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Resumo : Uma grande parte dos produtos biofarmacêuticos são glicoproteínas. Para a 

sua produção, é necessário atingir um nível elevado de homogenia a nível da estrutura 

proteica, mas também dos glicanos ligados à proteína produzida, uma vez que influenciam 

a sua função. Para atingir este objectivo, as plantas surgem como a plataforma ideal de 

produção de biofarmacêuticos. Infiltrando folhas de plantas adultas com uma suspensão de 

Agrobacterium tumefaciens contendo um plasmídeo em que se insere o gene do produto 

desejado, é possível produzir uma quantidade elevada de proteína num período bastante 

curto. 

 Neste estudo foi estabelecida a produção em larga escala de dois anticorpos, Rituximab 

e KBPA, como representantes das famílias de Imunoglobulinas G e M, em Nicotiana 

benthamiana geneticamente modificada para alterar os padrões de glicosilação de 

proteínas. Adicionalmente, a co-infiltração dos genes para estes anticorpos com genes que 

codificam glicosiltransferases, permitiu obter estruturas específicas de glicanos ligados a 

estas proteínas. Finalmente, foi também descrita a inibição da expressão de β-N-

acetilhexosaminidase 3 com recurso a RNAi, diminuindo o efeito desta glicosidase nos 

glicanos de proteínas produzidas por plantas. 

 

Palavras-Chave : Nicotiana benthamiana; Engenharia de glicanos; Produtos 

biofarmacêuticos; Anticorpos; RNAi  

 

Abstract : Glycoproteins are a major part of biopharmaceutical products. For their 

production, a high level of homogeny is required, not only for the protein but also for 

attached glycans, since these oligossacharides influence protein function. For this goal, 

plants emerge as an ideal biopharmaceutical production platform. By infiltrating adult plant 

leaves with a suspension of Agrobacterium tumefaciens containing a plasmid for the gene 

of interest, a high amount of protein can be produced in a short period. 

In this study, the production of two antibodies in genetically glycoengineered Nicotiana 

benthamiana was described. These antibodies, Rituximab and KBPA, served as models for 

Immunoglobulin groups G and M. Additionally, co-infiltration of the genes for these 

antibodies with glycoengineering constructs allowed for specific glycan structures attached 

to these proteins. Finally, the down-regulation of β-N-acetylhexosaminidase 3 with RNAi 

technology was described, inhibiting the effect of this glycosidase on plant produced 

proteins. 

 

Keywords : Nicotiana benthamiana; Glycoengineering, Biopharmaceutical products, 

Antibodies, RNAi 
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Resumo Alargado : Os produtos biofarmacêuticos constituem uma importante e 

crescente parte da indústria farmacêutica. Actualmente, a maior parte destes produtos e 

produzida com recurso a linhas celulares como CHO. No entanto, a procura de plataformas 

alternativas é necessária. Como resposta a esta procura, as plantas representam uma 

alternativa viável, permitindo a redução de custos de produção, mas também aumentando 

a quantidade de produto produzido e a segurança, uma vez que as plantas não possuem 

os agentes patogénios típicos de humanos ou sequer mamíferos.  

Com recurso a Magnifection, uma tecnologia desenvolvida pela Icon Genetics, que 

combina vectores virais com a infecção por Agrobacterium tumefaciens, é possível infiltrar 

os tecidos de uma planta com uma suspensão desta bactéria modificada e produzir uma 

determinada proteína. Os vectores virais modificados inseridos na cultura de bactérias 

contêm os genes de interesse necessários à produção de proteínas e, inseridos no núcleo 

celular das plantas, utilizam a sua maquinaria para a síntese proteica. 

Outro factor importante é a glicosilação de glicoproteínas produzidas por este modo. Uma 

vez que os glicanos influenciam a função das proteínas, é importante que sejam 

produzidas proteínas com glicanos optimizados para o efeito. De facto, o impacto das 

estruturas de glicanos em anticorpos influencia a interacção dos anticorpos com os seus 

receptores nas células efectoras. Do mesmo modo, as plantas produzem glicosidases que 

podem modificar os glicanos das proteínas produzidas. 

Este estudo teve como objectivo a produção em larga escala de anticorpos, Rituximab e 

KBPA, homogenicamente glicosilados. Os genes para as cadeias destes anticorpos, 

introduzidos na planta com recurso à tecnologia acima descrita, permitiram a produção das 

proteínas em Nicotiana benthamiana. Além da produção de proteínas, foi também 

promovida a costumização da estrutura glicosídica dos glicanos. De acordo com a 

estrutura glicosídica pretendida, folhas de N. benthamiana foram co-infiltradas com 

sequências para os anticorpos e vectores binário contendo sequências para controlar a 

glicosilação. Estas permitiram que os anticorpos produzidos em plantas possuíssem não 

só os mesmos glicanos que aqueles observados em anticorpos humanos, mas também 

formas optimizadas para o teste de funções específicas, como a propriedade anti-

inflamatória de Rituximab. 

Finalmente, foi obtida a inibição da actividade da enzima β-N-acetilhexosaminidase 3 pela 

síntese de um inserto de RNAi para a sequência da mesma. A actividade desta glicosidase 

abrange algumas proteínas segregadas para o apoplasto das células vegetais. Como este 

é muitas vezes o caminho das proteínas recombinantes produzidas em plantas, torna-se 

interessante o silenciamento da actividade desta enzima, de modo a evitar que degrade a 

estrutura glicosídica dos glicanos. 
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1 Introduction 

1.1 Plants as a protein production platform 

The biopharmaceutical industry is today a billion dollar business with ever increasing 

demand by the world market, and recombinant proteins like antibodies and antibody 

derived products being the most sought after (Loos and Steinkellner, 2014). 

Due to the desirability of these products, efforts have been made to further develop 

recombinant protein expression platforms, like bacteria, insect, yeast or mammalian cell 

cultures, with the last being the most popular. These platforms, though widely used, show 

some limitations in terms of production costs, time, product flexibility, and safety from 

contamination. Because of these factors, worldwide availability and the ability to tackle 

global health issues is still low for biopharmaceuticals (Whaley et al., 2011). 

Plants represent an alternative expression platform with a high potential, allowing for cost 

efficient and safe production of recombinant proteins (Werner et al., 2011), along with easy 

upscalability, high product flexibilty and reduced production time (Gleba et al., 2014). 

Additionally, in this reduced production time, great quantities of protein can be produced 

(Giritch et al., 2006). 

In fact, due to the possibility of transient gene expression in plants, a protein of interest 

can be agro-infiltrated, expressed and purified in a plant like Nicotiana benthamiana on a 

period from 3-8 days (Klimyuk et al., 2014).  

Recently, this expression platform has been used for researching the production of 

antibodies (Whaley et al., 2011), enzymes (Schneider et al., 2014a), hormones (Dirnberger 

et al., 2001), vaccines (Rybicki, 2010) or growth factors (Musiychuk et al., 2013), for 

instance.  

As an industrially viable platform, plants are still in the beginning phase, although there 

are already several companies with GMP manufacturing sites around the world to produce 

plant-derived bioproducts (Stoger et al., 2014). Also, in 2013, the FDA approved the first 

plant derived molecular pharming product, ElelysoTM. This is the plant derived 

taligluciferase alpha, used to treat Gaucher’s disease, produced and distributed by Protalix 

Biotherapeutics (Shaaltiel et al., 2007). 

Such developments come to show that plants as industrial protein production platforms 

are growing in popularity, which also means that plant-products quality it at least as good as 

the conventional recombinant protein expression platforms, safe for consumption and 

economically competitive. 
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1.2 N-Glycosylation 

Most human proteins are glycosylated (Apweiler et al., 1999). This means oligosaccharide 

side chains attached to specific amino acids in a defined sequence (figure 1, (Wang et al., 

2012)). Also, the majority of FDA approved biochemical drugs are glycosylated (Aggarwal, 

2011). 

 

Figure 1: Erythropoietin molecule with attached N and O glycans. 

 

 Glycosylation is a generally conserved post translational modification in most eukaryotic 

organisms, and is not regulated by a template like DNA or protein synthesis, but rather by 

the availability of sugar substrates, glycosylation proteins and their competition for available 

substrate (Schwarz and Aebi, 2011). 

 One type of glycosylation is N-glycosylation, happening in an asparagine residue of a 

consensus Asn-X-Ser/Thr sequence (with X being any amino acid but proline). Therefore, 

the number of glycosylation sites is dependent on the amino acid sequence of the protein 

and the availability of these due to the conformation of the protein. 

The glycosylation process starts in the ER, with the synthesis of the precursor 

oligosaccharide, transfer to the target protein and initial trimming of sugar residues until a 

Man8 structure is obtained (see review in (Nagels et al., 2012)). It consists of two core 

GlcNAcs attached to a mannose, which then connects to two branches of additional 

mannose. On this phase, yeast-like glycosylation branches away from the other eukaryote 

organisms’ glycosylation process, by adding more mannose to the Man8 structure, while 

other organisms transport the protein into the cis-Golgi and further trim down this glycan to 

a Man5 (figure 2). 

While the protein moves through the Golgi, two more mannoses are removed, and two 

GlcNAcs are added to the N-glycans. This core structure (GnGn) formed in the medial-

Golgi is the last common structure between mammals and plants. In insects, only one 
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branch GlcNAc is added, and then removed. Two core fucoses can be added in α1,3- and 

α1,6- linkage to the first core GlcNAc (figure 2) (Shi and Jarvis, 2007). Mammals can add 

galactose in β1,4- linkage to each of the branch GlcNAc and at the same time, a fucose in 

α1,6- linkage to the first core GlcNAc. The branches can also be extended by the addition 

of Neu5Ac to each of the branches in α2,3- or α2,6- linkage (figure 2). Plants do not 

process the GnGn structure the same way. First, a xylose is added in β1,2- linkage to the 

core mannose, followed by a fucose in α1,3- linkage to the first core GlcNAc (figure 2). The 

branches can also be extended by the addition of α1,3- linked galactose and α1,4- linked 

fucose, forming Lewis-A motifs (see review (Nagels et al., 2012)).  

 

Figure 2: Different N-glycosylation pathways accord ing to different organism groups. Och1: α1,6-
mannosyltransferase; MnTs: mannosyltransferases; Mn s: mannosidase; GnT: N-
acetylglucosaminyltransferase; GalT: α1,4-galactosyltransferase; ST: α2,6-sialyltransferase; HEXO: 
hexosaminidase (N-acetylglucosaminidase); XT: β 1,2-xylosyltransferase; FT3: core fucosyltransfera se 
in α1,3-linkage; FT6 : core fucosyltransferase in α1,6-linkage. Adapted from (Loos and Steinkellner, 
2012). 
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N-glycosylation is an important factor for the quality of recombinant protein production. It 

influences folding of the protein in the ER (Varki, 1993), and later the stability, solubility, 

activity (Roth et al., 2010; Sola and Griebenow, 2010), subcellular targeting and 

immunogenicity. Therefore, it is important for the recombinant protein industry to achieve 

glycosylation patterns that optimize protein quality and also mimic the human-like 

glycosylation process. 

 

1.2.1 Achieving human-like N-glycosylation in plants 

Human serum proteins can have an immense degree of heterogeneity in glycosylation 

patterns. It has even been noticed for human serum IgG antibodies to have different 

glycosylation patterns in distinct physiological circumstances (Hasnat et al., 2007). Hence, 

for recombinant protein production in plants, this platform has to be able to express proteins 

with glycan homogeneity, and with flexibility to produce different kinds of glycans when 

needed. 

Since plants lack the ability to produce mammal-like complex glycans, are poor in 

complex glycan structures (Strasser et al., 2014) and their non-human epitopes can have 

immunogenic activity (Bardor et al., 2003), this could pose a problem on this production 

platform. 

Fortunately, glycoengineering is a solution. Plants are highly susceptible to 

glycoengineering (Strasser et al., 2014), and in general do not display a noticeable 

phenotype when modified for the purpose of changing glycan structures (Strasser et al., 

2004; Strasser et al., 2008). 

 Therefore, by glycoengineering, plant produced recombinant proteins can have human 

like glycans and so be eligible for pharmaceutical purposes (see review in (Steinkellner and 

Castilho, 2015)). 

The first advances towards mimicking human-like glycan structures in plants were made 

in Arabidopsis thaliana plants. Mutant lines were created by knockout of XylT and FucT 

genes (Strasser et al., 2004). This mutation was able to generate endogenous proteins with 

highly homogenized GnGn glycan profiles, making up for over 40 % of the total glycans. 

Also, mAbs produced in this line showed homogenous glycan structures, with GnGn being 

the most common structure, about 75 % of total glycans (Schahs et al., 2007). Since A. 

thaliana is not economically viable for the production of recombinant proteins, especially 

due to its low biomass, the stable knockout of XylT and FucT was attempted in other 

species (see review in (Steinkellner and Castilho, 2015)).  

In N. benthamiana, the ∆XF line was generated by RNAi down regulation (figure 3) 

(Strasser et al., 2008). MAbs expressed in this platform showed profiles of 90 % GnGn 
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glycans, without xylose or fucose residues (Strasser et al., 2008), and also enhanced 

antibody performance of fucose free glycoforms (Forthal et al., 2010; Zeitlin et al., 2011). 

β1,4- galactosylation of the glycan branches is not only important for further sialylation 

(Castilho and Steinkellner, 2012), but also for mimicking some occurring human-like 

complex glycan structures that promote effector function and correct protein folding (Bakker 

et al., 2001). 

For this, initial efforts in over-expressing human GalT in plants proved that sub-cellular 

targeting of the protein is important to avoid competing for substrate with glycosylation 

enzymes that act earlier in the N-glycosylation process (Palacpac et al., 1999; Bakker et al., 

2006; Strasser et al., 2009; Vezina et al., 2009).  

Glycosyltransferases are type II transmembrane proteins consisting of an amino terminal 

cytoplasmic tail, a signal anchor transmembrane domain, a stem region (CTS region), and 

a luminal catalytic domain. The CTS region is responsible for the sub-Golgi targeting of a 

glycosyltransferase. The enzyme localisation controls the type of oligosaccharides attached 

to the protein and therefore regulates the final glycosylation pattern, making sub-Golgi 

targeting important for N-glycan modification, as it has been previously stated (Schoberer et 

al., 2014). 

Using the ∆XF platform, a modified version of human β1,4-GalT was overexpressed, but 

where the endogenous CTS domain was replaced by rat α2,6-sialyltransferase CTS 

domain, which targets the protein to the late Golgi (figure 3) (Strasser et al., 2009). Analysis 

of glycan structures attached to anti-HIV mAbs expressed in this plant platform displayed a 

predominant digalactosilated structure, with improved functional activity. 

 

Figure  3: Outline of the glycoengineering in N.bethamiana to allow synthesis of fully galactosylated 
glycans. The ∆XF line was obtained using RNAi technology and later  galactosylation of terminal GlcNAc 
by expressing a modified version of the human β1,4-galactosyltransferase. 

 

Sialylation is an additional challenge, as plants do not possess the mechanism to 

produce, transport or use the Neu5Ac need for sialylation (Castilho and Steinkellner, 2012). 

Mammal cell cultures, like CHO, are able to sialylate proteins, but in a different linkage than 

the humans (Castilho and Steinkellner, 2012). Since some proteins need the properly 

sialylated glycoform, the versatility of plants was employed. Therefore, in order to achieve 
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sialylation, apart from GalT and ST, the genes for the production and transportation of sialic 

acid to the Golgi apparatus must also be expressed.  

This was achieved by co-expressing six genes from the mammalian sialic acid pathway 

(figure 4) (Castilho et al., 2010). These genes allowed the production, transport and transfer 

of sialic acid to recombinant proteins. This was initially shown for anti-HIV mAb carrying 

mono and di-sialylated glycans.  

In the same way, sialylation was achieved in other pharmaceutically relevant proteins 

(Castilho et al., 2013; Jez et al., 2013; Castilho et al., 2014; Loos et al., 2014; Schneider et 

al., 2014a; Castilho et al., 2015). 

 

Figure 4: Sialic acid pathway in mammals. The genes expressed in plants for achieving sialylation were:  
GNE, UDP-N-acetylglucosamine2-epimerase/ N-acetylmannosamine-kinase; NANS, UDP-N-
acetylglucosamine 2-epimerase/N-acetylmannosamine-k inase; CMAS, CMP-Neu5Ac synthetase; CST, 
CMP-Neu5Ac transporter; GalT, β1,4-galactosyltransferase; ST, α2,6-or α2,3-sialyltransferase. Adapted 
from (Castilho et al., 2010). 
 
 
1.2.2 Hexosaminidase activity in plants 

Another major glycoform of plant produced proteins is MMXF3, or paucimannosidic 

structures (Castilho and Steinkellner, 2012). This form does not possess terminal GlcNAc 

attached to its branches. The reason why some proteins are decorated with this form 

instead of a complex GnGnXF3 are still not well explained, but the secretory pathway, final 

destination and intrinsic characteristics of the protein have an influence over the 

glycosylation pattern. 

For instance, while most mAbs or erythropoietin expressed in plants present a 

GnGn/GnGnXF3 glycoform (Strasser et al., 2008; Castilho et al., 2011a; Castilho et al., 

2011b), follicle stimulant hormone (Dirnberger et al., 2001), human lactoferrin (Samyn-Petit 

et al., 2003) and alpha-1 anti-trypsin (Castilho et al., 2014) display MMX or MMXF3 

glycoforms. 

The presence of xylose and fucose in these paucimannosidic structures indicates that the 

proteins were processed through the Golgi apparatus, and the reduction in the glycans 
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happens later, during the storage or secretion of the protein (Castilho and Steinkellner, 

2012). 

Paucimannosidic structures usually are usually observed in vacuole-stored proteins, but 

also to some extent in proteins secreted to the apoplast (Liebminger et al., 2011) and their 

truncation is caused by β-N-acetylhexosaminidases. This can affect the function and the 

immunogenic character of produced proteins, since mammals do not produce such 

structures (Liebminger et al., 2011). 

Two major enzymes are responsible for this phenomenon. HEXO1, located in the vacuole, 

and HEXO3, present in the plasma membrane and the apoplast (Strasser et al., 2007). 

Both display the capacity to reduce complex glycans to paucimannosidic structures, and 

their different locations indicates that they act over distinct glycoproteins (Liebminger et al., 

2011). 

It is then important to identify which of the hexosaminidases acts over the secretory 

pathway. If a protein is targeted for secretion, and displays paucimannosidic glycans, it is 

likely that such glycan is caused by the activity of HEXO3. This fact was proved by gene 

knockout in A. thaliana (figure 5)(Castilho et al., 2014). 

Using the available A. thaliana individual-knockout of HEXO1 and HEXO 3 to express 

A1AT (signalled for secretion) it was observed through LC-ESI-MS that a knockout of 

HEXO1 still produced paucimannosidic structures while the knockout of the HEXO3 

restored the A1AT attached glycans to the regular GnGnXF3 profile. 

 

Figure 5: LC-ESI-MS spectra of A1AT expressed in A.thaliana HEXO1 knockout line ( hex 1) and HEXO3 
(hex3) knockout line. Adapted from (Castilho et al. , 2014). 
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1.3 Transient expression in plants 

What is arguably the greatest advantage of plant produced recombinant proteins is the 

capacity of plants to express desired genes transiently, leading to the flexibility of the 

platform. 

 Transiently transfected cells express the target gene but do not integrate it into their 

genome. These cells express the transiently transfected gene for a finite period of time, 

usually several days, after which the foreign gene is lost. 

Transient expression technology has been improved and optimised along the years. 

Nowadays the technique routinely uses a combination of viral based vectors with 

agroinfiltration. One example of this technology is magnifection using the magnICON® 

vectors, developed by Icon Genetics (Halle, Germany). The bacteria are delivered into 

leaves by vacuum infiltration, and once T-DNA is transferred to the plant cell nucleus the 

viral machinery takes over allowing massive RNA and protein production (Gleba et al., 

2014).. Among the most often used viral backbones are those of the RNA virus Tobacco 

mosaic virus (TMV) and Potato virus X (PVX), as seen in figure 6. 

The TMV based vector possesses a viral particle without the coat protein (figure 6). This 

way, the viral particle can move through the tissue of the infected plant organ (due to the 

existence of a movement protein), but not through the vascular system. The viral particle is 

additionally modified by the removal of splice sites, addition of plant introns and changes in 

the codon usage ensures that the processing of this DNA by plants is successful in more 

than 90% of the cells (Gleba et al., 2007). 

These modifications enable the control of the infected area and the improvement of 

recombinant protein size and yield (Gleba et al., 2007). 

Other viral particles, like PVX, do not need such a modification and can still be used 

effectively (Gleba et al., 2014) 

 

Figure 6: Schematic representation of magnICON vecto rs. The modified TMV-based and PVX-based 
magICON vectors with a targeting sequence for the s ecretory pathway can be used simultaneously to 
express an antibody’s heavy and light chain. 25K, 1 2K and 8K: 25kDa, 12kDa and 8kDa triple gene block 
of PVX movement proteins; 3’UTR: TMV or PVX 3’-untranslate d region; CP: coat protein;GOI: gene of 
interest; LB: left border; MP: movement protein from  TMV; P35S: cauliflower mosaic virus 35S gene 
promoter; PAct2: Arabidopsis actin 2 promoter; RB: right border; RdRpPVX: RNA-depe ndent RNA 
polymerase from potato virus X; RdRpTVCV: Turnip vein clearing virus RNA-dependent RNA 
polymerase. 
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If more than one polypeptide needs to be expressed in the same cell such as is the case 

for the expression of antibodies, using the same virus as base for the replicons will not 

succeed, as there is no co-expression of both in one cell (Giritch et al., 2006). In such 

cases vectors are built from the backbones of two different noncompeting viruses, e.g. TMV 

and PVX, where the co-expression level is able to reach 95% of the cells (Giritch et al., 

2006). Several antibodies and vaccine antigens produced by magnifection are currently in 

clinical trials (Gleba et al., 2014). 

 

1.4 Recombinant proteins: Antibodies 

Antibodies, part of the immunoglobulin superfamily, are some of the most sought after 

biopharmaceuticals in the world, heading the industry’s annual production and sales. They 

are part of the immune system and bind to foreign objects, called antigens. These can be, 

among many others, bacteria, viruses or tumours. By binding to antigens, antibodies target 

them for deletion or exert an effector function. Sometimes, antibodies can bind to the 

bodies’ own objects, causing auto-immune diseases. 

Antibodies are usually a Y-shaped molecule, with two heavy chains and two light chains 

(figure 7). They possess a Fc region which encompasses the constant region of the heavy 

chains. It is this region that will bind to cell receptors or complement proteins responsible for 

defence mechanisms like cell lysis. The binding to the antigen is made by the fragment 

antigen-binding (Fab region). 

There are five types of antibodies (IgA, IgD, IgE, IgG, IgM), depending on the constant 

region of the heavy chain. This region is very conserved and homogenous in each type. On 

the other hand, the variable region is very flexible, so it can bind to different epitopes. 

As other proteins, antibodies are also glycoproteins. The glycosylation sites (number and 

type of glycosylation) will also be different according to the type of Ig in question.  

If an antibody batch is produced from one single parental cell line, these molecules will be 

called mAbs, or monoclonal antibodies, and are identical (which is of the utmost interest for 

homogenous protein production). 
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Figure 7: General antibody structure. Bonds establi shed between heavy chains are disulphide bonds, as 
well as those between heavy and light chain. 

 

1.4.1 Rituximab 

Rituximab is a monoclonal IgG antibody, with one complex N-glycosylation site (figure 8) 

on the asparagine 297 residue (Dimitrov et al., 2007). The whole molecule has a molecular 

weight of 145 kDa, but differences in glycosylation patterns will slightly change this value. 

 

Figure 8: Basic IgG structure with common glycans u sually found on the Asn 297 residue. The fucose 
found in this glycans corresponds to the α1,6 linkage. 
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 It is a chimeric antibody (constant fraction is human, variable fraction is from mouse) 

commercially used for the treatment of non-Hodgkins lymphoma, other B-cell related 

malignancies and auto-immune diseases. It binds to CD20 receptors on the surface of 

these cells (Rudnicka et al., 2013). 

The monosaccharide content of the complex glycans in monoclonal IgGs (mAbs) is highly 

variable. More than 30 different glycoforms linked to Fc have been described (Burton and 

Dwek, 2006) 

The function of this antibody, like other IgGs, is influenced by glycosylation patterns (see 

review in (Stoger et al., 2014)). 

The impact of the carbohydrate structure on the biological functions of IgGs remains 

unresolved. Several studies have investigated the influence of the glycan composition on 

the effector functions of IgG.  

 It has been demonstrated that the Rituximab effector activity depends strongly on the 

content of fucose in the glycan structure (Kanda et al., 2007). Thus, it is important that for 

correct activity, the glycan structure should be engineered. For instance, the insertion of 

bisecting GlcNAc decreases core fucosylation, which enhances antibody-dependent cell 

cytotoxicity effects, while galactosylated forms contribute to correct activation of the 

complement system (Zauner et al., 2013). 

It has been suggested that for IgGs, another possible function is to mediate anti-

inflammatory responses (Anthony and Ravetch, 2010). In fact, α2,6-linked sialylated 

glycans in IgG have been proven to cause anti-inflammatory effects on mice (Kaneko et al., 

2006), but further studies are still needed. 

Earlier data indicated that avoiding Fc glycan sialylation can offer another means of 

optimizing ADCC activity of Abs (Kaneko et al., 2006; Scallon et al., 2007). However in 

these previous studies mAbs were produced differing in levels of α2,3-terminal sialic acid 

and it was not clear whether both 2,6- and 2,3-sialylated antibodies would have a similar 

effect on cytotoxicity. Recently it was found that the effect of di-sialylated N-glycan on 

activity depends on the linkage. Affinity studies revealed that α2,6-sialylated Rituximab has 

a stronger interaction with FcγRIIIa, whereas a detrimental effect was observed with the 

α2,3-sialylated Rituximab. Indeed, two terminal α-2,6-linked sialic acids (NaNa) constitutes 

a common and optimized structure for the enhancement of antibody-dependent cell-

mediated cytotoxicity, complement-dependent cytotoxicity, and anti-inflammatory activities 

(Lin et al., 2015). 

It is therefore of the most importance to verify if sialylated patterns are suitable for the 

production of anti-inflammatory biopharmaceuticals, as well as testing the effects of other 

glycan structures for the same purpose. Rituximab was selected as a model for this 
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investigation because it has been used for the treatment of both cancer and autoimmune 

diseases. 

Rituximab ranks among the top 10 biological drugs in Europe. In 2011 iBio, working on the 

plant-made pharmaceutical, announced the production of rituximab in non-transgenic green 

plants. The expression of rituximab in plants resulted in a self-assembled antibody 

structure. Testing showed that plant-produced rituximab was able to demonstrate the same 

antigen recognition and target cell cytotoxicity observed with rituximab manufactured in 

mammalian cells. 

              

1.4.2 KBPA 

IgM antibodies have several favourable properties that support their use as therapeutic 

tools: their pentameric form provides 10 antigen binding sites, they bind antigens with high 

avidity, and IgM antibodies are very effective complement activators (Spiegelberg, 1989). 

IgM monomers consist of two light and two heavy chains. The heavy chains of most 

antibodies (such as IgG) contain three constant domains, whereas the heavy chains of IgM 

have four (giving them a molecular weight of 72 kDa instead of 55 kDa). It has five N-

glycosylation sites (figure 9; Asn 171, 332, 395,402 and 563) and 95% of the antibodies 

associate in a pentameric structure, assembled by a joining chain (figure 10). Pentameric 

IgM is an important component of the first line of defense against foreign pathogens (Boes 

et al., 1998). 

KBPA is a human monoclonal antibody, of the immunoglobulin M class. This antibody 

reacts to the O-polysaccharide moiety of Pseudomonas aeruginosa (Lazar et al., 2009), 

responsible for multiple kinds of infections. 

Altogether, IgM structure is about 950 kDa (Loos et al., 2014), a hexameric structure is 

also possible, though. 

Such a complex structure means that IgMs are possibly the most difficult antibodies for 

plants to produce, due to size and expression coordination of genes (apart from heavy 

chain and light chain genes, two additional genes must be expressed, for the joining chain 

and for a chaperone which allows for secretion) (Loos et al., 2014). 
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Figure 9: IgM monomer structure with N-glycosylation sites and typical glycans.  

 

While it is known that the pentameric/hexameric structure of IgM antibodies is important 

for the correct activity, the glycosylation patterns are still poorly studied and need further 

elucidation as to their influence (Loos et al., 2014). Even so, it is believed that like other Ig 

types, they exert influence over the activity of the antibody. 

Recently the report on site-specific N-glycosylation pattern of human serum IgM showed 

the presence of oligomannosidic glycans in three sites (Asn171, 402 and 563) although 

major glycoform on Asn171 were complex mono-sialylated fucosylated glycans. In Asn 332 

and 395 only complex-type glycans with one or two sialyic acid residues and bisected 

GlcNAc were detected (Pabst et al., 2015). 

The first and only report of plant made IgM antibodies (Loos et al., 2014) demonstrated 

assembly of both pentameric and hexameric structures in Nicotiana benthamiana. Plant-

derived SM6 IgM exhibited complex and oligomannosidic N-glycans in a site-specific 

manner as in human-serum IgM. Moreover the biological activity of plant-derived SM6 was 

comparable to the human-cell-derived counterparts. Glycoengineering allowed the 

generation of SM6 decorated with mono- and di-sialylated glycans (~33%). 

Unfortunately, the data on IgM glycoengineering and the impact of glycoslytion on IgM 

activity is still scarce when searching the available literature. This means not much more 

that the work of Loos and co-workers could be used as reference for the present study. 
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Figure 10: Typical pentameric IgM structure. The co mplex protein is formed by 10 heavy chains (blue), 
10 light chains (green) and a joining chain (red) w hich allows for the formation of the polymeric 
structure. 

 

1.5 Protein purification 

While upscaling and expression of proteins are processes with big potential in plant 

platforms, purification is a possible problem. This is because purification is aimed for the 

product, not the platform, and because plants have contaminants that can make this 

process more complex and costly (RuBisCO, for instance) (Stoger et al., 2014). 

In fact, the upstream technological achievements have not been matched by downstream 

processing advancements. Extraction conditions have been optimized for numerous 

proteins on a case-by-case basis leading to the development of platform-dependent 

approaches. Non-chromatographic purification methods, such as aqueous two-phase 

partitioning and membrane filtration, have been evaluated as low-cost purification 

alternatives. Strategies for the primary recovery and purification of recombinant proteins, 

comparing the process economics between systems, were recently reviewed (Wilken and 

Nikolov, 2012).  

Methods of purification vary from protein to protein, making it impossible to design a 

general purification strategy valid for all cases. Ideally, methods should allow rapid isolation 

of proteins from plant material achieving a high degree of purity. Tandem Affinity 

Purification (TAP) uses affinity tags meaning polypeptides or small proteins fused to the 

protein of interest and allow purification via an affinity matrix. A wide variety of affinity tags 

is currently available. The ideal tag is small and allows rapid and flexible purification from a 

complex mixture, achieving high yield and purity. A small tag is generally less likely to 

interfere with the biological function of a protein. 
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Another possible solution lies in specific affinity chromatography. The use of resinous 

substances containing proteins that bind to regions of the desired product may separate the 

recombinant products from the rest of the plant cell pollutants. Afterwards, precipitation by 

pH shift releases the product from the protein in the resin.  

There is, however, a concern if the purified product will maintain functionality after 

purification.  

The main classes of serum immunoglobulins (e.g., IgG, IgM) share the same general 

structure, including overall amino acid composition and solubility characteristics.  

The most widely used affinity chromatography purification step in industry today is the 

capture of antibodies using Protein A ligand. Protein A is a bacterial protein from 

Staphylococcus aureus, with the capacity to bind mammalian antibodies of class 

immunoglobulin G (IgG) with high affinity (Forsgren and Sjoquist, 1966). The gene for 

Protein A has been cloned and expressed in E.coli allowing for the production of large 

quantities of recombinant Protein A. 

The affinity chromatography method has been proven successful for both IgG and IgM 

antibodies. 

 Plants as expression platform are still a relatively new process, and purification methods 

can still have room for improvement. 

 

1.6 Aims 

The aims of this work were to set up and optimise the upscaling production of plant-

derived IgG and IgM antibodies within laboratory facilities. For this Rituximab and KBPA 

were used as models for IgG and IgM, respectively. The plant host was the N.benthamiana 

glycosylation mutant and glycogenes were transiently expressed to simultaneously 

modulate the glycosylation profile of the recombinant IgG and IgM. Rituximab was 

produced with different attached glycans in order to test the influence of these structures 

over the anti-inflammatory activity of IgGs. For KBPA the aim was to study the contribution 

of sugar moieties to the function of IgMs, which is yet unknown.  

The second part of this project deals with the presence of paucimannosidic glycans in 

plant-produced recombinant proteins. 

 The preliminary and encouraging results on HEXO3 knockouts in Arabidopsis thaliana led 

us to pursue the downregulation of hexosaminidases in N. benthamiana.  

A1AT was used as quality control for this part of the investigation. Ultimately we aim at the 

genetic transformation of plants with our construct and produce a new plant expression 

platform unable to decorate recombinant proteins with paucimannosidic glycans. 

 



24 

 

2 Materials and Methods 

2.1 Materials 

2.1.1 Buffers and Solutions 

Solutions and buffers in this work were prepared with ultrapure water (18 M Ω cm at 25°C) 

and analytical grade reagents. If not stated otherwise, reagents were acquired from the 

following companies: Fluka, Gibco BRL, Merck, Roth, Sigma-Aldrich, VWR. 

Coomassie staining solution: 

• 0.5 % (w/v) coomassie brilliant blue G250 

• 50 % (v/v) methanol 

• 7 % (v/v) acetic acid 

Coomassie destaining solution: 

• 20 % (v/v) methanol 

• 7 % (acetic acid) 

Ethidium bromide: 

• Stock solution: 10mg/L in dH2O at +4°C 

• Working solution: 600 ng/µL in dH2O at +4°C 

Protein A elution buffer: 

• 100 mM glycine.HCl pH 2.5 

IgM capture select elution buffer: 

• 100 mM glycine.HCl pH 2.2 

Protein extraction buffer pH 6.8: 

• 500 mM NaCl 

• 100 mM Tris.HCl 

• 40 mM (L+) ascorbic acid 

PBS (phosphate buffered saline) 10 X: 

• 1.4 M NaCl 

• 27 mM KCl 

• 10 mM Na2HPO4 

• 2 mM KH2HPO4 

PBS 1 X pH 7.34/8.0/6.0: 

• 1:10 PBS 10 X in dH2O, corrected to target pH with either HCl or NaOH 

Infiltration buffer: 

• 10 mM MES, pH 5.6 

• 10 mM MgSO4 

• 1:10000 Acetosyringone  
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SDS-PAGE running buffer 10 X: 

• 0.25 M Tris 

• 1.92 M glycine 

• 1 % SDS 

SDS-PAGE running buffer 1 X: 

• 1:10 SDS-PAGE running buffer 10 X in dH2O 

SDS-PAGE sample buffer 3 X: 

• 250 mM Tris.HCl, pH 6.8 

• 40 % glycerol 

• 8 % SDS 

• 20 % mercaptoethanol 

• 0.2 % bromophenol blue 

TAE (Tris-acetate-EDTA) 50 X pH 8.0: 

• 2 M Tris 

• 1 M acetic acid 

• 0.05 M Na2EDTA*2H2O 

TAE (Tris-acetate-EDTA) 1 X: 

• 1:50 TAE 50 X in dH2O 

 

2.1.2 Enzymes 

Restriction enzymes and proper buffers obtained from either New England Biolabs or 

Thermo Scientific. 

• AscI (10 U/µL, #R05585) 

• I-SceI (10 U/µL, #ER1771) 

• KpnI-HF (20 U/µL, #R3142S) 

• BglII (20 U/µL, #R0144S) 

• BamHI-HF (20 U/µL, #R3136S) 

• XhoI (20 U/µL, #R01465) 

• EcoRV (10 U/µL, #ER0301) 

Other enzymes used: 

• Antartic Phosphatase (5 U/µL) with 10x buffer (New England Biolabs, #M0289S) 

• Phusion® High Fidelity DNA Polymerase (2 U/µL) with 5x GC buffer (New England 

Biolabs, # M0530S). 

• GoTaq® G2 DNA Polymerase (5 U/µL) with 5x Green GoTaq® Buffer (Promega, # 

M7845) 

• T4 DNA Ligase (100 U/µL) with 10x Ligase Buffer (Promega, # M1801) 
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• Sequencing Grade Modified Trypsin (100ng/µL in buffer) (Promega # V511A) 

 

2.1.3 Protein and DNA markers/Loading dye 

Markers and loading dye were obtained from Thermo Scientifc. 

• 6x DNA Loading Dye  

• GeneRuler™ 1 kb DNA Ladder (#SM0311) 

• GeneRuler™ 100 bp Plus DNA Ladder (#SM0321) 

• PageRuler™ Prestained Protein Ladder (#26616) 

 

2.1.4 Media 

Prepared media were autoclaved and then stored at +4°C. 

Lysogeny Broth (LB) 

• 5 g/L yeast extract 

• 10 g/L tryptone/peptone 

• 5 g/L sodium chloride 

LB agar  

• 5 g/L yeast extract 

• 10 g/L tryptone/peptone 

• 5 g/L sodium chloride 

• 15 g/L agar 

 Super Optimal broth for Catabolite repression (SOC), pH 7.0 

• 2 % (w/v) bacto-tryptone 

• 0.5 % (w/v) yeast extract 

• 10 mM NaCl 

• 2.5 mM KCl 

• 10 mM MgCl2 

• 10 mM MgSO4 

• 20 mM D(+)-glucose monohydrate 

 

2.1.5 Antibiotics 

Ampicillin 

• Stock solution: 100 mg/mL (in dH20) 

• Working solution: 100 µg/mL (= 1:1000 diluted stock solution) 
Gentamycin 

• Stock solution: 25 mg/mL (in dH20) 
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• Working solution: 12.5 µg/mL (=1:2000 diluted stock solution) 

Kanamycin 

• Stock solution: 50 mg/mL (in dH20) 

• Working solution: 50 µg/mL (= 1:1000 diluted stock solution) 
Spectinomycin  

• Stock solution: 100 mg/mL (in dH20) 

• Working solution: 140 µg/mL (= 1:700 diluted stock solution) 
 

 
2.1.6 Kits 

• Wizard® Plus Minipreps DNA Purification System (Promega, Madison, MO, USA # 

75964) 

• Invisorb MSB® Spin PCRapace (Invitek, Berlin, Germany #1020110400) 

• FavorPrep® Gel/PCR purification kit (Favorgen #FAGCK001) 

 

2.1.7 Bacterial Strains 

• Electrocompetent Escherichia coli DH5α 

• Electrocompetent Agrobacterium tumefaciens UIA143 

 

2.1.8 Plants 

• Nicotiana benthamiana mutant plant line ∆XF lacking α1,3-fucose and β1,2-xylose 

glycosylation modifications (Strasser et al., 2008) 

• Nicotiana benthamiana mutant plant line Ce144 lacking α1,3-fucose/β1,2-xylose 

glycosylation and with stable transformed Ce144 construct for the production of 5-

acetylneuraminic acid (Loos and Castilho, 2015) 

• Nicotiana benthamiana wild type plants. 

 

2.1.9  Constructs and vectors 

Peptide/DNA sequence of recombinant proteins can be found in the annex section, along 

with the scheme of the constructs. 

Rituximab (http://www.imgt.org/mAb-DB/mAbcard?AbId=161) 

• A2TMVRxHC - Heavy chain of Rituximab antibody (Acc. No. AX556949)  

• A2PVXRxLC - Light chain of Rituximab antibody (Acc. No. AX556921) 

KBPA (http://www.imgt.org/mAb-DB/mAbcard?AbId=243) 

• A2TMVKBPAHC - Heavy chain of KBPA antibody  

• A2PVXKBPALC - Light chain of KBPA antibody  
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• pPT2M-J-Chain - Joining chain for KBPA antibody polymerisation  

• ERp44 - Chaperone for correct assembly of polymeric structures 

A1AT (Accession:AAB59375.1) 

• p27A1AT - A1AT protein construct 

Cloning vectors 

• SAT1: pSAT family of plasmids (GenBank Accession No. DQ005461) with a 

multiple cloning site between the octopine synthase promoter and terminator 

flanked by AscI restriction sites (Chung et al., 2005). 

• SAT4: pSAT family of plasmids (GenBank Accession No. DQ005466) with a 

multiple cloning site between the 35S promoter and terminator flanked by I-Sce 

restriction sites (Chung et al., 2005) 

• RCS: pPZP-RCS2 binary vector (GenBank AccessionNo. DQ005454) with a 

cassette for EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) 

expression conferring glyphosate resistance. Vector contains restriction sites for 

assemble of several pSAT expression cassettes. 

Glycosylation constructs 

• GnTII: A. thaliana α1,6-mannosyl-β1,2-N-acetylglucosaminyltransferase II 

• GNE: mouse UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine-

kinase 

• NANS: human N-acetylneuraminic acid phosphate-synthase 

• CMAS: human CMP-N-acetylneuraminic acid synthase 

• CST: mouse CMP-sialic acid transporter 

• STGALT: human β1,4-galactosyltransferase 

• ST: rat α2,6-sialyltransferase 

• FUT11: A. thaliana α1,3-fucosyltransferase 

• pC144 - Multi gene vector carrying GNE, NANS and CMAS expression cassettes 

for sialic acid production 

• pG371 - Multi gene vector carrying CST, STGALT and ST expression cassettes for 

galactosylation, transport and transfer of sialic acid for sialylation 

Hexosaminidase constructs 

• pMA-TNbHexo3: plasmid containing the synthetic sequence of the intron 2 (XTI2) 

sequence from the Arabidopsis β1,2-xylosyltransferase and the antisence of a 235 

bp fragment from the N. benthamiana hexosaminidase 3 (obtained from Ao. Prof. 

Dr. Richard Strasser of the department of applied genetics and cell biology of the 

University of Natural Resources and Life Sciences, Vienna) 
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• Hexo3RNAi: N. benthamiana hexosaminidase 3 RNAi construct in SAT4 

assembled in RCS binary vector  

• Hexo3/1RNAi: N. benthamiana hexosaminidase 3 RNAi construct in SAT4 and N. 

benthamiana hexosaminidase 1 RNAi construct in SAT1 assembled in RCS binary 

vector  

• p31Nbhexo3: N. benthamiana hexosaminidase 3 construct fused to mRFP (kindly 

supplied by Richard Strasser) 

 

2.1.10 Primers 

5’-3’ sequences of primers are displayed. Products were obtained from Sigma-Aldrich. 

Sequences are as follows: 

• Nb-CAT1 - CATTCGCGGTTTTGCTGTC 

• Nb-CAT2 -TGGTGGCGTGGCTATGATTTGTA 

• Nb-hexo3 F2 - ATTTAGTATAGTGATGGGGAAGTTAGGATT 

• Nb-hexo3 R2 - ACGTAACTATTGCTGATAGCAAGAACCTGGATC 

• Nb-hexo1 F4 - TATAACTAGTATGTCCTCAAATTCCCAATGTCTT 

• Nb-hexo1 R4 - TATAGGATCCTTGTTCATAGCATGATCCTGGGC 

• Nb-hexo3 R5 - ATGTTCATTGCTCTTCGTCACC 

• EPSPS F3 - GACGTCGCATTGGTACGG 

• RCS2 F2 - CTCTCTTAAGGTAGC 

• SAT1 F1 - GGTGTGGCCTCAAGGATAATCGC 

• SAT1 R1 - CATGCGATCATAGGCGTCTCGC 

• SAT4 F1 - CATTCTACTTCTATTGCAGC 

• SAT4 R1 - GAACTACTCACACATTATTCTG 

• sshexo3 F1 - TATACTCGAGGCAAAAACAGTTTATGG 

• sshexo1 F1 – TATACTCGAGATTGTTCATTCCGATAAC 

 

2.2 Methods 

2.2.1 Basic procedures 

Bacterial cultures - Electrocompetent or already transformed E. coli and A. tumefaciens 

cells were kept in stocks of 1mL LB and 1mL 100% glycerol at -80°C. 

For infiltration, 100 µL of agrobacterial cultures were incubated overnight in 50 mL LB with 

the appropriate antibiotic concentration. Cell cultures were incubated overnight (~20 h) at 

29°C shaking (180 rpm). 
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For plasmid purification, a single E. coli colony growing in agar plates was inoculated in 5 

mL LB and grown overnight at 37°C. 

 

LB agar plating - LB agar media was microwaved until liquid. Afterwards, it was left to 

cool to 50-60°C, inoculated with the appropriate an tibiotic and plated onto 9 cm diameter 

plastic petri dishes. 

 

OD600 measuring - Bacterial concentration was determined by measuring the optical 

density at 600 nm (1.0 OD600 equals 5x108 cells) with BIO-RAD Smart-Spec TM 3000 

photometer. Cells grown in LB media overnight were centrifuged and resuspended in 35 mL 

infiltration buffer before measuring. 

 

Agarose gel electrophoresis - 1 % (w/v) agarose gels were used for separation of DNA 

fragments. One gram agarose was dissolved in 100 mL 1x TAE buffer in the microwave 

oven for about 2 minutes. After cooling down, 100 µL ethidium bromide working solution 

was added and the gel was casted into the gel casting chamber with fitted combs. 

 

2.2.2 Molecular biology methodology 

PCR (polymerase chain reaction) -  PCR was used to amplify copies of a DNA fragment 

from just a few to thousands or millions of copies. 

It consists of temperature cycles, repeated dozens of times. These comprise a 

denaturation period, an annealing period and an elongation period, which allow for a DNA 

molecule to denature, connect to a primer and be reproduced by a DNA polymerase.  

Additionally to the temperature cycles, there is one first step of denaturing and one last 

step of elongation. 

For a PCR, the needed components include DNA template, forward and reverse primers 

(DNA template complementary sequences), a thermos stable DNA polymerase, a mix of 

nucleotides for the elongation of new DNA chains (100 mM dNTPs, or deoxynucleotide 

triphosphate), a buffer that provides optimal pH and cation concentration for the polymerase 

and DMSO, which facilitates the annealing phase. 

All the reactions were performed in an Applied Biosystems Thermal Cycler 2720. 

Settings for PCR - Settings were different according to the applications of the PCR 

(tables 1 and 2).  

Briefly, the two main uses of PCR were colony screening or DNA fragment cloning. The 

main differences are the DNA polymerase used (Phusion® polymerase was used for cloning 

since it has a 3’-5’ proofreading ability), the temperature of annealing and the total reaction 
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volume. The DNA template, in case of colony screening, was a colony suspended in 10 µL 

dH2O and microwaved for 1 minute.  

 

Table 1: PCR conditions for gene cloning. 

Reagent 
Volume 

(µL)  
Phase 

Temperature 
(°C) 

Time  Cycles 

5x Phusion 
Buffer 

20 
 

Initiation 95 
5 

min 
1 

dNTPs 2 
 

Denaturing 95 45 s 

25 DMSO 5 
 

Annealing 53 45 s 

Primer Forward 2 
 

Elongation 72 
1 

min 

Primer Reverse 2 
 

Extension 72 
5 

min 
1 

Template 1.5 
 

Hold 14 ∞   

Phusion 1.25 
     

dH2O 66.25 
     

Final Volume 100      

 

Table 2: PCR conditions for colony screening. 

Reagent 
Volume 

(µL)  
Phase 

Temperature 
(°C) 

Time  Cycles 

5x GoTaq Buffer 5 
 

Initiation 95 
5 

min 
1 

dNTPs 0.5 
 

Denaturing 95 50 s 

25 DMSO 1.25 
 

Annealing 55 50 s 

Primer Forward 0.5 
 

Elongation 72 
1 

min 

Primer Reverse 0.5  Extension 72 
5 

min 1 

Template 10 
 

Hold 14 ∞   

GoTaq  0.25 
    

 
dH2O 7 

    

Final Volume 25 
    

 

 



32 

 

Plasmid purification - This procedure was done with the Wizard® Plus Minipreps DNA 

Purification System kit, following its instructions. To harvest cells, 5 mL of overnight culture 

were centrifuged at 10.000 rpm for five minutes (RT). Afterwards, cells were resuspended 

in 250 µL of Cell Resuspension Solution and mixed with the same volume of Cell Lysis 

Solution. 10 µL of Alkaline Protease Solution was added to the resuspended cells and 

incubated for 5 minutes at room temperature, and after that 350 µL of Neutralization 

solution was added. The solution was again centrifuged at 10.000 rpm for ten minutes (RT). 

The clear supernatant was decanted into given Spin Columns, centrifuged at 13.000 rpm 

for one minute (RT) and washed two times with 750 and 250 µL of Washing Solution (again 

centrifuged at 13.000 rpm each time, for one minute, RT). The sample was then dried 

(13.000 rpm, 2 minutes, RT) and eluted in 35 µL of dH2O at 75°C (13.000 rpm, one minute). 

Finally, the purified sample was stored at -20°C. 

 

DNA digestion - For cloning, digestion of vectors and DNA inserts was done. This was 

achieved by restriction enzymes that either cut the vectors and inserts in a way that the 

ligation between them is compatible. DNA digestion was also used for testing if cloning was 

successful. 

Information about enzymes, buffers for single or double digestion (With two different 

restriction enzymes) and incubation conditions were obtained from NEB (www.neb.com) or 

Thermo Scientific (www.thermoscientific.com) websites. 

Digestions were prepared in 1.5 mL Eppendorf tubes and incubated for 1-3 hours at 

optimal temperature for the enzyme activity (Table 3). DNA digestion was analysed by 

agarose gel electrophoresis. One µL of digestion mixed with 2 µL 6x Loading dye and 7 µL 

dH2O were loaded onto a 1 % agarose gel (100 V, 30 minutes). 

 

Table 3: Conditions for digestion. These conditions  are applied for insert, vector and test digestions , 
respectively. For double digestions, the enzyme and  water volumes were adjusted to fit the final volum e 
(volume of water lowered to compensate for the othe r enzyme added). 

Component  Volume 
(µL)  Component  Volume 

(µL)  Component  Volume 
(µL) 

Insert 21 
 

Vector 35 
 

Recombinant 3 

10 X Buffer 3 
 

10 X Buffer 5 
 

10 X Buffer 1 

Enzyme 3 
 

Enzyme 5 
 

Enzyme 1 

dH2O 3 
 

dH2O 5 
 

dH2O 5 
Final 

volume 
30 

 
Final 

volume 
50 

 
Final volume 10 

 

 

Dephosphorylation of cloning vectors – Antarctic phosphatase was used for catalysing 

the removal of 5’ phosphate from the open DNA vectors. This stops open vectors from 
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ligating to each other or closing again before ligation to the inserts. Table 4 describes 

conditions for dephosphorilation. 

 

Table 4: Conditions for dephosphorylation. Incubati on was done for 1h to 1h30 min at 37°C. 

Component Volume (µL) 

Vector 50 

10 x buffer 6 

Enzyme 2 

dH20 2 

Final volume  60 

 

 

Purification of PCR amplified DNA fragments - MSB®Spin PCRapace Kit was used for 

purification of DNA fragments out of PCR reaction as well as vectors and inserts after 

enzymatic reactions. 500 and 250 µL of Binding buffer were added to PCR products open 

vectors and digested inserts, for samples above and below 50 µL, respectively. Samples 

were vortexed, transferred into supplied Spin Filter and centrifuged (3 minutes, 12.000 rpm, 

RT). After drying the samples (2 minutes, 12.000 rpm, RT), the DNA was in 40 µL of warm 

dH2O (1 minute, 10.000 rpm). 

 

Purification of DNA from agarose gel - DNA fragments were purified from agarose gels 

with the NucleoSpin®Extract II kit by the manufacturers’ instructions. DNA was cut out of 

agarose eight well gels with a scalpel under UV light. Cut agarose snips were transferred 

into a 1.5 mL Eppendorf tube and weighed. For 100 mg of gel, 200 µL of NT buffer were 

added and incubated at 50°C for 5-10 minutes to mel t agarose. The sample was loaded 

onto supplied NucleoSpin column, centrifuged (1 minute, 11.000 rpm) and washed with 600 

µL NT3 buffer (1 minute, 11.000 rpm). The samples were dried (2 minutes, 11.000 rpm) 

and eluted in 20 µL dH2O (70°C) (1 minute, 10.000 rpm).  

 

DNA ligation - For ligation, the insert to vector ratio was 1:3. DNA concentrations were 

estimated by gel electrophoresis. Table 5 summarizes conditions for DNA ligation. 

 

 

 



34 

 

Table 5: Conditions for DNA ligation. The reactions  were incubated for one hour at room temperature 
and later used for transformation on E. coli. 

Component Volume (µL) 
open vector  1 µL 

insert  3 µL 

2 x Rapid Ligation 
buffer 5 µL 

T4 DNA ligase 1 µL 

total volume  10 µL 
 

 

Transformation of E.coli - Electrocompetent E. coli cells (100 µL) were thawed on ice 

and 5 µL of ligation mixture was added. The electroporation was performed in a precooled 

electroporation cuvette (1.80 kV) with MicropulserTM (BIO-RAD). Cells were then inoculated 

into 900 µL of pre-warmed (37°C) SOC-medium in a 1. 5 mL Eppendorf tube and incubated 

for 1 hour at 37°C, gently shaking.  

The bacteria were plated on LB-agar plates containing the antibiotic specific for plasmid 

resistance (about 100 µL of bacteria per plate). Plates were sealed with Parafilm and 

incubated for 12-20 hours at 37°C. 

The same procedure was used for transformation of A. tumefaciens, but 4 μL of plasmid 

were used for the transformation and bacteria were incubated for 3 hours at 29°C. 10 µL of 

the bacteria cell suspension were plated on LB-agar plates containing the antibiotic specific 

for plasmid resistance and Gentamycin specific for agrobacteria selection. 

 

2.2.3 Protein methodology 

Total soluble protein extraction -  Extraction of total soluble protein (TSP) from Nicotiana 

benthamiana leaves was performed for recombinant protein purification and later analysis 

of attached glycans. For small scale purification, 350-400 mg of infiltrated leaf sample were 

harvested into a 2 mL Eppendorf tube with two metal beads and frozen in liquid nitrogen. 

The samples were ground using a swing mill MM 2000 (Retsch®, Haan, Germany) for 2 

minutes at amplitude 30. Ground material was mixed with 600 µL protein extraction buffer 

and centrifuged (15 minutes, 13.000 rpm, +4°C). The  supernatant was collected in a 1.5 mL 

Eppendorf tube and was used for further analysis.  

For large scale, infiltrated leaves were harvested in groups of up to 100 g and frozen in 

liquid nitrogen. Leaves were then ground with pre-cooled mortar and pestle. The ground 

leaf tissue was put into a centrifuge plastic bottle, and 2 mL of protein extraction buffer was 

added per gram of leaf tissue. The samples were then incubated for 30 minutes at +4°C 

with rotation. Then, the extract was centrifuged for 20 min (13.500 rpm, 4°C), filtered twice 
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through folded Miracloth and re-centrifuged at the same conditions. Finally, the extract was 

filtered with the aid of a vacuum pump through 8-12 µm mesh and then 2-3 µm mesh filters. 

Samples were then used for further purification or extract analysis. 

 

Protein A purification -  The affinity and specific binding of Protein A to the Fc domain of 

IgG antibody was used to purify Rituximab. 

25 µL of rProtein-A SepharoseTM Fast Flow (GE Healthcare, Freiburg, Germany) were 

washed 4 times with 500 µL cooled (4°C) 1x PBS and incubated with TSP extract for 1h30 

min-2h at +4°C with constant rotation. The sample w as centrifuged (3 minutes, 10.000 rpm, 

+4°C), the supernatant discarded and the Protein-A Sepharose with bound protein was 

transferred into Micro Bio-SpinTM Chromatography Column (Bio-RAD). After washing 

column four times with 500 µL 1x PBS, the proteins were eluted with 30 µL Protein A 

elution buffer and neutralized with 2 µL 0.5 M Tris.HCl pH 8.0.  

For SDS-PAGE analysis, 30 µL of purified protein were mixed with 20 µL of Sample buffer 

and denatured for 5 minutes at 95°C. 

 

Large scale Protein A purification - For large scale Rituximab purification, rProtein-A 

SepharoseTM Fast Flow (GE Healthcare, Freiburg, Germany) was used. 1.5 mL of Protein A 

was aliquoted into a Bio-Rad Econo-Column® and washed with 1X PBS pH 8.0 for 15 

minutes at 1.8 mL/min by a Peristaltic Pump P-1 (GE Healthcare, Freiburg, Germany). The 

crude TSP extract was then pumped at the same speed through the column, and a 5 µL 

sample of the flow through was taken for SDS-PAGE analysis. The column was washed 

with 1X PBS pH 8.0, 7.3 and 6 in this order, for 15 minutes each at the previous stated 

speed. A sample of 5 µL washed through solution was taken for SDS-PAGE. Again at the 

same speed, Protein A elution buffer was flowed through the column and 8 to 9 1-1.5 mL 

eluates were obtained. Estimated concentration of eluates was measured; the desired 

eluates were kept, pooled if the same concentration and a small sample was taken from 

each for quality control SDS-PAGE.  

 

Large scale IgM capture select purification - For large scale KPBA purification, the 

protocol applied was similar to the Protein A protocol with minor changes. Instead of Protein 

A, CaptureSelectTM (GE Healthcare) matrix that targets unique domain on the Fc part of 

IgM was used. Also, IgM capture select elution buffer was applied. 

 

Purified protein dialysis - For large scale purifications, the eluates were dialysed 

overnight in 1X PBS pH 7.0, and then twice for two hours the next day (all in 2 L of 1 X 

PBS). Eluates were then quantified. 
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Recombinant protein quantification - Protein concentration in purified samples was 

estimated by absorbance measuring at 280 nm with Nanodrop 2000® spectrophotometer 

(Thermo Scientific). 

 

SDS-PAGE - Discontinuous sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed for protein separation. 12 % separation gel and 4 % stacking 

gel were prepared as listed in Table 6. 

 

Table 6: Conditions for the preparation of SDS-PAGE ge ls. 

Component Volume 

  12 % separation gel 4 % stacking gel 

AA:Bis 40% (29:1) 3.0 mL 0.5 mL 

1.5 M Tris/HCl pH 8.8 2.5 mL - 

0.5 M Tris/HCl pH 6.8 - 1.26 mL 

dH2O 4.35 mL 3.18 mL 

10 % SDS 100 µL 50 µL 

10 % APS 100 µL 50 µL 

TEMED 10 µL 5 µL 
 

 

After gel casting and polymerization (with 10 well combs), gels were mounted into the 

electrophoresis apparatus (BIO-RAD). The apparatus was filled with 1X running buffer. 

Electrophoresis was done at 150 V for 1h to 1h30 minutes until the sample buffer ran out of 

the gel. Proteins were then stained with Coomassie brilliant blue staining solution. 

 

Coomassie brilliant blue staining - Coomassie staining was done to visualize purified 

protein for further in gel tryptic-digestion. After SDS-PAGE, the gel was incubated in 

Coomassie staining solution for 30 minutes and then in Coomassie destaining solution for 

about 1.5 hours, changing the destaining solution every 20 minutes until the protein bands 

were clearly visible. 

 

Sample preparation for N-glycan analysis -  Bands were cut out from the SDS-PAGE 

gels, cut into small pieces and transferred into 1.5 mL tubes. 50 µL of 50 % acetonitrile 

were added to the tubes and incubated for 5 min (RT). This process was repeated and then 

once again with 100 µL of 100 % acetonitrile, but instead of incubated, the tubes were 

shaken and the liquid discarded. 30 µL of a 0.1M NH4HCO3 solution were added and 
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incubated at room temperature for 5 min. 30 µL of 100% acetonitrile were added and 

incubated at room temperature for 15 min. The liquid was discarded and the samples were 

dried in a speed-vac concentrator (Savant) for 15–20 min. 50 µL of 10mM DTT in 0.1M 

NH4HCO3 solution were added to re-swell dried pieces for 5 min, and then samples were at 

54 °C for 45 min. The liquid was discarded and 50 µ L of 55mM iodoacetamid in 0.1M 

NH4HCO3 were added and incubated at room temperature for 30 min in the dark. The liquid 

was discarded and the samples washed with acetonitrile as described above. After they 

were dried in the speed-vac, 20 µL of 100 ng/µL trypsin in 25mM NH4HCO3 solution diluted 

1:6 were added to the samples and kept for 10 min (RT). Then, the gel pieces were 

submerged entirely in 25mM NH4HCO3 overnight at 37° C. 50 µL of 25mM NH 4HCO3 were 

added and the samples vigorously shaken for 15 min. 50 µL of 100% acetonitrile were 

added and again shaken for 15 min. After this, the supernatant was collected in separate 

tubes, 50 µL of formic acid were added to the gel pieces and they were shaken again for 15 

min. The supernatant was collected into the previous used tubes and this step was 

repeated. The collected supernatant was dried in a speed-vac and delivered to the 

chemistry department for analysis. 

 

Analysis of N-glycans - The analysis was done by the group of Ao. Univ.Prof. Dipl.-Ing. 

Dr.Nat.Techn. Friedrich Altmann of the biochemistry department of the University of Natural 

Resources and Life Sciences, Vienna. The method used was liquid-chromatography 

electron spray ionization mass spectrometry (LC-ESI-MS) (Stadlmann et al., 2008). 

 

2.2.4 Plant Methods 

Cultivation - Plants were grown in a growth chamber at 24°C, with  60 % humidity and a 

photoperiod of 16 hours of light/ 8 hours of darkness. 

30-40 sterile Nicotiana benthamiana seeds were sown in 9x9x9 cm pots with soil, covered 

with a plastic lid and allowed to grow for two weeks. Individual plants were then transferred 

into one pot each, displayed in trays and covered in plastic wrap. Plants were let to grow an 

additional 2-3 weeks until ready for infiltration. Plants were watered 3 times per week and 

fertilized on one of those times. 

Agroinfiltration – Transformed A. tumefaciens cells were harvested from a 25-50 mL 

overnight culture by centrifugation (4000 rpm, 15 minutes) and resuspended in 35 mL 

infiltration buffer. OD600 was then measured.  

For co-expression suspensions were mixed in appropriate volumes to reach optimal OD600 

in the total infiltration mix (see table 7). The suspensions were infiltrated through the 

stomata of the lower epidermal leaf surface.  
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Table 7: Optimal OD for infiltration of each constr uct 

 

 

 

Infiltrated leaves should be fully expanded, young leaves (2-3 first leaves infiltrated). 

Infiltration was performed with needleless 1 ml sterile plastic syringes, while applying slight 

pressure on the opposite leaf surface of the infected area (figure 11). Plants were let to 

grow for 3-5 days before harvested, depending on the infiltrated construct. 

 

 

 

Figure 11: Plant agroinfiltration 

 

2.2.5 Cloning of RNAihexo3  

Minipreps were prepared out of overnight cultures of pMA-TNbHexo3 and SAT4. pMA-

TNbHexo3 was digested with KpnI-HF and BamHI-HF and the 440bp fragment containing 

XTI2 intron and the 235bp antisense Hexo3 (asHexo3) was cleaned by gel purification kit 

procedure. The SAT4 vector was digested with the same enzyme pair, dephosphorylated 

according to procedure, and cleaned. 

Construct 
Infiltration 
OD Construct 

Infiltration 
OD 

A2TMVαRxHC 0.1 FUT 11 0.05 

A2PVXαRxLC 0.1 CMAS 0.05 

A2TMVαKBPAHC  0.1 GNE 0.05 

A2TMVαKBPALC 0.1 NANS 0.05 

CST 0.05 STGALT 0.05 

ST 0.05 GnTII 0.34 

pC144 0.05 pG371 0.05 

pPT2M-J-Chain  0.34 ERp44 0.12 

p27A1AT 0.01 RCSeRNAihexo3 0.3 

RCSeRNAihexo3+1  0.3  
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AsHexo3 fragment was ligated to SAT4 according to procedure and transformed into E. 

coli. Cells were then plated in agar containing ampicillin and incubated overnight at 37°C.  

Colonies were screened with SAT4-F1/SAT4-R1 primers and positives (showing 650 bp) 

were grown in LB media supplemented with ampicillin overnight for miniprep preparation. 

The resulting plasmid SAT4asHexo3 was sequenced to confirm sequence. 

p31Hexo3 minipreps were used as template to amplify the sense 235bp fragment from N. 

benthamiana hexo3 using the primers ssHexo3-F1/ssHexo3-R1. PCR product was digested 

with XhoI and KpnI-HF enzymes, and cleaned. 

Minipreps of SAT4asHexo3 were then digested with XhoI and KpnI-HF enzymes, 

dephosphorylated and cleaned with PCR purification cleaning kit. 

The sense Hexo3 fragment was ligated to SAT4asHexo3 and transformed as previously 

described. Colonies were then screened with primer pair SAT4-F1/SAT4-R1 and positives 

were cultured overnight for miniprep preparation. Test digestions of the minipreps were 

done with EcoRV and BamHI-HF (expecting 900 bp positives) and sent for sequencing to 

ensure that no mutations are present. 

The resulting plasmid SAT4Hexo3RNAi construct was digested with I-SceI enzyme, ran 

on an electrophoresis gel and 1.8 Kbp bands were cut and clean. 

Clean bands were ligated to RCS vector digested with I-SceI and dephosphorylated. E. 

coli cells were transformed with this ligation, plated in agar supplemented with 

spectinomycin and screened with RCS2-F2/ SAT4-R1. Positive colonies were grown 

overnight, minipreps were prepared and test digested with KpnI-HF (expecting 1260 bp) to 

check orientation of insertion. The resulting vector Hexo3RNAi was finally transformed into 

Agrobacterium tumefaciens. 

 

2.2.6 Cloning of RNAihexo1 

A synthetic clone carrying the XTI2 intron and the 236bp antisence sequence of N. 

benthamiana hexo1 flanked by XhoI-BamHI sites (asHexo1) was transformed into E. coli. 

Colonies were grown overnight and minipreps were prepared.  

Minipreps were digested with XhoI and BamHI-HF, the digestion was run in an 

electrophoresis gel and the 470 bp fragment was cleaned. The clean DNA was ligated to 

SAT1 vector digested the same way and dephosphorylated. After E. coli transformation and 

plating, colonies were screened with SAT1-F1/SAT1-R1 primer pair. Positive colonies were 

grown overnight, minipreps were prepared and sequenced (SAT1asHexo1).  

A miniprep of p31Hexo1 was used for PCR amplification of the Hexo1 sense sequence 

with the ssHexo1-F1/ ssHexo1-R1 primer pair. PCR product digested with XhoI and KpnI-

HF. After cleaning, the fragment was ligated to SAT1asHexo1 digested the same way, 

dephosphorylated and clean. 
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E. coli cells were then transformed with this construct, plated and positive transformants 

were screened with SAT1F-F1/SAT1-R1 (expecting 830bp). Positive colonies were cultured 

overnight, and minipreps were made. After test digestion with BgLII-BamHI-HF, the 

resulting plasmid (SAT1Hexo1RNAi) was sequenced with SAT1-F1/SAT1-R1.  

The expression cassette was excised by digestion with AscI, ran on an electrophoresis gel 

and the band cleaned (1.8 Kbp). The RNAiHexo1 cassette was assembled in 

RCSeRNAiHexo3, digested with the same enzyme and dephosphorylated. 

Colonies were then screened with epsps-F3/SAT1-R1. Positives were grown, minipreps 

were prepared, test digested with XhoI and transformed into A. tumefaciens . 

3 Results 

3.1 IgG upscaling and glycoengineering 

Taking advantage from the fact that plant can glycosylate proteins in a vary homogenous 

way and that they are highly susceptible for glycoengineering, a scheme was setup to 

produce the mAb Rituximab with defined glycosylation profiles aiming to compare the 

impact of particular sugars on the mAb activity. With this it is expected that the therapeutic 

efficacy of mAbs may be optimized by the selection of a glycoform that best suits a 

particular function. 

 

3.1.1 Small scale control of glycoengineering 

Before large scale purification of recombinant Rituximab, small scale samples of infiltrated 

plant tissue (400 mg) were taken and purified for glycan analysis. This was aimed to verify if 

Rituximab was expressed and if the desired glycan profiles were being generated by the 

infiltrated glycoengineering constructs or stable transformed plant lines. 

 

3.1.1.1 GnGn glycoform 
For the GnGn (terminal GlcNAc) glycoform, ∆XF (without plant core xylose or fucose) 

plants were infiltrated with the magnICON® constructs for expression of Rituximab heavy 

and light chains. As this was the basic N-glycan expected, no other glycoengineering 

construct was infiltrated. Figure 12 shows the result from the SDS-PAGE and glycan 

analysis. 

LC-ESI-MS glycan profiling shows a very homogenous glycosylation pattern on the Fc 

domain of Rituximab. 17% of the mAb is produced un-glycosylated, while hybrid structures 

(MGn) accounts for 9.5% and the targeted complex glycoform (GnGn) for 73.5%.  Contrary 

to other mAb expressed in N. benthamiana ∆XF plants no leakage of core fucose is 

observed. 
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Figure 12: Small scale purification and glycan analy sis of Rituximab expressed in N. benthamiana ∆XF 
plants. (A) SDS-PAGE followed by Coomassie Brilliant Blue staining of reduced sample shows two 
bands of ~55 and 25 KDa corresponding to the heavy and light chain respectively. (B) N-glycosylation 
profiling by LC-ESI-MS of tryptic Fc glycopeptide (EEQY NSTYR) confirms a great majority of the 
antibody decorated with the targeted GnGn glycoform . Peaks were labelled in accordance with the 
ProGlycAn system (www.proglycan.com). Schematic repre sentations of N-glycans structures detected 
are also shown. Plant material was then used for la rge scale purification and quantification. 

 

3.1.1.2 GnGnF glycoform 
Rituximab carrying GnGnF glycans was produced to study the impact of core fucosylation. 

Also a recent study shown that mAb- Fc glycan processing largely depend on the presence 

of core fucose. In particular processing of the Fc glycosylation towards di-sialylated 

structures is largely improved in the presence of core α 1,3-fucose (Castilho et al., 2015). 

Here we aimed to produce asialo-Rituximab with core fucosylation aiming to later 

compare to the sialylated and fucosylated version of Rituximab. 

For the production of Rituximab GnGnF glycoform (terminal GlcNAc with plant core α1,3- 

fucose), the heavy and light chain constructs were co-infiltrated with the FUT11 construct in 

∆XF plants. 

Results are shown in figure 13. As before, we were able to produce the mAb with a very 

homogenous glycosylation and mainly carrying the desired glycoform. 23 % are un-

glycosylated, 48% are complex fucosylated (GnGnF) and 7% of glycans are hybrid 

fucosylated (MGnF). 
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Figure 13:  Small scale purification and glycan analysis of Ritu ximab co-expressed in N. benthamiana 
∆XF plants with the α1,3-fucosyltransferase. (A) SDS-PAGE followed by Cooma ssie Brilliant Blue 
staining of reduced sample shows two bands of ~55 a nd 25 KDa corresponding to the heavy and light 
chain respectively. (B) N-glycosylation profiling b y LC-ESI-MS of tryptic Fc glycopeptide (EEQYNSTYR) 
confirms a great majority of the antibody decorated  with the targeted GnGnF glycoform. Peaks were 
labelled in accordance with the ProGlycAn system (ww w.proglycan.com). Schematic representations of 
N-glycans structures detected are also shown. Plant material was then used for large scale purification  
and quantification. 

 

3.1.1.3 AA glycoform 
The major glycans of recombinant IgGs contain 0, 1 or 2 terminal galactose residues and 

their relative proportions may vary depending on the cell culture conditions in which they 

were expressed. In fact, the heterogeneity of the glycosylation of Rituximab is mainly due to 

the variable presence of terminal galactose residues (Schiestl et al., 2011). 

To produce di-galactosylated (AA) Rituximab, the heavy and light chains of the antibody 

were co-expressed with the STGalT construct (Strasser et al., 2009) in the ∆XF line. Figure 

14 shows the results of the SDS-PAGE gel and the glycan analysis. 

Plant-derived Rituximab is glycosylated in a homogenous way with 17.4% being 

unglycosylated and 11.2% high mannose glycans. From the complex glycans 29% are 

mono-galactosylated structures (MA and GnA) and 42% are di-galactosylated. 

 

Figure 14: Small scale purification and glycan analy sis of Rituximab co-expressed in N. benthamiana 
∆XF plants with the STGalT. (A) SDS-PAGE followed by Coo massie Brilliant Blue staining of reduced 
sample shows two bands of ~55 and 25 KDa correspond ing to the heavy and light chain respectively. 
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(B) N-glycosylation profiling by LC-ESI-MS of tryptic Fc glycopeptide (EEQYNSTYR) confirms a great 
majority of the antibody decorated with the targete d AA glycoform. Peaks were labelled in accordance 
with the ProGlycAn system (www.proglycan.com). Schema tic representations of N-glycans structures 
detected are also shown. Plant material was then use d for large scale purification and quantification. 

 

3.1.1.4 NaNaF glycoform 
In a recent study it was shown that mAb-Fc glycan processing largely depend on the 

presence of core fucose. In particular, processing of the Fc glycosylation towards di-

sialylated structures is largely improved in the presence of core α 1,3-fucose (figure 15) 

(Castilho et al., 2015). 

 

Figure 15: Monoclonal antibody co-expressed in N. benthamiana ∆XT/FT plants without (-Fuc) or with 
α1,3-fucosyltransferase. N-glycosylation profiling b y LC-ESI-MS of tryptic Fc glycopeptide 
(EEQYNSTYR). Peaks were labelled in accordance with the Pr oGlycAn system (www.proglycan.com). 
Schematic representations of N-glycans structures de tected are also shown. (Adapted from (Castilho et 
al., 2015))  
 
 

It seems that the structures located in the Fc fragment are largely shielded by the 

opposing CH2 fragment. Molecular modelling suggests that core fucosylation strengthens 

the interaction between the two homologous Fc domains through glycan chains thus 

potentially influencing the entire glycan conformation. As a consequence the Fc- glycans 

may become more accessible for glycan processing enzymes (Castilho et al., 2015). For 

sialylation, several distinct methods of infiltration were tested (table 8). In all methods 

Arabidopsis thaliana α1,3-fucosyltransferase gene (FUT11) was co-infiltrated with 

Rituximab. In method 1 ∆XF mutants were used as hosts. Sialylation was achieved by the 

co-expression of two multiple binary vectors carrying the expression cassettes for the six 

necessary genes for in planta protein sialylation (Ce144 and Gb371, (Castilho et al., 2013)). 

In method 2 a new plant expression platform, where the pCe144 (figure 16) vector was 

used to stable transform ∆XF plants, was employed as host. This platform stably expresses 

the GNE, NANS and CMAS genes and is able to synthetize active sialic acid in planta (data 

not published). The Ce144 host was infiltrated with Gb371 multi gene vector (figure 16) to 
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allow Rituximab sialylation. In method 3 the original procedure (Castilho et al., 2010) where 

the Rituximab was co-infiltrated with all six genes individually was followed (figure 17).  

Table 8: Tested infiltration methods for achieving NaNaF glycoform 

Method Glycoengineering 
Constructs Plant Host  

1 
pG371 + pC144 

∆XF 
Fut11 

2 
pG371 

Ce144 
Fut11 

3 

GNE 

∆XF 

GalT 

CMP 

NANS 

ST 

CMAS 

Fut11 
 

 

Figure 16: Schematic representation of the multi-gen e vectors used in this investigation.35SP: 
cauliflower mosaic virus (CaMV) 35S promoter; TL: tra nslational enhancer 5'-UTR from tobacco etch; 
35ST: CaMV 35S terminator; OcsP: octopine synthase prom oter; OcsT: octopine synthase terminator; 
actP: actin promoter; agsT: agropin synthase termina tor; masP: manopine synthase promoter masT: 
manopine synthase terminator; GNE: mouse UDP-N-acety lglucosamine-2-epimerase/N-
acetylmannosamine kinase; NANS: Homo sapiens N-acet ylneuraminic acid phosphate synthase; CMAS: 
Homo sapiens CMP-N-acetylneuraminic acid synthase; STGalT: β1,4-galactosyltransfease fused to the 
cytoplasmic tail, transmembrane domain and stem reg ion of the rat α2,6-sialyltransferase; CST: Mouse 
CMP-sialic acid transporter; ST: rat α2,6-sialyltransferase; LB: left border; RB: right b order (adapted 
from (Castilho et al., 2013)) 
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Figure 17: Schematic representation of the sialylati on individual vectors used in this investigation. 
Pnos: nopaline synthase gene promoter; Tnos: nopalin e synthase gene terminator; KanR: neomycin 
phosphotransferase II gene; P35S: Cauliflower Mosaic  Virus promoter; g7T: agrobacterium gene 7 
terminator; CTS: cytoplasmic tail-transmembrane-stem  region; mc: c-myc epitope tag; ha: 
Hemagglutinin epitope tag; GNE: mouse UDP-N-acetylg lucosamine-2-epimerase/N-acetylmannosamine 
kinase; NANS: Homo sapiens N-acetylneuraminic acid phosphate synthase; CMAS: Homo sapiens CMP-
N-acetylneuraminic acid synthase; STGalT: β1,4-galactosyltransfease fused to the cytoplasmic t ail, 
transmembrane domain and stem region of the rat α2,6-sialyltransferase; CST: Mouse CMP-sialic acid 
transporter; ST: rat α2,6-sialyltransferase; LB: left border; RB: right b order. (Adapted from (Castilho et 
al., 2010)) 

 

Figure 18 shows the glycosylation profile of Rituximab expressed by the 3 methods. 

Although in all methods Rituximab is mainly decorated with fucosylated di-sialylated 

glycans (NaNaF) the profile is much more homogenous when method 3 is used. The 

fraction of non- or mono-sialylated glycans is significantly higher in methods 1 and 2. As it 

can be seen, method 3 showed a more homogenous glycan profile, with a majority of the 

attached N-glycans being of the NaNaF type. 

With method 3, un-glycosylated antibody accounts for 20.7%. The non-sialylated forms 

constitute 22.2% of the sample, mono-sialylated (MNaF) 12.7% and di-sialylated 43.6% 

(NaNaF). 

For this reason method 3 was used for the large scale infiltrations and purification.  
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Figure 18: Small scale purification and glycan analy sis of Rituximab co-expressed in N. benthamiana 
with the mammalian sialic acid pathway. Sialylation of Rituximab was attempted using three different 
methods summarised in Table 12. N-glycosylation pro filing by LC-ESI-MS of tryptic Fc glycopeptide 
(EEQYNSTYR) confirms a great majority of the antibody de corated with the targeted NaNaF glycoform 
but glycosylation profile was more homogenous in me thod 3. Peaks were labelled in accordance with 
the ProGlycAn system (www.proglycan.com). Schematic r epresentations of N-glycans structures 
detected are also shown. Plant material was then use d for large scale purification and quantification. 

 

3.1.2 Upscaling and purification  

3.1.2.1 GnGn glycoform 
Large scale infiltrations were performed the same way as the small scale infiltrations. 100 

g of leaf material were used for purification as described in 2.2.3. After purification, SDS-

PAGE gels of the dialysed elutions were run for quality control, together with crude extract, 

flow through and wash flow through samples. Afterwards, bands from the SDS-PAGE gel 

were sent for glycan analysis as described in 2.2.3. Since glycan profiles were similar to the 
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ones displayed in the small scale purifications, only the SDS-PAGE gels of the large scale 

purifications will be shown, together with the crude extract, flow through and wash flow 

through samples for quality control (figure 19). 

The crude extract is expected to contain the soluble proteins, with a prominent band at 

around 55 kDa, corresponding to the size of the large sub-unit of RuBisCO. The flow 

through is expected to be like the crude extract, meaning that except for the target protein, 

all the other protein content has passed through the purification column but did not bind to 

the resin. As for the wash flow through, it should contain little to no protein content. This is 

precisely what is observed, with elution samples showing clean bands corresponding to 

heavy and light chain were obtained. 

 

Figure 19: SDS-PAGE gel and Coomassie brilliant blue staining of Rituximab GnGn large scale 
purification. Ce, crude extract; FT, flow through; W, wash flow through; E1, elution 1 after dialysis; E2, 
elution 2 after dialysis.  

 

After analysis, elution samples were then used for IgG quantification (see table 9). 

 

3.1.2.2 GnGnF glycoform 
Large scale infiltrations were performed the same way as the small scale infiltrations. 163 

g of leaf material were used. SDS-PAGE results can be seen in figure 20. 
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Figure 20: SDS-PAGE gel and Coomassie brilliant blue staining of Rituximab GnGnF large scale 
purification. Ce, crude extract; FT, flow through; W, wash flow through; E1, elution 1 after dialysis; E2, 
elution 2 after dialysis 

 

The elution samples were quantified (see table 9). 

 

3.1.2.3 AA glycoform 
54 g of leaf material were used for purification. SDS-PAGE results are shown in figure 

21. 

 

Figure 21: SDS-PAGE gel and Coomassie brilliant blue staining of Rituximab AA large scale purification. 
Ce, crude extract; FT, flow through; W, wash flow t hrough; E1, elution 1 after dialysis; E2, elution 2 a fter 
dialysis. 

 

The second elution of the purification did not result in a visible amount of protein. 

Therefore, only the first elution was quantified and sent for activity assays (see table 9). 
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3.1.2.4 NaNaF glycoform 
As determined in 3.1.1.4, large scale infiltrations for the NaNaF glycoform were 

done according to method 3, which produced the most homogenous glycan profile. 

The results of SDS-PAGE can be seen in figure 22. 

 

Figure 22: SDS-PAGE gel and Coomassie brilliant blue s taining of rituximab NaNaF large scale 
purification. Ce, crude extract; FT, flow through; W, wash flow through; E1, elution 1 after dialysis; E2, 
elution 2 after dialysis. 

 

Both elutions of the purification were then used for quantification (table 9). 

 

3.1.3 Quantification of large scale protein yield 

Quantification and yield of purified recombinant Rituximab is summarized in table 9. After 

quantification samples were sent for activity analysis.  

 

Table 9: Quantification of purified protein and yie ld according to leaf tissue used 

 

 

The Rituximab purified samples produced in this investigation carrying different 

glycoforms were sent to our collaborators at Institute für Phamakologie, INO-F in 

Switzerland for further analysis. We aim to study the implications of specific sugar moieties 

of the glycan on Fc effector functions.  

 

Dominant Glycan Leaf Tissue Used (g) Amount purified (mg) Yield ( µg/g)
GnGn 100 25.200 252

GnGnF 163 26.996 166

AA 54 5.848 108

NaNaF 178 20.680 116
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3.2 IgM upscaling and glycoengineering 

The generation of IgMs with a controlled glycosylation pattern allows the study of the so 

far unknown contribution of sugar moieties to the function of IgMs. 

 As for IgG we aimed to produce KBPA with homogenous glycan profiles: GnGn (terminal 

GlcNAc) and NaNa (terminal sialylated). To achieve these glycoforms, infiltrations were 

done the same way as for the IgG. However, for IgM, heavy and light chains were co-

infiltrated with the pPT2M-J-Chain and ERp44 constructs, to achieve a 

pentameric/hexameric oligomerization. Furthermore, agroinfiltration for the NaNa glycoform 

was done according to method 3 but the FUT11 construct was not added, since there are 

no evidence that core fucosylation enhances sialylation of IgMs (data not published). As 

described previously small scale purifications were done to assure that the target 

glycosylation profile was succeeded and this was followed by KBPA large scale infiltrations 

and purifications. 

KBPA has 3 complex and 2 high-mannosidic N-glycosylation sites. Here we showed as 

representatives the glycan profiles for glycopeptide 2 (complex) and 4 (high mannose).  

 

3.2.1 Upscaling and purification 

3.2.1.1 GnGn glycoform 
76 g of leaf tissue were infiltrated and then used for purification. Having one more domain 

in the heavy chain, the correspondent band on an SDS-PAGE gel is expected to be bigger, 

at 72 kDa. 

Results of purification and glycosylation analysis can be seen in figure 23. 

Using ∆XFT plants as expression hosts resulted in the production of KBPA carrying 

oligomannosidic N-glycans on glycopeptides 4 and 5, and human-type complex GnGn 

structures lacking plant-specific xylose and fucose residues at glycopeptides 1–3. Complex 

sites are decorated with the target GnGn (45.3%) glycoform although significant amounts of 

oligomannosidic glycans are also detected (54.7% for Man8 and Man 9). As expected on 

glycopeptides 4 and 5 no complex glycans are observed. 
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Figure 23: Large scale purification and glycan anal ysis of KBPA expressed in N. benthamiana ∆XF 
plants. (A) SDS-PAGE followed by Coomassie Brilliant B lue staining of reduced elution sample shows 
two bands of ~70 and 25 KDa corresponding to the he avy and light chain respectively. Ce, crude 
extract; FT, flow through; W, wash flow through; E1,  elution 1 after dialysis. (B) N-glycosylation prof iling 
by LC-ESI-MS of tryptic Fc glycopeptides 2 confirms a great majority of the antibody decorated with the 
targeted GnGn glycoform. As expected Gp4 shows high  mannosidic glycans. Peaks were labelled in 
accordance with the ProGlycAn system (www.proglycan. com). Schematic representations of N-glycans 
structures detected are also shown. 

 

The elution was used for glycan analysis and purification (see table 10). 
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3.2.1.2 NaNa glycoform 
78g of infiltrated leaf tissue were used for purification. Both SDS-PAGE gel and glycan 

analysis can be seen in figure 24.  

As before, purification is highly specific and both heavy and light chains are well visible on 

Coomassie stained gels. N-glycan analysis of the purified Fc revealed, as expected, the 

exclusive presence of oligomannosidic glycans on glycopeptides 4 and 5. KBPA is 

decorated with fully sialylated glycans (NaNa) on glycopeptide 2. However, this accounts 

for 26.6% of the total glycans, while oligomannosidic glycans represent 52.7% of the 

sample and 21% are non-engineered (GnGn) complex glycans. 

 

Figure 24: Large scale purification and glycan anal ysis of KBPA co-expressed in N. benthamiana ∆XF 
plants with the mammalian genes for in planta sialy lation according to method 3. (A) SDS-PAGE 
followed by Coomassie Brilliant Blue staining of re duced elution sample shows two bands of ~70 and 25 
KDa corresponding to the heavy and light chain resp ectively. Ce, crude extract; FT, flow through; W, 
wash flow through; E1, elution 1 after dialysis. (B)  N-glycosylation profiling by LC-ESI-MS of tryptic Fc  
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glycopeptides 2 shows a fraction of antibody decora ted with the targeted NaNa glycoform. High 
mannose and non-processed (GnGn) glycans are also d etected. As expected Gp4 shows high 
mannosidic glycans. Peaks were labelled in accordanc e with the ProGlycAn system 
(www.proglycan.com). Schematic representations of N- glycans structures detected are also shown. 

 

This sample was used for quantification (table 10). 

 

3.2.2 Quantification of large scale protein yield 

Quantification and yield of purified plant-derived KBPA is shown in table 10 according to 

the target glycan profile. After quantification samples will be used for further analysis. 

 

Table 10: Quantification of purified protein and yi eld according to leaf tissue used 

 

 

The KBPA purified samples produced in this investigation carrying different glycoforms will 

be further analysed for their oligomerization status. To utilize the full potential as 

complement activator the desired IgM structure is the pentamer assembly. Due to time 

constrains this analysis was not possible during the course of this investigation. It is also 

aimed in a near future to characterize these samples through activity assays. 

 

3.3 Down regulation of the expression of N. benthamiana Hexosaminidase 1 

and 3  

Two β-N-acetylhexosaminidases (HEXO1 and HEXO3) residing in different subcellular 

compartments jointly account for the formation of paucimannosidic N-glycans in 

Arabidopsis thaliana. HEXO1 is a soluble vacuolar protein and HEXO3 is largely insoluble 

and located in the plasma membrane and apoplast (Liebminger et al., 2011). 

 Although these truncated N-glycans are frequently found in plants, secreted recombinant 

glycoproteins usually carry complex N-glycans like GnGnXF or GnGn (depending on 

whether the expression host is WT or ∆XF). In our lab paucimannosidic N-glycans were 

observed on secreted α-1-anti-trypsin (A1AT, figure 5) (Castilho et al., 2014). This study 

showed that complex N-glycans of A1AT are converted to paucimannosidic structures, 

most probably in the extracellular space by the action of N. benthamiana HEXO3.  

The identification of HEXO3 has being in the origin of undesired paucimannosidic 

structures decorating secreted recombinant proteins led us to design a construct with 

appropriate RNAi sequences to down regulate the activity of this enzyme in N. 

Glycoform Leaf Tissue Used (g) Amount Purified (mg) Yi eld (µg/g)

GnGn 75 1.3 17

NaNa 78 4.7 60
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benthamiana. In addition we also designed a construct to down regulate the activity of the 

vacuolar resident acetylhexosaminidase 1 (HEXO1). 

 

3.3.1 Hexo3RNAi and Hexo3/1RNAi construct cloning  

In collaboration with Dr. Richard Strasser (BOKU, Vienna) we have use the N. 

benthamiana potential sequence for hexo3 to amplify a 235bp fragment and clone it 

sense/antisense to produce a RNA interference expression vector (figure 25A). In the same 

way, a 236 bp fragment of a potential sequence for N. benthamiana hexo1 was cloned 

sense and antisence as described in sections 2.2.5 and 2.2.6 (figure 25A). 

The pSAT-family vectors allow target sequences to be cloned under a large choice of 

promoters and terminators and the expression cassettes are easily interchangeable (Chung 

et al., 2005). The two different RNAi sequences were initially cloned into pSAT vector (1 

and 4) and subsequently the expression cassettes were assembled in a binary vector 

carrying a 2mEpsps gene expression cassette for glyphosate resistance (figure 25B).  

 

Figure 25: Cloning of Hexo 1 and Hexo 3-RNAi constr ucts. RNA interference constructs targeting the 
expression of endogenous β-N-acetylhexosaminidase 3 and 1 used for expression  in Nicotiana 
benthamiana. (B) Outline of the cloning strategy of the Hexo1 and Hexo3 RNAi subcloned into pSAT 
auxiliary vectors and then sequentially assembled i n pPZP-RCS2 using specific rare-cutting enzymes. 
(B) Schematic representation of the assembled Hexo 1  and Hexo3 RNAi sequences in the binary vector 
showing their relative orientation. P35S and T35S: ca uliflower mosaic virus 35S promoter and 
terminator; OcsP and OcsT: octopine synthase promote r and terminator; I2: intron 2 from sequence of 
the Arabidopsis β1,2-xylosyltransferase gene (At5g55500); hexo3 ss and hexo3 ass: sense and 
antisense 235bp fragment of the potential N. benthamiana Hexo3 gene; hexo1 ss and hexo1 ass: sense 
and antisense 236bp fragment of the potential N. benthamiana hexo1 gene; 2mEpsps: 5-enolpyruvyl 
shikimate-3-phosphate synthase enzyme expression ca ssette for glyphosate resistance; LB: left border; 
RB: right border 
 
 
 



55 

 

The cassette for Hexo3 RNAi was first inserted into the binary vector giving rise to the 

single vector for down regulation of HEXO3. Next the Hexo3 RNAi vector was used to clone 

in the RNAi sequence for hexo1 giving rise to the double vector Hexo3/1RNAi. 

For the cloning procedure, every step was checked by screening PCR or test restriction 

digestions. 

The primers used for screening, not only confirm that the cell colonies have been 

successfully transformed, but also indicate the orientation of the expression cassettes. All 

sequences were confirmed by DNA sequencing. 

 Figure 26 shows the final PCR screening results for the transformed A. tumefaciens 

colonies with Hexo3 and Hexo3/1 RNAi constructs.  

 

Figure 26: Electrophoresis gel of PCR product obtaine d from screening for A. tumefaciens colonies 
cloned transformed with the RCS vectors. In all case s the bands observed on the gels were of the 
expected size, and also the sequencing results were  in concordance. 

 
 

3.3.2 Down regulation of paucimannosidic glycans by  Hexo3RNAi and 

Hexo3/1RNAi 

To test the activity of the RNAi constructs, these were co-infiltrated with A1AT. As it is 

known that this protein displays truncated glycoforms when targeted for secretion, it is one 

of the contenders for testing the inhibition of hexosaminidase 3 activity. This was done in 

wild type and ∆XF plants. Hexosaminidase 1, as it is located in the vacuole, should not 

have any effect on A1AT and its activity inhibition must be tested on other studies, using a 

vacuole targeted protein as a reporter. 

 Figure 27 shows the glycan profiles of A1AT co-infiltrated in wild type and ∆XF plants with 

and without Hexo3 RNAi construct. Co-infiltration with Hexo3/1 RNAi constructs displayed 

similar results, showing that the presence of an extra cassette does not affect the 

expression of Hexo3 RNAi (data not shown). 

 In table 11, the relative abundance of each glycoform is displayed. 
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Figure 27: Secreted A1AT is decorated with Paucimanno sidic N-glycans when expressed in both (A) 
wild type (WT) and in (B) glycosylation mutant plan ts (XTFT) (TOP PANEL). When co-expressed with the 
Hexo3 RNAi construct to downregulate the expression  of N. benthamiana HEXO3, A1AT shows a 
significant increase in complex fully processed gly cans (C. GnGnXF or D. GnGn). LC-ESI-MS of trypsin-
digested A1AT collected from the intercellular flui d (IF). N-glycosylation profile of glycopeptide 2 
(ADTHDEILEGLNFNLTEIPEAQIHEGFQELLR) is shown. Peaks were la belled using the ProGlycAn 
system (www.proglycan.com). Adjacent illustrations display the respective N-glycans using standard 
symbols. 
 
 
Table 11: Variation of glycoform percentage in N-glycans of A1AT infiltrated with and without Hexo3  
RNAi in both wild type and ∆XF plants. 

 

Plant Line Glycoform
% without 

RNAi hexo 3
% with RNAi 

hexo 3

MMXF 45.7 26.3

MGnXF 17.3 16.6

GnGnXF 37.0 57.1

MM 35.8 18.6

MGn 15.2 13.0

GnGn 23.2 53.8

GnGnF 8.6 14.6

Wild type

∆XF
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Hexo3 RNAi also affected the plants’ total glycosylation profiles. Figure 28 shows a 

deconvoluted glycan profile of total secreted protein from both wild type and ∆XF lines, with 

and without Hexo3 RNAi.  

As seen, co-infiltration with Hexo3RNAi clearly shows a reversion of paucimannosidic 

structures in favour of fully processed glycans. This is a remarkable achievement since the 

down regulation of the target gene is done by transient expression only. 

 

Figure 28: Glycan profiles from secreted protein. A , total secreted protein of wild type plants; B, to tal 
secreted protein of ∆XF plants; C, total secreted protein of wild type pl ants infiltrated with Hexo3 RNAi; 
D, total secreted protein of ∆XF plants infiltrated with Hexo3 RNAi. 

4 Discussion 
Plants are distant enough from humans that there are no common pathogens or similar 

proteins between the two. However, plants can still produce and assemble human like 

proteins in a correct way.  

This fact can be employed for the establishment of a safe protein production system, with 

enough quantity, safety and homogeneity to satisfy the rising needs of human like proteins 

for medical purposes. 

Fortunately, the magnifection technology developed by ICON genetics (magnICON), 

allows for an easy and productive way for recombinant protein synthesis.  

The technology is based on the infiltration of plants with highly diluted agrobacterium 

suspensions carrying T-DNAs. These encode viral replicons and result in high copies of 

RNA molecules coding the desired protein. Since no gene is incorporated in the plant 

genome there are no risks of contamination or dissemination of the transgene (Klimyuk et 

al., 2014). The fact that the method enables the production of therapeutic and other high-
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value recombinant proteins in non-GMO using non-food plants makes dealing with 

regulatory agencies more straightforward. 

Adding to a good production system, glycoengineering can be used to control the 

glycosylation pattern of plant produced proteins (Bosch et al., 2013). 

The true challenge consists in upscaling the plant produced protein process while 

maintaining homogenous glycosylation patterns. 

As it is known that glycosylation influences the stability of proteins (Carrasco-Moro et al., 

2009) and that by modulating the glycosylation of a protein its function can be amplified or 

diminished, it is of the utmost interest to combine glycoengineering with protein production 

in plants.  

Plants glycosylate proteins differently than mammalian cells (Gomord et al., 2010). N. 

benthamiana, like other plants, produces essentially the same core glycan, but modified 

with xylose and fucose in a non-mammalian linkage (α1,3). With the development of N. 

benthamiana transgenic lines (∆XF) depleted of plant glycoepitopes (Strasser et al., 2008; 

Strasser et al., 2009), magnICON technology can be coupled with glycoengineering to 

produce mAbs with glycoforms that are essentially mammalian-like. Indeed, the resulting 

glycoforms on mAbs produced in these plants are more homogeneous than many FDA-

approved mAbs produced in mammalian cell culture (Whaley et al., 2011). 

In a large scale, it is expected that this technology will allow for a fast and productive 

system, while keeping the product as clean and effective as possible. A good and promising 

example is the ebola antibody-based Immunotherapy. MAbs against the ebola virus, 

showed to protect against lethal ebola challenge in mice (Winkler et al., 2000) 

Manufacturing runs on large scale using magnICON vectors and ∆XF host N. benthamiana 

plants were done and proved effective (Zeitlin et al., 2011). Moreover, the glycosylation 

patterns (GnGn) resulted in improved efficacy compared to the identical mAb expressed in 

mammalian NS0 cells. Binding studies using Fc receptors revealed enhanced binding of 

non-fucosylated mAb to mouse and human Fc-RIIIa (mediating ADCC activity).  

Antibody-based therapies have been widely used to treat many diseases including 

cancers, infectious and inflammatory disorders. The monoclonal antibodies produced by 

mammalian cells are humanized to avoid immunological responses but are 

heterogeneously glycosylated. The importance of glycosylation on the activity of the mAb 

by mediating the Fc interaction with receptors on the immune cells is well documented. 

Thus, it is a major goal to produce antibodies with well defined glycosylation, so it may be 

pssible to identify the one(s) that confer an improved safety and efficacy. 

While it is clear that certain Fc glycans dramatically influence the binding to selected Fcγ 

receptors, studies on the effects of all known Fc glycan structures are beginning to emerge 

(Lin et al., 2015). 
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The finding that sialylation of Fc portion of an antibody can determine anti-inflammatory 

properties (Kaneko et al., 2006) provides new opportunities for enhancing the efficacy of 

current therapeutic immunoglobulins and for the development of new therapeutics. In 

addition, glycan analysis revealed a preferential 2,6-linkage in the IVIG preparations 

conferring anti-inflammatory activity (Anthony et al., 2008). 

Current generation of licensed therapeutic mAbs carry oligosaccharides essentially devoid 

of sialic acid (Jefferis, 2006; Kobata, 2008). The extensive repertoire of 

glycosyltransferases and the fact that they can compete for the same substrate makes the 

Fc glycan profile tremendously heterogeneous. In humans, over 30 glycoforms on the 

single heavy chain have been identified (Jefferis, 2012). This microheterogeneity clearly 

complicates the investigation of the specific functionalities conferred by a single N-glycan 

residue. Using a combination of endoglycosidase to treat the antibody glycoforms and 

replace them by pure synthetic tailored glycans, it’s possible to obtain a homogeneous 

antibody for activity assay (Lin et al., 2015). The comparison of the activity of Rituximab 

with several homogeneous glycoforms identified α-2,6-linked NaNa as the optimal structure 

to enhance the activities of antibodies against cancer, influenza, and inflammatory 

diseases. 

Compared to IgGs, studies on the impact of glycosylation on IgM activity are overdue. 

The possibility to efficiently produce different well-characterized IgMs glycoforms provides 

practical tools to elucidate the impact of glycosylation on the biological properties of IgMs. 

As for IgG, such studies may accelerate the generation of therapeutic proteins with 

optimized functions. 

Due to their rather narrow range of glycosylation reactions, plants carry out complex N-

glycosylation at a striking homogeneity, which makes them especially amenable to glyco-

engineering (Steinkellner and Castilho, 2015). 

The present investigation was built on the above mentioned idea. To identify the optimal 

glycan structures for individual antibodies with desired activity, we have developed an 

effective method to modify the Fc-glycan structures to a homogeneous glycoform. 

The production of homogenously glycosylated antibodies was achieved taking advantage 

of the intrinsic properties of plant glycosylation and setting up a large scale laboratory 

experiment. While laboratory conditions are not suitable for big pharma, they are the ideal 

for emergency situations, when fast production of a usually uncommon biopharmaceutical 

is needed. As proved in this study, relatively large amounts of Rituximab (250µg/g) and 

KBPA (60µg/g) could be produce within 5 days even without optimization of the production 

system. 

The glycosylation still proves to be a challenge. In each test infiltration, the engineered 

glycan structure was achieved. However, the efficiency of glycoengineering seems to 
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decrease when the complexity of the target glycan structure increases. Engineering 

complex structures like NaNaF results in a more heterogeneous profile for both IgG and 

IgM. 

Another issue is the amount of un-glycosylated antibody. As seen for IgG, the amount of 

un-glycosylated antibody in each profile ranges from 5-25%. This phenomenon seems to be 

protein dependent since other plant-derived monoclonal antibodies display very little 

amounts of un-glycosylation (Castilho et al., 2010; Castilho et al., 2011a). Un-glycosylated 

antibodies display reduced effector functions, as well as reduced antiinflammatory 

properties, due to lower interaction with Fc receptors of effector cells (Lin et al., 2015). This 

is one of the issues to be addressed in future studies, and an effort should be made 

towards reducing un-glycosylation (see below). 

Sialylated antibodies were successfully produced. More importantly, recent studies 

suggest that α2,6-linked terminal sialic acid glycans may improve antibody effector function 

(ADCC) and not only antiinflammatory properties (Lin et al., 2015) as it was previously 

thought. While the production of mAb decorated with mono-sialylated afucosylated glycans 

is possible, the profile are rather heterogeneous and di-sialylated afucosylated glycans 

account only for 15% of the glycans (Castilho et al., 2010; Castilho et al., 2015). The 

presence of core α1,3-linked fucose enhances the synthesis of di-sialylated glycans up to 

90% (Castilho et al., 2015) but might have a negative effect on Fc receptor interactions and 

ADCC (Shields et al., 2002; Shinkawa et al., 2003; Okazaki et al., 2004). In this 

investigation plant-derived Rituximab was also efficiently decorated with di-sialylated core 

fucosylated glycans, at great uniformity. The main aim of producing Rituximab with 

sialylated glycans was to test the impact of sialylation on anti-inflammatory activity by 

comparing the GnGnF and NaNaF glycoforms. Nevertheless, since the recent report 

suggesting that α2,6-sialylation may improve ADCC, the next efforts should be put towards 

achieving maximum di-sialylation without having to add a core fucose residue. 

While uniform glycosylation with the targeted glycan structures being the main form was 

easily achieved in Rituximab, the same was not true for KBPA-IgM. In this case both 

targeted glycoforms (GnGn and NaNa) were accompanied by significant portions of ER-

typical oligomannosidic structures. Nonetheless, if one disregards the fraction of IgM ER-

retained (Man8 and Man9 structures), secreted KBPA profiles are also highly homogenous 

with virtually one glycoform in di-sialylated (NaNa, 56 %) and non-converted (GnGn, 44 %) 

glycans. 

Partial ER-retention of recombinant proteins targeted for secretion has been previously 

reported (Castilho et al., 2014; Schneider et al., 2014a). Recently it was shown that 

oligomerization status influenced subcellular localization and glycosylation of recombinant 

butyrylcholinesterase expressed in N. benthamiana (Schneider et al., 2014b). This and the 
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results presented here for IgM glycoengineering point for the need of in-depth studies to 

address the unexpected subcellular deposition of multimeric recombinant proteins in plants. 

Another issue with plant-derived KBPA was the purification yield. Compared to Rituximab, 

KBPA expresses less. It must be kept in mind that fully assembled IgM antibodies are more 

complex and larger than IgG, which could pose additional expression, glycoengineering and 

purification difficulties. Nevertheless, IgMs are well expressed in plants and correctly 

assembled as multimeric proteins (Loos et al., 2014) 

The affinity capture model that dominates IgG purification has proven not as efficient for 

IgMs because, in most cases, they are affected adversely by harsh elution conditions and 

they are more susceptible than IgGs to denaturation. (Garcia-Gonzalez et al., 1988). The 

large size of IgMs is also a challenge because it limits the operating conditions.  

Purification of KBPA via Protein A affinity is possible but binding is very poorly compared 

to IgG and high protein levels are observed in the flow through. In addition, the binding of 

protein A-purified KBPA towards C1q receptor is jeopardised (unpublished data). 

Alternative purification protocols make use of affinity matrix containing ligands directed 

towards a unique domain on the Fc part of IgM as is CaptureSelect used in this 

investigation. It is however worth to point out that the binding capacity of the resin (2.5 mg 

IgM per mL matrix) is clearly less then protein A used for IgG (35 mg IgG per mL matrix). 

These and the distinct protein size may account for the significant differences in the 

purification yield of IgG and IgM. Improving and optimizing purification of plant-derived 

KBPA will no doubt be the focus of future research (see below).  

 From an industrial point of view, it is important to have an optimized antibody, maximizing 

its function. So, batch to batch reproducibility is extremely important soplant produced 

antibody can be glycosylated in the same way. Plants are the ideal platform for achieving 

this homogeneity. Being susceptible to glycoengineering and still a developing platform, 

there is much room for improvement. Using mutated plant lines that are stable transformed 

not to express certain glycosyltransferases like the N. benthamiana ∆XF line (Strasser et 

al., 2008) and transient expression for glyco-modulation, one can aim to achieve 

glycosylation patterns not possible to achieve in other platforms like CHO cells.  

The formation of highly complex oligosaccharide structures like sialylation requires the 

coordinated expression of six human proteins acting in different subcellular compartments 

at different stages of the glycosylation pathway (Castilho et al., 2010). Castilho and co-

workers were able to expresse Erythropoietin in ∆XF carrying branched sialylated N-

glycans and mucin-type sialylated O-glycans with a total of 17 transiently expressed 

proteins (Castilho et al., 2012; Castilho et al., 2013). Although this seems extraordinary and 

exciting it is also prone to failure, as one cell must receive all the genes. It is also time 

consuming, involving handling of too many different Agrobacterium cultures. An obvious 
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approach to simplify the procedure (transient or stable) is to reduce the number of binary 

vectors that need to be co-delivered into plants. In planta synthesis of sialylated N-glycans 

by the transient expression of multigene vectors and thus reducing the number of 

agrobacteria in the infiltration process has been reported (Castilho et al., 2013; Schneider 

et al., 2014b). In a near future we aim at the glycan engineering approach by generating 

plants stably expressing the human sialylation pathway. Multigene transformation will no 

doubt become routine in plant biotechnology as researchers seek to introduce new and 

complex traits into plants. 

Plant specific glycosydases are another obstacle to surpass if this platform is to be the 

leader of recombinant protein production. In this work, the down regulation of β-N-

acetylhexosaminidase 3 expression was described. While not completely abolishing the 

protein expression, the expression of the RNAi constructs was enough to reduce 

paucimmanosidic glycans in A1AT by 42% in wild type plants and even more, 48%, in ∆XF 

plants. This represents a significant reduction in paucimmanosidic structures. Next steps 

should be employed to stable transform plants, knocking out the gene completely. While β-

N-acetylhexosaminidase 1 was also studied, it is located in the vacuole, and this is not a 

target destination for produced proteins. Since most produced proteins are targeted for the 

glycosylation pathway and later secretion for the apoplast, it is for now more interesting to 

pursuit the inhibition of β-N-acetylhexosaminidase 3. 

The present study addressed a series of current issues with the production of proteins in 

plant platforms. This still small and developing technology can still grow in many ways, and 

efforts must be made to improve it. 

 Controlling glycosylation in vivo through modulation of glycan biosynthesis can be a 

hurdle since the process has no known template and is dictated by many factors such as 

the availability, activity and correct sub-cellular localization of particular substrates and 

enzymes.  

A common difficulty that impedes research on the impact of protein glycosylation to 

functional activities is availability of expression platforms that allow the synthesis of targeted 

glycoforms.  

We have now available in our lab 4 plant-based expression platforms for the production of 

recombinant proteins with almost a single glycoform (WT: GnGnXF; ∆XTFT: GnGn; GalT: 

AA and Sia: NaNa, on its way). It is however important to acknowledge glycosylation is to a 

certain point protein specific and we have always to consider the “fine-tuning” of the 

glycoengineering procedure. 
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5 Future Prospects 
The present study addressed a series of current issues with the production of proteins in 

plant platforms. This still small and developing technology can still grow in many ways, and 

efforts must be made to improve it. 

 

5.1  OST expression  

In eukaryotes, the key step of protein N-glycosylation in the endoplasmic reticulum is 

catalyzed by a multimeric protein complex oligosaccharyltransferase (OST). It transfers the 

lipid-linked core-oligosaccharide to selected Asn-X-Ser/Thr sequences of nascent 

polypeptide chains (see review in (Mohorko et al., 2011)). Due to the high substrate 

specificity of OST, alterations in the biosynthesis of the oligosaccharide or perturbation that 

destabilizes OST complexes can result in the hypoglycosylation of many different proteins 

(Mohorko et al., 2011).  

Mammalian cells can express two isoforms of the OST catalytic subunit STT3 (STT3-A 

and STT3-B). A recent report showed that modulation of the STT3 isoform expression 

resulted in increased IgG N-glycosylation (Prados et al., 2011). 

In this investigation we observed relatively high levels of unglycosylated IgG-Rituximab. 

The glycan analysis was done in tryptic peptides of reduced samples so levels of un-

glycosylation may in fact reflect a mixture of non-glycosylated IgG with hemi-glycosylated 

IgG. Nevertheless, contrasting to other IgG expressed in N. bethamiana the same way, 

Rituximab is hypoglycosylated. One possible way to overcome this would be to try to co-

express Rituximab with mammalian or plant OST. The approach was already attempted by 

ICON genetics with promising results (Dr. V. Klimyuk personal communication). 

 

5.2  Improving/optimizing purification efficiency o f IgMs 

Purification of plant derived IgM proved to be more arduous. Enriched IgG product is 

easily obtained by Protein A affinity chromatography. Hydroxyapatite affinity seems to be 

provides a useful alternative for IgM (Gagnon, 2009). Either hydroxyapatite or cation 

exchange may support effective capture, depending on the properties of a particular IgM. 

Also we aim in a future to test other commercially available systems such as HiTrap IgM 

Purification HP (GE healthcare) packed with a thiophilic adsorption medium with 2-

mercaptopyridine having a binding capacity of 5 mg human IgM per mL. Additionally, with 

the recent information obtained on IgM glycosylation (bisected sialylated), the next aim 

should be to glycoengineer the human serum glycan structures in plant produced 

recombinant IgMs. 
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5.3 Plant expression platform for protein sialylati on 

In collaboration with our partners at Icon Genetics (Halle, Germany) we have individually 

transformed the pC144 and pGb371 into the genome of Nicotiana benthamiana 

glycosylation mutant. Transformed Ce144 and Gb371 lines were crossed and progeny 

thereof tested by Sambucus nigra lectin (SNA) blotting, detecting di-sialylated proteins 

(NaNa). In addition and taking advantage of the different resistance cassettes present in the 

vectors we have co-transformed ∆XF plants with both construct. These plants are currently 

being propagated to bring them to homozygosity. It is hope in a future that they will be 

established as a new and valuable expression platform for better protein sialylation. 
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