conducted has shown that cranial development is

not simple, and is subject to a multitude of possibilities (Hanken 1993; Willmore 2006; Chaline

2003). Some implications from what fossil records are available unveil some hints to us. One

being how dietary shifts may have been a catalyst in shaping larger brains, as shown by the first

genus Homo having dental reduction (Neubauer 2012). Another study shows how cranial

capacity evolution in humans is a result of a dual inheritance system of biology and culture

(Weber 2023). Kenneth Beals et al. (1984) suggests colder climates led to changes in cranial

volume, imposing that climate influences cranial evolution. From these studies we may conclude

that human cranial capacity evolution is complex with many contributing factors.

A great leap in human evolution came with the introduction of bipedalism, which greatly

affected hominin locomotion (Sylvester 2006). This was a branching moment in our evolutionary
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tree where hominids adapted for greater efficiency for movement on the ground over climbing in

trees (Thorpe 2007). How does this relate to cranial capacitance? A consequence of bipedalism is

a reduction in pelvis width, which ultimately limits the cranial growth in newborns (Neubauer

2012). The relationship between the pelvic inlet and neonatal cranial size are very closely

correlated (Rosenberg 2003). To answer the origin of bipedalism, a common theory is that Africa

experienced climate shifts during Pleistocene and Pliocene epochs. This variability resulted in a

mosaic of ecological settings, ranging from wet and lush environments to arid and open

landscapes (Potts 2007). Hominids took a divergent path which led to higher efficiency for land

travel. This is one example of the many evolutionary steps impacted by environments our ancient

ancestors were subjected to. This example shows how the relationship between environmental

factors and cranial capacity is complex, and involves understanding the mechanics of

evolutionary adaptations, as well as the constraints they impose on anatomical development.

In examining the intricate relationship between climate, temperature, and human

evolution, Ash (2007) provides compelling evidence that environmental factors significantly

influenced the development of larger brain sizes in early humans. Ash’s research suggests that

52% of the variation in skull size can be attributed to temperature variation, while 22% is

explained by the distance from the equator. The underlying hypothesis suggests that the exposure

to multiple habitats and the necessity to adapt to changing environments fostered the growth of

certain alleles that increase brain size. These findings indicate a unique evolutionary path for

humans, where the challenges posed by diverse and fluctuating climates were met not just with

physical adaptations but through an unprecedented expansion of intellectual capabilities. Such a

pivot toward solving problems through intellectual strategies marks a significant departure from
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the evolutionary strategies observed in other species and highlights the crucial role of

environmental pressures in shaping human evolution.

This study aims to enhance understanding of human evolution by examining the role of

environmental pressures in the development of larger brain sizes. By applying a machine

learning approach, it analyzes how environmental factors have influenced evolutionary changes

in human cranial capacity. The research suggests that the evolution of brain size was not a

complex, multifaceted process but rather a linear one, primarily driven by adaptive responses to a

dynamically changing environment. This unique evolutionary trajectory emphasizes a significant

link between the environmental history of the planet and the development of human intellectual

capabilities. Utilizing data regression analysis, this paper provides a comprehensive explanation

of the patterns observed in human cranial capacity evolution, highlighting the pivotal role of

environmental conditions. All the material used for this study can be found here Link to Google

Drive.
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METHODS

Researchers have made several assumptions about how environmental variables affect

evolution in hominids. Some of these assumptions are how correlations between climatic events

and evolutionary changes imply a causal relationship (Potts 2007; Ash 2007). Another being

cognitive demands imposed by changing environments led to the selection of traits that improved

survival, such as enhanced intellectual abilities. This involves an assumption that intellectual and

behavioral flexibility was crucial for adapting to new challenges presented by environmental

variability (Ash 2007).

A large portion of research in cranial capacity evolution focuses on environmental

determinism, which presumes how climate variability was responsible for unique hominin traits

such as bipedality. Recent theories and scientific discussions suggest that rapid climatic changes

were crucial in driving increases in human brain size. These climatic changes are hypothesized

as having shaped physical adaptations and cultural innovations among early human populations

(Livingstone 2012). ​The resulting research suggests a strong link between climatic variability

and the evolutionary success of early human populations. This comes as no surprise as evolution

is driven by adaptations towards one's environment. In the case of dramatic climate variation,

how does a species adapt accordingly, and how fast can it adapt?

In a study conducted by Craig Stockwell, he discusses how rapid evolutionary changes

can occur within a few generations, and scales relevant to environmental pressures. Many

variables of the environment play a part in how a species may adapt. Carbon dioxide levels may

impact plant photosynthesis rates, which affects food availability (Stockwell 2003). In Jessica

Ash’s study (2007), cooling trends may have driven demands for survival strategies, which

consequently selected for larger brains, showcasing the impact of global average surface
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temperatures has on cranial capacity. It then becomes plausible that climate variability may play

a role in the evolution of cranial capacitance in humans. However, in contrast to rapid

evolutionary change, a study conducted by Sang-Hee Lee and Milford Wolpoff (2003) suggest

that evolution of cranial capacity during the Pleistocene period was gradual instead of

punctuated. This may suggest that cranial capacity growth follows some sort of linearity growth

pattern.

Researchers in the past had concerns over how climate variables may have influenced

evolution. During a paleoclimate anthropology conference in November 2005, Richard Potts

(2007) wrote what was discussed. The reason for concerns is due to limitations in sampling data,

such as Ocean and lake cores provide a more detailed understanding of continuous climate

change, while land samples cover smaller areas and are more susceptible to containing

discontinuous information because of the locality aspect of land sediments. However land

samples are essential in research because they contain fossils, and artifacts of hominins. Findings

from researchers have found from comparing climate data is that during times of high variability,

Afriancus afarensis went through increased body size changes, while during periods of low

variation were points of evolutionary stagnation (Potts 2007). The features used in this paper are

time (kya - thousands of years ago), carbon dioxide (parts per million) in the atmosphere, global

average surface temperature change (GAST), and the ratio of oxygen-18 to oxygen-16 isotopes

(referred to as delta-O-18 or δ18O) to assess past climatic conditions.

One of the objectives of this paper is predicting a continuous variable, making the

selected features especially appropriate for linear regression analysis, which excels in modeling

relationships involving quantifiable data. Regression analysis is a statistical method used to

understand the relationship between a dependent variable and independent variables (Sainani
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2013). In this study, the dependent variable is cranial capacity, and the independent variables are

carbon dioxide ppm, GAST, and δ18O. Cranial capacity measured in cubic centimeters is a

continuous variable which is best predicted using linear regression. Linear regression will predict

a value based on an assumed linear relationship between the independent environmental

variables. Linear regression will also show how each independent variable affects the dependent

variable in a linear fashion. In this way, identifying relationships between each environmental

variable is simple, and easy to interpret.

The regression model used in this paper is linear regression using least squares method

which minimizes the sum of the squared differences between the observed actual outcomes and

the outcomes predicted by the model. Other models that may have been used are decision trees,

neural networks, or SVMs (support vector machines), all of which introduce complexity into the

model (Golbayani 2020). This hinders the ability to interpret results accurately, and due to the

size of the data set may overfit the predictions. Linear regression is a standard approach that

optimizes understanding linear relationships between dependent and independent variables

(Sainani 2013). Predictions are created using the training data and replaces the actual cranial

capacity of records with their corresponding predicted values.

Depending on the range of values seen in each variable and their corresponding

coefficients and p-values, we may tell how impactful this variable is towards cranial capacity

evolution in humans. In a study conducted by Jessica Ash, she discovered that 52% of variance

in cranial capacity could be explained by temperature variations (Ash 2007). An overall

evolutionary trend of increasing brain size in primate species as time progresses has been well

documented (Neubauer 2012). A reasonable prediction would be a negative coefficient for the

time variable (kya) because of how brain size grew to its peak in the present. To calculate the
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variance explained in each model, looking at the R-squared value for each model explains how

much of the variance seen in the dependent variable (cranial capacity for this paper) is explained

by the independent variables (environment).

In this study, the predictions presented by linear regression will imply a linear

relationship between each environmental variable. The relationship between cranial capacity and

each environmental variable will differ based on how each environmental factor changed over

the course of human evolution. The coefficients of each variable will tell us the linear

relationship of how it affects cranial capacity based on that variable. The p-values will tell the

significance of the variable, with a lower value indicating strong significance, and large values as

non-significant. Each variable must be evaluated using its p-values to test against the null

hypothesis, which represents the probability of incorrectly concluding that there is a dependency

when, in fact, no actual effect exists. The p-value needs to be measured below 0.05 in order to

consider if something is statistically significant or not. The P-value threshold was chosen based

on balancing risks of possibly misinterpreting significance in correlating variables. A P-value

threshold of 0.05 is also common amongst research papers and is conventionally standard.

To assess each model, the R-squared values are used to quantify how much variance in

the dependent variable—cranial capacity—is explained by the model. R-squared values range

from 0 to 1, where a value closer to 1 indicates that a greater proportion of the variance is

captured by the model. This metric essentially measures the fit of the model to the observed data.

Higher R-squared values signify that the model accounts for a large portion of the variability in

the response data around its mean, typically indicating a strong model fit. Conversely, a low

R-squared value, approaching 0, suggests that the model fails to adequately explain the observed

variability in the data. While there is no universal threshold for an acceptable R-squared value,
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values above 0.7 are generally considered good, though lower values can still be useful. Because

of the confounding nature of cranial capacity evolution, it can be expected that the models in this

study will have a low R-squared value.

The linear regression coefficients quantify the impact of each independent variable on

cranial capacity. For instance, if the analysis reveals that cranial capacity tends to increase as we

approach the present, this would be reflected in a negative coefficient for the time variable. This

negative coefficient indicates that as the time variable increases—which represents moving

further towards the past in years—cranial capacity actually decreases. This establishes a negative

correlation between time and cranial capacity. Essentially, each coefficient in our regression

model provides a direct measure of how a one-unit change in an environmental variable

influences cranial capacity, allowing us to understand and predict these relationships based on

historical data.

An underlying issue presented in this study is the limited carbon dioxide (CO2) data

available from Caroyln Snyder’s data set (Snyder 2016). In order to address this issue, a subset

of fossil records up to 800 kyr of each data set will be tested separately in order to maintain data

integrity. A side benefit from doing a subset analysis is identifying how cranial capacitance

changes in a short period of time (800kyr). When testing on the entire data sets, the CO2 variable

will be omitted from the regression testing and analysis.
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MATERIALS

The materials for this study include environment variables: carbon dioxide, global average

surface temperature, and oxygen-18 to oxygen-16 isotopes. The materials for cranial capacity are

taken from scientific sources whose measurements for hominid skulls could be accurately

attained (DeSilva 2021; Ash 2007). The data is then integrated to match corresponding dates

between environment variables readings and hominid fossil ages. The data is compiled into

separate spreadsheets in order to conduct linear regression learning and view the results. The

findings will include p-values, weight coefficients, R-squared values, and graphs detailing the

linear relationship between prediction and environment variables.

The first data set is from DeSilva, who collected data from over 900 fossils dating back 7

million years (DeSilva 2021). The oldest fossil mentioned at 7 mya (million years ago) is

identified as Sahelanthropus, which is debated amongst anthropologists whether it belongs to the

hominin species (Wolpoff 2002). It will be included in this data set, however it could have just as

well been dismayed. The rest of DeSilva’s data set ranges primarily from 3 mya to present, with

a few records over 3 mya. DeSilva compiled their data from published estimates of hominin

cranial capacities from scientific literature. The measurements used were cranial volume in cubic

centimeters, which is how cranial capacity in humans is measured more commonly.

The second data set was gathered from Jessica Ash in her study on paleoclimate variation

and brain evolution in humans. The data set she used is much smaller at 109 fossil records taken

from other scientific literature. The measurements used in Ash’s data set are averaged by the

range of measurements done on each fossil (Ash 2007). This occurs frequently as many scientific

literature deploy different measuring techniques which may cause fluctuations in measurements.

The oldest fossil in Ash’s data set goes up to 2000 kya, and is more widely spread than DeSilva’s
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in terms of dates. DeSilva’s data may be larger but a majority of its data comes from very recent

fossil records less than 100 years old. In this study, they will be kept separate in order to preserve

how each data set trains on linear regression. Then compare findings and interpolate

relationships that may be found between them.

The environmental data sets are taken from a study conducted by Carolyn Snyder

(Snyder 2016). Measures of GAST are reconstructed using 20,000 sea surface temperature point

reconstructions that derive from 59 ocean sediment cores. GAST is then calculated by the

difference in temperature found in comparison to modern average temperatures. For example, a

-5 value means 5 degrees celsius lower than modern averages. Snyder uses probabilistic

simulations from various sources of uncertainty to give an estimate for intervals of which are

credible. Linear regression analysis requires independent variables to be continuous values. In

order to simplify the model, only a single value for GAST measures is used, which represents the

median of the range of a given year interval. In contrast, carbon dioxide and δ18O values are

taken as is. Each of these environmental features represent a part of the global climate, and

together represent an overall global environment. It should be noted however that this is a

simplification of the environmental features, and due to using many proxy data may be

inaccurate.

DeSilva’s and Ash’s datasets have some prevalent issues due to GAST recordings only

dating back to 2000 kya, and CO2 measurements dating until 800 kya. In order to run linear

regression with these missing values, imputation of the missing values was calculated by the

mean values of the existing data. Once the model has been trained, the values are removed again

and graphed with only the existing values. By doing so it will affect the models performance

while removing outlier data that may skew graphs.
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Along with having two separate data sets, each is tested on a subset again with fossil

records that date up to 800k years ago. This reduces the data set further, however a majority of

the data is preserved. Carbon dioxide traps heat in Earth’s atmosphere making it a key factor in

regulating Earth’s climate. It also regulates how plant’s photosynthesis rates, which affects food

availability (Stockwell 2003). This will change how the data set creates its predictions for cranial

capacity, and will need to be compared to the full data sets to better understand how. In total, four

different data sets will be used to create separate prediction models using linear regression using

linear least squares method.
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RESULTS

The data gathered from running linear regression on each of the four data sets show a

significant negative correlation between time and the predicted values, with the kyr variable

having a p-value of 0.00 indicating statistical significance. Since the time variable is represented

inversely starting from the present going further into the past, this negative correlation is better

represented as a positive correlation as time progresses towards the present, which is shown in

the graphs by inverting the x-axis. This result is not surprising due to cranial capacitance

gradually increasing as humans evolved. The other variables listed show the relationship

between δ18O, GAST, and co2 vs predicted values gathered from linear regression.

Figure 1.1: Prediction = (-0.327 * kyr) + (49.06 * δ18O) + (-10.55 * GAST) + 1152.69
Tables from DeSilva_2021 full data set. R-squared value of 0.536 which means approximately 53.6% of the
variance in the dependent variable "CC" can be explained by the model. Data points for Predicated vs GAST only
display up to 2000 kya. Tables represent regression variables against the predicted values from linear least square
regression. P-values: kyr -> 0.000, δ18O -> 0.148, GAST -> 0.266.

16



Using predicted values to understand correlations between variables is a common

practice in statistical analysis. Additionally, the weights for each variable is given which tells

how the model adjusts its prediction based on the values for each variable. Using both will give a

broader picture of the relationship between each environment variable and cranial capacity. The

values of the weights coefficients will vary on the impact of which that variable scales. It should

be noted that a larger weight value does not mean a stronger correlation as weights are calculated

based on the training data and depending on the range fluctuations will greatly affect the values.

For instance, δ18O has the greatest weight value in Figure 1.1, however the graph shows no

correlation between the predicted values and δ18O levels. The weight is large due to how δ18O

fluctuates in a range of 3 to 5 which is vastly different from time which fluctuates in a range of

0.1 to 7000 kya.

Figure 1.1 shows little to no correlation between environment variables and predicted

values. The weights for the environment variables in the model's prediction show that variables

contribute negatively towards the predicted values aside from GAST which holds negative

values which impact the predicted values positively. GAST shows the most significant

correlation in Figure 1.1 as GAST levels indicate a downward trend in cranial capacity

predictions. This could be understood as GAST decreased through the Pleistocene epoch, human

cranial capacity significantly increased. These conditions favored adaptations that enhanced

survival and reproductive success across fluctuating habitats, rather than in consistent

environments (Ash 2007).

Each model was trained on different data sets, which translates to different learning

outcomes from linear regression. The impact of environment variables on cranial capacity

showed little to no actual significance except in Figure 1.2 that resembles DeSilva 800k data set,
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which showed p-values to all be near zero which means we may reject the null hypothesis, that

is, cranial capacity does not depend on environment variables. One caveat to this is the

explanation of cranial capacity variability by the environment is relatively low, showing an

R-squared value of 0.21, which means 21% of the variability in CC is explained by the model.

Comparatively this is the lowest out of the four models in terms of its R-squared value. This

shows how complicated cranial capacity is and that the changes are attributed to other factors

outside of the environment.

Figure 1.2: Prediction = (-0.78 * Kyr) + (194.91 * δ18O) + (52.14 * GAST) + (-0.78 * CO2) + 1002.7
Tables from DeSilva_2021 800 kya data set. Reduced to better identify relationships between co2 while avoiding
imputing missing values. R-squared value of 0.21 which means approximately 21% of the variance in the dependent
variable "CC" can be explained by the model. Tables represent regression variables against the predicted values from
linear least squares regression. P-values: kyr -> 0.00, δ18O -> 0.00, GAST -> 0.00, CO2 -> 0.00.

Figure 1.2 contains a smaller data set of Figure 1.1, consisting of data up until 800 kya.

General trends remain similar to the full data set with environment variables showing little
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correlation with GAST showing the slight downward trend. The purpose of reducing the data set

was to hopefully see a better correlation between CO2 and predicted values. However, contrary

to this we see little change.

Figure 2.1: Prediction = (-0.36 * Kyr) + (126.27 * δ18O) + (-3.38 * GAST) + 821.58
Tables from Ash_2007 full data set. Omitted co2 in linear regression learning. Tables represent regression variables
against the predicted values from linear regression. R-squared value of 0.733 which means approximately 73.3% of
the variance in the dependent variable "CC" can be explained by the model. P-values: kyr -> 0.00, δ18O -> 0.131,
GAST -> 0.861.

Figures 2.1 and 2.2 correspond towards Jessica Ash’s data set of 109 fossil records. The

graphs show a significant change in comparison to DeSilva’s correlation between environment

variables and predicted values. The primary difference between Ash’s and DeSilva’s data is the

distribution of records. Ash’s data represents a much wider distribution while DeSilva has a skew

in more modern fossils. The wider distribution allows linear regression learning to be less likely

to overfit and display a better overall relationship between environmental variables and predicted

values.
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Figure 2.1 represents the full data set from Jessica Ash’s data set. The co2 environment

variable is omitted in this data set due to missing values. It was determined that with a small data

set and limited available data for co2, it would greatly skew how the data would account for co2

measurements in the case of imputing mean values. The linear regression analysis shows that

there are significant positive correlations between δ18O and predicted values. δ18O is an

indicator for ice volumes which reflect cooling temperatures (Ash 2007). The impact of δ18O is

reflected in the weights as well, with a coefficient of 126.3 (each 1 ppm increase δ18O

corresponds to a 126.3 increase in prediction value). The negative correlation in GAST

compliments this as lower GAST levels show increases in CC predictions.

Figure 2.2: Prediction = (-0.47 * Kyr) + (12.15 * δ18O) + (-11.4 * GAST) + (-2.33 * CO2) + 1808.74
Tables from Ash_2007 800 kya data set. Reduced to better identify relationships between co2 while avoiding
imputing missing values. Tables represent regression variables against the predicted values from linear regression.
R-squared value of 0.321 which means approximately 32.1% of the variance in the dependent variable "CC" can be
explained by the model. P-values: kyr -> 0.002, δ18O -> 0.929, GAST -> 0.726, CO2 -> 0.294.
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In summary, DeSilva’s 800k (Figure 1.2) subset data shows the most significant impact

of environment variables, having all p-values at 0.00 showing statistically significance. However,

the R-squared value of 0.21 indicates that the model does not fit the data well, explaining only

about 21% of the variance in cranial capacity. The other data sets (Figures 1.1, 2.1, 2.2) did not

have P-values for environment variables that indicate statistical significance. These results show

that environment variables (used in this analysis) account for 21% of variance in cranial capacity,

leaving the rest to confounding factors like diet, social structures, innovations, and many others.

It should be noted that linear regression assumes linearity between variables, however research

shows that volatile environments accelerate evolution, while periods of stagnant climate reduce

evolution change (Davis 2005), which indicates that environmental impact on evolution may not

be linear.
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DISCUSSION

This paper covers a small area of the possible statistical analysis methods available. One caveat

of linear regression is that it assumes a linear relationship between independent and dependent

variables. Linear regression is used to represent a predictive model of how a dependent variable

(CC) is affected by various independent variables (environment), and also used to predict future

values. This is by no means perfect and is generally better used if there actually exists a linear

relationship between independent and dependent variables. Researchers generally agree that

human evolution is not as simple as a linear relationship, and many factors contribute towards

the evolution of cranial capacity.

DeSilva’s data set compared to Jessica Ash’s has a much different distribution of values,

with DeSilva’s data containing 985 data points, and Ash’s with 109. In DeSilva’s data set, over

half of records in a small time frame, 0.1 kyr (100 yr), while Ash’s data set is more evenly spread

ranging from 35 kyr to 1900 kyr. An underlying issue is that the environment variables are

derived from the dates in which the fossil records were dated. The environment variables for

each of these records are the exact same in value, however the cranial capacity for them are

different. The range of cranial capacities seen during this short period ranges from ~907 to

~1786. This can greatly affect how the linear regression model is trained due to the least squares

loss, which tries to fit a line that produces least error amongst these values. In contrast, Ash’s

data set contains a much more evenly distributed distribution of fossil records. The prediction

values are much less likely to overfit, and environment values explain a greater portion of the

variability found. Ash’s full data set has an R-squared value of 0.733 while DeSilva’s full data

set has an R-squared value of 0.536. Ash’s model is able to explain approximately 20% more of

the variability seen in cranial capacity.
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In Figure 2.2 there are distinct correlations between each variable and the predicting

values. Co2 and GAST show a modest negative correlation, while δ18O show a positive

correlation. Based on this model, we may predict a possible future value for experiment. Finding

a prediction value is simple, as you just plug in the values into the coefficients for each variable.

For example, a time value of -10 (10000 years into the future), δ18O value of 4.5, CO2 value of

440, and GAST of 2 would predict a value of 820.08 CC. The exact same values used in the

prediction equation for Figure 1.1 would give 1107.59 CC. This vast difference comes from the

way each prediction model is trained. Because the DeSilva’s dataset contains many more data

points, it will account for more drastic values reasonably, like CO2, which in the case for Figure

2.2 shows a dramatic impact on prediction values.

Omitted from this study is the use of a testing set that would give an estimate of the error

rate of the linear regression model. The issue with a testing set, is that it would severely limit the

already available data as hominin fossil records are scarce. Another problem arises with which

data points would be needed to pull from the training set into the testing set. At first, the study

included a testing set however quickly found that the error rate was volatile and highly

dependent on which data points were chosen. Error rates would fluctuate when using a random

80:20 data split. Seen error rates would fall between 250 to 650 mean square root error. It also

would greatly change the prediction model, so for the sake of simplicity and continuity for this

study, omitting a testing set seemed reasonable.

With the rise of AI technologies and performance, using neural networks to conduct a

similar study to this one would likely perform better. However, the greatest issue when it comes

to statistical analysis methods for hominin records is the lack of data. Without an abundance of

data points to train a model on, it becomes more likely to overfit and have a large error rate when
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predicting values. Until more hominin fossil records are uncovered enmasse, neural networks

along with other machine learning methods will give subpar results.

The data obtained for this study fails to account for locality of fossil findings.

Environment variables are global readings instead of local, which construes the accuracy of exact

environment variables that may have played a role in the evolution of cranial capacity in early

humans. A more detailed study may contain data for each specific region in which a fossil is

found. Doing so would allow for a more detailed account of which environments hominids lived,

and better explain the variability in cranial capacity evolution. A great challenge is finding

enough fossil records that allows for accurate learning to take place.
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