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Abstract

Human Activity Recognition in Healthcare: Challenges,

Approaches and Applications

Human activity recognition (HAR) technology that analyzes data acquired from various types

of sensing devices, including wearable sensors and vision sensors, is getting considerable attention

in the field of Artificial Intelligence (AI) driven healthcare systems. Human activities can be

used to provide remote healthcare solutions by identifying particular movements such as falls,

gait, and breathing disorders. HAR healthcare system can allow people to live more independent

lifestyles and still have the safety of being monitored if more direct care is needed. Thanks to the

development of machine learning technology, many machine learning methods have been employed

in human activity recognition systems in healthcare. However, this field still faces many technical

challenges. Some challenges are shared with other pattern recognition fields, such as a limited

number of labeled data, while other challenges are unique to sensor-based activity recognition in

healthcare and require dedicated methods for real-life healthcare applications, such as data noise

of sensor factors in the data collection process.

In this dissertation, we start with the challenges of healthcare-oriented HAR systems and sum-

marize the challenge-related machine learning approaches. To overview HAR healthcare applica-

tions with wearable sensors, we cover essential components of designing HAR healthcare systems,

including sensor factors (e.g., type, number, and placement location), AI model selection (e.g.,

classical machine learning models versus deep learning models), and feature engineering.

Next, we present a new healthcare application of HAR, that is, Early Mobility Activity (EMA)

recognition for Intensive Care Unit (ICU) patients, to illustrate the system design of HAR appli-

cations for healthcare. We identify insensitive wearable sensor orientation features and propose a

segment voting process to improve the model accuracy and stability.

We further apply the state-of-the-art vision sensor-based HAR approaches in healthcare. We

present a healthcare system (BWCNN) to use eye blinks to communicate with the outside world for

Amyotrophic Lateral Sclerosis(ALS) patients. The system uses a Convolutional Neural Network

(CNN) to predict the eyes’ state, which is used to find the blinking pattern.
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Then, we propose a MASTAF that can quickly learn from a few examples efficiently to solve

the limited number of video samples in real-life HAR applications, a common challenge shared

with computer vision. MASTAF takes input from a general video spatial and temporal represen-

tation,e.g., using 2D CNN, 3D CNN, and video Transformer. Then, to make the most of such

representations, we use self- and cross-attention models to highlight the critical spatio-temporal

region to increase the inter-class distance and decrease the intra-class distance. Last, MASTAF

applies a lightweight fusion network and the nearest neighbor classifier to classify each query video.

We demonstrate that MASTAF improves the state-of-the-art performance on three few-shot HAR

video benchmarks.

Last, we present Multimodal Masked Autoencoders-Based One-Shot Learning (Mu-MAE),

which represents a significant advancement in the field of HAR using multimodal sensors. Ad-

dressing the challenges posed by labor-intensive data collection and reliance on external pretrained

models, MU-MAE introduces a synchronized masking strategy tailored for wearable sensors, cou-

pled with a multimodal masked autoencoder architecture. This innovative approach compels the

networks to capture more meaningful spatiotemporal features, facilitating effective self-supervised

pretraining without the need for additional data. Furthermore, MU-MAE leverages the represen-

tations extracted from multimodal masked autoencoders to enhance cross-attention fusion, which

highlights critical spatiotemporal features across different modalities while emphasizing differences

between activity classes. Through comprehensive evaluations on MMAct one-shot classification

datasets, MU-MAE demonstrates superior performance, achieving up to an 80.17% accuracy for

five-way one-shot multimodal classification, thus establishing itself as a state-of-the-art solution in

HAR for healthcare applications.
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CHAPTER 1

Introduction

During the past decade, sensor technology has developed significantly in multiple perspectives,

including computational power, size, accuracy, and manufacturing costs [1]. These advancements

enable a wide range of sensors to be integrated into smartphones and other portable devices to

make them more practical. While video surveillance, one particular type of video sensor being

increasingly popular, can offer better video quality, more straightforward setup, lower cost, and

secure communication [2]. Therefore, an increasing number of applications utilizing camera systems

for Human Activity Recognition in healthcare have been proposed recently.

HAR allows machines to analyze and comprehend human activities from input data sources,

such as wearable sensors and video sensors [3]. HAR is applied in various healthcare systems that

involve direct or indirect interaction between humans and smart devices. For instance, patients

with obesity, diabetes, or cardiovascular diseases have to strictly follow a healthy, well-balanced diet

and a regular exercise schedule [4]. Hence, tracking daily activities with HAR system is necessary

to give real-time feedback to patients about their progress and provide up-to-date reports to clin-

icians. Similarly, patients with declined in mental ability or mental disorders must be monitored

continuously to identify unusual actions in time. The HAR system can detect abnormal activities

and provide remote doctors assistance, preventing unwanted consequences [5].

Many previous work has adopted machine learning methods in human activity recognition [6].

They rely highly on feature extraction techniques, including time-frequency transformation [7],

statistical approaches [8], and symbolic representation [9]. However, the features extracted are often

human engineered and based on heuristics. There was a need for systematical feature extraction

approaches to effectively capture distinguishable features for human activities. In recent years,

deep learning has embraced conspicuous prosperity in modeling high-level abstractions from data

in many areas such as computer vision, natural language processing, and speech processing [10].

After early work [5,11] examined the effectiveness of deep learning in human activity recognition,
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related studies sprung up in HAR in healthcare. However, deep learning is still confronted with

reluctant acceptance by healthcare researchers owing to medical data sparsity and great effort for

data annotation. Therefore, in the Healthcare HAR problem, there is a great potential to improve

the system performance with a limited number of labeled samples.

In this dissertation, we highlight the challenges of healthcare-oriented HAR systems and sum-

marize the challenge-related machine learning approaches. The key contributions of this work are

as follows:

• An Overview of Human Activity Recognition Using Wearable Sensors: Health-

care and Artificial Intelligence With the rapid development of the internet of things

(IoT) and artificial intelligence (AI) technologies, human activity recognition has been

applied in a variety of domains such as security and surveillance, human-robot interac-

tion, and entertainment. Even though a number of surveys and review papers have been

published, there is a lack of HAR overview papers focusing on healthcare applications

that use wearable sensors. Therefore, we start with an overview of HAR applications in

healthcare. We cover essential components of designing HAR systems including sensor

factors (e.g., type, number, and placement location), AI model selection (e.g., classical

machine learning models versus deep learning models), and feature engineering. In addi-

tion, we highlight the challenges of such healthcare-oriented HAR systems and propose

several research opportunities for both the medical and the computer science community.

• Early Mobility Activity Recognition for Intensive Care Unit Patients Using

Accelerometers In this work, we target a new healthcare application of HAR, that is,

Early Mobility Activity (EMA) recognition for Intensive Care Unit (ICU) patients. EMA

is essential for ICU patients who suffer from long-time immobilization. We propose an ac-

curate AI model to recognize patients’ EMA. To improve the model accuracy and stability,

we identify features that are insensitive to sensor orientations, and propose a segment vot-

ing process that leverages a majority voting strategy to recognize each segment’s activity.

Our extensive results show that our algorithm improves the model accuracy from 77.78%

to 81.86%, and reduces the model instability (standard deviation) from 16.69% to 6.92%,
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comparing to the same AI model without our feature engineering and segment voting

process.

• BWCNN: Blink to Word, a Real-Time Convolutional Neural Network Ap-

proach Amyotrophic lateral sclerosis or ALS is a progressive neurodegenerative disease

that affects nerve cells in the brain and the spinal cord. While an individual affected by

this disease loses all motor functions, they can still blink their eyes. We present a system

(BWCNN) to use the eye blinks as a mode of communication with the outside world. The

system uses a Convolutional Neural Network (CNN) to predict the state of the eyes and

this state is used to find the blinking pattern. Once the pattern is obtained, it is mapped

with a collection of phrases with a label for each pattern. Several state-of-the-art ConvNet

architectures such as ResNet, SqueezeNet, DenseNet, and InceptionV3 were implemented

in this system to evaluate their performance in order to choose the best one for eye state

recognition. By tuning the hyperparameters of the networks such as batch size and the

number of iterations, we analyzed the performance of different architectures based on the

accuracy and the time taken for prediction. The goal of our system is to strike a bal-

ance between accuracy and the latency. High accuracy makes our prediction better while

small latency makes it faster. Although the highest accuracy was obtained from ResNet

(99.26%, 117ms latency). We found that InceptionV3 architecture struck the best balance

for our system with an accuracy of 99.20%, and 94ms latency.

• MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for

Few-shot Video ClassificationWe propose MASTAF, a Model-Agnostic Spatio-Temporal

Attention Fusion network for few-shot video classification, to solve the limited number of

video samples in real-life HAR applications, a common challenge shared with computer vi-

sion. MASTAF takes input from a general video spatial and temporal representation,e.g.,

using 2D CNN, 3D CNN, and video Transformer. Then, to make the most of such

representations, we use self- and cross-attention models to highlight the critical spatio-

temporal region to increase the inter-class distance and decrease the intra-class distance.

Last, MASTAF applies a lightweight fusion network and a nearest neighbor classifier to

classify each query video. We demonstrate that MASTAF improves the state-of-the-art
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performance on three few-shot video classification benchmarks(UCF101, HMDB51, and

Something-Something-V2), e.g., by up to 91.6%, 69.5%, and 60.7% for five-way one-shot

video classification, respectively.

• MU-MAE: Multimodal Masked Autoencoders-Based One-Shot Learning Accu-

rately recognizing human activities with multimodal sensors faces challenges due to the

labor-intensive nature of data collection and annotation, and reliance on external pre-

trained models or additional data. To address these challenges, we introduce Multimodal

Masked Autoencoders-Based One-Shot Learning (Mu-MAE). Mu-MAE integrates a mul-

timodal masked autoencoder with a synchronized masking strategy tailored for wearable

sensors. This masking strategy compels the networks to capture more meaningful spa-

tiotemporal features, which enables effective self-supervised pretraining without the need

for external data. Furthermore, Mu-MAE leverages the representation extracted from mul-

timodal masked autoencoders as prior information input to a cross-attention multimodal

fusion layer. This fusion layer emphasizes spatiotemporal features requiring attention

across different modalities while highlighting differences from other classes, aiding in the

classification of various classes in metric-based one-shot learning. Comprehensive evalua-

tions on MMAct one-shot classification show that Mu-MAE outperforms all the evaluated

approaches, achieving up to an 80.17% accuracy for five-way one-shot multimodal classi-

fication, without the use of additional data.
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CHAPTER 2

An Overview of Human Activity Recognition Using Wearable

Sensors

With the rapid development of the internet of things (IoT) and artificial intelligence (AI) tech-

nologies, human activity recognition has been applied in a variety of domains such as security and

surveillance, human-robot interaction, and entertainment. Even though a number of surveys and

review papers have been published, there is a lack of HAR overview papers focusing on healthcare

applications that use wearable sensors. Therefore, we fill in the gap in this work. We cover essential

components of designing HAR systems including sensor factors (e.g., type, number, and placement

location), AI model selection (e.g., classical machine learning models versus deep learning models),

and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR

systems and propose several research opportunities for both the medical and the computer science

community.

2.1. Introduction

Human activity recognition has been actively researched in the past decade, thanks to the

increasing number of deployed smart devices such as smartphones and IoT devices. Based on the

type of data being processed, a HAR system can be classified into vision-based and sensor-based.

This work targets wearable-sensor HAR systems in healthcare, which are the most prevalent type

of sensor-based HAR systems [12]. More importantly, wearable-sensor HAR systems do not suffer

from severe privacy issues like vision-based HAR systems, making wearable-sensor HAR systems

suitable for healthcare applications. In a wearable-sensor HAR system, a user wears portable mobile

devices that have built-in sensors. The user’s activities can then be classified by measuring and

characterizing sensor signals when the user is conducting daily activities.
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HAR for healthcare has many potential use cases, including (1) Moving gait diagnosis from ex-

pensive motion labs to the community. Gait analysis can be used in many healthcare applications,

such as stroke detection, gait modification (to prevent failing), and certain disease early detec-

tion. (2) Cognitive behavior monitoring and intervention for children and adults with attention-

deficit/hyperactivity disorder (ADHD). We can leverage sensors to investigate whether fidgeting

positively or negatively affects attention. (3) Stroke-patient hospital direction. When a patient is

in an ambulance, a life-and-death question is whether the patient has extensive brain hemorrhage.

If so, the patient should be directed to a hospital that can treat such cases. UCSF has developed

a device based on an accelerometer sensor to help make this critical decision. (4) Epilepsy and

Parkinson’s disease study. Doctors have collected a significant amount of data on electrophysiology

and episodic memory in rodents and human patients. The analysis of such sensing data can be used

for various disease identification and treatment purpose. (5) An expensive device, called Vision RT,

is used to ensure radiation therapy is delivered safely to cancer patients (due to patient motion).

It is worth exploiting sensors to detect the patient’s movement while taking radiation therapy for

the less affluent communities.

However, building practical wearable-sensor HAR systems for healthcare applications not only

has challenges (e.g., sensor setup, data collection, and AI model selection) that are faced by tradi-

tional wearable-HAR systems, but also challenges that are unique to the healthcare domain. For

example, in addition to the overall AI model accuracy (averaging results of all users), clinicians are

concerned about the model stability (i.e., the model has approximately the same accuracy for each

user) and model interpretability (e.g., to discover patient movement patterns that are specific to

some symptoms).

Therefore, we present this work in the hope to shed light on designing wearable-sensor HAR

systems for healthcare applications. To illustrate the system considerations, we share two of our

healthcare systems: one for identifying the early mobility activities of ICU patients [13] and the

other one for the gait analysis of DMD patients [14]. Our projects demonstrate that HAR systems

for healthcare not only have commonalities such as data processing pipelines but also differences

in terms of sensor setup and system requirements.
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Figure 2.1. General data flow for the two-stages of HAR systems: model training
and model deployment.

We organize this work as follows. First, we provide the preliminaries of HAR systems. Next, we

introduce our HAR systems for ICU patients and DMD patients. Then, we explain the considera-

tions when designing a HAR system. Last, we highlight the challenges of applying wearable-sensor-

based HAR systems to healthcare, and propose several research opportunities. Last, we conclude

this work.

2.2. Human Activity Recognition: A Primer

Given the short time-length data of wearable sensors, a HAR system needs to recognize the

activity from which the data is generated. Thanks to the rapid advancement of AI technology,

AI algorithms/models are increasingly adopted for recognizing the activity from the sensor data.

Figure 2.1 illustrates the general data flow for an AI-based HAR system, which can be divided into

two stages: model training and model deployment.

In the model training stage, an AI model is trained and tailored for the specific application. To

achieve an accurate AI model, the following steps are often applied. First, raw sensor data from

different activities should be collected. The quality of collected data significantly affects the AI

model performance. The collected data is required to be diverse, representative, and large in the
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(a) ICU-patient (b) DMD patient

Figure 2.2. Device setups in our HAR projects. (a) We use two accelerometer
devices to recognize the early mobility activities of ICU patients. One device is on
the chest and the other device is on the thigh. (b) We use one smartphone that
captures accelerometer data to identify DMD patients. The phone is located at the
backside body.

number of samples. Afterward, the raw data is divided into fixed-length or dynamic-length segments

(i.e., time windows) [15]. Then, feature extraction is used to extract potentially useful features

from the data segmentation, and feature selection is adopted to remove irrelevant features [16].

To alleviate the overfitting problem of the trained model, the set of processed features are divided

into a training set, a validation set, and a test set. During the AI model training, we use the

training set to tune the AI model and the validation set to measure the model’s accuracy. After

we finish the model training, we use the test set to evaluate the trained model. The trained model

is deployed to real-world applications if its accuracy is satisfactory. Otherwise, the whole model

training stage is performed repetitively by exploring different configurations, such as applying other

feature extraction methods and changing AI models.

In the model deployment stage, the same data processing (e.g., segmentation, feature extraction,

and selection) is applied to the new and unseen sensor data, and the trained model is executed

on the processed data. It is possible that the trained model may not work as expected in a

real deployment, probably due to the model over-fitting or the lack of generality in the collected

dataset [17]. In this situation, the system designer needs to revert to the model training stage.

2.3. HAR Applications in Healthcare

Clinicians have already applied wearable sensor-based HAR systems in healthcare, thanks to

the development of more lightweight wearable devices, greater computation capability, and higher
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accurate AI algorithms. This section presents our two HAR healthcare projects to illustrate the

considerations when designing HAR systems for healthcare applications with different goals.

2.3.1. Case 1: Identification of Early Mobility Activity for ICU Patients. Due to

long periods of inactivity and immobilization, patients become weak when recovering from major

illnesses in ICU [18]. If ICU patients’ activities can be accurately recognized, clinicians can provide

an optimal personalized dose of mobilities for ICU patients’ different illness conditions. Therefore,

doctors and researchers are extremely interested in ICU patients’ early mobilization, which is

an effective and safe intervention to improve functional outcomes [19]. However, early mobility

activity (EMA) research is limited by the lack of accurate, effective, and comprehensive methods

to recognize patients’ activities in ICU.

We propose a wearable sensor-based HAR system for recognizing the EMA of ICU patients [13].

In our system, Each ICU patient wears two accelerometer devices: one on the chest and the other

on the thigh, as shown in Figure 2.2(a). Each device continuously collects 3-axis accelerometer

data at a sampling rate of 32 Hz. Figure 2.3(a) plots the accelerometer data when an ICU patient

sits on the cardiac chair to achieve an optimal resting position. This project aims to classify 20

types of ICU-related activities (e.g., reposition, percussion).

This project has two main challenges in designing the HAR system for ICU patients. (1) Label

Noise. Because the time lengths for accomplishing an early mobility activity are different for ICU

patients with varying health conditions, it is laborious and time-consuming work for clinicians

to annotate sensor data for each second in the real world. Therefore, our EMA sensor data are

annotated for each minute by a medical expert after data collection. However, one-minute length

is exceedingly long for some early mobility activities such as Reposition, which the patient needs

less than 20 seconds to accomplish. This annotation process introduces the label noise in our EMA

dataset, which decreases the accuracy of the model. (2) Sensor Orientation. In the actual data

collection process and possible future applications, we cannot guarantee that the orientations of

all accelerometers are the same, and different orientations of the accelerometers lead to different

meanings of XYZ coordinate values. Therefore, without careful feature extraction and selection,

the AI model generalizes poorly to different patients, affecting the system performance in practice.
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(a) ICU patient (b) DMD patient

Figure 2.3. Illustration of accelerometer data in our projects. (a) The z-axis of the
accelerometer data from the two on-body devices when an ICU patient is performing
the cardiac activity. (b) The z-axis of the accelerometer data, which shows the
difference in gait characteristics between a DMD patient and a healthy person.

To tackle these challenges and improve the accuracy of recognizing ICU patient’s activities,

we explore the following techniques. (1) We propose a segment voting process to handle the label

noise. Specifically, each one-minute sensor data is divided into multiple fixed half-overlapped sliding

segments (time windows). We train our AI model using the segments. To predict each one-minute

sensor data activity, we apply our trained model to each segment. The final prediction result for

the one-minute data is the activity that has the majority vote among the prediction of all segments.

Our segmenting method improves the model accuracy by ∼4.08% and reduces the model instability

by ∼9.77% [13]. Our experiments also demonstrate that the number of sensors contributes to

eliminating label noise in our dataset. As shown in Figure 2.3(a), the increase in the number

of sensors conveys more information, and thus improves the system’s accuracy. (2) We identify

and extract features that are not sensitive to sensor orientations to tackle the sensor orientation

problem. Our features improve both the accuracy and the stability of AI models compared to the

model trained on commonly used features.

2.3.2. Case 2: Identification of Gait Characteristics for DMD Patients. Duchenne

muscular dystrophy (DMD) is a genetic disorder disease that affects the dystrophin protein, essential

for keeping muscle cells intact. It has an estimated incidence of 1:5000 male births, and untreated

boys become wheelchair-bound by the age of 12 years and die in their late teens to early 20s [20].

There is presently no cure for DMD disease. Nonetheless, gene repair interventions and other

preventive therapies can be initiated as early as possible to slow the disease’s progress and prevent

secondary conditions. Therefore, it is important to identify children with DMD early in the course

10



of their disease and have tools for quantitative evaluation of their gait in both the clinic and

community environments.

We designed a wearable sensor-based HAR system to identify gait characteristics associated with

the progression of gait abnormalities in children with DMD and to differentiate those patterns from

those of typically developing peers [14] To leverage this idea, we design a HAR system in which we

use a smartphone to capture accelerometer data from the participants. As Figure 2.2(b) illustrates,

participants wear a smartphone at the back of the hips over the spine (lumbosacral junction) at a

location that is the closest surface point to the body’s center of mass. Each smartphone collects

3-axis accelerometer data at a sampling rate of 30 Hz with the same phone orientation.

We recruited ambulatory participants with DMD between 3 and 13 years of age and typically

developing controls of similar ages. We ask participants to perform exercises at various times,

speeds, and distances such as free walk and 6-minute walk, as specified by the north star ambulatory

assessment (NSAA) standard [21]. Figure 2.3(b) shows the gait pattern difference between a DMD

patient and a healthy person when they are walking.

We found that classical machine learning and deep learning, after hyper-parameter fine-tuning

and cross-validation on seven different gait activities, led to the best performance with an accuracy

exceeding 91% on the 6-min-walk-test activity [14]. We demonstrate that by using AI techniques

and an accelerometer, we can distinguish between the DMD gait and typically developing peers.

There are two main challenges in designing our HAR system for the DMD application: clinical

interpretability and data sparsity. (1) Clinical Interpretability. Medical practitioners desire not only

a high prediction accuracy but also an interpretation of the prediction result. (2) Data Sparsity.

In the healthcare domain, collecting diverse and sufficient data is challenging, especially for fatal

diseases such as DMD.

We explore the following techniques to tackle these challenges. (1) To interpret AI model out-

comes, we plan to link the clinical measurements with the model’s extracted features by leveraging

advanced AI models such as interpretable CNN [22]. However, it is an active, challenging task to

find which clinical measurements correlated with the AI model features, especially for deep learn-

ing models. (2) To overcome the lack of data, we plan to use Generative Adversarial Network

11



(GAN) [23] or synthetic minority over-sampling technique (SMOTE) [24] to generate more data

samples.

2.3.3. Summary of Our Projects. Our two projects target different healthcare applications

with different goals: recognizing ICU patients’ activities and distinguishing DMD gait patterns from

those typically developing controls. The ICU project focuses on the system performance to assist

the doctor in better understanding patients’ recovery. While achieving high system performance,

the DMD project interprets the model results further and discovers disease-specific patterns to

determine the patient’s condition and progression. Our example projects demonstrate the effec-

tiveness and potential of wearable sensor-based HAR systems in healthcare. However, due to the

different goals, different healthcare applications may have additional HAR system considerations.

For example, our two projects adopt a different number of devices (2 versus 1) and device position

(chest and thigh versus central mass body). In addition, our projects also apply different feature

extractions (time and frequency domain versus clinical). In the next section, we present design

considerations for building HAR systems.

2.4. System Design

This section covers three design considerations essential for HAR systems, i.e., sensor, feature

extraction and selection, and AI model selection.

2.4.1. Sensor. Sensors play an essential role in wearable HAR systems. Different HAR sys-

tems adopt various sensor configurations regarding the type of sensors, the sensor position and

orientation, and the number of sensors.

2.4.1.1. Sensor Types. There are several types of sensors. Each sensor captures a different raw

movement signal. The most commonly-used wearable sensors in HAR systems are accelerometer,

gyroscope, and electrocardiography (ECG). The accelerometer sensor captures the acceleration

signal that is useful for recognizing movements such as walking, running, and jumping. Gyroscopes

capture the rotation movements used commonly in recognizing swinging, turning, and repositioning.

ECG captures the heart rate and rhythm, which helps distinguish between intensive and light

exercises.
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However, many activities include both directional and rotational movements. Therefore, us-

ing one sensor type is not adequate. As a result, multiple types of sensors (e.g., accelerometer

and gyroscope) are used in various application scenarios to maximize accuracy. However, using

multiple types of sensors is challenging due to the increased complexity of the system in terms of

synchronization issues [6].

2.4.1.2. Sensor Position and Orientation. Different positions and orientations of devices affect

the data features and thus the model accuracy in predicting different activities [25]. However,

there have not yet been systematic comparisons of the number, type, and location of sensors to

determine whether an optimal array design can capture data across a wide range of human activities

and disease states. In many cases, the device position and orientation are decided by the empirical

experience of clinicians.

2.4.1.3. Number of Sensors. Generally, a large number of sensors require demanding storage

and computation capability. On the other hand, more sensors can collect more diverse data, which

is beneficial for improving model performance [26]. Therefore, to decide the optimal number of

sensors, researchers need to carefully consider many factors such as cost, power consumption, and

accuracy target as well as the feasibility of long-term use in the community to collect real-world

information [27].

2.4.2. Feature Extraction and Selection. In addition to the hardware setup, feature ex-

traction and selection significantly affect the overall system performance. Before applying feature

engineering to the data, the input data needs to be segmented.

2.4.2.1. Data Segmentation. HAR systems collect data constantly via wearable sensors to iden-

tify possible activities. Data segmentation is applied to divide comparatively long time data into

short fragments (time windows) that are suitable for AI models to learn. There are two types of

data segmentation: fixed-length and dynamic-length [15]. For fixed-length segmentation, if the

time window is too short, the extracted features from the fragments are insufficient to capture the

activity; on the other hand, if the time window is too long, a fragment is likely to contain multiple

activities. The system accuracy deteriorates in both cases. In comparison, a dynamic-length data

segmentation adopts an adaptive length of fragments corresponding to the characteristics of input
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data. Ideally, dynamic data segmentation generates fragments, in which each fragment only con-

tains a single and complete activity. However, dynamic data segmentation is much more complex

than fixed data segmentation, and thus are not as widely adopted by existing works as fixed-length

segmentation.

2.4.2.2. Feature Extraction. Feature extraction is then applied to extract important features

from the data fragments [16]. It can be broadly classified into time-domain and frequency-domain

methods. In time-domain feature extraction, metrics such as median, variance, mean, and skewness

are calculated over the amplitude variations of data over time. Time-domain features are lightweight

to compute and thus are friendly to low-profile embedded devices and real-time applications. In

comparison, frequency-domain features calculate the frequency variations of data over time. They

include metrics such as spectral entropy, spectral power, and peak frequency. The computation

overhead of frequency-domain features is generally much greater than time-domain features. In re-

ality, most existing HAR systems adopt both time-domain features and frequency-domain features,

in the consideration of the tradeoff among factors such as system accuracy, computation overhead,

and power consumption.

2.4.2.3. Feature Selection. Feature selection is often adopted in order to reduce system complex-

ity. It measures the importance of features and then removes irrelevant features. Feature selection

is roughly divided into three methods: filter methods, wrapper methods, and embedded/hybrid

methods [16]. Filter methods select a subset of features by exploiting inherent characteristics of

features, whereas wrapper methods use classifiers to estimate the useful features. On the other

hand, the embedded/hybrid methods combine the results from filter methods and wrapper meth-

ods [12]. By carefully selecting features, the AI model accuracy can be significantly improved.

However, in healthcare HAR systems, pursuing high accuracy is not the sole goal, as the features

are often manually decided by medical experts for identifying patients. Therefore, healthcare HAR

systems require feature extraction and selection that is meaningful for clinicians and meanwhile

achieves high prediction accuracy.

2.4.3. AI Model Selection. In the HAR field, classical machine learning algorithms and

deep learning algorithms have been explored and applied, which is summarized in Figure 2.4. Both
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Figure 2.4. Classical machine learning and deep learning algorithms used in HAR
systems.

classical machine learning algorithms and deep learning algorithms have different advantages and

disadvantages.

Dataset requirement and system running overhead. The data collection process in the

healthcare scenario is challenging because of the severe privacy issue and rare incidence rate of

some medical activities. Therefore, in most healthcare applications, the database size is small.

Correspondingly, classical machine learning models are more preferred because they work well with

medium-size datasets. In contrast, even though deep learning models achieve better accuracy, they

usually require a large amount of data for training. Real-time performance is another critical factor

for some healthcare applications [28]. For example, [29] uses cranial accelerometers to detect stroke

in an ambulance to decide whether to send the patient to a specialist stroke hospital for special

treatment. Therefore, lightweight models are preferred in this use case. In addition to the running

overhead of the AI models, the processing time of feature extraction also affects the model selection,

because different model structures adapt differently to the extracted features.

System interpretability. The features extracted from the sensor data are helpful to un-

derstand the pattern of some specific diseases to find out the pathological characteristics of the

disease. For example, we extract the temporal/spatial gait characteristics from sensor data to

evaluate the gait changes associated with DMD. Classical machine learning models are easier to

interpret the model’s decision, especially in decision tree models. Even though there is a great deal
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of work in interpreting deep learning models, deep learning models have the reputation of poor

interpretability.

2.5. Challenges and Opportunities

Wearable sensor-based HAR systems are promising for a variety of healthcare problems. How-

ever, there are several challenges in fully exploiting them to build satisfactory HAR systems for

healthcare. In this section, we identify challenges as well as research opportunities of HAR systems

for healthcare.

2.5.1. Data Sparsity. The most commonly used algorithms for the HAR system in health-

care are the supervised learning algorithms that need extensive labeled data. For some daily living

activities such as walking and running, researchers could get a significant amount of the labeled

data from the public dataset or the raw sensor data collected and annotated by themselves. How-

ever, for some specific human activities related to healthcare, such as the therapeutic activities

of patients, researchers could not get enough sensor data since these activities are low-probability

events compared with daily life activities. Furthermore, it also takes time and effort to locate the

sensor data of these specific activities from the daily data and label them. For example, when pa-

tients recover from surgery, they need some range of motion(ROM) exercises several times a day to

make their joints and muscles flexible and strong again. Because of the fixed and limited collection

times per day and the limited number of patients are involved, raw sensor data for ROM becomes

insufficient, affecting the HAR system’s performance. Therefore, building HAR systems with high

accuracy on small datasets in healthcare is one of the most significant challenges.

Meta-learning is one of the approaches to solve this challenge. Meta-learning aims to optimize

models which can learn efficiently in a small dataset when dealing with new categories. In [30],

researchers present a meta-learning methodology based on the Model-Agnostic Meta-Learning al-

gorithm [31] to build personal HAR models. In [32], researchers use few-shot learning to transfer

information from existing activity recognition models. However, it is unclear whether these tech-

niques work well for medical applications. So more research is needed to explore the feasibility of

transferring knowledge from daily living activities to specific activities related to healthcare.
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2.5.2. Model Interpretability. In HAR applications in healthcare, an increasing number

of applications focus on the interpretability of the model to extract relevant features, in order

to describe the severity of the disease and track the progression of the disease [14]. In addition,

notwithstanding the benefit of deep learning in HAR, the underlying mechanics of machine learning

are still unclear. So, various studies are trying to explain the deep learning model for the recognition

of human activities. The common approach to interpreting the deep learning model is to compute

the importance of each part of the input. In [33], researchers propose an interpretable convolutional

neural network to select the most important sensor position for some specific activities. Instead of

computing the importance of each part of the input, another approach is to make a sequence of

selections about which part of the input is essential for the model training [34]. More research is

required to adopt these methods to HAR systems for healthcare.

2.5.3. Concurrent Activities. Most of the existing HAR research focuses on single-labeled

activity, recognizing only one activity of the given data segment. However, in real-world healthcare

scenarios, humans can perform multiple activities concurrently. For example, patients can do

ROM exercises and percussion therapy at the same time. The AI model performance deteriorates

for concurrent activities. On the other hand, designing models to recognize multiple activities per

data segment is a challenging task.

2.5.4. Composite Activities. In healthcare applications, optimizing HAR algorithms to

identify composite activities in the community is ultimately more desirable than recognizing a

single type of task. For example, when a patient moves from bed to the chair, the patient performs

various activities, including sitting from supine in the bed, pivoting to place feet on the floor, stand-

ing from sitting, walking a few steps, and then sitting down on a chair. Therefore, it is preferred

that an AI model can directly recognize the composite activity.

2.5.5. Privacy. Wearable sensor-based HAR systems do not suffer from severe privacy issues

as camera-based vision systems. However, since HAR applications continuously capture user data

and recognize user activities, they may leak users’ personal information if data are not secured.

Therefore, secure data sharing and safe data storage are imperative for healthcare applications.

To alleviate sensitive information during model training, adversarial loss functions are leveraged to
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guard against privacy leakage [35]. In addition, federated learning is a promising solution, which

trains a global model without exposing local devices’ private data [36].

2.5.6. Opportunities of HAR for Healthcare. Through our experience with HAR systems

for healthcare, we identify the following research opportunities.

• Community-based healthcare. Community-based healthcare requires that user devices

are lightweight and affordable for the public. In addition, instructing the non-expert

users/patients should be straightforward to follow. We can use digital sensing capability

and the popularity of mobile devices to enable large community-based prescreening for

various diseases and early signs of diseases. This can be done in a privacy-preserving

manner in the sense that data does not need to leave a local device if necessary. For

example, our DMD project enables community-based diagnosis during the pandemic and

in rural areas where specialty labs are hundreds of miles away.

• Chronic disease prevention and intervention. For chronic diseases, it is essential

to capture the behaviors of patients in the long run. To this end, gait analysis, motion

monitoring, ECG, and other vital signals (such as continuous glucose monitoring) can play

a key role.

• Health aging. With the decreased fertility rates and the increased life expectancy, pop-

ulation aging is becoming common for most countries. Therefore, building HAR systems

for healthy aging is beneficial for senior citizens and society as a whole. We anticipate

that gait and motion monitoring and diagnosis will play a critical role in healthy aging.

2.6. Conclusion

It is gaining popularity by applying wearable sensors to recognize and analyze human activities

for the healthcare domain. For example, we leverage HAR systems to recognizing patients’ early

mobility activities in ICU and to analyzing the symptoms of DMD patients. This overview work

covers the system design of HAR systems based on wearable sensors, focusing on healthcare appli-

cations. We emphasize the essential components of HAR systems, including sensor factors, data

segmentation, feature extraction and selection, and AI model comparison. We also highlight the

challenges and opportunities of HAR systems for healthcare.

18



CHAPTER 3

Early Mobility Activity Recognition for Intensive Care Unit

Patients Using Accelerometers

With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technolo-

gies, human activity recognition has enabled various applications, such as smart homes and assisted

living. In this work, we target a new healthcare application of human activity recognition, early

mobility recognition for Intensive Care Unit(ICU) patients. Early mobility is essential for ICU pa-

tients who suffer from long periods of bedrest. We present an AI model to recognize patients’ early

mobility. To improve the model accuracy and stability, we identify features that are insensitive to

sensor orientations and propose a segment voting process that leverages a majority voting strategy

to recognize each segment’s activity. Our results show that our algorithm improves model accu-

racy from 77.78% to 81.86% and reduces the model instability (standard deviation) from 16.69%

to 6.92%, compared to the same AI model without our feature engineering and segment voting

process.

3.1. introduction

Due to long periods of inactivity and immobilization, Intensive Care Unit(ICU) patients become

weak when recovering from critical illnesses [37]. Early Mobility(EM) is an effective and safe

intervention to improve ICU patients’ outcomes, such as ventilator days and functional status [38].

Therefore, it is of great interest for clinicians to identify ICU patients’ early mobilization. When

clinicians can accurately recognize the EM activities of the ICU patients, they can prescribe an

optimal personalized dose of mobility to the ICU patients. However, the advancement of research

on EM is limited due to the lack of accurate and effective systems to quantify patients’ EM activities

in the ICU [39].
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EM recognition is a sub-topic of Human Activity Recognition, a fast-moving area because

of the recent advancement of Internet of Things(IoT) and Artificial Intelligence(AI) technologies.

Specifically, IoT technology enables convenient data acquisition and edge computing capacity, while

AI technology provides accurate and efficient machine learning algorithms. Consequently, HAR

systems have been applied in various fields such as fitness, smart homes, and assisted living [6].

HAR healthcare applications facilitate disease detection and provide proactive assistance to quantify

movement for both patients and clinicians, etc. For example, Goschenhofer et al. built a HAR

system to analyze the symptoms of Parkinson patients [40]; Palaniappan et al. built a proactive

assistance system for senior citizens by identifying their abnormal activities [41].

Based on the type of data being collected, a HAR system can be classified into vision-based [28],

and motion sensor-based [42]. A vision-based HAR system usually deploys cameras at fixed loca-

tions of interest and applies computer vision techniques to recognize human activities. However,

such systems have severe privacy issues, especially in the ICU. In comparison, a sensor-based HAR

system leverages lightweight sensors that patients wear. Different types of sensors can capture

different features of activities, e.g., movements by accelerometer and gyroscope [43], environment

by temperature and humidity sensors [44], and physiological signals (e.g., heart rate) by electrocar-

diogram sensors [45]. We leverage accelerometers to recognize ICU patients’ EM activities because

accelerometers are lightweight, energy-efficient, and widely available.

In our system, each patient wears two accelerometer sensors: one sensor is placed on the chest,

and the other sensor on the thigh. Patients perform EM and routine activities in the ICU room

while the sensor data is continuously collected. Our system automatically recognizes patients’ EM

activities based on the sensor data. Since our system targets applications in ICU, it needs to have

both high accuracy and stability. High accuracy means that the system achieves satisfactory

average recognition precision of all patients, while high stability emphasizes that the recognition

accuracy for different patients is approximately the same.

There are three main challenges in realizing our system. (1) Distorted Activities. EM activities

are different from traditional human activities in the HAR system. Traditional human activities

usually consist of regular activities with periodic patterns, such as running, walking, and swim-

ming [46]. In comparison, ICU patients’ EM activities are distorted, take much longer than regular
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activities, and vary among patients. Also, they may be affected by medical equipment, and physical

therapy personnel, who assist patients with exercises, such as Range Of Motion(ROM), which is

an EM activity that helps patients regain joint or muscle strength. (2) Label Noise. A medical

expert annotates the activity of each minute’s sensor data. However, for ICU patients with different

health conditions, the time needed to accomplish an activity is significantly different. Furthermore,

intermittent behaviors during the activities are observed. For example, one patient could finish an

EM activity once in a minute while another patient could accomplish the same EM activity twice in

a minute or accomplish this same EM activity and other non-EM activity in a minute. Hence, the

label for every minute’s sensor data is coarse, leading to the label noise. Label noise is an important

issue for classification tasks, which decreases the accuracy and the stability of AI models [47]. (3)

Sensor Orientation. Although sensors are placed at roughly the exact locations (thigh and chest)

on our ICU patients, their orientations are different. As a result, the 3-axis sensor readings (X, Y,

Z-axis) have different physical meanings for different patients. Therefore, without careful feature

extraction and selection, the AI model generalizes poorly to different patients.

To the best of our knowledge, our work is one of the first HAR systems for recognizing ICU

patients activities using wearable sensors. In realizing our system, we make the following contri-

butions: (1) A system for EM recognition for ICU patients. Our system adopts two accelerometer

sensors in different positions to capture different movement features of EM activities. Through

a combination of sensors on the chest and on the thigh, the system collects more information to

identify distorted movements. (2) We propose a segment voting process to handle the label noise

problem. Specifically, each one-minute sensor data is divided into multiple fixed half-overlapped

sliding segments (time windows). We train our AI model using the segments. To predict the activity

of each one-minute sensor data, we apply our trained model to each segment. The final prediction

result for the one-minute data is the activity that has the majority vote among the predictions of

all segments. (3) To tackle the sensor orientation problem, we identify and extract features that

are not sensitive to sensor orientations. Our features improve both the accuracy and the stability

of AI models compared to the model trained on commonly-used features.

We evaluate the accuracy and the stability of our system for classifying two categories of

lying activities for ICU patients. To objectively evaluate our system for new patients, we adopt
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leave-one-patient-out cross-validation. The experimental results show that our system increases

the classification accuracy from 77.78% to 81.86% and reduces the model instability (standard

deviation) from 16.69% to 6.92%, compared to the model without our feature engineering and

segment voting process.

3.2. Related Work

This section presents related work on machine learning algorithms for HAR, HAR applications

in the healthcare domain, and the community’s endeavor to assist ICU patients.

Machine Learning Algorithms for HAR. Different machine learning algorithms (classical machine

learning and deep learning) are adopted for recognizing activities. For example, classical machine

learning algorithms such as Decision Tree [48] and Logistic Regression [49] are applied to the

extracted clinical features. Deep learning algorithms such as convolution neural networks are

recently leveraged, which achieve higher accuracy [50]. We focus on classical machine learning

algorithms because 1) our collected dataset is too small for deep learning (only 586 data samples),

and 2) doctors prefer feature-based algorithms in order to interpret the results.

HAR for Healthcare Applications. Different medical applications face different challenges and con-

siderations, so various HAR systems are designed to target different applications. For example,

Patel et al. proposed a Support Vector Machine (SVM)-based approach to evaluate the severity

of symptoms for patients with Parkinson’s disease based on wearable sensor data [51]; Kańtoch

proposed a neural network classifier to assist the recovering of patients by recognizing squats (a

common rehabilitation exercise) [52]; Jennifer et al. targeted aging populations in the home to

assist living such as abnormal activities detection and security assurance [53]. As far as we know,

our system is one of the first works on HAR, specifically tuned for ICU patients using wearable

sensors.

HAR for ICU Patients. There are several works that leverage cameras to assist ICU Patients.

For example, Yeung et al. developed computer vision algorithms to detect patient mobilization

activities in the ICU, which achieves a mean area under the curve of 0.938 for identifying four

types of activities [54]; Rishab et al. used depth cameras to mitigate the severe privacy issue of
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(a) Sensor position (b) Accelerometer sensor

Figure 3.1. The sensor setup in our EM recognition system. (a) Two accelerometer
sensors are worn by ICU patients. One sensor is on the chest, and the other sensor
is on the thigh. (b) The clinical-grade 3-axis accelerometer sensor that is used in
our system.

RGB cameras, and identify two types of EM activities [55]. In comparison, we use accelerometer

sensors due to more widespread accessibility and also to avoid data loss when patients move out of

camera range.

3.3. Data Collection

EM activities data were collected in individual patient rooms in a Medical ICU (MICU) of

an academic medical center in California. Seventeen adult MICU patients who are eligible for

early mobility interventions between 2016-2017 were recruited for data collection [39]. As Figure

3.1 illustrates, two 30Hz 3-axis accelerometer sensors are placed on each participant: one sensor is

attached to the chest, and the other sensor is attached to the thigh(BioStampRC, MC10). Generally,

continuous accelerometer data were collected over a period of 4 hours and up to 48 hours to ensure

representative sampling of day and night mobility interventions and patient activities. Concurrently,

all ICU activities were recorded using a camera system without audio. An ICU clinician reviewed

and annotated each minute’s sensor data activity based on the corresponding video. However, due

to device and timing reasons, video or sensor data were missing for nine patients. In this analysis,

eight patients with 586 minutes of sensor data for lying activities are annotated.

We classify two categories of lying activities as suggested by the American Association of

Critical-Care Nurses (AACN) and the Society of Critical Care Medicine (SCCM), who define the

23



Figure 3.2. Data flow of our EM recognition system.

quantification approach of ICU early mobility [56]. Specifically, we focus on lying with no move-

ment and lying with EM and ICU specific activities. The lying with EM and ICU specific activities

includes four activities when patients lie on the bed; that is, repositioning, ROM exercises, per-

cussion therapy, and oral care. Repositioning involves lying flat in bed and moving laterally from

left to right side or vice versa; ROM exercises help recover patients’ muscles and joints; percussion

therapy assists patients with removing respiratory fluid tapped in the patients’ chest for 8-10 min-

utes by clinicians; as well as, oral care are part of the daily activities performed in bed for ICU

patients.

3.4. System Architecture & EM Classification

In this section, we first provide an overview of our system. Then, we explain our segment voting

process and the features used in our system. Last, we introduce our machine learning model for

classifying lying ICU activities.

3.4.1. System Overview. Figure 3.2 shows the data flow of our EM recognition system.

Our system takes 1-minute sensor data from the two accelerometers as input. The data from these
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two sensors are synchronized and integrated. Afterward, each 1-minute sensor data is divided

into multiple half-overlapped sliding segments (time windows). Then, we extract time-domain and

frequency-domain features that are insensitive to sensor orientations. To mitigate the noisy label

problem of EM activities, we leverage the segment voting process, which predicts the activity of

the 1-minute input as the activity that has the majority vote of segments’ prediction results.

3.4.2. Extracted Features from Sensor Data. Both time-domain features and frequency-

domain features are widely used in HAR systems [42, 57, 58]. Time-domain features reflect the

trend of sensor signal changing with time, which can help the EM recognition system to capture

the changes in activities [59]. In contrast, frequency-domain features capture dynamic motion

in an activity, which can improve the EM recognition system to get the movement trend in an

activity [60]. We use Fast Fourier Transform (FFT) to convert the sensor data from the time domain

to the frequency domain to extract frequency-domain features. We extract the low-frequency

components whose frequencies are less than 0.3Hz related to gravity’s influence and the high-

frequency components with frequencies between 0.3Hz and 20Hz related to the dynamic motion.

And we also extract the derivation of each high-frequency component as our third frequency-

domain features. Because different patients have different and unknown sensor orientations, we

cannot rely on features that are sensitive to sensor orientations [61], such as features related to

each axis. Instead, we apply the magnitude function to each tri-axial signal: original tri-axial

signals, low-frequency components, high-frequency components, and the derivation of each high-

frequency component. Finally, for each sensor position, we have one time-domain feature, namely

the signal magnitude, and three frequency-domain features, namely the magnitude of low-frequency

components, high-frequency components, and the derivation of each high-frequency component

,which are less susceptible to sensor orientation. Furthermore, we apply eight metrics (i.e., mean,

maximum, minimum, standard deviation, median, and entropy) to each time and frequency-domain

feature, resulting in a total of 64 attributes for training machine learning models.

3.4.3. Classification Model. Different machine learning algorithms have various advantages

and disadvantages. Classical machine learning algorithms are more straightforward to interpret
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based on the importance of features, which is especially helpful in the healthcare field. In compari-

son, deep learning algorithms do not require feature engineering and tend to have higher accuracy.

However, the amount of training data and the training overhead of a deep learning model can be

enormous. Our collected EM activities dataset contains 586 minutes of sensor data, and thus the

number of samples is only 586 because each sample is 1-minute long. Therefore, deep learning mod-

els are not applicable to our project because of the limited data samples. Instead, we use classical

machine learning models such as Logistic Regression, Bagging Decision Tree, and Support Vector

Machine. Our experiments show that Bagging Decision Tree (Bagging for short) works best for our

needs. Bagging is an ensemble meta-algorithm that reduces the high variance of the decision tree,

and thus improves the accuracy and stability of the decision tree algorithm.

3.4.4. Segment Voting Process. The classification model takes each 1-minute data segment

as input. Initially, the system accuracy is low because of the noisy label problem described earlier on

in this work. To improve the recognition accuracy and model stability, we propose a segment voting

process. In our segment voting process, 1-minute data is segmented into small pieces (segments)

with a fixed half-overlap time window size. There exists a trade-off in selecting window size. When

the time window size is short, each window is more likely to contain only one activity. However, the

extracted features may be insufficient to distinguish different activities. On the other hand, when

the time window size is long, each segment may contain multiple activities, and thus the recognition

accuracy is reduced. Therefore, deciding an optimal time window size is crucial. Therefore, in our

segment voting process, we explore different time-window sizes to find the optimal time window

size for the EM activities dataset. After that, 1-minute sensor data is divided into data segments.

Then we extract features from each segment and apply the classification model to each segment,

which predicts the segment’s activity. The activity of the 1-minute input is determined by selecting

the activity that occurs most among the segments (i.e., majority voting).

3.5. Evaluation

In this section, we extensively evaluate our system concerning the model accuracy and stability.

In addition, we explore how the time window size, the sensor positions and numbers, the extracted

features, and the number of patients in the training dataset affect the system performance.
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3.5.1. Implementation. All experiments are implemented using scikit-learn and Keras pack-

age, running on a server with Nvidia Titan Xp GPU and Intel XeonW-2155. To objectively evaluate

our system for new patients, we adopt leave-one-patient-out cross-validation. The model accuracy

is calculated by averaging the prediction accuracy for all patients, while the model instability is

the standard deviation of the prediction accuracy among all patients.

Table 3.1. Classification accuracy and stability when different time window sizes
are used for segments.

Baseline Segment time window length
1-minute 4 sec 10 sec 20 sec 30 sec

Accuracy 77.78% 79.85% 81.86% 77.85% 78.9%
Instability 16.69% 7.89% 6.92% 13.01% 9.41%

3.5.2. Segment Voting Process. We propose a segment voting process to mitigate the noisy

label problem. Our segment voting process divides each 1-minute sensor data into segments of

smaller time windows. We evaluate the model performance when different time window sizes are

used. We compare our performance with the baseline case that takes the whole 1-minute data as

input.

Table 3.1 tabulates our system performance and the baseline performance. We have the follow-

ing observations: (1) Our segment voting process improves both the system accuracy and stability.

This is because our segment voting process mitigates the effect of noisy labels. By adopting a

10-seconds time window, we increase the system accuracy from 77.78% to 81.86% and reduce the

system instability from 16.69% to 6.92%. (2) The time window length affects the system perfor-

mance. When the time window size is too small, such as 4 seconds, the segment data is insufficient

for the model to classify EM activities accurately. On the other hand, when the time window size

is too large, such as 30 seconds, the accuracy also decreases because of overlapped activities in the

segment. We find that a 10-seconds time window works best for our EM recognition. In the rest

of the experiments, we set the time window size to 10 seconds.

Figure 3.3 plots the prediction accuracy for each patient with our segment voting process and

compares it with the baseline. It clearly shows that our segment voting process results in better

system stability than the baseline. Specifically, the baseline method has low prediction accuracy

for patient ID 6 and 7, while our segment voting process still maintains good accuracy for both
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Figure 3.3. Our segment voting process has better system stability. In other
words, we achieve similar prediction accuracy for different patients.

Figure 3.4. We extract features that are insensitive to sensor orientation, which
improves accuracy and stability more than using commonly-used features.

patients. System stability is essential for healthcare applications, which require consistent diagnosis

results for patients.

Table 3.2. The system performance for different sensor positions and sensor num-
bers.

Sensor Chest only Thigh only Both
Accuracy 70.28% 80.29% 81.86%
Instability 16.98% 9.51% 6.92%

3.5.3. Extracted Features. We investigate whether our extracted features perform better

than commonly-used features. Precisely, we extract features that are not sensitive to sensor ori-

entations, while existing systems often include more features such as features for each axis’ sensor

data.
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Figure 3.4 shows the performance of our extracted features which are only related to the magni-

tude of each tri-axial signal and commonly-used features, which contains the features of each axis.

As we can see, our system has higher accuracy (especially for patients 1, 3, 6, and 8) and stability

than the system with commonly-used features. Although the machine learning models can identify

and extract the critical features, the limited dataset of ICU patients still requires careful feature

engineering for the machine learning models to learn.

3.5.4. Sensor Positions and Numbers. In our current system, we use two sensors (one on

the chest and the other on the thigh) to recognize the EM activities of ICU patients. We explore

whether our sensor setting is superior to using a single sensor. For comparison, we adopt the same

machine learning model but use one sensor signal as input.

Table 3.2 tabulates the system accuracy and stability when using only one sensor on the chest,

only one sensor on the thigh, and using two sensors. The results clearly show that our sensor

setting (both sensors) achieves better accuracy and stability than the single sensor counterparts.

Specifically, the thigh-only scenario is better than the chest-only scenario in recognizing lying

activities. Meanwhile, by combining both sensor data, our scenario further increases accuracy by

1.57% and stability (standard deviation) 2.59% compared to the best case of a single sensor (i.e.,

thigh-only scenario).

Table 3.3. The system performance when different numbers of patients are used
in the training and testing.

#Patients 5 6 7 8
Accuracy 75.08% 78.35% 80.90% 81.86%
Instability 14.74% 11.99% 8.24% 6.92%

3.5.5. Number of Patients in Dataset. Our current system achieves 81.86% accuracy and

6.92% instability. Our system will improve if we have a larger dataset. To validate this hypothesis,

we change the number of patients in our dataset and explore the system performance.

Table 3.3 tabulates the system performance when the dataset size varies from 5 to 8. The

results shows that by increasing the number of patients, our system performance improves. It also

suggests that our dataset is too small since the system performance has not yet reached the plateau.

With a larger dataset, we expect that our system will improve further.
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3.6. Discussion

In this section, we discuss some limitations of our work and present future works.

Our system adopts two accelerometer sensors and deploys them on the chest and thigh, which

shows better accuracy and stability than the single sensor scenario. We believe that adding more

sensors will improve the system performance at the expense of inconvenience for patients. The

optimal number of sensors and sensor locations remains an open problem, especially for ICU patients

with dramatically different activity patterns.

Our system achieves 81.86% accuracy, which may seem moderate considering the much higher

accuracy reported by existing HAR papers. However, we target challenging activities of ICU

patients in a real-life setting, while existing works mainly focus on activities performed by healthy

people who are consistent in conducting activities such as walking and running, often in a controlled

and protocolized setting. Furthermore, we use leave-one-patient-out cross-validation, which is the

patient-level validation; i.e., we hold out all data from a patient and use it for evaluation. This

validation process is a more robust approach for recognizing human activities than observation-

level validation which we split the dataset into 85% for the training dataset and 15% for the testing

dataset. Our results using observation-level validation show a much higher accuracy which is 97.9%

by using Convolutional Neural Networks with segment voting process. Therefore, since observation-

level validation may lead to a significant bias on unseen patients, patient-level validation is practical

as a trained model in healthcare. In addition, from Table 3.3 we can see that our system has not

fulfilled its full potential because the data sample size is still small. Our conjecture is that by

collecting more data samples, our system’s accuracy may increase further.

In the future, we plan to consider more activities in addition to lying activities. As we have

shown in this work, recognizing EM activities of ICU patients involves many challenges, even for

distinguishing only two categories of activities. Therefore, more research is required to support EM

recognition for ICU patients using wearable sensors entirely.

3.7. Conclusion

This work presents novel work for EM recognition and clinical interventions of ICU patients

using wearable sensors. Due to ICU patients’ irregular movement behaviors, EM recognition for ICU
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patients is more challenging than traditional human activity recognition (e.g., walking and running).

By systematically considering the sensor positions and numbers, machine learning models, extracted

features, time windows, and segment voting process, our system achieves good accuracy (81.86%)

and stability (standard deviation of 6.92%) for discriminating between two categories of lying

activities specific to ICU patients. More research is required to support higher system performance

and more activities of ICU patients.
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CHAPTER 4

BWCNN: Blink to Word, a Real-Time Convolutional Neural

Network Approach

Amyotrophic lateral sclerosis or ALS is a progressive neurodegenerative disease that affects

nerve cells in the brain and the spinal cord. While an individual affected by this disease loses

all motor functions, they can still blink their eyes. We present a system (BWCNN) to use the

eye blinks as a mode of communication with the outside world. The system uses a Convolutional

Neural Network (CNN) to predict the state of the eyes and this state is used to find the blinking

pattern. Once the pattern is obtained, it is mapped with a collection of phrases with a label for each

pattern. Several state-of-the-art ConvNet architectures such as ResNet, SqueezeNet, DenseNet, and

InceptionV3 were implemented in this system to evaluate their performance in order to choose the

best one for eye state recognition. By tuning the hyperparameters of the networks such as batch

size and the number of iterations, we analyzed the performance of different architectures based

on the accuracy and the time taken for prediction. The goal of our system is to strike a balance

between accuracy and the latency. High accuracy makes our prediction better while small latency

makes it faster. Although the highest accuracy was obtained from ResNet (99.26%, 117ms latency).

We found that InceptionV3 architecture struck the best balance for our system with an accuracy

of 99.20%, and 94ms latency.

4.1. Introduction

There are several medical disorders that cause an individual to be paralyzed. In most cases,

the patient loses the ability to communicate with the outside world even though their intelligence

is still not affected. The specific problem here is to create a communication mechanism to aid

paralyzed individuals to converse by blinking the eyes. The system needs to be robust and provide

accurate results in real-time.
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We have created a vision-based system to tackle all the limitations of the previous methods. Our

system uses an InceptionV3 architecture and we have achieved an accuracy of 99.20% compared

with around 96% accuracy in [62]. It is a completely safe method unlike the method based on

Infrared [63] which causes cataracts. (Our system detects the state of eyes ‘Open’ and ‘Closed‘

even under low lighting conditions, unlike the Haar-cascade based methods [64]).

We have a pre-defined set of patient inputs corresponding to the blink pattern which we map

to actions in real-time. The inputs are how the patient interacts with our visual interface. These

inputs could correspond of to movement (up, down, left, right), or clicks, etc. which would enable

them to use different applications such as a browser, email, or phrase keyboard. As a proof of

concept, we mapped those inputs to specific sentences. Since it uses predefined phrases instead of

using Morse code or any other encoding patterns, the patient does not have to put in a lot of effort

to spell out the entire sentence.

4.2. System model

In order to sum up, we want to create a system that works almost flawlessly in real-time and is

completely safe to use and this can be summed up using (4.1) and (4.2). P refers to the performance

of the system in our case is the accuracy. S refers to the System itself. W refers to the weights

that are going to be trained to achieve this performance. A refers to the architecture that is going

to maximise the performance. AS refers to the set of all architectures that can be used for this

purpose. tuning time is the prediction time for the model on the validation set and TC is the time

constraint which is 100 ms for our case.

(4.1) maxP (S,W,A);A ∈ AS

(4.2) s.t prediction time ≤ TC

4.2.1. Previous work. Certain approaches have been used in the past to solve this problem.

One approach [65] is to use Infrared (IR) sensors to estimate the state of the eyes to detect blinking

and conversion to Morse code. This approach had multiple shortcomings such as the IR sensor
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getting irradiated by other sources resulting in false eye-blinks and prolong usage may involve an

increased risk of cataract formation.

In [66] a novel method of differentiate between short and long blinks was introduced . The

system is intended to provide an alternate input modality to allow people with severe disabilities to

access a computer. Images at the current and previous time stamps were taken and the bidirectional

image is formed to detect motion and brightness changes in the scene to obtain eye candidates.

This is used to detect the location of the eyes. Correlation scores for the user’s eye at each frame

of ‘Open’ and ‘Closed‘ eyes were computed to detect blinks. This method recorded an accuracy

of 95.6% but a task of spelling 2 words containing 8 letters took about 95 seconds. These image

processing techniques are not robust and are prone to failure under limited lighting conditions. The

real-time accuracy of these approaches is also low. Moreover, these approaches require the patient

to learn the Morse coding scheme to communicate and interpret the messages.

An efficient system for eye blink detection is presented in [64]. This method uses Haar-cascade

classifiers for the detection of the face and the eye positions relative to the face. An eye blinking

detection based on eyelids state (‘Open‘ or ‘Closed‘) is used for controlling android mobile phones.

The application was used in different environments to study the effects of varying lighting conditions

and distances from the eye. The performance of Haar-cascade classifiers is not completely invariant

to the change in lighting conditions and hence there is a decay in performance. Artificial light was

used and an overall accuracy of 98% was obtained.

A low-cost implementation [67] of an eye-blink-based communication aid for ALS patients is

presented in this work. The position of the pupil is found by generating four rectangles around it.

Template matching is used to track the eye and detect eye blinks using hierarchical optical flow.

The optical-flow method used here is also dependent on various assumptions (1) the brightness

of any feature point is constant over time and (2) nearby points in the image move in a similar

manner. The implementation, though being a low-cost implementation, has an accuracy of 94.75%

during the typing test. Though the accuracy is comparable, the algorithm takes a lot of time to

type a phrase. It takes approximately 2 seconds for the algorithm to generate a single scan of the

eye which is a lot considering it is for a single character.
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Multiple methods dealing with the detection of the eye state have been implemented in [68].

One of the methods is based on ideogram selection by moving a cursor on the screen. But this

requires the user’s gaze to be focused and not move around since that might lead to false positives.

The second method is based on image binarization using an adaptive threshold determined using

the integral sum image for the selection of ideograms using voluntary eye blink detection which is

defined as a longer blinking interval than a normal physiological one.

Though this method seems user-friendly, as opposed to the first method, it requires a high

learning curve as the user will have to learn the system in torder to determine the duration of blinks

necessary for the ideogram selection. Considering the stated limitations and accuracy of 91.04%,

this method does not seem feasible. A vision-based human-computer interface [69] is presented in

the work. The interface detects eye-blinks and interprets them as control commands. A robust

system that can detect faces and eyes using Haar-Cascade filters and can detect and interpret

blinks using template matching with a fixed threshold is presented. An accuracy of 95.35% is

achieved but the algorithm takes approximately 12 seconds to complete the process of detecting

blinks which is considerably longer if communication needs to be carried out in real-time. This

work [62] presents a real-time detection and classification between eye blink, left and right wink.

The process of blink detection has been divided into four parts. The first part is face localization

in facial images acquired through a video camera. Following that, eye pair localization, pixels’

motion analysis using optical flow technique, and classification of eye blinks were performed. This

approach was accurate 96, 92 and 88% of the time for detection of eye blink, left wink and a right

wink, respectively. The latency for the detection of a single blink was found to be 250ms.

A wearable device [63] to detect eye blinks for alleviating dry eyes and computer vision syn-

drome was proposed in this work. The prototypes sense infrared reflections from the cornea of the

person of interest while blinking. Eye blinks are evaluated using discontinuity in infrared reflec-

tions. This method [63] captured 85.2% of all the blinks that occurred during testing. The IR

sensors tend to show false readings when the orientations are altered and hence unreliable to use

in realistic scenarios. Any facial movements such as laughing, talking and yawning can also induce

errors.
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4.3. Methods

The goal of this approach is to detect if the person of interest blinks their eyes and to map the

sequence of blinks to a particular entry in the dictionary of phrases. In order to achieve this, one

has to detect the state of eyes (‘Open‘ or ‘Closed‘). If an ‘Open’ state is followed by a ‘Closed’

state in the subsequent frames, the system detects an eye blink. The system is divided into three

phases as shown in Fig. 4.1.

Phase one: preprocessing data by capturing and saving the stream of images. Phase two:

using the CNN model that we trained to predict the state of user’s eyes which includes training a

convolutional neural network on the labeled dataset to detect the state of user’s eyes. Phase three:

using the output vector of the predictor, map the eyeblinks to a phrase in the dictionary. In the

Figure 4.1. The 3 phases of the BWCNN system.

phase one, the system pre-processes the data by capturing and saving the stream of frames. The

frame is captured by the camera (PC, laptop, or IoT) and the stream of frames is saved as image

files. In order to improve performance, the system only saves a designated eye area. This step is

important to reduce the dimensionality of the saved images which will be fed as an input to the

Neural Network in the next phase. By saving only the eyes area, the size is reduced from 10KB to

3KB. The size of the image can be further reduced from 3KB to 2KB by converting the images to

grayscale.
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Table 4.1. Dictionary

# of blinks Vector e.g. Words e.g. Moves
1 000000010000000 Yes Right
2 000000101000000 No Left
3 000001010100000 Hi Click
4 000010101010000 I am Up
5 000101010101000 Good Down
6 001010101010100 Thanks Exit
7 010101010101010 How are you? Help

In phase two, the system predicts the contents of the image. Based on the image obtained in

the previous phase, the state of the eyes is predicted. In this phase, we deal with the prediction

of the image using a trained ConvNet. The fundamental challenge with deep learning is striking

the right balance between generalization and optimization. The main question here is: given our

dataset, what is the best CNN architecture to implement? Since this system runs in real-time,

the latency (time taken for prediction) of the system is a very important factor. Thus, improving

the accuracy of the prediction is not the only priority. The tradeoff between the accuracy and the

latency (prediction time) will have to be taken into account. Moving forward, the question is, given

our dataset, what is the best CNN architecture to implement in terms of accuracy and latency? In

the coming subsection, we explain in detail the procedure we follow to choose the best architecture

that we believe serves our goal. The input of this phase is one eye image and the output is a binary

digit of zero or one. Zero represents the ‘Open‘ state and the one represents the ‘Closed‘ state.

In the phase three, the system processes the output and maps it to the phrases. The system

stores the output of the CNN as a vector of zeros and ones. Each blink is represented by 010.

Based on the output vector, the number of blinks are calculated and is mapped with the phrases

in the dictionary.

4.3.1. Phase 1: Preprocessing data by capturing and saving a stream of images. In

this section, we present the method of obtaining the data and preprocessing it to be given as input

to the ConvNet.

4.3.1.1. System Input. The system uses camera devices (PC, laptop, IoT) for capturing the

frames. Regulars webcams are capable of capturing 30 frames per second. Choosing the right

number of frames per second will directly affect the user experience. Since, The system runs in
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real-time, it is more effective to reduce the latency and not let the user wait for the results. At

the same time using a small number of frames per second will lead to missing the eye blink and as

a result, the CNN model mispredicts the state. Our experiment shows that 10 frames per second

is a reasonable frame rate. So there is a frame being captured every 100ms, and in order for our

system to avoid delay and operate in real-time, we need our model to predict each frame in less than

100ms. We further impose a constraint on the user that the ‘Closed‘ state should be maintained for

at least 200ms, so that two frames of that state are obtained for prediction. The first is the main

prediction and the second is the redundant prediction which will be useful in case the user increases

the blink rate or any other issue that leads to missing the current frame capture. Choosing the

right architecture that has high accuracy and low latency is very critical. Thus, our trade-off here

is choosing the right number of frames that serve the system without causing a huge delay. The

system saves each frame as an Image of dimension 80X70 pixels and a size of 2KB and gray color.

By converting them to grayscale, we reduced the frame size file from 3KB to 2KB.

4.3.2. Phase 2: Predict the contents of the image. In this section, we present the ex-

periments to choose the best fitting neural network architecture for our application. Choosing the

neural network architecture for a given data is a challenging task. The goal of our experiment here

is to select the best-suited architecture among the four state-of-the-art architectures (SqueezNet,

ResNet, InceptionV3 and DenseNet architecture). Not only the architecture but also the hyper-

parameters play a huge role in the model performance. The hyperparameter that we have chosen

here is the batch size. We start by training the networks from scratch for different values of batch

sizes and find the batch size that gives the best results. On finding the best batch size, we further

explore the chances of improving the performance by using transfer learning with a pre-trained

model and compare the results. By considering the trade-off between the accuracy and the time

taken for prediction, we decide the best architecture that fits our system.

4.3.2.1. Training Dataset. We used the eye dataset from Media Research Lab (MRL) which

is available for public use. The dataset contains 84,898 pictures of eyes taken from thirty-seven

individuals consisting of thirty-three men and four women. Each image in the dataset was collected

from one of the following sensors: Intel RealSense RS 300 sensor with a resolution of 640 x 480,

IDS Imaging sensor with a resolution of 1280 x 1024, and Aptina sensor with a resolution of 752
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x 480. The original dataset contains 6 different classes: ‘gender’, ‘glasses’, ‘eye state’, ‘reflections’,

‘lighting conditions’ and, ‘sensor resolution’. But we do not need all these classes for our purpose.

Therefore, we divided the entire dataset into just two classes - ‘Open’ and ‘Closed’. We split the

dataset into training and test sets. The training set consists of 80% of the images amounting to

67,919 images and the test set has 16,979 images which are 20% of the total number. Both the

training and test set has an ‘Open’ and a ‘Closed’ class. The training directory thus has two

folders named ‘Open’ and ‘Closed’ and likewise for the test directory too. The folder names of the

images act as the labels for each image in that folder. You can download our dataset from here:

http://albara.ramli.net/bwcnn/imx.zip

4.3.2.2. Training experments. Training the model is crucial to obtain an accurate detection

of the eye’s state. Apart from the accuracy, another important factor to consider is the latency

for detection i.e., the time taken to make an accurate classification. The robustness of a model is

measured based on these two factors and it is important to choose the right dataset and architecture

for this purpose.

Deep learning is a field that is researched extensively. With that being said, there are a lot

of potential algorithms and architectures that can help with our goal. Each of them has its own

set of advantages and limitations and all of them tend to act differently with unseen data. Apart

from the architecture, the hyperparameters used for training such as batch sizes play a huge role

in the accuracy of the model. To find the model which can provide the best accuracy with the

least latency, we implemented various state of the art architectures such as SqueezeNet, ResNet,

InceptionV3 and DenseNet. We trained them from scratch by randomly initializing the weights.

We can make a fair comparison of these architectures if they are trained with the same batch size

and for the same number of epochs. We also used the weights from the trained model to train the

same architecture with different batch sizes. Based on how each model performs on the test set, we

can decide on which architecture suits our goal the best. The following are the experiments that

were performed to analyze the neural networks:

Train ResNet architecture from scratch. There are a number of hyperparameters that can be

tuned during the training. One of the hyperparameters is the batch size. We train the ResNet

architecture for 100 epochs using 6 different batch sizes on our dataset and calculate the overall
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accuracy. The performance metric used to analyze each batch size is the overall accuracy. Com-

paring the performance, we select the three best batch sizes. For our experiment, we tried batch

size numbers 1, 2, 4, 8, 16 and 32. The results (Table. 4.2) show that using batch sizes 8, 16 and

32 provides the best accuracy among all the different batch sizes.

Run 500 epochs. Based on our observation of this experiment. After finding the best batch sizes,

we wanted to further improve the performance of our network. Since our experiment stops only

at 100 epochs, training the network for more number of epochs might improve the performance.

Training the network for all the batch sizes is computationally expensive, so the residual network

is trained only on the three selected batches for 500 epochs. The obtained results (Table. 4.2) show

that there is no further improvement in terms of accuracy.

Transfer learning. Another way of improving network performance would be to use transfer

learning. Here our pre-trained model of the ResNet is used as the source network. The best weights

obtained from the three selected batch sizes 8, 16, and 32, are used to train the source network.

After 100 epochs of training, the results ( Table. 4.2 ) show no improvement in the accuracy beyond

what we have already obtained in the previous step. We also implemented transfer learning using

a pre-trained model of ResNet50 as our source network and training it on the same set of three

different batch sizes as before. Similar to the previous results, after 100 epochs the there was no

significant improvement in the accuracy of the network. (Table. 4.2)

Train Inception, SqueezNet and DeneseNet architectures from scratch. After implementing the

different variations of ResNet, the next approach towards finding the best network would be to try

different architectures. Trying different batch sizes and testing every case is very expensive. Thus,

our assumption is that the same set of 3 batch sizes from ResNet would be the best performing

batch sizes in the other architectures as well. To investigate this assumption we run the same

experiment again but with different architectures. DenseNet, Inception, and SqueezeNet are the

three different architectures that were chosen for this purpose. (Table. 4.3). The time taken for

prediction for each frame is calculated for the best performing batch size for each architecture. This

is a measure of the latency of the networks. The comparison is made between each architecture

based on the accuracy and the latency.
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Table 4.2. ResNet with and without transfer learning

TRANSFER LEARNING
FROM BATCH SIZE 16

TRANSFER LEARNING
FROM OFFICIAL RESNET50

BEST 3 BATCH SIZES
FOR 500 EPOCHS

Batch Size No. pf epochs Accuracy Last ep. improved Accuracy Last ep. improved No. pf epochs Accuracy Last ep. improved
8 100 99.22 31 99.22 29 500 99.20 60
16 100 99.23 51 99.17 16 500 99.21 33
32 100 99.22 49 99.17 25 500 99.19 46

Table 4.3. DenseNet,SqueezeNet,InceptionV3

DENSENET SQUEEZENET INCEPTIONV3
Batch Size No. pf epochs Accuracy (%) Last ep. improved Accuracy (%) Last ep. improved Accuracy (%) Last ep. improved

8 100 99.24 55 49.40 1 99.14 35
16 100 99.18 70 49.40 1 99.20 22
32 100 99.21 52 49.40 1 99.17 38

4.3.2.3. Testing the Model. The first phase of our system is to obtain the dataset of images

containing the two eye states, ‘Open’ and ‘Closed’ and these images are preprocessed to make them

apt for the contiguous steps. Following the preprocessing phase, we move on to the next phase,

detection. In this step, given an input image, we predict the state of the eyes by using one of the

above-stated pre-trained networks. The network classifies them as zeros (for ‘Open‘ state) and ones

(for ‘Closed‘ state). The third and final phase involves detecting eye blinks based on the eye state

predictions and mapping it to a sequence of words.

4.3.3. Phase 3: Mapping. The output of the neural network is a binary classification. The

system stores the output of the network as a vector of zeros and ones. In this phase, the system

normalizes all the changing state to one edge. For example, the vector 00000110000 becomes 010,

where one represents the image of a ‘Closed‘ eye and zero represents the image of an ‘Open‘ eye.

The change in state is considered as an edge and all the redundant states do not matter. Each

blink is represented by 010. Based on the output vector which contains a representation of the blink

sequence, the number of blinks is calculated and is mapped with the phrases in the dictionary. We

have a previously defined dictionary of phrases. These are basic phrases that we use in everyday

life and the dictionary can be further increased with more phrases. The dictionary maps every

phrase with a certain vector of zeros and ones. (See Table. 4.1)

4.4. Results

This section provides the performance results obtained from different architectures. Table. 4.1

discusses the results obtained from training ResNet for 100 epochs on different batch sizes (1,2,4,8,16,32).
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Table 4.4. Final Results

Architecture ResNet DenseNet SqueezeNet InceptionV3
Batch size 16 8 16 16
Last imp. epoch 55 55 1 22
Total params 23,591,810 7,039,554 723,522 21,806,882
Trainable
params

6,955,906 6,955,906 723,522 21,772,450

Non-trainable
params

83,648 83,648 0 34,432

Model size 283MB 85MB 8MB 262MB
Accuracy 99.26% 99.24% 49.40% 99.20%
Avg latency 117.28ms 146.09ms 13.64ms 94.1ms

The results show the accuracy obtained for each batch and the last epoch where there was an

improvement in the accuracy. It can be seen that training the network for 100 epochs on a batch

size of 16 yields the best accuracy of 99.26%. It can also be seen that there is no improvement in

accuracy after 55 epochs.

Table. 4.2 shows these results for 500 epochs for the three best batch sizes (8,16,32). Our trained

ResNet model was trained again using transfer learning, by initializing the weights obtained from

our model. We also used transfer learning to train ResNet50 for our dataset by initializing it

with our weights. These results are shown in Table. 4.2 and Table. 4.2 respectively. Table. 4.2,

Table. 4.3 presents the results for different architectures. Table. 4.2 encompasses the same category

of results for the DenseNet architecture for the three batch sizes (8,16,32) that were experimentally

determined to be best for ResNet.

Fig. 4.2 shows the loss curve for this. DenseNet has the best accuracy of 99.24% when trained for

100 epochs on a batch size of 8. The results obtained from training the SqueezeNet and InceptionV3

architectures are presented in the table. SqueezeNet seems to be the least performing among all the

architectures with an accuracy of 49.40% for 100 epochs and a batch size of 16, and also there is not

a change in the accuracy after the first epoch which is evident from Fig. 4.2. The final comparison

between the best results obtained from the different architectures can be seen in Table. 4.4. We

can see that InceptionV3, DenseNet and ResNet has similar accuracies but the InceptionV3 model

has the lowest prediction time so we implement the InceptionV3 to predict the state of the system.
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Figure 4.2

(a) ResNet validation loss
curves for ResNet transfer
learning to itself from pre-
trained of batch size 16 to
batch sizes 8, 16, and 32.

(b) DenseNet validation loss
curves of batch sizes 8, 16, and
32.

(c) InceptionV3 validation
loss curves of batch sizes 8,
16, and 32.

Apart from the accuracy of the networks this table also contains the time (in milliseconds)

required for the prediction of each frame of image for different architectures for our application.

We can see that ResNet has the best accuracy of the lot (99.26%), but has a high latency of

117.28ms. InceptionV3 has an accuracy of 99.20% which is close to ResNet but with a lower

latency of 94.1ms. Fig. 4.2 shows the validation loss curve for InceptionV3 of batch sizes 8, 16, and

32. The trade-off between accuracy and latency need to be considered to select a network for any

application. Thus, the overall accuracy of the system is 99.20% and the latency is 94ms.

4.5. Discussion

We trained different architectures with different hyperparameters to identify which combination

gives the best accuracy with the lowest latency. This is our basis for comparison to find the right

model for our application. To make it clear, our priority is to obtain the highest accuracy on the

test set and if the accuracies are comparable, we can compare the latencies and choose the one with

the lowest latency. For the sake of conducting a clear comparative analysis, we are comparing the

results of each architecture for a constant batch size of 8. SqueezeNet received the lowest accuracy

with the least number of parameters. The DenseNet, ResNet and, Inception-v3 acquired accuracies

in the same range of 99.20% and above. Since they have similar accuracies, it makes sense to

compare their latencies since our application must work in real time. On making this comparison,
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we found that the Inception -v3 acquired the least latency, making it the appropriate model for

this approach.

ResNet which is short for Residual network, gave us the best accuracy and had the greatest

number of parameters. It also had the largest number of layers. Since it has a very deep network,

it also must deal with the vanishing gradient problem. ResNet tackles this problem by creating

several “identity shortcut connections” that skips one or more layers which means that there is a

path from one layer to another. Since there is a direct connection between one layer to another [70],

during forward propagation, integrity of information can be protected by directly sending the input

to the next layer through shortcut paths. Also, during backpropagation, since there are shortcut

paths, the gradients have to move through lesser layers than usual which reduces the vanishing

gradient problem significantly. So, based on our understanding of ResNet, we believe that the

shortcut paths allowed to improve the accuracy of prediction. We introduced transfer learning for

the ResNet architecture, in the hopes of improving the accuracy and latency. We used the weights

trained on the official ResNet50. We see that transfer learning does not help us in improving the

testing accuracy and latency, but it did help us in converging to optimality much more easily than

by randomly initializing the weights.

DenseNet breaks away from the stereotype of deepening network layers and widening network

architecture to improve network performance. Through feature reuse and Bypass setting, it can

not only greatly reduce the number of parameters in the network, but also alleviate the emergence

of the gradient vanishing problem [71]. DenseNet has several advantages. Firstly, it could reduce

gradient vanishing problems. Secondly, it could enhance the spread of features. Thirdly, feature

reuse is encouraged in this network architecture. Finally, it also could reduce the number of entries.

In this network, there is a direct connection between any two layers, which means that the input

of each layer of the network is the union of the output of all the previous layers, and the feature

graph learned by this layer will be directly passed to all the subsequent layers as input. This

explains how the model reaches very high accuracy with this architecture. They have designed the

output channel in such a way that the convolution layer is very small. We think that this acts as

a bottleneck and thus increases the time for prediction.
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Since latency is an important concern for our approach too, we worked on the Squeezenet

architecture in the aim of reducing the prediction time required to less than 100ms. The main

idea behind SqueezeNet is to use 1x1 pointwise filters replacing 3x3 filters. The building brick

of SqueezeNet is called the ‘fire module’ which contains a Squeeze layer and an expand layer.

SqueezeNet stacks a bunch of fire modules along with a few pooling layers. The Squeeze layer

reduces the depth to a small number while the expand layer increases it [72]. They both act

together to keep the feature map to be of the same size at the end. We believe that the squeezeNet

did not receive a high accuracy because it does not have a deep network and has a very low number

of parameters to train on. All mainstream Deep learning networks have large number of layers.

Large number of layers tend to increase the accuracy, but this improved accuracy is accompanied by

several disadvantages. Firstly, very deep networks are prone to overfitting and if the training set is

limited, it is difficult to generalize to any application. Also, the larger the network is the greater the

computational complexity. So, it is difficult to implement that type of network practically. Thirdly,

we also have the vanishing gradient problem which we must deal with for very large networks. It

gets extremely difficult to optimize the cost function.

Inception network works in increasing the depth and width of the network while also reducing

the number of parameters to be trained. This is the reason why Inception has a prediction time

lesser than all the other architectures. Inception version 3 transfers all the features of the previous

versions along with its own distinctive characteristics. In the inception -v1, the sparse CNN is

approximated with a dense construction. Since only a small number of neurons are effective, the

kernel size is made smaller to make the same computations but in a less expensive manner. It uses

convolutions of varied sizes and scales to capture the different features. It uses the scales which can

reduce the computational cost [73]. This is another reason why Inception gives out a lower latency.

Another salient point is that the Inception network has a bottleneck layer (1x1 convolutions) which

can reduce the dimensionality immensely just saving up on computation power and time.

InceptionV2 is an improvement to the first version where they introduced factorization. By

factorization what they mean is that they have reduced the kernel size even more to make them

computationally cheap. They have altered the 7x7 convolutions into two 3x3 convolutions since 7x7

convolutions are 2.78 times computationally expensive than 3x3. After that they have changed the
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3x3 convolutions into a pair of 1x3 convolutions and 3x1 convolutions. This makes the computation

33% faster [74]. This feature is present in the final version of inception too and we believe this

is another reason for the low latency that we achieved in our system. Adding to this feature,

Inception -v3 also has batch normalization in the auxiliary classifiers, RMSprop optimizer and

Label smoothing which would have contributed to the fast training and good accuracy.

4.6. Conclusion

In this work, we designed a system for ALS patients which could convert eyes blinks to word

with Convolutional Neural Network (CNN). The system uses a CNN to predict the state of the

eyes of the person of interest and this was used to find the blinking pattern. We compared several

CNN architectures and discussed hyperparameter selection in model training. For the evaluation,

we tested our system using 16,979 facial images in our testing dataset and found that our proposed

prediction model was efficient and effective. Results demonstrate that overall prediction accuracy

is 99.20% and an average prediction time is 94ms with InceptionV3. In our future work, we plan to

improve the eye detection and prediction speed. Maybe we could use a single network for detection

and prediction to reduce the response time. We also plan to add more complex language models

to better serve those who need this system.
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CHAPTER 5

MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion

Network for Few-shot Video Classification

We propose MASTAF, a Model-Agnostic Spatio-Temporal Attention Fusion network for few-

shot video classification, to solve the limited number of video samples in real-life HAR applications,

a common challenge shared with computer vision. MASTAF takes input from a general video spatial

and temporal representation,e.g., using 2D CNN, 3D CNN, and video Transformer. Then, to make

the most of such representations, we use self- and cross-attention models to highlight the critical

spatio-temporal region to increase the inter-class distance and decrease the intra-class distance.

Last, MASTAF applies a lightweight fusion network and a nearest neighbor classifier to classify

each query video. We demonstrate that MASTAF improves the state-of-the-art performance on

three few-shot video classification benchmarks(UCF101, HMDB51, and Something-Something-V2),

e.g., by up to 91.6%, 69.5%, and 60.7% for five-way one-shot video classification, respectively.

5.1. Introduction

Few-shot learning has received increasing attention in video classification for its potential to

reduce the video annotation cost significantly [75]. In few-shot video classification, the video

samples in the training and test sets are from different classes (i.e., unseen classes in the test

set). To classify an unlabeled video sample (query), a few-shot video classification model aims to

classify the query to the unseen class (support set). Inspired by the development in few-shot image

classification [76,77,78], recent few-shot video classification approaches using metric-learning-based

methods achieve state-of-the-art performance [75,79]. This work targets metric-learning-based few-

shot video classification.

A metric-learning-based few-shot video learning algorithm classifies a query based on the sim-

ilarity between the representation of the query video and the representation of each class in the
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support set. Therefore, the core to metric-learning-based few-shot video classification is to design

feature extraction and representation for the support sets and the query. Many feature embed-

ding networks have been designed for this purpose. Perrett [79] leverages attention mechanism in

temporally-ordered frames from support sets to match query frames after extracting representation

for each frame with pre-trained 2D Convolutional Neural Network(2D CNN). Zhang [80] introduces

permutation-invariant pooling and self-supervised learning tasks to enhance representations after

extracting from a 3D Convolutional Neural Network(3D CNN) embedding network.

In few-shot scenarios, prior efforts with a 2D CNN embedding network outperformed those

with a 3D CNN embedding network [75,79,81]. However, there are two considerable limitations in

existing work with a 2D CNN embedding network. The first limitation is that a complex temporal

alignment strategy between the video frames for better accuracy increases computational demand

and model inference runtime. For example, Perrett [79] achieves SOTA performance on few-shot

video classification by exploring all the combinations of two and three ordered sampled frames

from a video for temporal information. As the number of sampled frames from a video grows, the

computational cost and inference runtime increase significantly.

The second limitation is their inability to maintain high performance when replacing a 2D

CNN embedding network with other advanced video representation models such as 3D CNN [82,

83,84,85] and Video Transformer [86]. With the release of large-scale video datasets, video clas-

sification models’ performance based on 3D CNN and Video Transformer surpasses those with 2D

CNN [82,86,87], which means such models can generate a better representation for discrimination.

Therefore, one would expect that if we replace the 2D CNN in the existing few-shot video classifica-

tion models with an advanced video representation model, performance should improve. However,

this did not happen. Instead, Zhu [81] found that 3D CNN models [82, 84, 85] do not perform

better than 2D CNN models in PAL [81], a SOTA 2D-CNN based few-shot video classification

algorithm. The main reason is that 2D-CNN approaches rely on the frame-level similarity score

and temporal alignment, which do not exist in a 3D CNN embedding network.

In this work, we propose a model-agnostic few-shot video learning algorithm named Model-

Agnostic Spatio-Temporal Attention Fusion network(MASTAF). Our key motivation is to make
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Figure 5.1. Illustration of the Model-Agnostic Spatio-Temporal Attention Fu-
sion(MASTAF) on a 2-way 2-shot video classification. First, we extract spatio-
temporal features with a pre-trained embedding network for each video. Then, we
compute a prototypical representation(RSc) for each class in the support set, which
is the mean of all the representations of each class. After that, we use the self-
attention module to highlight spatio-temporal features for each query and support
class representation and compute the similarity score of each pair of query repre-
sentation and support class representation using cosine distance. In parallel, we use
the cross-attention module to highlight the spatio-temporal correlation features for
each pair of query representation and support class representation, and compute
the similarity score using the cosine distance. The cross-attention representations
of each class in the support set are fed into a global video classifier as a multi-task
training set. And the fusion results of similarity scores from the self-attention mod-
ule and cross-attention module are fed into the nearest neighbor classifier. Details
are in Section 6.3.

the most of the rapid advances in video representation learning to build a simple and effective few-

shot video learning framework. To achieve this goal, we have to address the limitations discussed

above. Advanced video representation networks, such as 3D CNN and Transformer, extract spatio-

temporal representations directly instead of frame-level information. To make good use of such

representations, we use self- and cross-attention models to increase the weight of the critical spatio-

temporal region to increase the inter-class distance and decrease the intra-class distance as shown

in Figure 6.1. The self-attention network emphasizes the regions of the representation that are

essential for representing each class and the query, while the cross-attention network emphasizes

the regions of the representation that enhance the discriminability between the query and the unseen

classes in the support set. Then, we measure the similarity between the query and each unseen

class based on the feature maps from each attention network. Last, we classify the query video

by a simple yet effective fusion network. We also add one multi-task training setting,i.e., global
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video classification task, to regularize the embedding module and further improve generalization

performance. More details are presented in Section 6.3

Contributions We make the following contributions.

1.We propose MASTAF, a simple and effective attention-based network compatible with different

video classification models for few-shot video classification. MASTAF can benefit from advanced

video classification models such as 3D CNN and video Transformer that extract good spatial-

temporal representations.

2.We design a fusion mechanism to integrate self-attention and cross-attention networks, which

greatly enhances the essential spatial and temporal regions of video representation.

3.We extensively evaluate MASTAF using three benchmarks, i.e., UCF101 [88], HMDB51 [89], and

Something-Something V2 [90]. Compared to the existing work, MASTAF achieves state-of-the-art

performance with a 2D CNN embedding network and improves the state-of-the-art performance

with a 3D CNN embedding network without additional computational cost. Our code is available

at https://anonymous.4open.science/r/STAF-30CF.

5.2. Related work

Few shot learning Most existing few-shot learning algorithms can be divided into three categories:

model-based methods [91,92], optimization-based methods [?,?], and metric-learning-based meth-

ods [75, 79, 93]. Metric-learning-based methods are more promising than other two methods in

few-shot video classification since the previous work with metric-learning-based achieved better

performance [75,79].

Metric-learning-based method measures the distance between the representation of support

samples and query samples and classifies them with the aid of the nearest neighbor to keep similar

classes close and dissimilar classes far away. Particularly, Prototypcal Network [93] is based on

the idea that each class has a Prototypical representation which is the mean value of support set

in embedding space. The few-shot learning problem then becomes the nearest neighbor in the

embedding space. Our work is one of the metric-learning-based methods. We can take input from

general video spatial and temporal representations extracted from different video representation
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models. To make the most of representations in the embedding space, we highlight the spatio-

temporal features that need attention for each class while increasing the differences from other

classes.

Few shot video classification The first module of most metric-learning based methods for a few-

shot video classification model is an embedding network that extracts features from each video.

The two most commonly used approaches for embedding network are 2D CNN [75,79,81,94,95]

and 3D CNN [80, 96, 97]. After using 2D CNN to extract features from each video frame, Zhu

and Yang [94, 95] introduce a memory network structure to learn optimal representations in a

larger video representation space. Instead of creating a memory structure to memorize long-term

information for video representation, more recent work with 2D CNN embedding networks focus on

temporal alignment exploration between the query video and the support set. Cao [75] aligns the

frames between the query video and support video by temporal ordering information. Perrett [79]

achieves SOTA on 5-way 5-shot video learning by computing the distance of temporal-relational

representations between each frame of query video and support video. In comparison, the features

extracted from the 3D CNN embedding network already contain temporal information. Therefore,

recent work focus on generating general spatio-temporal video representations for unseen classes.

Dwivedi [97] leverages GAN to generate the spatio-temporal video representations for the prototype

of the unseen classes. Zhang [80] introduces permutation-invariant pooling and self-supervised

learning tasks to enhance representations whereas Bishay [96] uses segment-based attention and

deep metric learning. Recently, video Transformers have become a promising option for video

representation due to their long-term reasoning ability [86,98]. Although video Transformers are

not widely used in few-shot video classification, SOTA performance in video classification indicates

the promise of being applied in a few-shot scenario.

Attention-based learning Attention mechanism enhances the learning ability of long-range de-

pendencies in the network to highlight the critical regions of visual representations [99]. These

critical regions are useful in discriminating the differences between different classes. Therefore, the

recent work with attention mechanisms achieve SOTA accuracy for few-shot learning tasks [77,79].
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Hou [77] leverages the cross attention mechanism to extract discriminative representations for few-

shot image classification. While for few-shot video classification, Perrett [79] applies a cross trans-

former with a multi-head attention mechanism for the representation of each frame to locate the

representative frames for similarity computation.These works adopt 2D CNN to extract the fea-

tures and apply frame-level attention mechanisms for temporal alignment. However, these works

cannot maintain high performance when using a 3D CNN embedding network without the help

from complex temporal alignment. Our work is compatible with any video classification model and

uses an attention fusion network to highlight the spatio-temporal features, which help increase the

inter-class distance and decrease the intra-class distance.

5.3. MASTAF: Model-Agnostic Spatio-Temporal Attention Fusion Network

5.3.1. Problem definition. The few-shot video classification problem aims to classify one

unannotated query video into one of several annotated categories set, which we call “support set”.

Each category has only a few video instances in this support set, and the model did not see these

categories during the training process. Our work focuses on C-way K-shot video classification,

where C denotes the number of categories in the support set and K represents the number of video

instances for each category in the support set. We follow the same episodic training as in the

previous study [75,79,80,94,95] that randomly select C classes with K video clips for the support

set. Then we select one query video from these C classes, which is different from the K video clips

in the support set. For each C-way K-shot episode, the support set contains C classes, and each

class has K video clips.

We use Sc
k = {f c

k,1, f
c
k,2, . . . , f

c
k,n} to denote the kth video clip of class c, where c belongs to C

and k belongs to K, f c
k,i denotes the ith extracted frame from the video and n denotes the total

number of frames extracted from the video. For the query video, we use Sq = {f1, ..., fi, ..., fn},

where fi denotes the ith frame extracted from the query video and n denotes the total number of

frames extracted from the query video. The final goal is to predict Sq to one of the classes.

5.3.2. The MASTAF Model. The design principle of the MASTAF model is to highlight

the critical spatio-temporal region to minimize the intra-class distance while maximizing the inter-

class distance between the query video and support set. To tackle the challenge of only having few
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Figure 5.2. Self-attention module

samples for the unseen class, we first extract spatio-temporal features using any video classification

model. Then, we use the attention fusion module to further highlight the critical spatio-temporal

region for metric learning. In parallel, we use a global classification task to regularize the embedding

network. Next, we analyze each module in the MASTAF model, which is described in Figure 6.1.

Embedding module In the MASTAF model, the goal of the embedding module fφ is to learn the

spatio-temporal representations for each video. We evenly extract frames from each video, where n

is the total number of frames extracted from each video. We can use any video classification model

as the spatio-temporal embedding module.

Given a frame sequence extracted from the video Sv = {f1, f2, . . . , fn}, let Rv ∈ RC′×T ′×H′×W ′

denote the representation learned from the embedding model:

(5.1) Rv = fφ(Sv).

For a video clip in the support set Sc
k, we use RSc

k
to denote the representation learned from the

embedding module. We use RSc to denote the representation of the class c, which is the mean of

all the representations of video clips for class c in the support set. And since we have only one

query video in the few-shot learning task, we use RSq to denote the representation for the query

video clip. After we get the representations for the support set and query video, we go through

two separate attention modules in parallel,.i.e, the self-attention module and the cross-attention

module.
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Self-attention module Our goal of the self-attention module is to highlight the critical informa-

tion in the representation of each class. As shown in Figure 5.2, we first reshape each represen-

tation to R
′
v ∈ RC′×L, where L(L = T ′ × H ′ × W ′) is the number of spatio-temporal positions

on each feature cubic map. After that, for each class in the support, RSc becomes R
′
Sc , i.e.,

[RSc

1 , . . . RSc

i . . . , RSc

L ], where RSc

i denotes the feature vectors at the ith spatio-temporal position in

the R
′
Sc . For each query video, RSq becomes R

′
Sq
, i.e., [R

Sq

1 , . . . R
Sq

i . . . , R
Sq

L ], where R
Sq

i denotes the

feature vectors at the ith spatio-temporal position in the R
′
Sq
. Then we compute the self-relation

map for each representation as:

(5.2) M self = (R′v)R
′
v,

where M self ∈ RL×L that denotes the self-relation map for each video, where M self
i denotes the

self-relation at the ith spatio-temporal position in the feature map. Then we apply convolutional

operation with a kernel d, i.e., d ∈ RL, to fuse each position self-relation vector into an attention

scalar, which is in RT ′×H′×W ′
. Then we leverage a softmax function to draw self-attention for each

ith position:

(5.3) Aself
i =

exp((dM self
i )/τ)∑L

j=1 exp((dM
self
j )/τ)

,

where τ is the temperature hyperparameter to amplify the variance and Aself
i denotes the ith

position of self-attention map Aself ,i.e., Aself ∈ RT ′×H′×W ′
.

Instead of assigning equal weight to every position, we add a meta-learner to learn the kernel d

dynamically to pay attention to the critical positions in the feature cubic map. First, we leverage

row-wise global average pooling for M self to get an averaged vector M
self

,which M
self ∈ RL. Then

we use a meta-learner to learn the kernel d dynamically:

(5.4) d = fγ(σ(fδ(M
self

))),

where fδ : RL → Rl and fγ : Rl → RL,.i.e, l denotes the scaled dimension and σ represents the

ReLU function [100].
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Figure 5.3. Cross-attention module

After we get the self-attention cubic map Aself , we leverage a residual attention mechanism to

weigh each element of the original map Rv with 1 + Aself to get the self-attention representation

Rself for each class:

(5.5) Rself = Rv(1 +Aself ),

where Rself ∈ RC′×T ′×H′×W ′
.

Cross-attention module While the self-attention module highlights the critical spatio-temporal

region in the representation itself, the cross-attention module focuses on the correlation between

the query video and the support set. As shown in Figure 6.2, we follow the same steps as in the

self-attention module to reshape each representation to R
′
v ∈ RC′×L. After that, we compute the

correlation map for each pair of the query video and the support class prototype. For example, for

the pair of the query video RSq and support class c,i.e., RSc , we compute the correlation map for

the query video M cross
Sq←Sc between the query video and support class:

(5.6) M cross
Sq←Sc = (R′Sc)R′Sq

.

Then for the support class c, the correlation map M cross
Sc←Sq

between the query video and support

class is:

(5.7) M cross
Sc←Sq

= (R′Sq
)R′Sc .
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After getting the correlation map for query video and support class in each pair, we go through

the same steps as in the self-attention module, which are shown in the Figure 6.2, to get the cross-

attention representation for query video and support class in each pair,i.e., Rcross
Sq←Sc and Rcross

Sc←Sq
.

Attention fusion module After we get the self-attention and cross-attention representation from

the two attention modules, we compute the probability of predicting Sq as the class k using self-

attention representation:

(5.8) Pself (y = k|Sq) =
exp(−Dcos(R

self
Sq

, Rself
Sk ))∑C

j=1 exp(−Dcos(R
self
Sq

, Rself
Sj ))

,

where Dcos denotes the cosine distance and Pself (y = k|Sq) denotes the probability of predicting Sq

as the class k ∈ {1, 2, ..., C} using self-attention representations. Then we compute the probability

of predicting Sq as the class k using cross-attention representation:

(5.9) Pcross(y = k|Sq) =
exp(−Dcos(R

cross
Sq←Sk , R

cross
Sk←Sq

))∑C
j=1 exp(−Dcos(Rcross

Sq←Sj , R
cross
Sj←Sq

))
,

where Pcross(y = k|Sq) denotes the probability of predicting Sq as the class k ∈ {1, 2, ..., C} using

cross-attention module.

To take advantage of the discriminative information from two attention mechanisms, we leverage

the attention fusion module with the nearest neighbor classifier:

(5.10) P (y = k|Sq) =
1

2
[Pself (y = k|Sq) + Pcross(y = k|Sq)],

where P (y = k|Sq) denotes the final probability of predicting Sq as the class k ∈ {1, 2, ..., C}.

Multi-task training To reduce the risk of overfitting in the training dataset and generate a general

representation for unseen class, we train the MASTAF model in a multi-task setting to regularize

the embedding network. We combine the nearest neighbor classifier and the global video classifier.

During the training process, after the attention fusion module computes the probability of

predicting query video to one of the classes in the support set, we use a negative log-probability as

the loss function of the nearest neighbor classifier based on the actual class label:

(5.11) L1 = −
C∑

k=1

logP (y = k|Sq).
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Since the representations after the cross-attention module contain highlighting regions related

to the query video, we choose these representations to predict the global class in the whole training

dataset. The total class number in the training dataset is Z. We feed these cross-attention repre-

sentations to a fully connected layer and a softmax layer to get the probability of predicting the

global class,i.e., P (y = z|Sc) where z ∈ {1, 2, ..., Z}. Then we define the loss function of the global

video classifier as:

(5.12) L2 = −
Z∑

z=1

logP (y = z|Sc).

Finally, the loss function of the MASTAF model is defined as:

(5.13) L = L1 + λ L2,

where we use λ to weigh the impact of different classification tasks. Note that a multi-task training

setting is only used during the training process. This setting is discarded at the inference stage.

5.4. Evaluation

5.4.1. Experimental Setup. Datasets. We compare MASTAF with existing work on the

UCF101 [88], HMDB51 [89], and Something-Something V2 (SSv2) [90]. We do not use Kinetics-

100 [94] to avoid bias because one of our MASTAF models is pre-trained on Kinetics-700 [101].

In these datasets, SSv2 is more challenging because it focuses on actions related to temporal

relationships such as ‘pretending to take something from somewhere’ versus ‘take something from

somewhere’ [102]. There are two few-shot splits for SSv2 proposed by CMN [94] and OTAM [75],

containing 64, 12, and 24 classes as the training, validation, and test set. We use SSv2-part and

SSv2-all denote the split from CMN [94] and the split from OTAM [75]. The difference between

these two splits is the number of video samples in each class. For SSv2-part, Zhu and Yang [94]

randomly selects 100 samples for each class, whereas for SSv2-all, Cao [75] uses all the samples in

the original SSv2. We evaluate our method in these two splits. Additionally, we also follow the

split in ARN [80] for HMDB51 and UCF101.

Evaluation and baseline. Following the evaluation process in TRX [79], we evaluate the 5-

way 1-shot and 5-way 5-shot video classification task and report the average accuracy over 10,000
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randomly selected episodes from the test set. We compare our results with eight SOTA algo-

rithms, i.e., TSN++ [103], CMN-J [95], OTAM [75], FEAT [104], PAL [81], TRX [79], Proto-

GAN [97], ARN [80]. For a fair comparison, we use three MASTAF models with three different

types of embedding networks, i.e., MASTAF-{TSN}, MASTAF-{R3D} and MASTAF-{ViViT}.

For MASTAF-{TSN}, we follow the same embedding network configuration with [75,79,81,104],

using an ImageNet pre-trained ResNet-50 as the backbone network. For MASTAF-{R3D}, we use

the merged video dataset with Kinetics-700 [101],Moment-in-time [105], and START-action [106]

to pre-train 3D ResNet-50 embedding network. We also compare our approach against the pre-

vious work based on a 2D CNN embedding network where we replace 2D CNN with 3D CNN.

We use TRX-{R3D} as one of the baselines by replacing the 2D CNN embedding network with

a 3D CNN embedding network(same pre-trained R3D model as MASTAF-{R3D}) in TRX [79].

We extract one representation using pre-trained R3D from each video and then go through tempo-

ral CrossTransformers proposed in TRX [79]. For MASTAF-{ViViT} and TRX-{ViViT}, we use

ViViT [86] as our embedding network. We initialize ViViT from a ViT [107] image model trained

on the JFT [108] dataset. Due to the huge computation demand for ViViT [86], we only perform

5-way 1-shot learning for MASTAF-{ViViT} and TRX-{ViViT}.

Experimental Configuration. For MASTAF-{TSN}, MASTAF-{ViViT} and TRX-{ViViT},

we evenly sample 8 frames from each video as 8 segments for each video. For 3D CNN-based

MASTAF and TRX-{R3D}, we evenly sample 16 frames from each video sample. After that, we

resize each frame to 256× 256. Then we randomly flip each frame horizontally and crop the center

region of 224 × 224 to augment the training data. For test data, we only crop the center with

the same size without the horizontal flipping. Then for MASTAF-{TSN}, we use an ImageNet

pre-trained ResNet-50 as the backbone and average all the frame representations as to the video

representation. For 3D CNN-based MASTAF and TRX-{R3D}, we use a 3D ResNet-50 [87] with

the weights pre-trained on the combined dataset with Kinetics-700 [101], Moments in Time [105],

and Start Action [106] as the embedding network. After finetuning in the validation dataset, We

set 0.025 as the temperature hyperparameter(τ in Eq 5.3) and set 6 as the meta-learner scaled

dimension(l is the scaled dimension of fγ in Eq 5.4), and set 2 as the loss weight hyperparameter(λ

in Eq 5.13). We train our model for 128,000 episodes in eight NVIDIA RTX A5000 GPU(except
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for the larger SSv2-all, we train our model for 256,000 episodes). We optimize the MASTAF model

with SGD, in which the learning rate is 0.01. After fine-tuning, we adopt the batch-size of 128, 64,

32, 32 for UCF101, HMDB51, SSV2-part, and SSV2-all, respectively.

5.4.2. Comparison with State-of-the-art Algorithms. Table 5.1 tabulates the overall 5-

way 1-shot and 5-way 5-shot performance compared with existing methods on two splits of SSv2.

We can categorize these comparative methods into three groups based on the embedding network.

In 2D CNN embedding group, TSN++ [103], CMN-J [95], FEAT [104] are model agnostic and do

not apply any frame-level temporal alignment. Compared with these three methods, the other three

methods,i.e., OTAM [75], PAL [81], and TRX [79], adopt frame-level temporal alignment, which

further improves the performance of few-shot video classification. MASTAF-{TSN} outperforms

existing 5-way 1-shot video classification algorithms in the 2D CNN group. TRX [79] achieves

SOTA performance for 5-way 5-shot learning because it leverages the temporal information from

different frames in different videos in the support set. However, this complex alignment strategy

leads to huge computation costs and increases model inference’s runtime. Figure 5.4 and Figure 5.5

compare the TFLOPs and model inference’s runtime of TRX [79] and MASTAF-{TSN}. Our

approach achieves SOTA accuracy without increased computational cost and is more efficient than

TRX [79]. As the number of frames sampled from a video increases, TRX [79] consumes more

computational resources and takes longer for the inference process. In the 3D CNN group, the

accuracy of the TRX-{R3D} is lower than TRX because it cannot perform the frame-level temporal

alignment. For PAL [81], Zhu [81] also mentioned that 3D CNN models [82,84,85] do not perform

better than 2D CNN models due to the lacking of frame-level similarity scores. In comparison,

MASTAF-{R3D} takes advantage of the spatio-temporal representation from R3D and further

improves the performance. In the Transformer group, MASTAF-{ViViT} further enhances the

performance. These results demonstrate MASTAF works best when spatio-temporal information

is well represented in advanced video classification models. In contrast, existing work with a

2D embedding network cannot maintain high performance when replacing a 2D CNN embedding

network with other advanced video representation models.

Table 5.2 tabulates the overall 5-way 1-shot and 5-way 5-shot performance compared with ex-

isting methods on UCF101 and HMDB51. Our MASTAF with a 2D embedding network achieves
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Table 5.1. Comparison on 5-way 1-shot and 5-shot benchmarks of SSv2-part, and
SSv2-all. The best performance in each group is highlighted. †: Results from [75].
*: Results from [81]

Method
Embedding
Groups

SSv2-part SSv2-all
1-shot 5-shot 1-shot 5-shot

TSN++† [103]

2D CNN

- - 34.4 43.8
CMN-J [95] 36.2 48.8 - -
FEAT* [104] - - 45.3 61.2
OTAM [75] - - 42.8 52.3
PAL [81] - - 46.4 62.6
TRX [79] 36.0 59.1 42.0 64.6
MASTAF-{TSN} 37.5 50.2 46.9 62.4
TRX-{R3D}

3D CNN
26.1 47.0 34.9 58.9

MASTAF-{R3D} 39.9 52.2 50.3 66.7
TRX-{ViViT}

Transformer
34.7 - 42.7 -

MASTAF-{ViViT} 45.6 - 60.7 -

Figure 5.4. Computa-
tional demand analysis for
TRX, MASTAF-{TSN} and
MASTAF-{R3D} as the num-
ber of sampled frames varies
from 8 to 16 frames on UCF101

Figure 5.5. Model infer-
ence’s runtime analysis for
TRX, MASTAF-{TSN} and
MASTAF-{R3D} in one
NVIDIA RTX A5000 GPU as
the number of sampled frames
varies from 8 to 16 frames on
UCF1011

decent performance while TRX and PAL achieve SOTA accuracy on these two datasets. The reason

is that TSN does not provide enough spatio-temporal information for MASTAF to distinguish the

query video from the videos in the support set. So to benefit the most from MASTAF, we explore

our MASTAF with a 3D CNN embedding network and video Transformer. As shown in Table 5.2,

our MASTAF-{R3D} outperforms other methods based on 3D models and MASTAF-{ViViT} out-

performs TRX-{ViViT} and achieves new SOTA performance. Compared with MASTAF-{TSN},
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MASTAF-{R3D} has significantly lower resource consumption and running time, as shown in Fig-

ure 5.4 and Figure 5.5.

Table 5.2. Comparison on 5-way 1-shot and 5-shot benchmarks of UCF101, and
HMDB51. The best performance in each group is highlighted. *: Results from [81]

Method
Embedding
Groups

UCF101 HMDB51
1-shot 5-shot 1-shot 5-shot

FEAT* [104]

2D CNN

83.9 94.5 60.4 75.2
PAL [81] 85.3 95.2 60.9 75.8
TRX [79] - 96.1 - 75.6
MASTAF-{TSN} 79.3 90.3 54.8 67.7
ProtoGAN [97]

3D CNN

57.8 80.2 34.7 54
ARN [80] 66.3 83.1 45.5 60.6
TRX-{R3D} 82.5 94.1 57.0 74.3
MASTAF-{R3D} 90.6 97.6 67.9 81.2
TRX-{ViViT}

Transformer
84.8 - 58.1 -

MASTAF-{ViViT} 91.6 - 69.5 -

5.4.3. Ablation study. We have shown in Section 4.2 that our MASTAF can make the most

of the advanced video classification model to improve the accuracy without more computational

cost. We now perform detailed ablation studies on two dataset UCF101 and SSV2-all to show

each module’s influence. In these ablation studies, all MASTAF models use the 3D ResNet-50

model pre-trained on the merged video dataset with Kinetics-700 [101],Moment-in-time [105], and

START-action [106] as the embedding network.

Table 5.3. Comparison results between the MASTAF without multi-task training
setting and MASTAF for 5-way 1-shot video classification

Method UCF101 SSv2-all
MASTAF-No-Global 89.4 49.5
MASTAF 90.6 50.3

5.4.3.1. Multi-task learning setting. We add a global video classification task in the multi-task

learning setting. Table 5.3 shows the comparison results in which we fixed other hyperparameters

but without global video classification task in the baseline model(MASTAF-No-Global). From the

results, we can see that the global classification task improves the performance, which demonstrates

the benefits of the multi-task learning setting. We argue that the global classification task using
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Table 5.4. Comparison results with three variants of MASTAF for 5-way 1-shot
video classification

Method UCF101 SSv2-all
MASTAF-Neighbor 82.7 43.2
MASTAF-Self 90.3 49.4
MASTAF-Cross 90.5 49.2
MASTAF 90.6 50.3

the representations from the cross-attention module reduces the risk of overfitting for the nearest

neighbor classification task in the training dataset and generates a general representation for unseen

class in a few-shot scenario.

5.4.3.2. Attention fusion mechanism. To explore the effectiveness of the attention fusion mech-

anism, we introduce three comparison models, i.e., MASTAF-Neighbor, MASTAF-Self, MASTAF-

Cross. In MASTAF-Neighbor, representations learned from the embedding network are fed into the

nearest neighbor classifier and a global video classifier directly without our attention mechanisms.

For MASTAF-Self and MASTAF-Cross, before being fed into two classifiers, representations go

through the self-attention and cross-attention mechanism, respectively. Table 5.4 shows the com-

parison results. Compared with MASTAF-Neighbor, after adding the attention mechanism, all

three other models have a significant performance improvement, demonstrating that representa-

tions after the embedding network have some spatio-temporal features related to the non-target

action region. The cross-attention mechanism in MASTAF-Cross aid in highlighting the spatio-

temporal features associated with the target action region among the query video and support set.

MASTAF-Self’s self-attention module helps highlight spatio-temporal features related to the action

in each video itself. Therefore, combining two different attention modules can take advantage of

each module to further extract more discriminative spatio-temporal representations. The results

in Table 5.4 demonstrate our argument. We also provide three positive cases to demonstrate the

effect of fusion mechanism in the appendix.

5.4.3.3. Meta-learner. We evaluate the influence of meat-learner in the MASTAF by developing

a model without the meta-learner,i.e., MASTAF-NoML-Mean. In MASTAF-NoML-Mean, we use

the average pooling on each relation map(M self in Eq 5.2) and correlation map(M cross
Sq←Sc in Eq 5.6

and M cross
Sc←Sq

in Eq 5.7) as the kernel to compute the attention map in each self-attention module
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Table 5.5. Comparison results between MASTAF-NoML-Mean and MASTAF for
5-way 1-shot video classification

Method UCF101 SSv2-all
MASTAF-NoML-Mean 89.9 49.3
MASTAF 90.6 50.3

Table 5.6. Comparison results between MASTAF-NoRes and MASTAF for 5-way
1-shot video classification

Method UCF101 SSv2-all
MASTAF-NoRes 88.9 49.2
MASTAF 90.6 50.3

and cross-attention module. As we can see from Table 5.5, our MASTAF with meta-learner out-

perform MASTAF-NoML-Mean, which means the meta-learner dynamically generates the kernel

to summarize the local features in each relation and correlation map.

5.4.3.4. Residual structure in the attention network. To verify the effectiveness of residual struc-

ture in the attention network, we create a baseline model, i.e., MASTAF-NoRes, in which we remove

the residual design in both the self-attention module and cross-attention module. The result in

Table 5.6 shows that our MASTAF outperforms the MASTAF-NoRes, which demonstrates the

residual structure is beneficial for few-shot video classification because it helps to remain the simi-

lar representation for the videos from the same classes and call attention to the minor differences

for videos from the different classes.

5.5. Conclusion

This work proposes a Model-Agnostic Spatio-Temporal Attention Fusion network(MASTAF)

for few-shot video classification. MASTAF is a simple and effective few-shot video classification

framework compatible with different video classification models. MASTAF make the most of the

knowledge learned from the advanced video classification model and uses self- and cross-attention

to highlight the spatio-temporal features. MASTAF works best when spatio-temporal information

is well represented in advanced video classification models and improves the state-of-the-art per-

formance of 5-way 1-shot, and 5-shot video classification on UCF101, HMDB51, and SSv2, e.g.,

63



MASTAF improves the accuracy of 5-way 1-shot video classification to 91.6%, 69.5%, and 60.7%

for UCF101, HMDB51, and SSv2, respectively.
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CHAPTER 6

MU-MAE: Multimodal Masked Autoencoders-Based One-Shot

Learning

Aely recognizing human activities with multimodal sensors faces challenges due to the labor-

intensive nature of data collection and annotation, and reliance on external pretrained models or

additional data. To address these challenges, we introduce Multimodal Masked Autoencoders-Based

One-Shot Learning (Mu-MAE). Mu-MAE integrates a multimodal masked autoencoder with a syn-

chronized masking strategy tailored for wearable sensors. This masking strategy compels the net-

works to capture more meaningful spatiotemporal features, which enables effective self-supervised

pretraining without the need for external data. Furthermore, Mu-MAE leverages the representation

extracted from multimodal masked autoencoders as prior information input to a cross-attention

multimodal fusion layer. This fusion layer emphasizes spatiotemporal features requiring attention

across different modalities while highlighting differences from other classes, aiding in the classifi-

cation of various classes in metric-based one-shot learning. Comprehensive evaluations on MMAct

one-shot classification show that Mu-MAE outperforms all the evaluated approaches, achieving up

to an 80.17% accuracy for five-way one-shot multimodal classification, without the use of additional

data.

6.1. Introduction

Human Activity Recognition plays a pivotal role in design and deployment of intelligent systems

across various domains, ranging from healthcare and assistive technologies to smart homes and

autonomous vehicles [28, 109, 110, 111]. For instance, precise activity recognition can facilitate

collaborative robots in assisting workers by delivering tools at the right moment [112].

In the last decade, extensive research in the field of HAR has been fueled by the spread of smart

devices equipped with built-in wearable sensors, high-resolution visual devices, and advancements
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in artificial intelligence technology. This research has predominantly centered around the use of

unimodal sensor data, such as wearable sensors [5,13,113] and visual inputs [79,86,114]. However,

unimodal algorithms encounter difficulties in certain real-world scenarios, especially when it comes

to distinguishing similar activities using a single modality, such as differentiating between carrying

a light and a heavy object [115]. As a response, incorporating additional modalities to support

activity identification and improve overall accuracy has become a viable and increasingly popular

direction.

Multimodal HAR aims to develop models capable of processing and correlating information

from various modalities [116]. The use of multimodal representation is anticipated to enhance the

performance of human activity recognition, as each modality has the potential to capture distinct

and complementary information. Nevertheless, existing multimodal learning approaches face two

critical challenges in real-world settings.

Firstly, the collection and annotation of multimodal data is labor-intensive as the number

of data modalities increases. Specifically, when transferring a pretrained multimodal model to a

target dataset with vision modalities, there is a requirement for a noteworthy amount of annotated

multimodal data pertaining to the novel classes in the target dataset for fine-tuning. In the absence

of sufficient labeled multimodal data, the performance of multimodal classification is likely to

decline.

Secondly, since many multimodal approaches contain large-scale models like ResNet [70] and

transformers [99], especially when dealing with high-dimensional data such as videos, external

pretrained models or extra data are necessary for model pretraining [86,117]. Without external

pretrained models or extra data, most multimodal approaches may produce unsatisfactory results,

consequently diminishing their applicability in multimodal scenarios.

To overcome these challenges, we present a novel approach named Multimodal Masked Auto-

encoders-Based One-Shot Learning (Mu-MAE)(as shown in Fig 6.1). Firstly, we introduce one-

shot multimodal learning to significantly reduce the annotation cost associated with multimodality

data. In one-shot multimodal classification, the multimodal samples in the training and test sets

come from different classes, specifically unseen classes in the test set. The objective of a one-shot

multimodal classification model is to classify an unlabeled multimodality sample (query) to the
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Figure 6.1. Illustration of the Multimodal Masked Autoencoders-Based One-Shot
Learning (MU-MAE), involving a video modality and two time series modalities.
The MU-MAE framework involves two steps. In the first step, known as the pretrain-
ing process, a tube masking strategy is employed, and then we get representations of
unmasked video data, inspired by the VideoMAE framework [118]. Simultaneously,
a synchronized masking strategy is applied to the other two physical sensor modal-
ities. This synchronized masking strategy entails masking all time series data at
the same specific time points. The concatenated representation, including position
information, is then fed into the encoder module to produce the multimodal encoder
representation. Subsequently, individual decoders are trained for each modality us-
ing mean square error loss to reconstruct the respective modality data. The second
step involves a finetuning process focused on one-shot multimodal classification.
Unimodal feature encoders pretrained in the pretraining process are applied to ex-
tract unimodal representations. The unimodal representations and the multimodal
encoder representations are fed into the cross attention multimodal fusion module.
This process produces the multimodal representation, which is then directed into
the model-agnostic one-shot learning module for classification. More details can be
found in Section 6.3.

unseen class (support set). Secondly, for efficient multimodal model pretraining without relying

on external data or pretrained models, we propose a multimodal masked autoencoders with a
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synchronized masking strategy for wearable sensor data. These masking strategies compel the

networks to capture more meaningful spatiotemporal features, thereby making multimodal masked

autoencoders a more intricate yet rewarding self-supervised learning task. Lastly, we utilize the

multimodal representation extracted from multimodal masked autoencoders as prior information

input to the cross-attention multimodal fusion layer. This fusion layer highlights spatiotemporal

features that require attention across different modalities while emphasizing differences from other

classes. Further details can be found in Section 6.3.

Contributions. We make the following contributions.

1.We present Mu-MAE, an effective and efficient one-shot classification model guided by mul-

timodal masked autoencoders. Mu-MAE possesses the capability to train a vanilla multimodal

model directly on the multimodality dataset without relying on any pretrained model or external

multimodal data.

2. We design a fusion mechanism that integrates cross-attention networks with the input of mul-

timodal representation learned from the task of reconstructing multimodal data. This integration

significantly augments the crucial spatial and temporal regions within the multimodal representa-

tion, contributing to the efficacy of the one-shot learning architecture.

3. We conduct a thorough evaluation of Mu-MAE on the one-shot data split of MMAct [119],

alongside recent multimodal approaches, namely HAMLET [116] and MuMu [115]. In comparison

to these existing works, Mu-MAE enhances state-of-the-art performance without the need for any

pretrained model or additional data, achieving 80.17% for five-way one-shot classification. Our

code and the one-shot data split of MMAct are available at https://anonymous.4open.science/

r/mu-mae-CAC4.

6.2. Related work

Multimodal classification. Earlier multimodal learning approaches primarily focused on extract-

ing representations from similar modalities [120,121,122]. For instance, the two-stream CNN ex-

celled at capturing spatial and temporal features from visual data [121], while Feichtenhofer’s two-

stream learning model varied data sampling rates to extract spatial-temporal features [123]. Recent
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research underscores the development of multimodal learning methods that effectively leverage com-

plementary features from different modalities to overcome dependencies on single-modality data in

modality-specific HAR models. For example, in [124], they first use attention model to extract uni-

modal features, which are then fused to generate multimodal representations. Challenges persist

in efficiently fusing various unimodal features, leading to the exploration of different fusion ap-

proaches, including early fusion, late fusion, and hybrid fusion strategies [121,123,125]. Simonyan

et al.’s two-stream CNN architecture [121], incorporating spatial and temporal networks, has been

extensively studied and proven effective in recent works, employing residual connections [120] and

slow-fast network techniques [123]. Other investigations focus on simultaneous feature fusion from

diverse modalities, such as video, and wearable sensor modalities. HAMLET [116] employs a hier-

archical architecture with a multi-head self-attention mechanism to encode spatio-temporal features

from unimodal data in the lower layer and then fuse them in upper layer. MuMu [115] incorporates

an auxiliary task involving activity group classification to guide the fusion with unimodal represen-

tations. Despite these advancements, the ongoing challenge in the field lies in dynamically selecting

unimodal features to generate multimodal features. In our Mu-MAE, we address this challenge us-

ing a cross-attention multimodal fusion module, dynamically highlighting spatiotemporal features

that require attention across different modalities while emphasizing differences from other classes.

Masked visual modeling, Masked visual modeling has proven to be a robust strategy for ac-

quiring impactful representations by employing a sequential process involving masking and sub-

sequent reconstruction. Although early efforts predominantly concentrated on the image domain,

employing techniques such as denoised autoencoders [126] and convolutions for inpainting missing

regions [127], recent advancements have expanded the scope of this methodology to encompass

videos. Vision transformer architectures like BEiT [128], BEVT [129], and VIMPAC [130] were

inspired by language models [131,132], opting for the prediction of discrete tokens to glean visual

representations from both images and videos. The introduction of MAE [133] brought forth an

asymmetric encoder-decoder architecture finely tuned for masked image modeling, whereas Video-

MAE [118] took a distinctive approach by directly reconstructing pixels in a more straightforward

yet highly effective video masked autoencoder. The evolution in masked visual modeling signals a

notable shift towards direct pixel-level reconstruction, enhancing self-supervised pretraining in both
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image and video domains. Subsequently, VideoMAE V2 [134] introduced an effective pretraining

method utilizing a dual masking strategy. In this approach, an encoder processes a subset of video

tokens, and a decoder manages another subset of video tokens. This strategy facilitates the efficient

pretraining of billion-level models in the video domain.

One-shot learning, One-shot learning algorithms are typically classified into three primary cate-

gories: optimization-based methods [?,?], model-based methods [91,92], and metric-learning-based

methods [79,93,114,135]. Among these, metric-learning-based methods emerge as particularly

promising, as evidenced by their superior performance in prior studies [79, 114, 135]. Metric-

learning-based approaches compute the distance between representations of support and query

samples, utilizing the nearest neighbor for classification. The fundamental principle involves main-

taining closeness between representations of similar classes while ensuring differentiation between

representations of dissimilar classes. For instance, MASTAF [114] highlights spatio-temporal fea-

tures that demand attention for each class, simultaneously accentuating distinctions from other

classes. In our Mu-MAE, we also leverage the metric-learning-based method. To optimize its

effectiveness, we employ a cross-attention multimodal fusion module to enhance the differentia-

tion of each class’s spatio-temporal features, contributing to improved performance in one-shot

classification tasks.

6.3. Proposed Method

6.3.1. Problem definition. A C-way one-shot multimodal learning problem involves learning

multimodal representation for model-agnostic one-shot learning, where C denotes the number of

categories in the support set. Similar to the one-shot learning problem, we aim to recognize a set of

multimodal data into one of given annotated categories, by assessing the similarity between pairs of

multimodal representations (Rm) from N heterogeneous modalities, where N denotes the number

of modalities.

We use Xr = {Xr
1 , ..., X

r
i , ..., X

r
N} to denote the raw feature of N heterogeneous modalities and

Xr
i stands for raw feature of i modality. The final goal is to get Rm from Xr and then predict Rm

to one of the classes.
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6.3.2. Approach Overview. Our proposed Multimodal Masked Autoencoders-Based One-

Shot Learning consists of four learning modules (as shown in Fig 6.1):

Unimodal Embedding module extracts the representation for each modality.

Multimodal Masked Autoencoders engages in the pretraining of each Unimodal representation

encoder, extracting the multimodal representation from both video and physical sensor modalities,

which serves as the q value in the fusion layer during the finetuning process.

Cross attention multimodal fusion module integrates representations of all modalities through

the utilization of cross-attention mechanisms.

Model-agnostic one-shot learning module classifies a query multimodal instance based on

the similarity between the representation of the query and the representation of each class in the

support set.

6.3.3. Unimodal Embedding module. In the Mu-MAE model, the goal of the unimodal

embedding module is to learn the spatio-temporal representations for each modality. We use

fφ
m = {fφ

1 , ..., f
φ
i , ..., f

φ
N} to denote the unimodal embedding module of N heterogeneous modalities

and fφ
i stands for unimodal embedding module of i modality.

Given a raw feature extracted from the i modality, Xr
i , let Ui denote the representation learned

from the unimodal embedding module:

(6.1) Ui = fφ
i (X

r
i ).

6.3.4. Multimodal Masked Autoencoders. The multimodal masked autoencoders module

has two primary objectives. Firstly, it aims to train a vanilla unimodal embedding network for

each modality directly on the multimodal dataset, without any pretrained models. Secondly, the

multimodal representations extracted from the reconstruction task serve as prior information for

the efficient fusion of multimodal representations in one-shot classification tasks.

As shown in Fig 6.1, we first adopt a tube masking strategy and then get the representation

of unmasked video data Rv
unmask, inspired by the approach employed in the VideoMAE frame-

work [118]. Then for other physical sensor modalities, we utilize the synchronized masking strategy

to get the representations for each unmasked sensor data. We use Rs
unmask = [Rs,1

unmask; ...
′Rs,i

unmask;

..., Rs,N−1
unmask] to denote the concatenated representation of all the unmasked sensor data, which
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Rs,i
unmask denotes the representation of i unmasked sensor data. The synchronized masking strategy

involves simultaneously masking all time series data at the same specific time points. This approach

is helpful for mitigating information leakage during masked modeling and make masked time series

data reconstruction a meaningful self-supervised pretraining task. Then we get the concatenated

representation with position information of all the unmasked modality data as:

(6.2) Rm
unmask = [Rv

unmask + P v;Rs
unmask + P s],

which P v and P s denote the position information of video and other sensor modalities.

Multimodal Masked Autoencoders Encoder is based on the ViT architecture [107], exclu-

sively applied to visible, unmasked patches, inspired by the approach employed in the VideoMAE

framework [118]. We use fencoder to denote the multimodal masked autoencoder encoder. Then

we compute the representation Rm
encoder extracted from encoder as:

(6.3) Rm
encoder = fencoder(R

m
unmask).

Utilizing a masking strategy provides the benefit of training large encoders while requiring less

computational resources and memory.

Multimodal Masked Autoencoders Decoder is designed in a light weight setting following the

design in the video domain [118], which could significantly reduces pretraining time. We use fdecoder

to denote the multimodal masked autoencoder decoder. Then we compute the representation

Rm
decoder extracted from encoder as:

(6.4) Rm
decoder = fdecoder(R

m
encoder).

After that, we employ the Mean Squared Error (MSE) loss as the loss function for tasks related to

the reconstruction of multimodal data.

6.3.5. Cross attention multimodal fusion module. We use the representations from mul-

timodal masked autoencoders encoder as prior information, Rm
encoder, to extract multimodal repre-

sentations. One benefit is to highlight spatio-temporal features that need attention across different

modalities while increasing the differences from other classes. To compute the attended multimodal

72



Figure 6.2. Cross Attention Multimodal Fusion Module. Rm
encoder is the multi-

modal representation from multimodal masked autoencoders’ encoder.

representation, we utilize multi-head cross attention method (as shown in Fig 6.2). First, we trans-

forms the extracted unimodal features of the i modality, Ui ,to generate unimodal key (Ku,h
i ) and

value (V u,h
i ) feature vectors for head h using the following procedure:

(6.5) Ku,h
i = UiW

K,h
i ;V u,h

i = UiW
V,h
i ,

which WK,h
i and W V,h

i are learnable parameters. Then, we transforms the extracted representations

from multimodal masked autoencoders’ encoder, Rm
encoder, to generate the query feature vectorsQu,h

i

as:

(6.6) Qu,h
i = Rm

encoderW
Q,h
i ,

which WQ,h
i is a learnable parameter. Then we use query feature vectors Qu,h

i of the i modality for

head h to generate the multimodal representation of the i modality for head has:

(6.7) Rc,h
i = softmax(

Qu,h
i (Ku,h

i )T

exp(dKi )
V u,h
i ),

which dKi is dimension ofKu,h
i . After that, all the head multimodal representations of the imodality

Rc,h
i are concatenated and projected to produce multi-head cross attention representation of the i

modality (Rc
i ).

(6.8) Rc
i = [Rc,1

i : ... : Rc,h
i ]W c

i ,
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where W c
i is the projection parameter. Following that, we concatenate the multi-head cross atten-

tion representations from all modalities and employ a linear projection to generate the multimodal

representation Rm.

(6.9) Rm = Wm[Rc
1 : ...R

c
i : ... : R

c
N ],

which Wm is a learnable projection parameter.

6.3.6. Model-agnostic one-shot learning module. Once we obtain Rm, including spatio-

temporal features with knowledge across different modalities, we apply the existing model-agnostic

one-shot learning module for one-shot learning task. The model-agnostic one-shot learning module

assesses the distance between the representations of support samples and query sample, and classi-

fies them with the aid of the nearest neighbor to keep similar classes close and dissimilar classes far

away. We represent the Rm of support class k as Rm
sk

and the Rm of a query sample as Rm
q . The

model-agnostic one-shot learning module is denoted by fone−shot. Then we compute the one-shot

learning representation of support class k (Sm
sk
) and query sample (Sm

q ) as:

(6.10) Sm
sk

= fone−shot(R
m
sk
),

(6.11) Sm
q = fone−shot(R

m
q ).

After that, we compute the probability of predicting Sm
q as the class k using one-shot learning

representation:

(6.12) P (y = k|Sm
q ) =

exp(−Dcos(S
m
q , Sm

sk
))∑C

j=1 exp(−Dcos(Sm
q , Sm

sj ))
,

where Dcos denotes the cosine distance and P (y = k|Sm
q ) denotes the probability of predicting Sm

q

as the class k ∈ {1, 2, ..., C} using one-shot learning representations. C represents the number of

categories in the support set.
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Method Backbone Extra data Fusion type Accuracy(SD)

HAMLET [116]

ResNet50 no external data sum 41.77(+/-0.97)
ResNet50 no external data concat 42.18(+/-0.97)
ResNet50 ImageNet-1k sum 75.87%(+/-0.81)
ResNet50 ImageNet-1k concat 76.05%(+/-0.83)

ViT no external data concat 40.02(+/-0.92)
ViT Kinetics-400 concat 78.34%(+/-0.79)

MuMu [115]

ResNet50 no external data concat 46.02%(+/-0.98)
ResNet50 ImageNet-1k concat 78.65%(+/-0.80)

ViT no external data concat 45.16%(+/-0.94)
ViT Kinetics-400 concat 80.22%(+/-0.84)

Mu-MAE ViT no external data concat 80.17%(+/-0.78)
Mu-MAE ViT Kinetics-400 concat 83.82%(+/-0.77)

Table 6.1. Comparison on 5-way 1-shot benchmarks of MMAct. SD stands for
standard deviation. The best performances with or without extra data are high-
lighted.

Finally, we use a negative log-probability as the loss function of the nearest neighbor classifier

based on the one-shot class label:

(6.13) L = −
C∑

k=1

logP (y = k|Sm
q ).

6.4. Evaluation

6.4.1. Experimental Setup. Datasets. There are no established one-shot data splits avail-

able for one-shot multimodal classification involving both video and wearable sensors. Thus, we

undertake the random division of classes into meta-training/validation sets and a meta-testing set

within the MMAct [119] for the few-shot multimodal classification evaluation. This data split is

presented at (https://anonymous.4open.science/r/mu-mae-CAC4) for future research.

After eliminating classes lacking data from all five modalities (video, accelerometer from phone,

accelerometer from watch, gyroscope, and orientation), the MMAct dataset comprises 33 activi-

ties [119], with an average of over 1,000 data samples for each activity across all five modalities.

These 33 activities are then split into non-overlapping sets, with 23 assigned for use as the meta-

training/validation set and 10 designated for the meta-testing set.

Experimental Configuration. Following the evaluation process in state-of-the-art one-shot

learning algorithms [79,103,114], we evaluate the 5-way 1-shot multimodal classification task and
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report the average accuracy over 10,000 randomly selected episodes from the test set. We compare

our results with two state-of-the-art multimodal classification algorithms, i.e., HAMLET [116],

MuMu [115]. In particular, MuMu necessitates the categorization of all training classes into three

groups, i.e., complex, simple, desk [115]. To accommodate this requirement, we group the 23

activities into these three distinct categories. We use ViT-B [107] as our video embedding net-

work, and 1-D CNN as the unimodal embedding network for data from other sensor modalities.

We use MASTAF [114] as our model-agnostic one-shot learning module, as it has demonstrated

state-of-the-art performance with the model-agnostic embedding. The unimodal features from

physical sensor modalities are encoded into 64-sized feature embeddings. During the pretraining

phase of the multimodal masked autoencoders module, we extract 16 frames from each video. In

the subsequent finetuning process of MASTAF [114], 8 frames are utilized. The pretraining of

the multimodal masked autoencoders is conducted on 8 NVIDIA RTX A5000 GPUs, spanning 800

epochs, while the finetuning experiments for one-shot learning involve 256,000 episodes. PyTorch

and DeepSpeed [136] frameworks are utilized for expedited pretraining, and finetuning is carried

out using Stochastic Gradient Descent.

6.4.2. Comparison with State-of-the-art Algorithms. Table 6.1 presents a comprehen-

sive comparison of the overall 5-way 1-shot performance against existing methods on the MMAct

one-shot data split. MASTAF serves as the chosen one-shot learning module across all algorithms,

and the reported average accuracy is based on 10,000 randomly selected episodes from the test

set. For the HAMLET method, we explore two fusion merge types: concatenation-based fusion

and summation-based fusion. Both fusion methods are re-implemented for comparative analy-

sis. Additionally, pretrained and trained-from-scratch ResNet 50 [70] and ViT [86] are included

as embedding networks for both HAMLET and MuMu. In our method, Mu-MAE, we conduct

the vanilla ViT [86] and pretained ViT [118] on the Kinetics-400 as the video embeding network

with varying mask ratios and decoder depths in the pretraining process, reporting the best per-

formance achieved with an 85% mask ratio and 4 blocks of the decoder. As shown in Table 6.1,

Mu-MAE without any external data outperforms trained-from-scratch state-of-the-art methods,

namely HAMLET [116] and MuMu [115], demonstrating improvements of 40.15% and 35.01%

in average accuracy, respectively. The lower performance of trained-from-scratch HAMLET [116]
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Method Accuracy
Mu-MAE-scratch 41.21%(+/-0.91)
Mu-MAE-without-cross 78.46%(+/-0.81)
Mu-MAE 80.17%(+/-0.78)

Table 6.2. Comparison results with two variants Mu-MAE for 5-way 1-shot clas-
sification on MMAct. The best performance is highlighted.

blocks Accuracy GPU mem.
1 79.52%(+/-0.82) 10.4G
2 79.64%(+/-0.81) 13.1G
4 80.17%(+/-0.78) 17.6G

Table 6.3. Decoder depth. “GPU mem.” is GPU memory during pretraining. The
best performance is highlighted.

and MuMu [115] is attributed to their inability to leverage ViT [86] model scale without any ex-

ternal data. In contrast, Mu-MAE, equipped with a multimodal masked autoencoder, effortlessly

scales up with potent backbones (e.g., ViT [86]), attaining an accuracy of 80.17% on MMAct [119]

without relying on external data.

Additionally, in the one-shot multimodal learning task, Mu-MAE with externald data outper-

forms the pretrained HAMLET and MuMu with an imporvement of 5.48% and 3.6%, reprectively.

These improvement highlight Mu-MAE’s capacity to generate spatiotemporal features that demand

attention across diverse modalities, simultaneously amplifying the distinctions from other classes

in one-shot learning.

While Mu-MAE with pretrained ViT [118] exhibits superior performance compared to Mu-

MAE with vanilla ViT, the slight gap in performance between these two models highlights the

efficacy of our multimodal masked autoencoders in achieving good performance using only the

target dataset without relying on external data. Our approach reduces computation costs and

resource requirements.

6.4.3. Ablation study. As demonstrated in Section 6.4.2, our Mu-MAE shows better per-

formance compared to other state-of-the-art multimodal classification algorithms in a one-shot

scenario, even without any external data. We conduct in-depth ablation studies on MMAct to

show the impact of each module.
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Mask type Mask ratio Accuracy
random 85% 79.01%(+/-0.82)
synchronized 75% 79.12%(+/-0.77)
synchronized 85% 80.17%(+/-0.78)
synchronized 95% 78.25%(+/-0.81)

Table 6.4. Mask design. Comparison results with different mask types and mask
ratios for 5-way 1-shot classification on MMAct. The best performance is high-
lighted.

Multimodal masked autoencoders and Cross attention multimodal fusion. To explore

the effectiveness of the multimodal masked autoencoders, we introduce two comparative models,

namely Mu-Mae-scratch and Mu-Mae-without-cross. In Mu-Mae-scratch, video representations

obtained from the vanilla ViT [107] and other physical sensor representations are concatenated and

processed through a linear projection to generate the multimodal representation. Subsequently, this

multimodal representation is input into the MASTAF [114] one-shot learning architecture. Mu-

Mae-without-cross is essentially the same as Mu-Mae-scratch, except for the fact that the unimodal

embedding networks undergo pretraining using multimodal masked autoencoders.The comparative

results are presented in Table 6.2.

In contrast to Mu-MAE-without-cross, the inclusion of the cross-attention multimodal fusion

mechanism in Mu-MAE leads to 1.71% performance improvement. This suggests that representa-

tions obtained from multimodal masked autoencoders contain valuable spatiotemporal knowledge

across various modalities. Consequently, this enriched information facilitates the fusion layer in

generating more distinctive features, thereby improving differentiation from other classes. When

compared to Mu-MAE-scratch, after adding the multimodal masked autoencoder pretraining pro-

cess, the other two models achieve significant performance enhancements. It demonstrates that

the pretraining of multimodal masked autoencoders is essential for realizing the advantages of the

model scale, especially in larger-scale models such as ViT [86] and ResNet 50 [70].

Decoder design. In our Mu-MAE design, we adopt a lightweight decoder inspired by Video-

MAE [118]. One advantage of employing a shallow decoder is the reduction in GPU memory

consumption, which is particularly beneficial when processing video data. Our experiments involve
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variations in decoder depth, as detailed in Table 6.3. We can see from the Table 6.3 that 4 blocks

of decoder achieve the best tradeoff.

Masking strategy and mask ratio. In our Mu-MAE design, we implement a synchronized

masking strategy for all time series sensor data. One advantage of employing a synchronized mask-

ing strategy is to prevent information leakage between these time series sensor data. To evaluate

the effect of the synchronized masking strategy, we conduct an experiment with plain random

masking, setting the mask ratio at 85%, as outlined in Table 6.4. The results reveal that Mu-MAE

with the synchronized masking strategy outperforms its counterpart with plain random masking,

achieving a 1.16% improvement in accuracy. When increasing the masking ratio from 75% to 85%

for synchronized masking, the performance on 5-way 1-shot multimodal classification boosts from

79.12% to 80.17%. However, when the masking ratio is further increased from 85% to 95% for

synchronized masking, the performance on 5-way 1-shot multimodal classification decreases from

80.17% to 78.25%, which means a 85% mask ratio is a good tradeoff for 5-way 1-shot multimodal

classification on MMAct [119]. These outcomes demonstrate that our synchronized masking de-

signs make the networks to capture more useful spatiotemporal features, making Mu-MAE a more

challenging yet rewarding self-supervised learning task.

6.5. Conclusion

This paper proposes a Multimodal Masked Autoencoders-Based One-Shot Learning (Mu-MAE).

Mu-MAE is a simple and efficient one-shot multimodal classification framework without using any

extra data for pretraining. Mu-MAE makes the most of the knowledge learned from multimodal

masked autoencoders and uses a cross-attention multimodal fusion module to highlight the spa-

tiotemporal features for one-shot multimodal classification. Mu-MAE outperforms existing meth-

ods (HAMLET and MuMu) by achieving 80.17% for five-way one-shot multimodal classification,

without relying on pretrained models or additional data.

79



CHAPTER 7

Future Directions and Conclusion

7.1. Conclusion

In conclusion, our dissertation explores the burgeoning field of HAR within healthcare, leverag-

ing advancements in sensor technology, particularly focusing on wearable sensors and video sensors.

The integration of sensors into healthcare systems offers unprecedented opportunities for real-time

monitoring and intervention, benefiting patients with diverse conditions ranging from physical im-

pairments to neurodegenerative diseases.

We begin by highlighting the evolution of sensor technology, emphasizing its impact on the

feasibility and efficacy of HAR systems in healthcare settings. We discuss the rising popularity of

video surveillance as a cost-effective and efficient solution, particularly in the context of HAR for

healthcare applications.

Moreover, we delineate the role of HAR in healthcare systems, emphasizing its significance

in tracking patient activities, providing real-time feedback, and facilitating remote monitoring by

healthcare professionals. By utilizing wearable sensors and video sensors, HAR systems contribute

to personalized patient care, particularly for individuals with chronic conditions like obesity, dia-

betes, cardiovascular diseases, and neurodegenerative disorders.

We then delve into the methodological aspects of HAR, particularly focusing on machine learn-

ing approaches for activity recognition. We discuss the limitations of traditional feature engineering

techniques and underscore the potential of deep learning methods in capturing complex activity

patterns from sensor data. Despite challenges such as data sparsity and annotation efforts, deep

learning holds promise for enhancing the performance of HAR systems in healthcare.

Furthermore, we present several novel contributions in the realm of healthcare-oriented HAR

systems. These include the development of accurate AI models for Early Mobility Activity (EMA)

recognition in Intensive Care Unit (ICU) patients, the design of innovative systems like BWCNN for
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communication assistance in neurodegenerative diseases, and the proposal of advanced models such

as MASTAF and Mu-MAE to address challenges in few-shot video classification and multimodal

sensor fusion, respectively.

Overall, our dissertation offers a comprehensive overview of the current landscape of HAR

in healthcare, highlighting key challenges, technological advancements, and innovative solutions.

By bridging the gap between medical and computer science disciplines, we open avenues for fu-

ture research and development aimed at improving patient outcomes through intelligent activity

recognition systems.

7.2. Future Work

One promising avenue for future research lies in the integration of contrastive learning tech-

niques into HAR for healthcare applications. In recent years, deep learning-based methods have

been widely used in wearable sensor-based activity recognition tasks. Under supervised learning

tasks, models such as LSTM [137], CNN [50], DeepConvLSTM [138], DeepConvLSTMAtten-

tion [139], and Multi-Head Convolutional Attention [140] have been proposed to improve the

accuracy of HAR significantly. However, this approach usually requires a large number of labeled

samples to train a deep learning model, which generally requires manual labeling of sensor data

through a time-consuming and tedious process. In healthcare, it is also challenging and expensive

to collect a large number of labeled data. In addition, the labeling is affected by various noise

sources, such as sensor noise, segmentation problems, and changes in the activities of different peo-

ple, which make the annotation process error-prone [57]. Therefore, the limitation of sensor data

annotation is a significant challenge for HAR in healthcare.

Contrastive learning, a dominant form of self-supervised learning in various domains, offers a

potential solution to the limitations of data annotation [141]. By generating pseudo-labels through

data augmentation and training the model to distinguish between positive and negative pairs,

contrastive learning enables effective representation learning with minimal labeled data [142]. This

approach is particularly suitable for healthcare applications where labeled data is scarce and prone

to noise.
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However, current sensor data augmentation methods in contrastive learning often fall short of

outperforming supervised learning approaches, even with limited labeled data [143]. Therefore,

there is a pressing need to develop novel data augmentation techniques tailored specifically for

sensor data in HAR for healthcare. By leveraging the unique features of contrastive learning

and optimizing data augmentation strategies, future research can unlock the full potential of self-

supervised learning in improving activity recognition accuracy in healthcare settings.
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