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Abstract

We investigate second-order PDE problems arising in financial option pricing.

Firstly, we consider a non-linear problem arising when transaction costs are
included and investigate the existence, uniqueness, and localisation of the solution
by using topological methods.

Secondly, we study the discretisation of a generalised version of the linear
Black-Scholes PDE, where both the asset appreciation rate and the volatility
are taken time and space-dependent and growing in the space variable, under
the strong assumption that the PDE is nondegenerate. The PDE solvability is
considered in the framework of the variational approach and the discretisation
is obtained by using basic finite-difference methods. For the time variable, we
consider a general evolution equation problem the PDE problem can be cast into,
and discretise it by using both the implicit and the explicit schemes. We obtain a
convergence result under a smoothness assumption weaker than the usual Holder
continuity. Furthermore, we investigate two main types of operator specification.

For the spatial variable, we consider the discretised version of the PDE prob-
lem in discrete weighted Sobolev spaces and obtain a convergence result stronger
than we could find in the literature.

Finally, the rate of convergence for the approximation in space and time is

computed.







Resumo

Neste estudo, investigamos EDPs de segunda ordem que surgem 1o apreca-
mento de opgoes financeiras.

Em primeiro lugar, consideramos um problema néao-linear que surge quando
sao incluidos custos de transacgéo e investigamos a existéncia, unicidade e loca-
lizag8o da solugdo, usando métodos topoldgicos.

Em segundo lugar, estudamos a discretizagdo de um versao generalizada da
EDP de Black-Scholes linear, em que a taxa de apreciacdo do activo e a volati-
lidade sao dependentes do tempo e do espago e crescentes na variavel espacial,
assumindo que a EDP é ndo degenerada.

A solvabilidade da EDP é considerada numa abordagem variacional e a dis-
cretizagao é obtida usando métodos béasicos de diferencas finitas. Para a variavel
temporal, consideramos uma equagao de evolugdo geral, de que a EDP é caso
particular, que discretizamos usando os esquernas implicito e explicito. Obtemos
um resultado de convergéncia sob uma hipétese de regularidade mais fraca que
a usual continuidade de Hélder. Adicionalmente, investigamos dois tipos funda-
mentais de especificacdo do operador. Para a varidvel espacial, consideramos a
versao discreta da EDP em espagos de Sobolev discretos e obtemos um resultado
de convergéncia mais forte do que pudemos encontrar na literatura.

Finalmente, obtemos a taxa de convergéncia para a aproximacgao no espago e

no tempo.
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Introduction

The undeniable importance of the financial activity in the modern world justifies
the need for advanced methods in the treatment of inherent problerns.

Modelling of risky asset prices and modern option pricing techniques are of-
ten considered among the most mathematically complex of all applied areas of
Finance. It became essential for the financial analyst to possess a high level of
mathematical skills. Conversely, the complex challenges posed by the problerns
and models relevant to Finance have, for a long time, been an important source
of new research topics for mathematicians.

In this work we are motivated by the investigation of second-order partial
differential equation (PDE) problems arising in European financial option pricing.

We consider the inclusion of costs, such as taxes or fees, in the transactions
that take place when an agent deals with a portfolio of assets. For a model where
the cost of the transaction of each share of stock diminishes as the number of

shares transactioned increases
h{v) =a—0bly|

where v is the number of shares traded and a,b > 0, we arrive to the non-linear

equation on the price V of the option

OV 1., 4,02V L o (8V? v 3
8t+205852+b05’ 557 +7r 8SS—V =0,

where & is an adjusted volatility of the real volatility o of the underlying S, and
r is the short rate of return.

This equation is an extension of the most relevant option pricing formula:
the Black-Scholes equation. The introduction of our particular model for the
transaction costs in the option pricing market led us to a PDE that contains the
Black-Scholes terms with an additional non-linear term modelling the presence of

transaction costs.




We also proceed to the discretisation of PDE problems using finite-difference
methods.

There has been a long and extensive research on the application of finite-
difference methods to financial option pricing. We refer to [55] for a brief summary
of the method’s history, and also for the references of the seminal work by R.
Courant, K. O. Friedrichs and H. Lewy, and further major contributions by many
others.

Also in [55], we can find the numerical study, making use of finite differences,
of the Cauchy problem for a general multidimensional linear parabolic PDE of
order m > 2, with bounded time and space-dependent coefficients. This study is
pursued in the framework of the classical approach.

Although the theory can be considered reasonably complete since three decades
ago, some important research continues. We mention, just as an example, the
recent works [29, 30].

The finite-difference method was early applied to financial option pricing, the
pioneering work being due to M. Brennan and E. S. Schwartz in 1978, and was,
since then, widely researched in the context of the financial application, and
extensively used by practitioners. For the references of the original publications
and further major research, we refer to the review paper [11].

Most studies concerning the discretisation of PDE problems in Finance con-
sider the particular case where the PDE coefficients are constant (see, e.g., [6,
9, 19, 53]). This occurs, namely, in option pricing under Black-Scholes stochas-
tic model (in one or several dimensions), when the asset application rate and
volatility are taken constant.

Multidimensional PDE problems arise in Financial Mathematics and in Math-
ematical Physics. We are mainly motivated by the application to a class of
stochastic models in Financial Mathematics, comprising the non path-dependent
options, with fixed exercise, written on multiple assets (basket options, exchange
options, compound options, European options on future contracts and foreign-
exchange, and others), and also, to a particular type of path-dependent options,
the Asian options (see, e.g., [34, 56]).

Let us consider the stochastic modelling of a multi-asset financial option of
European type under the framework of a general version of Black-Scholes model,
where the vector of asset appreciation rates and the volatility matrix are taken

time and space-dependent. Owing to a Feynman-Kag type formula, pricing this




option can be reduced to solving the Cauchy problem (with terminal condition)

for a second-order linear parabolic PDE of nondivergent type, with null term and

unbounded coefficients, degenerating in the space variables (see, e.g., [34]).
After a change of the time variable, the PDE problem is written

ou

57 = Lu+f in 0,T] x RY,  w(0,2) = g(z) in RY, (0.1)
where L is the second-order partial differential operator in the nondivergence form
82

—I-bi(t,a:)i— +c(t,z), i,5=1,...,d,

L(t,z) = a(t,z) o

0x,01x;

with real coefficients, f and g are given real-valued functions (the free term f is
included to further improve generality), and T € (0,00) is a constant. For each
t € [0,T) the operator —L is degenerate elliptic, and the growth in the spatial
variables of the coefficients a, b, and of the free data f, g is allowed.

When problem (0.1) is considered in connection with the Black-Scholes mod-
elling of a financial option, we see that the growth of the vector stochastic differen-
tial equation (SDE) coefficients in the underlying financial model is appropriately
matched. Also, by setting the problem with this generality, we cover the general
case where the asset appreciation rate vector and the volatility matrix are taken
time and space-dependent. Finally, by letting the initial data g non-specified,
a large class of payoff functions can be considered in the underlying financial
derivative modelling. The free term f is included to further improve generality.

One possible approach for the discretisation of the PDE problem (0.1) is to
proceed to a two-stage discretisation. First, the problem is semi-discretised in
space, and both the possible equation degeneracy and coefficient unboundedness
are dealt with (see, e.g., [21, 22|, where the spatial approximation is pursued in
a variational framework, under the strong assumption that the PDE does not
degenerate, and [20]). Subsequently, a time discretisation takes place.

For the time discretisation, it can be tackled by approximating the linear

evolution equation problem in which the PDE problem (0.1) can be cast into

dgt"f = A(tyu+ f(t) in [0,T), u(0)=g, 0.2)

where, for every t € [0,7] with T € (0,00), A(t) is a linear operator from a
reflexive separable Banach space V to its dual V*, v : [0,7] — V is an unknown
function, f : [0,7] — V*, g belongs to a Hilbert space H, with f and g given,




and V is continuously and densely embedded into H. We assume that operator
A(t) is continuous and impose a coercivity condition.

This simpler general approach, which we follow, is powerful enough to obtain
the desired results. On the other hand, it covers a variety of problems, namely
initial-value and initial boundary-value problems for linear parabolic PDEs of any
order m > 2.

The numerical methods and possible approximation results are strongly linked
to the theory on the solvability of the PDEs. In this work, we make use of the
L? theory of solvability of linear PDEs in weighted Sobolev spaces. In particular,
we consider the PDE solvability in the deterministic special case of a class of
weighted Sobolev spaces introduced by O. G. Purtukhia [46, 47, 48, 49|, and
further generalised by 1. Gyongy and N. V. Krylov [27], for the treatment of
linear stochastic partial differential equations (SPDE). By considering discrete
versions of these spaces, we set a suitable discretised framework and investigate
the PDE approximation.

The particularization of PDE (0.1) to one dimension, leads to the Cauchy

problem

d
Lu — d—th +f=0 in Q, u(0,z)=g(z) in R, (0.3)
where @ = [0,7] x IR, with T a positive constant, L is the second-order partial

differential operator with real coefficients
2

L(t,z) — a(t, x)% bt x)% + elt, z)
for each t € [0, T] uniformly elliptic in the space variable, and f and g are given
real-valued functions. We allow the growth in space of the first and second-order
coefficients in L (linear and quadratic growth, respectively), and of the data f
and g (polynomial growth).

The motivation for the study of this case is obvious: the possibility of obtaining
stronger results than for the multidimensional setting.

Now we summarise the contents of this work.

The basics of stochastic calculus theory is reviewed in Chapter 1. We refer
the close connection existent between SDE and certain PDE, in particular the
Black-Scholes equation.

The inclusion of transaction costs leads us to a problem approached in Chap-
ter 2. We obtain existence, uniqueness and localisation results for the solution of

the associated stationary problem.




We study, in Chapter 3, the discretisation of the linear parabolic equation (0.1)
in abstract spaces making use of both the implicit and the explicit finite-difference
schemes. Under a nondegeneracy assumption, we consider the PDE solvability in
the framework of the variational approach. The stability of the explicit scheme
is obtained, and the schemes’ rates of convergence are estimated. Additionally,
we study the special cases where A and f are approximated by integral averages
and also by weighted arithmetic averages.

In Chapter 4 we deal with the challenge posed by the unboundedness of the
coeflicients of PDE in problem (0.3), under the strong assumption that the PDE
does not degenerate. We use finite-difference methods to approximate in space
the weak solution of the problem. We follow the previous work by Gongalves and
Grossinho ([20, 21]), where the same approach was used for the more general case
of multidimensional PDEs. By considering the special case of one dimension in
space, a stronger convergence result is obtained in this chapter. In particular,
the same order of accuracy is obtained under regularity assumptions weaker than
those required in [20, 21] for the corresponding convergence result.

In Chapter 5, we estimate the rate of convergence for the approximation in
space and time in abstract spaces for general linear evolution equations, and then
specified to the second-order PDE problem.

We conclude with some final comments and the direction of future research

related to this work.







Chapter 1

Stochastic calculus applied to Finance

We present in this chapter the main guidelines of stochastic calculus. First, we
summarise the main concepts and results associated to the stochastic processes,
we introduce the stochastic integral, the Ité lemma or formula, and discuss the
solution of a stochastic differential equation. The importance of Feynman-Ka¢ for-
mula and the Kolmogorov backward equation is evident with the results presented
in Section 1.4, where we make the connection between the stochastic differential
equations and the partial differential equations. One of the main applications of
stochastic calculus to Finance is shown in Section 1.6, with the famous Black-

Scholes equation.
The text presented follows Bjérk ([7]), Mikosch ([41]), and Shreve ([52]).

1.1 Stochastic processes

We start to summarise the basic theory of stochastic processes.

Definition 1.1. A stochastic process X is a collection of random variables
(X, t €T) = (Xy(w),t eT,we Q)
defined on some probability space (2, A, P).

We will deal exclusively with stochastic processes X = (Xy)ier where T is
an interval, usually T' = [0, 00), and, for obvious reasons, the index t of X, is
frequently referred to as time. Then, we call X a continuous-time stochastic
process, or, simply, a continuous stochastic process.

A very important stochastic process is the Brownian motion, which has been

playing a central role in Finance.




Definition 1.2. A real-valued continuous stochastic process W = (W), in the
probability space (2,4, P) is called a (standard) Brownian motion, or Wiener

process, if the following conditions are verified
e Wy=0.
e Forall0 =ty <t <+ < t, the increments
Wiy =Wy = Wi, We, =Wy, oo, Wh, = WA,
are independent.

e For s < t, the random variable W; — W, has the Gaussian distribution

N(0,v/t—s).
e W has continuous trajectories.
A filtration can be regarded as an increasing stream of information.

Definition 1.3. Assume that (F;):>0 is a collection of o-algebras on the same
probability space (2, A, P) and that F;, for all ¢ > 0, is a subset of the larger
o-algebra A.

The collection (F}),s,, of o-algebras on (2 is called a filtration if

F,CF, forall0<s<t.

Representing by o(Y) the o-algebra generated by the information given by

the random variable Y, we define the concept of adapted process.
Definition 1.4. Let (Q2, A, P) be a probability space.

e A stochastic process X = (X;)i>o is said to be adapted to the filtration

(Ft)eso if, for any ¢, X, is F;-measurable, i.e.,
o(Xy) CF, forallt>0.
e A stochastic process X is always adapted to the natural filtration generated

by X
9’1 = O'(XS,S < t)




e The process X is said to be adapted to the Brownian motion W if X is
adapted to the natural Brownian filtration (F;)s>0. This means that X is

a function of Wy, for s < t.

The notion of martingale is fundamental in the theory of pricing financial

derivatives.

Definition 1.5. A stochastic process X = (X;)i>o is called an Fy-martingale if

the following conditions are verified
e Forallt >0, F(|X;]) < .
e X is adapted to the filtration (Fi)s>0.
e For all 0 < s <, X, is the best prediction of X; given JFj, i.e.

E (X,|F:) = X,.

There are some interesting results about the martingales (see {41}, pp.81-82).
Proposition 1.6. The expectation function of a martingale is constant.

Proposition 1.7. The Brownian motion is a martingale.

1.2 Stochastic integrals

We now discuss the concept of Itd stochastic integral. This one is used in Finance
to model the value of a portfolio that results from trading assets in continuous
time. Due to the fact that a Brownian path is nowhere differentiable and has
unbounded variation, the calculus used to manipulate these integrals differs from
ordinary calculus.

Thus we are interested in integrals of the form fot X5 AW, where (W) is a
given F;-Brownian motion and X = (X;)i>0 is an F-adapted process.

We begin to define the stochastic integral for a class of processes whose paths

assurne only a finite number of values.

Definition 1.8. The stochastic process C = (Cy);>0 is said to be simple if the

following properties are satisfied




e There exist a partition
T 0=ty <ty <+ <ty <tn=T,

and a sequence (Z;, i =1,...,n) of random variables such that

ol Zn it t=T
P Zz if tz_1St<t“ Z:].,,TL

e The sequence (Z;) is adapted to (F¢,_,)i=1,..n, 1-€., Z; is a function of the
Brownian motion up to time t;_;, and satisfies E(Z?) < oo for all 1.

Then we define the stochastic integral as the obvious formula.

Definition 1.9. The It6 stochastic integral of a simple process C on [0,T] is
given by

T n n
/ Gs dWs = thi—l (I/Vt, - Wt,'_l) - Z Zi(Wtz - Wtz‘—l)’
0 i=1 i=1

The Itd stochastic integral of a simple process C on {0,t], tg—1 < t < tg, is given
by

t t k-1
/ Gdes = / GSI[O,t](S)dWS = Z Zi(Wti — Wti—-l) + Zk(Wt — Wtk—-l)’
0 0 i=1

where >0, Zi{(Wy, — W, ,) = 0.

In the following proposition we present some fundamental properties of the
stochastic integral of a simple process (see [41], pp.105-107). We consider

t
L(C) = / C.dW,, for ¢ € [0,T].
0

Proposition 1.10. If C = (Cy)>o is a simple process then
1. The stochastic process (I;(C))o<i<t is a Ft-martingale.
2. The Ité stochastic integral has expectation zero.

3. The It6 stochastic integral satisfies the isometry property
t 2 t
E </ Cs dWs> :/ E(C’f) ds, te0,T].
0 0

10




4. The Ito stochastic integral is linear.
5. The process (It{C))o<t<T has continuous paths.

The definition of stochastic integral will be extended to a larger class of pro-

cesses that we denote by H.

Definition 1.11. We say that the process C = (C}).<t<p belongs to the class
H|a, b] if the following conditions are satisfied

e The process C is adapted to the natural filtration.
e The integral f; E (C?)ds is finite.

We say that the process C' = (C})s>0 belongs to the class H if C € H[0,t] for all
t>0.

The It stochastic integral of a process C' € H is defined as the limit of the
Itd stochastic integrals of a sequence of simple processes converging to C in some

sense, whose existence is guaranteed by the following result (see [41], p.109).
Proposition 1.12. Let C' = (Cy)o<i<r be a process of the class H.
Then there exists a sequence (C("))n N of simple processes such that

T 2
/ E|[Cs ~C™] ds — 0.
0

Writing I(C™) = fot MAW,, we also have that the sequence (I(C™)) of Ito
stochastic integrals converges in a mean square sense to a unique limit process,
i.e., there erists a unique process I(C) on [0, T} such that

E { sup [L(C) - I, (C<">)]2} — 0.

0<t<T

The next definition follows naturally.

Definition 1.13. Let C = (Ct)o<t<r be a process of the class H.
The unique mean square limit 7(C), guaranteed by Proposition 1.12, is called
the It stochastic integral of C. It is denoted by

t
I(C) = / C.dW,, te[0,T].
0

11




As for the It6 stochastic integral for a simple process, we state the following

properties (see [41], pp.111-112).

Proposition 1.14. If C = (Ci)o<i<T is a process of the class H then
1. The stochastic process (I;(C))o<t<r is a Fr-martingale.
2. The Ité stochastic integral has expectation zero.

3. The Ité stochastic integral satisfies the isometry property

E </0t c, dW;)2 _ /tE(Cf)ds, t e [0,7].

0
4. The Ito stochastic integral is linear.
5. The process I(C) has continuous paths.

Although the existence of a definition for a general It6 stochastic integral of
the process C € H, we are not able to write the integral fot C,dW; in simple
terms of the Brownian motion. However, using the It6 lemma presented later in
this section it is possible to obtain explicit formulae for It6 stochastic integrals in
some particular cases of the integrand process C.

First, we introduce the It6 process.

Definition 1.15. A process X = (X;)o<t<7 that has the representation
t t
X; = Xo + / AWds + / AP dw, (1.1)
0 0

with AD and A® F,-adapted processes, and such that the above integrals are

well defined in the Riemann and It6 senses, respectively, is called an It6 process.
The integral equation (1.1) can be represented in its differential form
dx, = AVdt + APdw,,

which describes the “dynamics” of the stochastic process X.
The following result states the uniqueness of the previous decomposition (see [41],
p.119).

12




Proposition 1.16. If a process X = (X)o<t<r has the representation (1.1), then
the processes AV and A® are uniquely determined in the sense that, if X has a
representation (1.1), where the A®) are replaced with adapted processes DD then
AD gnd DD coincide a.e., fori=1,2.

Now we state an important result in the theory of stochastic calculus known

as the It6 lemma, or It6 formula (see [41], p.120).

Theorem 1.17. (It6 lemma) Let X = (Xi)o<t<r be an Itd process with represen-
tation (1.1) and f(t,x) be a function whose second order partial derivatives are

continuous. Then

f(t7 Xt) = f(O)XO)
traf of 1, o2 82
+/ [8t( Xs) + AP ——(5, Xs) + 5 (AP) @(S’Xs)} ds

/A<2> f (5, X,) dW,. (1.2)

Remark 1.1. Formula (1.2) is frequently given in the symbolic form

f(t,Xt):f(O,Xo)+/O [ZJ;(SX) ;(Af))??é ]d +/ (5, X))

where
dX, = APds + APdW..

We state the integration by parts formula (see [41], p.122).

Theorem 1.18. (Integration by parts formula) Let XV and X®@ be two It6

processes with respect to the same Brownian motion

X = X3 / Alds + / APDAW,, i =1,2.
Then

t t t
xOx® _ xOx® 4 / XOdx® 4 / XWax® 4 / ACD 4G g
0 0 0

1.3 Stochastic differential equations

We are now interested in finding a stochastic process X = (X;)t>o which satisfies

the differential equation

dXt = ,U/(t, Xt)dt + O'(t, Xt)th, XO = Y, (13)

13




where, as usual, W = (W,)>0 denotes the Brownian motion, and u(t,z) and
o(t,z) are deterministic functions, with ¢t € R* and x € IR.

The randomness of the solution X, if it exists, results, on one hand, from
the initial condition, and, on the other hand, from the noise generated by the
Brownian motion.

We should interpret the equation in (1.3) as the stochastic integral equation

¢ ¢
X = Xo -I—/ u(s, Xs)ds -|—/ o(s, Xs)dW,, t>0, (1.4)
0 0

where the first integral on the right-hand side is a Riemann integral, and the
second one is an It6 stochastic integral.

Equation (1.4) is called an Ité stochastic differential equation, or simply,
stochastic differential equation (SDE).

The Brownian motion W is called the driving process of the SDE (1.4).

Definition 1.19. A strong solution to the SDE (1.4) is a F-adapted stochastic

process X = (X;);>o which satisfies the following conditions

e The integrals ocurring in (1.4) are well defined as Riemann or It6 stochastic

integrals, respectively.
e X satisfies

T T
X, =Y -|—/ u(s, Xs)ds + / (s, Xs)dWs a.s.,, Vt>0.
0 0

While the strong solution of (1.4) is based on the path of the underlying
Brownian motion, for the weak solutions the path behaviour is not essential, we
are only interested in the distribution of X. Weak solutions X are sufficient in
order to determine the distributional characteristics of X, such as the expectation,
variance and covariance functions of the process.

A strong or weak solution X of the SDE (1.4) is called a diffusion process. In
particular, taking u(¢,z) = 0 and o(t,x) = 1, we have that the Brownian motion
is a diffusion process.

We establish sufficient conditions for the existence and uniqueness of a strong
solution of the SDE with the following result (see [41], p.138).

14




Theorem 1.20. If the coefficient functions u(t, x) and o(t, x) satisfy the following

conditions
o they are continuous, and

o they satisfy a Lipschitz condition with respect to the second variable, z.e.,
there exists a constant K such that, for allt € R and 2,y € R

lu(t, z) — plt,y)| + ot 2) — ot y)| < Klz -y,

and if the initial condition Y
e has a finite second moment: E(Y?) < oo, and
o is independent of W = (W;)s>o,
then the SDE (1.4) has a unique strong solution X on [0,T], T > 0.

Two important examples of SDEs are the following ones (see [41], p.155, p.139,

respectively).

Ezample 1.1. The general linear stochastic differential equation

X: = Xo+ /Ot[,ul(s)Xs + pa(s)]ds + /Ot[al(s)Xs + 02(s)|dWs, t € [0,T]

where the (deterministic) coefficient functions y; and o; are continuous, i = 1,2,

has a unique strong solution on every interval [0, T).

Example 1.2. The geometric Brownian motion, broadly used to model the price

of an asset in Finance, is given by
X, = Xoelb=0"/DiteWe ¢ < [0 7).

This process is the unique solution of the linear It6 stochastic differential equation

t t
X, =Xy + u/ X,ds + a/ X AW, t€]0,T).
0 0
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1.4 Partial differential equations

In this section, we intend to relate the solution X on the time interval [t, T, for
fixed T and ¢t < T, of the SDE

dX, = p(s, Xs)ds+ o(s, Xs)dW,
Xt = X

to the solution of the following boundary value problem

OF oF 1, O°F
E(t’ z) + plt, x)% +350 (t,x)w(t, z) = 0
F(T,z) = ®(x),

where u(t, z), o(t, z), and ®(¢,z) are deterministic functions.
We define the infinitesimal operator A of the process X for any function on
C?(IR) by
g 1 H?
A= p(t,z) = + =c*(t, z)=.
(e, )= + 5070 2) 5
Thus in terms of the infinitesimal generator, the It6 formula (1.2) takes the

form
t af t af
f(t7Xt) = f(01X0)+ _(SaXs) +‘A'f(87XS) ds+ O—(S’XS)———(S)XS)dWS
0 Ot 0 Ox
Using A, we may write the boundary value problem as
%—f(t, )+ AF(tz) = 0 (1.5)

F(T,z) = &(x). (1.6)

Applying the It6 formula to the process F(s, X;) on the time interval [t,T],
we obtain
T (OF
F(T,XT) = F(t,Xt)+/ {6—t($,Xs)+.AF(S,XS)}dS
t
oF

T
+ /t o(s, Xs)—a—x—(s, X, )dW.

Since F satisfies (1.5), the time integral vanishes. Taking expectations and
assuming that the stochastic integral exists, then it vanishes as well, leaving us

with the formula
F(t, .'L') = Et,w [@(XT)],
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where the notation E,, emphasizes that the expected value is to be taken given
the initial value X; = x.
Thus we have proved the following result (see 7], p.69).

Proposition 1.21. (Feynman-Kac¢ stochastic representation formula) Assume

that F' 1s a solution to the boundary value problem

F 2
E9——(t,fv) + u(t,x)Q—F— + }—az(t,x)%(t, z) = 0

ot dx 2
F(T,z) = ®(z).

Assume furthermore that the process o(s, X,) = %2:(3, Xy) is in H given by Defi-
nition 1.11, where X is defined below. Then F has the representation

F(t,z) = Eyo[®(X7)),
where X satisfies the SDE

dX, = pls, Xs)ds + o(s, Xs)dW,
Xt = .

The following result deals with an important boundary value problem in fi-

nancial theory (see [7], p.70).

Proposition 1.22. Assume that F' is a solution to the boundary value problem
OF oF 1, O%F
il el hailiedl — ¢ =
ot (t, CL') +/.I,(t,CL') ox + 20 (t1 ZL‘) ox2 (t,.’l?) TF( ,CL') 0
F(T,z) = ®(x).

Assume furthermore that the process o(s, Xs) = %f—(s,Xs) is in H, where X is

defined below. Then F' has the representation
F(t,z) = e "TYE, [®(Xr)],
where X satisfies the SDE

dX, = pls, Xs)ds+ o(s, Xs)dWs
Xt = X.

Using Feynman-Kac¢ we can obtain some classical results concerning the tran-
sition probabilities for the solution of a SDE (see [52], p.291).
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Proposition 1.23. (Kolmogorov backward equation) Let X be a solution to the
SDE
dXs = p(s, Xs)ds + o(s, Xs)dWs.

For 0 <t < T, let p(t,T;z,y) be the transition density for the initial solution
X: = x to this equation (i.e., if we solve the equation with the initial condition
X; = z, then the random variable Xr has density p(t,T;z,y) in the y variable).
Assume that p(t,T;z,y) =0 for0<t<T and y < 0.

Then we have

dp Op 1, %p
i . = et . Z — 2. T 1.
ET t,T;z,y) u(t,w)am(t,T,w,y) T 50 (t,w)amQ(f,T,:c,y) (1.7)

The reason that (1.7) is called backward equation is that the differential op-
erator is working on the “backward variables” (¢,z). The corresponding forward

equation is also known as the Fokker-Planck equation (see [52}, p.291).

Proposition 1.24. (Kolmogorov forward equation or Fokker-Planck equation)
Let X be a solution to the SDE

dXs = u(s, Xs)ds + o(s, Xs)dWs.

For 0 <t < T, let p(t,T;x,y) be the transition density for the initial solution
X; =z to this equation. Assume that p(t,T;z,y) =0 for 0 <t <T and y < 0.

Then we have

9 4 Tm) = —2- [t y)p(t, T 0, )] + o[0T, ot T, 9)]. (L)
8T b 7xay - aylu’ 7yp 3 am)y 28.’E20 )yp 1 ,.’E,y . .

In contrast to the Kolmogorov backward equation (1.7), where T and y were
held constant and the variables were t and z, here ¢t and z are held constant
and the variables are T' and y. The variables ¢t and z are sometimes called the

backward variables, and T and y are called the forward variables.

1.5 Change of measure

The main idea of the change of measure technique consists of introducing a new
probability measure via a so-called density function which is in general not a
probability density function. The importance of this theory becomes evident in
Section 1.6.
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Definition 1.25. Let P and Q be two probability measures on the o-algebra F.

If there exists a non-negative function fi such that

Q(A) = //; fW)dPW), AcF

we say that f; is the density of Q with respect to P and we also say that @) is
absolutely continuous with respect to P.
If P is absolutely continuous with respect to @, and @ is absolutely continuous

with respect to P, we say that P and Q are equivalent probability measures.

The famous Girsanov’s theorem allows us to describe how the dynamics of a
stochastic process changes when the original measure is changed to an equivalent

probability measure (see [41], pp.178-179).
Theorem 1.26. (Girsanov’s theorem) The following statements hold

e The stochastic process
1,
M, = exp { —qW, — 54 ty, tel0,T],

is a martingale with respect to the mnatural Brownian filtration

F = o(Ws, s < t) under the probability measure P.

o The relation

QA) = /A Mr(w)dP(w), A€F,

defines a probability measure Q@ on F which is equivalent to P.
o Under the probability measure Q, the process
W=W,+qt, tel0,T]
is a standard Brownian motion (is a Q-Brownian motion).
e The process W is adapted to the natural Brownian filtration.

The probability measure @ is called an equivalent martingale measure.
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1.6 Applications of stochastic calculus to Finance

In this section we present the Black-Scholes model and some famous results fromn
the stochastic calculus in Finance problems (see [41], chapter 4, and [7], chapter
7).

We consider a risky asset (called stock) with price S; at time ¢. We assume

that the stock price is the solution of the SDE
t t
S, = So+/ u(s,Ss)Ssds+/ o(s, Ss)SsdWs, (1.9)
0 0

where W is a Brownian motion and u and o are given deterministic functions.
The function o is known as the volatility of S and y is the drift of S.

The case where the functions u and o are constants was presented in Section
1.3, and we have that the unique strong solution of the linear stochastic differential

equation in this case is the geometric Brownian motion

St — Soe(u—02/2)t+aWt.

In our model we consider also a riskless asset such as a bank account. We

assume that an investment of By in this asset yields an amount of

B, = Byexp (/Otr(s)ds> , (1.10)

where we admit that the short rate of interest r changes with time.
If r is constant, we say that the asset B is a bond, and we have that

Bt = BO e”

at time ¢. Note that B satisfies the deterministic integral equation
¢
Bt = BO +T/ Bst.
' 0

From now on, we consider that we are in presence of a market with a stock
S and a bond B given by (1.9) and (1.10), respectively, where u, o and r are
deterministic constants. This is called the Black-Scholes model.

We are interested in constitute a portfolio of a; units of stock and b; units of
bond at time ¢. We assume that a; and b, are stochastic processes adapted to the

Brownian motion and call the pair (a4, b;), t € [0,T], a trading strategy.
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Notice that the value of the portfolio at time ¢ is given by
W = atSt + stt'

Our purpose is to choose a strategy (ay, b;) in a reasonable way, where we do
not lose, and such that it is self-financing, 1.e., the increments of our wealth V
result only from changes of the prices of the stock and the bond. In terms of

differentials, we write
d‘/t = d(atSt + btWt) = atdSt + btdBt,

which we interpret in the Itd sense as the relation

t t
Vi—Vy = / asdS, + / b,dBs.
0 0

Thus, the value of our portfolio at time ¢ is equal to the initial investment V4 plus
capital gains from stock and bond up to time ¢.

Towards the main result in this section, we introduce one of the most impor-
tant derivatives (i.e., a financial instrument whose value is defined in terms of the
value of some underlying asset, such as a stock).

An Furopean option is a contract that gives the purchaser of the option the
right, but not the obligation, to exercise the option precisely at time of maturity
T, for a fixed price K, called the exercise price or strike price of the option. For
a call option, the purchaser will have the right to buy, and for a put option, he
will have the right to sell.

Thus, if we have a European call option on a stock S, at time T the holder of

the option is entitled to a payoff of
Cr = (St — K)* = max(0, St — K),
and for an European put option the payoff at time T is
Pr = (K — Sr)t = max(0, K — Sr).

Since the payoff for the European option only depends of the stock price at

time of maturity T, we say that we have a simple contingent claim
X =2(S(T)),

and the function ® is called the contract function.
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The natural problem is to find the “fair” price of the option at time ¢t = 0
(time of purchase) since we do not know the price Sr at the time of the contract.
In order to present the main pricing equation of financial derivatives, we make

the following assumptions.

Assumption 1.1. We assume that

1. The derivative instrument in question can be bought and sold on a market.

2. The market is free of arbitrage possibilities, i.e., any possible profit in the

market is accompanied by a risk of loss.

3. The price process for the derivative asset with contingent claim X is of the

form

I1(t; X) = F(t,S:),
where F' is some smooth function.
We have the following result (see [7], p.97).

Theorem 1.27. (Black-Scholes Equation) Assume that the market is specified by

equations

dSt = Sta(t, St)dt + StO'(t, St)th, (112)

and that we want to price a contingent claim of the form X = ®(Sr).
Then the only pricing function of the form I1(t) = F(t, S;), for some smooth
function F, which is consistent with the absence of arbitrage is when F is the

solution of the following boundary value problem in the domain [0,T] x R*

Fi(t, s) + rsFy(t, s) + %szaz(t,s)Fss(t, S —rF(ts) = 0 (1.13)
F(T,s) = ®(s). (114)

We now turn to the question of actually solving the pricing equation and we
notice that this equation is precisely of the form which can be solved using a
stochastic representation formula ¢ la Feynman-Kac presented in Section 1.4.

In order to apply Proposition 1.22, we must define another probability measure
@ under which the process S has a different probability distribution, such that
the @-dynamics of S is

dS, = Sya(t, Sy)dt + Sio(t, Sp)dW,, (1.15)
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where W is a Q-Brownian motion.
This is not the real dynamic of S. The real model is

dSt = StOé(t, St)(lt + S-[;O'(t, St)th

with W a P-Brownian motion, where P denotes the “objective” probability mea-

sure.
The measure @ is often called the martingale measure. The reason for the

name is explained by the following result (see [7], p.100).

Theorem 1.28. (The Martingale Property) In the Black-Scholes model, the price
process II(t) for every traded asset, be it the underlying or the derivative asset,

has the property that the normalized process

s a martingale under the measure Q.

Let E denote expectations taken under the measure P whereas E? denotes
expectations under the measure Q.

We state the following result, which establishes the price of a derivative as
the discounted value to present of the expected payoff, where the expectation is

taken under the measure @ (see {7}, p.99).

Theorem 1.29. (Risk Neutral Valuation) The arbitrage free price of the con-
tingent claim ®(S(T)) is given by II(t; ®) = F(t,5(t)), where F is given by the

formula
F(t,s) = e T IEL [@(S(T))],

where the Q-dynamics of S are
dS; = Sea(t, Sy)dt + Sio(t, S;)dW,
with W a Q-Wiener process.

In order to obtain specific formulae for the European call option, we place our-
selves again in a Black-Scholes model, which consists of two assets with dynamics
given by

dBt = T'Btdt
dSt = aStdt + O'Stth
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where 7, a, and ¢ are deterministic constants.

The following result is known as the Black-Scholes formula (see [7], p.101).

Proposition 1.30. (Black-Scholes formula) The price of a European call option
with strike price K and time of maturity T is giwen by the formula
II(t) = F(t,S(t)), where

F(t,s) = sN[dy(t,s)] — e T VK N[dy(t, 5)].
Here N is the cumulative distribution function for the N(0,1) distribution and

di(t,s) = W%{m(%ﬁ(w%ﬂ) (T—t)},
do(t,s) = di(t,s) —oVT —t.
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Chapter 2

A stationary problem for a Black-Scholes
equation with transaction costs

2.1 An option valuation problem with transaction costs

In 1973, Fisher Black and Myron Scholes suggested a model that became funda-
mental for the valuation of financial derivatives in a complete frictionless market.
Along with the no-arbitrage possibilities, the basic Black-Scholes model assumes
that in order to replicate exactly the returns of a certain derivative, the hedging
portfolio is continuously adjusted by transactioning the underlying asset of the
derivative. The existence of costs, such as taxes or fees, for those transactions
implies that, in opposition to the basic Black-Scholes model, the replication can
not happen continuously otherwise those costs would be infinitely large.

Hence the introduction of transaction costs in the market is a problem that
has been motivating the work of several authors.

One of the first main references is the work presented by Leland in [35], that
suggests a rmarket with proportional transaction costs. That is, considering v the
number of shares (it is positive if the agent buys or negative if the agent sells)
and S the price of the asset at time ¢, the costs of the transaction of v shares at

time t are given by
kS |v|
where the constant & > 0 depends on the parts involved in the transaction.
Leland’s replication strategy consisted in using the common Black-Scholes
formulae in periodical revisions of the portfolio but with an appropriately enlarged
volatility. This is a model widely accepted in the financial industry. However there
are some mathematical problems with this approach, as referred by Kabanov and

Safarian ([33]): the terminal value of the replicating portfolio does not converge
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to the terminal payoff of the derivative if the transaction costs do not depend
on the number of revisions (tending to infinity), limiting discrepancy that can be
calculated explicitly.

We also refer to Avellaneda and Paras ([4]) who obtained an extension of
Leland’s approach for non-convex payoff functions.

The original results presented in this chapter were motivated by the work
of Amster et al. ([2]), who proposed a model where the transaction costs are
not proportional to the amount of the transaction, but the individual cost of
the transaction of each share diminishes as the number of shares transactioned
increases. Therefore, the cost is the percentage of the transaction which is given
by

h(v)=a-bly

where v is the number of shares traded and a,b > 0. In the framework of this
model, Amster et al. obtained a non-linear Black-Scholes type equation and stud-
ied the stationary problem associated with appropriated boundary conditions.
The authors proved the existence and uniqueness of the solution of this problem,
which may be obtained as a limit of a nonincreasing (nondecreasing) sequence of
upper (respectively lower) solutions.

In the following section we detail the construction of a Black-Scholes’ type
equation in an option pricing problem with transaction costs in the same frame-
work of Amster et al.. In section 2.3 we prove the existence of a stationary
solution without imposing some Lipschitz as assumed in [2]. Moreover, we give

some information on the localisation of the solution.

2.2 Ewvaluation of the model

The existence of additional costs in the transaction of the asset, requires us to
reformulate the hedging strategy used in the option pricing problem.

Leland ([35]) suggested a new strategy using transaction costs proportional to
the monetary value of any buy or sell of the asset. Thus if v shares are bought

(v > 0) or sold (v < 0) at a price S, then the transaction costs are
k]S,

where k is a constant depending on the individual investor.
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We use here a slightly different structure for the transaction costs that was
presented by Amster et al. in [2]. We assume that the individual cost of the trans-
action of each share diminishes as the number of shares transactioned increases,

which is represented by considering the cost as the percentage given by
h(v)=a-0b|v

where v still is the number of shares traded (v > 0 in a buy or v < 0 in a sell)
and a,b > 0 are constants depending on the individual investor.

We consider the hedging portfolio consisting in an option of value V' (short
position) and A shares of the underlying asset of price S (long position). So, the
portfolio’s value at time ¢ € (0,T), with T > 0, is given by

M=V - AS.

The adopted hedging strategy implies that the portfolio is reviewed every dt,
where 6t is a finite, fixed time step. The change in the value of the portfolio after

each time step dt is given by
0 =6V — AdS — (a —blv|) S|V (2.1)

where we subtract the costs, which are always positive, due to the transaction of
|v| shares of the asset.

It is assumed that the value of the underlying follows the random walk
65 = uSét + oSV, (2.2)

where ¢ is the standard Gaussian distribution, y is the drift coefficient and o is
the volatility.
Noticing that

G, o_ov
ot  ot’
ol oV
*%5 "85 M
,on_av
552~ 552"
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using Itd’s Lemma we obtain

[V L 2@V 5 OV OV
5H—08<%—A>¢\/J_t + < o*S oz '+ uS5g + - — wAS |t
— (a—=0blv])S|v]|.

We follow the Black-Scholes replication strategy, thus we choose the number

of shares of the underlying asset held at time ¢ to be

1%
A=3=(89),

which has been evaluated at time ¢ and asset price S. So, the number of shares

of the asset traded after time dt is given by

ov

av
55 (S+38,t+5t) = = (5,0).

V=

Expanding the first term in the right side of the previous equation in a Taylor

series for small §.S and dt, we get

ov ov o2V o2V
aS(S—I—dSt—I—(St) GS(St) 532 (St)dS—I—ataS(S,t)dt—l----
Hence 2y 2y
V=g (58)08 + o= (S, 1) 6t + -
and using 2.2
v
V=g oS¢Vt + O (3t)
following
oV
N 55 US¢\/_
Thus the expected transaction cost in a time step dt is
Ella-bl)Svl] = aSE(v])-bS E(?)
= aoS? gs‘; VStE (|¢]) — bo?S?E (¢7) 6t

d
53?

2 yos [0V
. —bo S((w 5t (2.3)

<a052

where we use the fact that E (|¢]) = \/2/7.
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~ So the expected change in the value of the portfolio is

E(SII) = EPV <1 25282V¢>5t—(a—b|ul)5|u|}

51 557
OV 1,0V V] 2 L, (PVA
= <8t 5 55— g\ T g ) | O

(24)

In order to guarantee that the market doesn’t admit opportunities of arbitrage,
the expected return of the portfolio must be the same of a risk-free bond
oV
E(éH)zr(V—AS)étzT(V—aSS) 5t (2.5)
where 7 is the riskless interest rate.
Applying (2.5) to (2.4) we obtain the equation

BV 1 2 , 0%V 262 9us [ O%V ov
E R el P V7r5 05 Bee ”Sas =0
Con31dering a small enough such that
. o7V 2
52 = [1 — sign <BS2> o >0 (2.6)
the following non-linear equation is obtained
oV 1~2 282 03 [OPV ov
- 2.
ot 727 5 g T (ge e EEadd (27

Remark 2.1. Equatmn (2.7) is clearly an extension of the Black-Scholes equa-
tion. The introduction of our particular model for the transaction costs in the
option pricing market led us to a partial differential equation that contains the
Black-Scholes terms with an additional non-linear term modelling the presence of
transaction costs. We also use an adjusted volatility in the model, not the real
volatility.

Remark 2.2. A particular case of (2.7) is the one introduced by Leland where
the transaction costs are proportional to the amount of the transaction made
when reviewing the hedging portfolio. Hoggard, Whalley and Wilmott (see [32])
developed a model with proportional transaction costs & |v|S, and reached the

oV
(BSS V) =0

equation
6V 1 8%V

5%V [ 2
o252 7 2
Bt S 052 ko3 ot | 652

known as the Hoggard—Whalley—Wilmott Equation.
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2.3 Stationary solutions localisation

In this section we state our main result concerning the existence of convex sta-

tionary solutions for (2.7) with Dirichlet boundary conditions
Vie)=V, and V(d) =V (2.8)

where 0 < ¢ < d are fixed real numbers and V, and V; are such that V, <V,
which turns out to be quite natural in some financial settings, for instance, if we
are dealing with call options.

These stationary solutions give the option value as a function of the stock
price. This feature can be interesting when dealing with a model where the time
does not play a relevant role such as, for instance, in perpetual options.

More precisely, we consider the following non-linear Dirichlet boundary value

problem

1., ,0%V . o (8?V)° 1% B
205352+b05’ 552 +r S&S’_V = 0,

(2.9)
V(c) =1V, V(d) ="V,
Since we are concerned with convex solutions for this problem, the modified

volatility (2.6) of the model is in this case given by

5% = o? (1 — i—aw/%) > 0. (2.10)

The following result we state not only concerns the existence of solution but
also gives information about its localisation. As we will see, the localisation
statement will be a consequence of the use of the method of upper and lower

solutions technique in the proof. We present now our main result (see [26]).

Theorem 2.1. Consider the non-linear Dirichlet boundary value problem (2.9).

The following assertions hold:

Ve , )
1. The function V (S) = ?S is a (linear) solution of the problem (2.9) if and
only if E = E
d C

Va V.
2. Let ?d < ?c Then the problem (2.9) has a convez solution V such that

Vi—V,. dV.-cV,
s <v(s) <L eg 7

2.11
d—c d—c '’ ( )
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Va—V,
d—c

Va—Ve

— (2.12)

V,
<V'(d) < Fd and V' (c) <
3. Moreover, in both cases, V' is the unique convex solution of (2.9).

The differential equation of problem (2.9) can be written using a simpler

notation which we will use from now on in the form

b2 (V') + 2528V +r (VIS —=V) =0, in Jed[.

N[ —

Observe that this equation is from the algebraic point of view a second order
equation in the variable X = V", So, solving it algebraically in order of V", we

obtain the equivalent form

o =6 64 — 4bSPaPr (VIS — V)
vi= 2bo?S3 ’

which leads us to consider the equation
V' +g. (S, V,V)=0

where

75 F \[545 + b3 (VIS — V)
2b0253 '
This fact suggests the study of an auxiliary problem as a mean to prove the

9x (S, V, V') =

above stated theorem.
Consider the auxiliary problem

{ V' +g(S,V, V) =0

V)=V, V)=V, (2.13)

where

78 — /695 + 465307 [V'S - V|

/ —
g(Sa‘/:V)_ 2b0’283

We will deduce the existence of a solution V' of the problem (2.13) and prove
then that it is a convex solution of the problem (2.9). Moreover, we will obtain
information about the localisation of V. The main argument to solve the problem
(2.13) relies on the method of upper and lower solutions. In fact, if we prove
that problem (2.13) has a lower solution o € C? and an upper solution 8 € C?
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satisfying o < 8, and that some Nagumo condition is satisfied, then the thesis

will follow (see result in [15], p.77), as referred above.

We recall that o € C? is a lower solution of (2.13) if
o +g(S,a,a) >0
(2.14)
a(C)S‘/& Of(d)SVd

Similarly, an upper solution 8 € C? of (2.13) is defined by reversing the
inequalities in (2.14), that is,

B +9(5,6,8)<0

Ble)zVe, ald)zVy.

(2.15)

A solution of (2.13) is a function u which is simultaneously a lower and an upper
solution.

A function f is said to satisfy the Nagumo on some given subset E C I x R?
if there exists a positive continuous function ¢ € C (IR;{ , [&, +oo[) , € > 0, such
that

[f @ 9, 2)| <o(l2l), V(zy,2)€E,

and
+oo s
/ ——ds = +o00. (2.16)
0 @ (s)

Now we state an existence and localisation result for the problem (2.13).

Theorem 2.2. Suppose that

Va Ve (2.17)
d c
Then the problem (2.13) has a solution V such that
v, V=V, dV,— ¢V,
— 5 < < .
dS__V(S)_ d—cS+ T ¢

Proof. Consider the following functions, defined in [c, d],

a(S) = %S )
Vi—V, dV, — cV,
B(S) = jl—cS+ d—cd'
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Observe that a () and 5 (-) are lower and upper solutions of (2.13), respectively.

In fact, we have that

75 — \[545! 1+ abSPorr | % 5 — Y - 5|
2bc253

o' +9(8a,d) = 0+

and

We also have

~252 ~4 54 Vy—Ve V,—Ve dV.—cV,
Bt g(5.5.5) 027 — \/047 + 4653021"[ d==eG — =g d_i d
7 2bg?S3
0

IA

and
Blc)=V,, p[(d)=Va

Moreover o < 8. In fact, algebraic computations show easily that

Vi, Vi=V.., dV.—cVy
— 5 <
1S d—cS+ d—c

is equivalent to

0<(d=8)(~cVa+dV)

and then to
0 < (=cVy+dVy)

which holds by (2.17.)
Now we consider the set:

‘/d Vd -V ch — CVd
= 2 =S <z <
E {(S,:E,y)e[c,d]XIR dS d—cS+ T }
We observe that g satisfies the Nagumo condition in E. In fact,
G2 — /5450 4 4bS3a?r |yS — |
|g (S,:z:,y)l = 205253

528% + 4/4bS3ar|y S| + \/4bS30?r |z
2b0253

Vd — CVd \/F
260'2 gc\/—_\/7 d —C ) + gc\/l_)\/m’
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that is, for some positive constants ki, &,
19 (S,2,9)| < ko + kav/Jy.

Put ¢ (y) = k1 + ka+/]y|. Then

400
/ S T
0 kl + /Cz {yl

Therefore the function g satisfies the Nagumo condition in E. So, by the result
contained in [15], we can derive that there exists a solution V, of (2.13) such that

Va Va—Veg , AV, — Vi
=25<V, < =
a(S) = FS<V.(5) < S—ts+ Tt

: 5(S).

O

We shall prove now that the solution of the auxiliary problem given by theorem

2.2 is in fact a solution of problem (2.9).

Proof. (Theorem 2.1)

1. It is clear that V (S) = %S satisfies the equation of (2.9) and also the
boundary condition V (¢) = V.. It is easy to see that V satisfies the bound-

ary condition V' (d) = V; if and only if —1;‘-1- = E, which finishes the proof.
c

2. Consider a solution of (2.13), whose existence was proved in Theorem 2.2,
and denote it by V,. Recall that

=p(9).

a(S):%SSV;(S)S V;:ZCS+———‘”§:§V‘1

We organize the proof in three steps (that sistematize some ideas that can

be found in [2]). The first two steps point out two properties of V, which
will be used in step 3 to conclude that V, is a solution of (2.9).

Step 1. V, is conver.
Observe that ¢ is a nonpositive function. In fact

PL—\[65 + b VIS ~ V.| 525 — 4 [548:
_ —0.

!
*9 * - S
9(8,V., Vo) 260253 2b52.5%

Therefore, V, is convex since

V, = —g(S,Vi, V) > 0.
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Step 2. The following inequality holds
V.S -V, <.

To prove this inequality we will make use of the upper and lower solutions,

« and f, of the previous section. Since

and, for S € [¢,d],

it follows that

B (d) <V (d) <d(d), (2.18)
that is,

2:?swwg%.
In particular, we have

Vi(@)d <Vy=V.(d). (2.19)

As seen in step 1, V" is nonnegative. Then
(VI(S) S =Va(8)) =V (S) S+ Vi (S) = VI(S)=V/(5)S 20
and so V/ (S) S — V4 () is nondecreasing in S. Therefore, by (2.19),

VI(8) S =Vi(8) <V/(d)d-Vi(d) <0.

Step 3 V, is a solution of the problem (2.9).
This statement follows easily from the above comments. In fact, since

V.S -V, <0

then

52%2 — \/54%4 + 4bS302r |VIS — V|
200253
y§~¢é%—%yﬁmws—M)

2060253 '

g(S,\V.,V)) =
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So, V, is a convex solution of

525 4 \[545L — dbS3orr (VIS — V)
2()0253 ’

and, therefore, of
bo2S3 (V"2 4+ %52521/“ +r(VIS=V)=0 in Jed,

satisfying the boundary conditions

and (2.11). As for (2.12), as seen in (2.18)

B'(d) <V/(d) <o (d),

that is,
Vi—-V, Vi
<V'(d) < —
d—c ~ “(d) d’
Since Vi (S) < B(S) in [c,d] with V; = F(d), the fact that Vi is con-
vex implies that the inequality §'(d) < V/(d) must be strict, that is,
B (d) < V/(d). Thus
Va—Ve Va
V) (d) < —.
d—c ° d) < d
Analogous arguments applied to ¢ show that
Va—Ve
V! .
() < 2=

The proof of assertion 2. is finished.

3. The uniqueness result follows immediately from Theorem 2.1 of [2].
(]

As we saw, the lower and upper bounds for the solution of (2.9) referred in
(2.11) of Theorem 2.1 were precisely the lower and upper solutions of the auxiliary
problem (2.13). We can even add that they are, in fact, the minimal and maximal
linear upper and lower solutions, respectively, of the auxiliary problem. We state

that fact in the following proposition for the sake of completeness.
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Proposition 2.3. Let Z; Then the upper and lower bounds for the conwex

gwen by Theorem 2.1 are such that

dV, — cVy
d—c

—_all

solution of problem (2.9

Va—Ve

S+ is the minimal linear upper solution of prob-
c

1 p(s) = Ya2
lem (2.13);

V.
2. a(S) = ?dS is the mazimal linear lower solution of problem (2.13) such
that a(d) = V.

Proof. Any linear upper solution A of problem (2.13) must satisfy
flo)2Ve, Bld)=Va
Since § is linear and satisfies 8(c) = V., pB(d) =V, it is obvious that
B<B  inled]
On the other hand, any linear lower solution & of problem (2.13) must satisfy

afc) <Ve, a(d)<Vqy.

Suppose that &(d) =V, and & > « for some S € [¢,d]. Then, we have that

Va—Ve Vy
d—c ' d

a(S)=Vy+~v(S—d) forsome € {
Plugging & in the first member of equation of the auxiliar problem we obtain

& + g(5a4d)=

= 0+g(S,&a')
F2E — /5450 4 4bS3a%r |yS — Vy — (S ~ d)]
B 260253
G2 — /545 + 4bSBo?r |-V + d
B 2b025?
< 0

which yields a contradiction as we assumed that & was a lower solution, if V; # d.

This ends the proof.
|

Now we improve the localisation result for Problem (2.9) for situations where

o
3o0 is small enough.
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Theorem 2.4. Suppose that

MS

% (2.20)

If k = =5 is small enough, then the conver solution V' of problem (2.9) given by

Theorem 2.1 satisfies the following localisation statement

Vig Ve=Vage  Va—d*V; Vai—Ve, dVe—cVq
= < < . (2.21
max{dS,c2_dZS+ " <V(S) < d—cS+ T (2.21)

Proof. Consider the following function, defined in [¢, d],

Ve—Vye  EVa—d*V,

T2 (2 2 —d2

We will prove that & is a lower solution of the auxiliary problem (2.13). We have
that

&(S)

- Vc_VdQ C2Vd_d2vc
a(c) = 2_pC T AT g

. Ve—Vy AV — d*V,
a(d)=c2_d2d2+ 2 = Vy.

On the other hand, observe that

=V

and

75 —\[545 + Starr |V'S — V|
2bo2S58

525 /545 — /ISP VIS =V
N /5T =V |

260253
bS3a2r
= - b20456\/|V’S—V|
-
= ViV

.
> — VIV'S —
- bo?c3 Vs =i
= —k/|V'S—V]

. [ r
k= bo2c3’

¢Z¢v Ve VeVag GVa—dV.

d? c? — d2 c? — d?
V 1@ ¢

g(S,V, V') =

where

S
+

Nl

O
92
R
AV

V Vd C2I/d — d21/c
— —
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and, for k£ small enough

& +g(S,ad) >0

therefore & is a lower solution of the auxiliary problem.
Since o and & are both lower solutions of the problem that together with the
upper solution [ satisfy the conditions of the upper and lower solutions method,

the unique solution V' provided must satisfy
a<V and a<V.

So, in [c, d],

_ 217 g2
max{ﬁSVc VdSz-l-CVd dVC}SV(S).

d 2 —d? 2 — g2
The upper bound is given by the upper solution g as previously stated in the
proof of Theorem 2.2. In fact, as shown in the proof of the main theorem 2.1,
this solution V' of the auxiliary problem (2.13) is also the solution of the problem
(2.9) and so the thesis holds. O

39







Chapter 3

Discretisation of abstract linear evolution
equations of parabolic type

3.1 Introduction

In this chapter we investigate the discretisation of multidimensional PDE prob-
lems arising in European financial option pricing. Let us consider the stochastic
modelling of a multi-asset financial option of European type under the framework
of a general version of Black-Scholes model, where the vector of asset apprecia-
tion rates and the volatility matrix are taken time and space-dependent. Owing
to a Feynman-Kaé type formula, pricing this option can be reduced to solving
the Cauchy problem (with terminal condition) for a second-order linear parabolic
PDE of nondivergent type, with null term and unbounded coefficients, degener-
ating in the space variables (see, e.g., [34]).
After a change of the time variable, the PDE problem is written

%:_ =Lu+f in [0,T) x R%, u(0,z) =g(z) in R, (3.1)

where L is the second-order partial differential operator in the nondivergence form

2 - 3]
! _ 7 =1,....d
F:%; + b'(t, z) +c(t,z), 1,J oo d,

L(t,2) = a%(t,2) 5,

with real coefficients, f and g are given real-valued functions (the free term f is
included to further improve generality), and T € (0,00) is a constant. For each
t € [0,T] the operator —L is degenerate elliptic, and the growth in the spatial
variables of the coefficients a, b, and of the free data f, g is allowed.

One possible approach for the discretisation of the PDE problem (3.1) is to
proceed to a two-stage discretisation. First, the problem is semi-discretised in
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space, and both the possible equation degeneracy and coefficient unboundedness
are dealt with (see, e.g., [21, 22|, where the spatial approximation is pursued in
a variational framework, under the strong assumption that the PDE does not
degenerate, and {20]). Subsequently, a time discretisation takes place.

For the time discretisation, the topic of the present chapter, it can be tack-
led by approximating the linear evolution equation problem in which the PDE

problem (3.1) can be cast into

‘;—;‘ — Au+ ) in 0,T], u(0)=g, (3.2)
where, for every ¢t € [0,T] with T € (0,00), A(t) is a linear operator from a
reflexive separable Banach space V to its dual V*, u: [0,T] — V is an unknown
function, f : [0,T] — V*, g belongs to a Hilbert space H, with f and g given,
.and V is continuously and densely embedded into H. We assume that operator
A(t) is continuous and impose a coercivity condition.

This simpler general approach, which we follow, is powerful enough to obtain
the desired results. On the other hand, it covers a variety of problems, namely
initial-value and initial boundary-value problems for linear parabolic PDEs of any
order m > 2.

In the present chapter, we study the discretisation, using both the implicit
and the explicit finite-difference methods schemes, in time of problem (3.2) with
time-dependent operator A in a general setting. To further improve generality,
we proceed to the study leaving the discretised versions of A and f nonspecified.
Also, in order to obtain the convergence of the schemes, we need to assume that
the solution of (3.2) satisfies a smoothness condition but weaker than the usual
Holder-continuity.

It is well known that, to guarantee the explicit scheme stability, an additional
assumption has to be made, usually involving an inverse inequality between V'
and H (see, e.g., [31]). In our study, the explicit discretisation is investigated by
assuming instead a not usual inverse inequality between H and V*.

In addition, we illustrate our study by exploring two fundamental types for
the discretised versions of A and f. First, we consider the approximation of A
and f by integral averages. We show that the standard smoothness and coercivity
assumptions for problem (3.2) induce correspondent properties for the discretised
problem, so that stability results can be proved. Moreover, the rate of convergence

we obtain is optimal. Then, we study the alternative approximation of A and f
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by weighted arithmetic averages of their respective values at consecutive tiine-
grid points. In this case, stronger smoothness assumptions are needed in order to
obtain the scheme convergence.

The chapter is organized as follows. In Section 3.2, we set an abstract frane-
work for a linear parabolic evolution equation and present a solvability classical
result. In the following two sections, we study the discretisation of the evolution
equation with the use of the Euler’s implicit scheme (Section 3.3) and the Eu-
ler’s explicit scheme (Section 3.4). Finally, in Sections 3.5 and 3.6, we discuss
two main types of the discrete operator and free term, for the implicit and the

explicit discretisation schemes, respectively.

3.2 Preliminaries

We establish some facts on the solvability of linear evolution equations of parabolic
type.

Let V be a reflexive separable Banach space embedded continuously and
densely into a Hilbert space H with inner product (-,-). Then H*, the dual
space of H, is also continuously and densely embedded into V*, the dual of V.
Let us use the notation (-,-) for the dualization between V and V*. Let H* be
identified with H in the usual way, by the Riesz isomorphism. Then we have the

so called normal (or Gelfand) triple
Ve H=H" <>V

with continuous and dense embeddings. It follows that (u,v) = (u,v), for all
u € H and for all v € V. Furthermore, |(u,v)| < |[u|v+||v|v, for all w € V* and

V-t
for all v € V, where the notation || - ||x stands for the Banach space X norm.
Let us consider the Cauchy problem for an evolution equation
d
= = A@u+ £ in 0,7), u0) =g, (3.3)

with T' € (0, 00), where A(t) is a linear operator from V to V* for every t € [0, T
and A(-)v : [0,T] — V* is measurable for fixed v € V, u : [0,T] — V is an
unknown differentiable function, f : [0,7] — V* is a measurable given function,
d/dt is the standard derivative with respect to the time variable ¢, and g € H is
given.

We assume that the operator A(t) is continuous and impose a coercivity con-

dition, as well as some regularity on the free data f and g.
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Assumption 3.1. Suppose that there exist constants A > 0, K, M, and N such
that

L (A(t)v,v) + Alvll} < K|v|%, YveV and Vte(0,T}
2. |A@®vllv+ < Mljvlly, Vv eV and Vte[0,T);
T
3. / IF(O3.dt <N and |gllu < N.
0

Let X be a Banach space with norm || - ||x. We denote by C([0,7]; X) the

space of all continuous X-valued functions z on [0, 7] such that

l2llcqo,ryx) = ggﬁgg“z(t)HX < 00

and by L2([0,T]; X) the space comprising all strongly measurable functions
w : [0,T] = X such that

T 1/2
ol = ([ @) <.
We define the generalised solution of problem (3.3).

Definition 3.1. We say that v € C([0,T); H) is a generalised solution of (3.3)
on [0,T] if

1. uwe L]0, T); V);

2. (u(t),v) = (g,v) + /Ot(A(s)u(s),v)ds —I—/0 (f(s),v)ds, Yo e V, Vt € [0,T].

The following well-known result states the existence and uniqueness of the

generalised solution of problem (3.3) (see, e.g., [38]).

Theorem 3.2. Under conditions (1)-(3) of Assumption 8.1, problem (8.8) has

a unique generalised solution on [0,T). Moreover

swummm+lummmﬂSNsz+Anﬂmma)

tel0,T7]

where N 1s a constant.
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3.3 Implicit discretisation

We will now study the time discretisation of problem (3.3) making use of an im-
plicit finite-difference scheme. We begin by constructing an appropriate discrete
framework.

Take a number T € (0, 00), a non-negative integer n such that T'/n € (0, 1],
and define the n-grid on [0, T

T,={te[0,T]:t=7jk j=0,1,...,n}, (3.4)

where k :=T/n. Denote t; = jk for j=0,1,...,n.
For all z € V', we consider the backward difference quotient

A7z(tj1) = k7 (2(tim) — 2(8)), §=0,1,...,n =1
Let Ak, fr be some time-discrete versions of A and f, respectively, i.e., Ax(%;)
is a linear operator from V to V* for every j = 0,1,...,n and fx : T, = V*
a function. For all z € V, denote Agj1z = Ar(tjz1)z, frje1 = feltjrr),

i=0,1,...,n—1.

For each n > 1 fixed, we define v; = v(t;), 7 = 0,1,...,n, a vector in V
satisfying
A7V = Apip1Vigr + friq for 1=0,1,...,n—1, w=g. (3.5)

Problem (3.5) is a time-discrete version of problem (3.3).

Assumption 3.2. Suppose that
L (Agjmv,v) + A0)E < K|l YveV, j=0,1,...,n—-1,
2. |Akj1vllvs < Mvlly, YveV, j=0,1,...,n—1,
3. 2500 Ifesmal}k <N and gl < N,

where A\, K, M, and N are the constants in Assumption 3.1.

Remark 3.1. Note that as problem (3.5) is a time-discrete version of problem
(3.3) and g denotes the same function in both problems, under Assumption 3.1

we have that g € H and ||g||lg < N.

Under the above assumption, we establish the existence and uniqueness of the

solution of problem (3.5).
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Theorem 3.3. Let Assumption 3.2 be satisfied and the constant K be such that
Kk < 1. Then for all n € IN there exists a unique vector vg,vi,...,Up in V
satisfying (3.5).

To prove this result, we consider the following well known lemma (see, e.g.,
[38, 39)).

Lemma 3.4 (Lax-Milgram). Let B : V — V* be a bounded linear operator.
Assume there ezists A > 0 such that (Bv,v) > M|vl|%, for all v € V. Then

By = v* has a unique solution v € V' for every given v* € V*.

Proof. (Theorem 3.3)

From (3.5), we have that (I — kAg1)vi = ¢ + frak and (I — kAgi41)0i41 =
V; + fri1k, fori=0,1,...,n — 1, with I the identity operator on V.

We first check that the operators I — kAg 41, j = 0,1,...,n — 1, satisfy the
hypotheses of Lemma 3.4. These operators are obviously bounded. We have to
show that there exists A > 0 such that (I — kA 41)v,v) > M|v||}, for allv € V,
j=0,1,...,n— 1. Owing to (1) in Assumption 3.2, we have

(I = kA v, v) = (Iv—kApj419,9) = [[vlf — k(Arj10,0)
> |ollf = kKlollE + kX0l

Then, as Kk < 1, we have that (I — kA j41)v,v) > kA||v||} and the hypotheses
of Lemma 3.4 are satisfied.

For vy, we have that (I — kAg1)v1 = g + fr1k. This equation has a unique
solution by Lemma 3.4. Suppose now that equation (I — kAg;)v; = vi—1 + frik
has a unique solution. Then equation (I — kAg;41)vit1 = v; + frir1k has also a
unique solution, again by Lemma 3.4. The result is obtained by induction. O

Next, we prove an auxiliary result and then obtain a version of the discrete

Gronwall’s lemma convenient for our purposes.

Lemma 3.5. Let a7, a7,...,ay be a finite sequence of numbers for every integer
n > 1 such that 0 < af < cO—I-CEf;llaz‘, forallj =1,2,...,n, where C is a

positive constant and co > 0 is some real number. Then a}f < (C+ 1) ¢, for
all7=1,2,...,n.

Proof. Let b? := o+ C Y371 0%, j = 1,2,...,n. Then a? < b7 for all j > 1.
Indeed for j = 1, we have that a7 < b7 = ¢. Assume now that af < b7 for all
1 < j. Then
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J J
Ba=co+C> W >c+C> af >a},
=1 i=1

and, by induction, a7 < &} for all j > 1. It is easy to see that b7, — 0} = Cb7,

j =1, giving

A SOy = (C+ 1B =(C+ 1%}, =...=(C+1)0 =(C+1)c,
and the result is proved. , O
Lemma 3.6 (Discrete Gronwall’s inequality). Let ag,al,...,ay be a finite se-

quence of numbers for every integer n > 1 such that

J
0<al<af+K> alk (3.6)
=1
holds for every 7 = 1,2,...,n, with k :=T/n, and K a positive number such that
Kk =:q <1, with q a fired constant. Then

n n KqT
a; < age™,

for all integersn > 1 and j = 1,2,...,n, where K, := —KIn(1 —q)/q.

Proof. The result is obtained by using standard discrete Gronwall arguments.
From (3.6), as Kk < 1 we have
s ap Kk 2

— "<+ K L "< ’.1 3.
(1 - Kk)a; < ag+ Zalk@%‘l—l{k—#l-lﬂcizla” (3.7)

i=1
for every j = 1,2,...,n. Owing to Lemma 3.5, with ¢y = af/(1 — Kk) and
C = Kk/(1 — Kk), from the right inequality in (3.7) we obtain

< (BE 4 T4 < %
i =\1-Kk 1-Kk  (1-Kky = (1- Kk

Noting that
(1 - Kk)" =exp(nln(l — Kk)) =exp <nKkl£(1—q——i)>
= exp (KT——ln(1 — Q)) ,

q

the result is proved. O
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We are now able to prove that the scheme (3.5) is stable, that is, the solution

of the discrete problem remains bounded independently of k.

Theorem 3.7. Let Assumption 3.2 be satisfied and assume further that constant
K satisfies: 2Kk < 1. Denote vy, with j = 0,1,...,n, the unique solution of
problem (8.5) in Theorem 8.8. Then there exists a constant N independent of k

such that
1. max logllz < N (IIQH% + z; [ fi.] %/k?> ;
j=
2. ) lurglipk < N (llgllfq + 3 gl %/k>
=0 =1
Remark 3.2. Owing to (3) in Assumption 3.2, the estimates (1) and (2) above

can be written, respectively,

sup (Orgjag lowgllir < N) and  sup (Z; oIl % < N) :
>1 \ 2

n>1

Remark 3.3. Under Assumption 3.2, with K satisfying 2Kk < 1, Theorem 3.3
obviously holds so that problem (3.5) has a unique solution.

Proof. (Theorem 3.7)
Fori=0,1,...,n — 1, we have that

kil — lokillir = 2(Ukir1 — Vi Vkger) — kit — vrillE (3.8)

and, summing up both members of equation (3.8), we obtain, for j =1,2,...,n,

j—1 j—1
o1 = llowollE + D 2(vksrs — ves ki) — D Nokinr — onsllf
=0 i=0
Hence
j—1
loglz < llvsolll + D 2(Wkiss — Uk, Vi)
=0
j-1
= lveolly + > 2 Aririvrivik + frisrk, vk i)
=0

As, by Cauchy’s inequality,

1
2(frit1, Vegr1)k < Allvgpa |3k + X“fk,i+1“%/*k’
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with A > 0, owing to (1) in Assumption 3.2 we obtain

-1 j-1 j=
1
loeg 3 < llowollly + 2K D llonantllzrk = A D lowarallvk + 5 Z I friallie &,

and then
2 d 2 2 ! 2 1< 2
lvrsllE + A ; lluksllvk < llukollz + 2K ; il ek + 3 ; | frillyek.  (3.9)
In particular,

2.k, (3.10)

J 1
vl < lveolld + 2K D lowsllick + 3 > el

and, using Lemma 3.6,

loe Iz < (Ilvk,oll?q lefm

where K, is the constant defined in the Lemma. Estimate (1) follows.

From (3.9), (3.10), and (3.11) we finally obtain
%,k) KT

Z”Ukz“ k< (]Uk0”H+ AZIlszllv»« > et

Estimate (2) follows. O

2 ) 2KqT (3.11)

J 1
okl + A llorallk < (llvk,oll?{ +5 > M il
=1 =1

and

We will now study the convergence properties of the scheme we have con-
structed. We impose stronger regularity on the solution v = u(t) of problem
(3.3).

Assumption 3.3. Let u be the solution of problem (3.3) in Theorem 3.2. We
suppose that there exist a fixed number ¢ € (0,1] and a constant C' such that

%/:H lu(tiv:) —u(s)|lvds < CK,

foralli=0,1,...,n— 1.
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Remark 3.4. Assume that u satisfies the following condition: “There exist a fixed
number & € (0,1] and a constant C such that |[u(t) — u(s)|ly < C|t — s|°, for all
s,t € [0, 7). Then Assumption 3.3 obviously holds.

By assuming this stronger regularity of the solution u of (3.3), we can prove
the convergence of the solution of problem (3.5) to the solution of problem (3.3)

and determine the convergence rate. The accuracy we obtain is of order 4.

Theorem 3.8. Let Assumptions 8.1 and 3.2 be satisfied and assume further that
constant K satisfies: 2Kk < 1. Denote u(t) the unique solution of (3.8) in
Theorem 3.2 and v ;, § = 0,1, ..., n, the unique solution of (8.5) in Theorem 3.3.
* Let also Assumption 3.3 be satisfied. Then there exists a constant N independent

of k such that
Ak,ju / A

ty

frik — f(s)ds

tj-1
2. Zuv,m t)Pk < N k?MZk

Ak,ju / A
j=1
1 b
z fr,ik — / f(s)ds
— ti1

n
2
j=1 )

Proof. Define w(t;) := vg; —u(t;), t=0,1,...,n. Fort=0,1,...,n — 1,

1. max |lug; —u(t)|l < N [ k¥ + Z
=1

0<i<n

“.1
+ZE
j=1

w(tip1) = w(t;) = Apsriw(tiv)k + frarrh — ultivn) +ults) + Arinu(trn)k
= Ak 1+1w( )k + ‘10( 1+1)
where @(tiy1) := frirrk — ultivr) + uts) + Agsriu(tin)k.
Owing to (1) in Assumption 3.2, we obtain
lw(ts)lE — lwit) |l =2(w(tiv) — w(ts), wltas)) — lwltn) — w(E)x
<2 Agirrw(tig1), w(tigr))k + 2(o(tiga), w(tiv1))
< = 2MJw(tip )V + 2K w(tn) |5k

+ 2[{p(tiz1), w(tiva)) |-
(3.12)
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Noting that ¢(t;+1) can be written

big1

o(tiy1) = A(8)(ultiy1) — u(s))ds + @1 (tiy1) + w2(tiva),
ti
where
tig1
o1(tig1) = Apirru(tivi)k — / A(s)u(tivr)ds
i
and
tig1
©altiv1) == frink — (s)ds,

t;

for the last term in (3.12) we have the estimate

tiga

2/(p(tiy1), w(tir1))] < 2 |< i A(s)(ultiyr) — U(S))dsaw(ti+1)>
+ 2[(p1 (tiya), w(tip))] + 22 (tivs), wtisn)).

Let us estimate separately each one of the three terms in (3.13).

(3.13)

For the first term, owing to (2) in Assumption 3.1 and using Cauchy’s inequal-

ity, we obtain

9 < [ " Als) (ultige) — u(s))ds,w<t¢+1>>l

<2 / A () = (), wltss2))ds

< 2M o (tepn) v / T ultian) — u(s)lvds

<

w| >

otk + 3 ([ hutean) - oles)

with A > 0.
For the two remaining terms, we have the estimates

2
V*

2lfpr(tier) 0t} < )Pk + 3 llen(trn)

and

2
Vs

2l palters)swltisn))| < Sl + 1 lea(tin)

with A > 0, using Cauchy’s inequality.
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Therefore, from (3.14), (3.15), and (3.16) we get the following estimate for
(3.13)

2l(ptssn), wlter)] < M) Ik + 5 ( [ ) - v )

2

3
+ gl + XEHW(QH) 7
(3.17)
Putting estimates (3.12) and (3.17) together and summing up, owing to As-

sumption 3.3 we obtain, for j =1,2,...,n,
Jj—1 j-1

oot + A YTtk < 25 3 oot [k + 2550 S #5

=0 =0 7=0

3 =2 R
+ IV ; lo1(tig) |3 + & ; o2t |5

Hence

lwt) % + A Z lw(t:) |3k <2KZ lw(t:) |4k + Nk

t; 2

"1
+ NZ z ' Apu(ti)k — A(s)u(t;)ds
§=1 ti—1 e
n 1 t; 2
+ NZ T Jrik — . f(s)ds)|
=1 i—1 v
with N a constant. Following the same steps as in the proof of Theorem 3.7,
estimates (1) and (2) follow. O

Next result is an immediate consequence of Theorem 3.8.

Corollary 3.9. Let the hypotheses of Theorem 3.8 be satisfied and denote u(t)
the unique solution of (3.3) in Theorem 8.2 and vy j, j = 0,1,...,n, the unique
solution of (3.5) in Theorem 3.8. If there exists a constant N’ independent of k

such that
f kg — / f

Ay jult; / Als ds

forj=1,2,...,n, then

< N'k»

max o — ulty)[% < NE? and 3 [lon; — u(ty) |5k < Nk,

0<j<n
Jj=0

with N be a constant independent of k.
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3.4 Explicit discretisation

We now approach the time-discretisation with the use of an explicit finite-difference
scheme. As in the previous section, we begin by setting a suitable discrete frame-
work and then investigate the stability and convergence properties of the scheme.

Observe that, when using the explicit scheme, a previous “discretisation in
space’ has to be assumed. Therefore, we will consider the following version of
problem (3.3) in the spaces Vi, Hp, and V¥, “space-discrete versions” of V, H,

and V*, respectively,

du

7 = A+ fiut) in [0,T], u(0) = ga, (3.18)

with Ap(t), fun(t), and g “space-discrete versions” of A(t), f(t), and g, and
h € (0,1] a constant. We will use the notation (-,-); for the inner product in
Hj, and (-, ), for the duality between V¥ and V. '

Let the time-grid T, as defined in (3.4). For all z € V}, consider the forward

difference quotient in time
A+Z(tj) :k'_l(Z(tj_H) —-Z(tj)), _7 :0,1,...,7’L— 1.

Let Ank, fur be some time-discrete versions of A, and fj, respectively, and

denote, for all z € V},
Apkjz = Ane(ti)z,  farg = fae(ts),

with j=0,1,...,n— L.

For each n > 1 fixed, we consider the time-discrete version of (3.18),
Atv, = Appavi + fres fori=0,1,...,n—1, v =g, (3.19)

with v; =v(¢;), 7 =0,1,...,n, in V.
Problem (3.19) can be solved uniquely by recursion

j—1 j—1
v; = gp + ZAhk,ivik + thk,ik forj=1,...,n, vg= gn.
=0 =0

We make some assumptions.
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Assumption 3.4. Suppose that

L (Apkgv,v)n + AJll}, < Kollk, YveV j=0,1,...,n—1,

2 |Auegolve < Mlloll,, Vo€ Vi, j=0,1,....n—1,
3. Y s Ifwesldek <N and lgallm, < N,

where A, K, M, and N are the constants in Assumption 3.1.

Remark 3.5. We refer to Remark 3.1 and note that, under Assumption 3.1,
gn € H;, and “gh”Hh < N.

The following version of the discrete Gronwall’s inequality is an immediate

consequence of Lemma 3.6.

Lemma 3.10. Let af,al,...,a} be a finite sequence of numbers for every integer
n > 1 such that
j-1
0<af<af+K> a7k, (3.20)
i=0

holds for every j =0,1,...,n, with k := T/n and K a positive number such that
Kk =:q <1, with q a fired constant. Then

n n KT
ajgaoe Kl

for all integersn > 1 and j =0,1,...,n, where K, := —KIn(1 —q)/q.

Proof. From (3.20), owing to Lemma 3.6 we have

J
(1+ Kk)a} < (1+ Kk)ay + K Y afk < (1+ Kk)age'",

i=1
for j =1,2,...,n. The result follows. O

In order to obtain stability for the scheme (3.19) we make an additional as-
sumption, involving an inverse inequality between H; and V,*. We note that, for
the case of the implicit scheme, there was no such need: the implicit scheme’s

stability was met unconditionally.

Assumption 3.5. Suppose that there exists a constant C, dependent of h, such

that
21|, < Chll2]

v, forall 2 € V. (3.21)

54




Remark 3.6. The usual assumption involves instead an inverse inequality between
Vi, and Hp:

|zllv, < Cullzl|lm,, forall z € Vi, (3.22)

It can be easily checked that (3.22) implies (3.21). In fact, for all z € Vj, 2 # 0,

o Ll (2l _ Vel Vel _ el
A 7 P A F A E PR A
k72

2]

with the last inequality above due to (3.22).

Remark 3.7. Assumption 3.5 is not void. For example, when the solvability of a
multidimensional linear PDE of parabolic type is considered in Sobolev spaces,
and its discretised version solvability in discrete counterparts of those spaces
(see [21]), (3.21) is satisfied with C}, such that C} —1 > Ch™2, with C a constant
independent of A.

Theorem 3.11. Let Assumptions 3.4 and 8.5 be satisfied and A\, K, M, and Cj,
the constants defined in the Assumptions. Denote by vpy ;, withj =0,1,...,n, the
unique solution of problem (3.19). Assume that constant K is such that 2Kk < 1.
If there exists a number p such that M2C2k < p < X then there ezists a constant
N, independent of k and h, such that

n—1
1. max oneylll < N (”9’1% +3 Hfhk’j“%'fo ;
=0

0<j<n
2
V’:‘ k) .

Remark 3.8. Remark 3.2 applies to the above theorem with the obvious adapta-

n—1 n—1
2. omeslli b <N <||9h||§{h + ) M fuksl
=0

Jj=0

tions.

Proof. (Theorem 3.11)

Fori=0,1,...,n— 1, we have

lvekirillZ, — lvnkilll, = 2(Vhkist — Vhki Unki)n + |Vkkirt — Unkalld,  (3-23)
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and, summing up both members of equation (3.23), for j =1,2,...,n, we get

-1 j-1
okl = ool + D 2(Uhkit1 — Vhkis Vrka)n + > llvakier — vnkill 7,
=0 =0
-1 j=1
= |lvnkollZ, + Z 2( Ak, Vnkyi, ki) nk + Z 2( frk,ir Vnk,i)nk
Py i=0
j-1
+ > || Ankivhks + Funall T, K-
i=0

(3.24)

Owing to (1) in Assumption 3.4 and using Cauchy’s inequality, from (3.24)

we obtain the estimate

-1 j—1
onkil|Z, < lommoll + 2K D lvmeslli ke — 2D loaksll?, %
i=0 i=0
L . (3.25)
Y ; | frn 1Tk + 2 | AnkiVhis + FrrillEr, K%
with A > 0.

For the last term in the above estimate (3.25), owing to (2) in Assumption

3.4 and to Assumption 3.5, and using Cauchy’s inequality we obtain

j—1
Z”Ahk,ivhk,i + frnil 5, K
i=0
j-1
< C?k Z | Ark iUk, + fhk,i”%/,:‘k
i=0
- 1 ~ (3.26)
< (1 WO Wl (1+2) G Il
=0 =0
=1 1 j—1
< U+ )M CRY  lvmnsllb b + (1 + ;) Citk 3 fuallt
=0 =0
with g > 0.
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Finally, putting estimates (3.25) and (3.26) together, we get

j=1
Vr |, <llvnkollE, + 25> lonksllk, &
=0
j-1

(1 + p)M2C2E =) S llomell?

1=0

1 1) 2, 2
n (X + <1 + ;> C,flc) ;”fhk,iuv,:k'

2

Now, if there is a constant p such that
M?*Ck <p< ),
implying that, for u sufficiently small,
(1+ WM C2k - A< (1+u)p—-A<0,

then from (3.27) we obtain the estimate

loneg Nz, + (A= (1+wp Z oI5, &

-1
< lvmrollz, + 2K Z llon,ill 2, * -+ LZ | Farill¥e &,
=0 =0

where L := (uM? + A1 + u)p)/ AuM?.
In particular,
j-1 n—1

lonkglz, < llvnkolla, + 2K Z lonkslli e + LY I fnwsllp

=0 =0

and, using Lemma 3.10,

n—1
lJomk |z, < (thk,o“%zh +LY Hfhk,z‘ll?/,;k> (KT
=0

where K is the constant defined in Lemma 3.10. (1) follows.

From (3.28), (3.29), and (3.30) we finally obtain

v sz, + A—(1+ p)p Z [onks ¥, K
<”vhk0”Hh + LZ I faksllereke | e
=0

and (2) follows.
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Finally, we prove the convergence of the scheme and determine the convergence

rate. The accuracy obtained is of order §, with § given by Assumption 3.3.

Theorem 3.12. Let Assumptions 3.1, 3.4, and 3.5 be satisfied and A\, K, M, and
C), the constants defined in the Assumptions. Denote by uy(t) the unique solution
of problem (8.18) in Theorem 8.2 and by vy, with j = 0,1,...,n, the unique
solution of problem (3.19). Assume that constant K is such that 2Kk < 1 and that
Assumption 3.8 is satisfied. If there exists a number p such that M2C2k < p < A
then there exists a constant N, independent of k and h, such that

n—1 £ 2
1 i+1
L ax [[vn,; —un(t I, <N k26+26E Ank,un(t;)k 7, An(s)un(t;)ds
j= Vi
n—1 1 ti41 2
+ Z Z frkik — g fn(s)ds ;
=0 g 1%
ti+1 2
2. Z | vhe, —un(ts) |3 k< N k25+§: Aprgun(t)ke —  An(s)un(t;)ds
7=0 tj v
n—1 . 2
1 ti+1
+ZE fhk,ik — 3 fu(s)ds
=0 i 1%

Proof. Define w(t;) := vpg; — up(t;), ¢=10,1,...,n. Fori=0,1,...,n—1

w(tip1) — w(t;) = Anesw(ti)k + frrik — un(tiv1) +un(ts) + Ancsun(ts)k
= Ahk,iw(ti)k + QO(ti),

where ¢(t;) = frrik — un(tivr) + un(ts) + Apgsun(ts)k.
We have that
w(tip) 1, — lw(t)llE, =2(w(tuyr) — w(ts), wt:)n + lwti) — w(t) |,
L2 Aprsw(ts), w(ts))nk + 2|{p(t:), w(t:))nl

+ ”Ah,k,éw(ti)k" + (P(té)”?rih‘
(3.31)

We want to estimate each one of the three terms in (3.31). For the first term

n (3.31), owing to (1) in Assumption 3.4, we obtain

2(Ahk,iw(t¢), ’I.U(ti»hk‘ S —2/\“’1.0(151)”%/]1]13 + 2K||w(tz)||%{hk (332)
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Noting that ¢(t;) can be written

tiy1
o(t:) = An(8)(un(ts) — un(s))ds + @1(t:;) + wa(ti),
t;
where
tit1 tit1
@1(ts) = Ahk,iuh(ti)k“‘/ Ap(s)un(t;)ds  and  @a(ts) = frrsk— fr(s)ds,
ti t;

for the second term in (3.31) we have
it
ot wieahal <2[{ [ A)unte) - wleas wle))
t;

+ 2{p1(ts), w(ts))nl + 2[{pa(ti), w(ti))nl
and, following the same steps as in the proof of Theorem 3.8, we obtain the

) (3.33)

estimate
2t witnl < A+ S ([ ) = el )

3 2 3 2
+E“801(ti)nv,: + Euwz(tz)ﬂ ox (3.34)
Next, we estimate the last term in (3.31). Owing to (2) in Assumption 3.4
and to Assumption 3.5, and using Cauchy’s inequality,
| Anksw(ti)k + o(t:) 1, < Cll Anwo(ti)k + o)l

1
< (14 WO A @i+ (1 + 2 ) CRllte I

1
< L+ MG e+ (14 ) Gl
(3.35)
with © > 0. As, owing to (2) in Assumption 3.1 and to Cauchy’s inequality,

()|l in (3.35) can be estimated by
2

/;' i1 Ah(s)(uh(ti) — uh(s))ds + (Pl(ti) + 802(?51')

2

lolelf; =

1
< (1+1/+—>
%

#(1rre D el + (1405 ) oty B

< (1 fu+ 1) M ( / st uh<s>uvhds)2

+ (1 +u+ %) lpa(ta)llF + (1 + v+ %) ()3

Vi

tit1

An(s)(un(ts) — un(s))ds

t; vir
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with v > 0, from (3.35) and (3.36), we obtain the following estimate for the last
term in (3.31)

Aneiawt e + (), < (1+ mMCEklw(t)I}, b

4 (1 + %) <1 +ugt 1) M2C (/:+ un(ts) — uh(s)||vhds>

+<1+%>(1+u+ >Ch|[901() +(1+;>(1+y+ >Oh||go2( Dl
(3.37)

Putting estimates (3.32), (3.34), and (3.37) together and summing up, owing

2

to Assumption 3.3, we have, for 7 =0,1,...,n,

j—1

lw (), <2szllw Wk + ((1+ m)M2Crk = A) D ()l k

=0

j—1
+ M*C? ((1 ;) (1 +v+ )Chk+ i) PR

=0 (3.38)

. <<1+ %) (1+V+ )Chk+ f\) ji%nsol(mu"‘v,;

=0

+ <<1 + %) <1 fu+ ) C2k + i) § %sz(tz‘)“%/,;-

i=0
As we assume that there is a constant p such that

M*Cik <p <,
we have that, for u sufficiently small,
(1+ M2 CE k-2 < (1+pp—A<0.
Then, from (3.38),

lw(t) %, + (A — (1 +wulp Z lw(t) I3, %
< 2K Z lw(t:)|| %, k + M*C*T Lk
+ LZ

+ LZ .
1=0

tit1 2

Apkiun(ti)k — An(s)un(t;)ds

ti

*
Vi

tit1 2

frrik — fr(s)ds

t;

)

A+
Vi

60




where L := ((8M2 + M\p + vAp)uv + (1 + p+ v + v¥)Ap) /uvAM?. Estimates (1)
and (2) are obtained following the same steps as in Theorem 3.11. O

Next result follows immediately from Theorem 3.12.

Corollary 3.13. Assume that the hypotheses of Theorem 8.12 are satisfied. De-
note by up(t) the unique solution of problem (8.18) in Theorem 3.2 and by vnk,;,
with § = 0,1,...,n, the unique solution of problem (8.19). If there ezists a con-
stant N', independent of k, such that

1 [fti+t 2 1 [ti+t 2 0
Apg jun(t;) — % Ap(s)uy(t;)ds frkg — E/ fa(s)ds|| < N'k%,
E v & v
forj=0,1,...,n—1, then
max [[vak,; — un(t;) |z, < Nk*  and Z lvmes — un(t;) I3k < NE?,

0<j<n

with N a constant independent of k.

3.5 Types of operator specification - implicit scheme

In this Section, we investigate two possible types of discretising operator Ay and
function fi, under the framework of the implicit scheme.
We begin by considering the particular case where Ay and fi in problem (3.5)

are specified, respectively, by the integral averages

_ ti+1 tit1
Atz k/ A(s)zds  and  fi(t;1) k/ f(s (3.39)

forall zeV,j=0,1,...,n— 1.

For all z € V, we denote
Ak,j-}-lz = Ak(tj-i-l)za fk,j—i—l = fk(tj-I-l), .7 = 07 17 e, — 1.

We prove that, under Assumption 3.1, Az and fi satisfy Assumption 3.2.
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Proposition 3.14. Under Assumption 3.1, operator Ay and function fi, satisfy
1. (Apjrav,v) + Al < Kloll, YoeV, i=0,1,...,n-1,
o < M|y, YveV, j=01...,n—-1,

3. Z “fkj-i—ll

where \, K, M, and N are the constants in Assumption 5.1.

2 k<N,

Proof. For all v € V, owing to (1) in Assumption 3.1,

< 1 [ht t:ﬂ
(Agjp1v,v) = p A(s)vds,v k/ s)u,v)ds

<[ UKol = Aol

J

= Kol = Allly,

with j =0,1,...,n— 1, and (1) is proved.
For all v € V, owing to (2) in Assumption 3.1,

1 [hi+e 1 [Hi+
—/ A(s)uds|| < —/ | A(s)v
k t; v k 2]

1 [fti+t
< [ Milvds = M,
t

| V*dS

14k

with j =0,1,...,n— 1, and (2) is proved.
For (3), we have

n—1
> Fegealls

V*
=0

—1 tit
1£(s)lIV~dsk
SO

V*

2.ds <N,

=0 vt
T
- [ 1s6s)
0
using Jensen’s inequality and owing to (3) in Assumption 3.1. d

As an immediate consequence of Proposition 3.14, the existence and unique-
ness and the stability results, Theorems 3.3 and 3.7, respectively, hold for this
particular scheme under Assumption 3.1 instead of Assumption 3.2.

For the scheme’s convergence, we state a new result.
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Theorem 3.15. Let Assumption 3.1 be satisfied and assume that constant K
satisfies: 2Kk < 1. Denote by u(t) the unique solution of problem (3.3) in
Theorem 3.2. Assume that A and fi in problem (3.5) are specified, respectively,
by Ay and fi in (3.39) and denote by Uk, §=0,1,...,n, the unique solution of
problem (8.5) in Theorem 3.3. Let Assumption 3.3 be satisfied. Then there exists
a constant N independent of k such that

max |lup; — u(t;)|% < Nk®  and Z lvg,; — u(t;) |3k < NE®.

0<j<n

Proof. The estimates in Theorem 3.8 are obtained as an immediate consequence
of Proposition 3.14. Additionally, due to the particular form of operator Ay and

function fi, we have

2
tj
Z A jult A(s)u(t;)ds
k ’ £
7 V*
tj
-l ;)dsk — A(s)u(tj)ds]] =0
i1 Ve
and
n 1 _ tj 1
S|k [ felas| z i sost= [ s =0
j=1 tj—l v t] 1 v
The result follows. O

From Theorem 3.15, we see that the rate of convergence is optimal when A
and f are approximated by the integral averages A and f, respectively.

Moreover, it can be easily checked that any operator flk and function fk
optimizing the rate of convergence coincide with A and f, in the sense that

Hz‘ik,jﬂz - Ak,j+lz”V* =0 and ”fk,j+1 - fk,j+1“w =0

forallzeV,j7=0,1,...,n— 1. In fact,

2
A _ 2 u tj
k2 H Arjult;) — Ak,ju(tj)nw <2| Augut)k— | Alsyults)as
t; " 2
2 Ak,jU(tj)k — A(S)U(tj)db’ =0
tj-1 Vo
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and

¢ 2

fosk— [ f(s)ds

ti—1

K “fk’j B fk’jHQ <2 + 2| fr ik — f(s)ds

Vlk

V*
forallj =1,2,...,n.

Next, we investigate a different type of specification for A and f in problem
(3.5).
Consider the pairs of discrete weight functions

(pj+1(tj)7f)j+1(tj+1)) ) (Tj+1(tj))rj+1(tj+1)) ) .7 :Oala"')n_ 1

such that
PHE;), P (t4), P, rit(ti) >0

and
P + P () = 1TTNE) + T () = 1,

forall j=0,1,...,n—1.
We define the discrete operator

Ag(ti)z = P () Alty)z + P (G11) Altian) 2 (3.40)
and the discrete function
J;k(tj+.1) = I (t5) £ () + 7 () f (), (3.41)
forall z€V,j=0,1,...,n— 1. Denote
Apjirz = Ailtin)z,  foge = Fu(tis)
and
P = ), A = A ), T =), i = (),

forallzeV,j=0,1,...,n—1
We prove that, in this particular case, under Assumption 3.1, Assumption 3.2

is satisfied.
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Proposition 3.16. Under Assumption 3.1, Ay and fk satisfy
1 (Agjpv,v) + A < Klolly, YwevV, i=01,...,n-1,
2. ”Ak,jﬂvl
8. 3720 | el

where A\, K, M, and N are constants, with A, K, and M the constants in As-

v SMiplly, YweV, j=0,1,...,n-1,

2
P k<N,

sumption 3.1.
Proof. For all v € V, owing to (1) in Assumption 3.1,
(Ar41v,v) = (B Alt5)o + 41 Atj1)v, 0)

= p;+1<A(tj)v, v) + p;IKA(th)v, v)
< (@ + o5 (Kl — Alolfy) = Klol% — Allv)1?,

with j =0,1,...,n — 1, and (1) is proved.
For all v € V, owing to (2) in Assumption 3.1, we have

v = o7 A Y + pFE Al ),
< AR lvs + I Al )vlv-
<M (1 + o) llvllv = Mfllv,

“Ak,jﬂv,

with j =0,1,...,n— 1, and (2) is proved.
Inequality (3) is satisfied trivially and the result is proved. O

For this particular scheme, the existence and uniqueness and the stability
results, respectively, Theorems 3.3 and 3.7, hold under Assumption 3.1 instead of
Assumption 3.2 as an immediate consequence of Proposition 3.16.

In order to prove a result on the scheme’s convergence, we assume further
smoothness. Denote by B(V, V*) the Banach space of all bounded linear operators
from V into V*. Also, denote by Lip([0, T; X) the space of Lipschitz-continuous
X-valued functions on [0, T}, with X a Banach space. Let both spaces be endowed

with the usual norms.

Assumption 3.6. Suppose that
1. AeLip([0,T);B(V,V*));

2. f € Lip([0, T]; V*).
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Remark 3.9. (1) and (2) in Assumption 3.6 could be replaced, respectively, by

the weaker conditions
AeC(0,T;B(V,V*)) and feC0,T];V"),
where 0 < § < a < 1, with § the constant defined in Assumption 3.3.

Theorem 3.17. Let Assumption 3.1 be satisfied and assume further that constant
K satisfies: 2Kk < 1. Denote by u(t) the unique solution of problem (3.3) in
Theorem 3.2. Assume that Ay and fr in problem (8.5) are specified, respectively,
by Ap and fr in (8.40), (3.41) and denote by vy ;, j = 0,1,...,n, the unique solu-
tion of problem (3.5) in Theorem 8.8. Let Assumptions 3.3 and 3.6 are satisfied.
Then there exists a constant N independent of k such that

0<j<n

max |lup; — ult)i < NE®  and > flog; — u(t)|ik < NE.
7=0

Proof. The estimates in Theorem 3.8 are obtained as an immediate consequence

of Proposition 3.16. Due to the particular form of operator Ay, and function fk,

we have
St Ak~ [ Atoutts
=1 -1 V*
=3 2 (st ute) + A ) k— [ Aule)ds
=1 b v (3.42)
=y / T (P Altya) + PA(L) — (P + 1) A(5)) ulty)ds
3=1 ti-1 v+
< [ 6 (Alts-n) = AGs) + At — A) uitl. ds,
with the inequality obtained by the use of Jensen’s inequality.
For the argument of the integral in (3.42),
| (PaAtts ) — Al + At - AlsD) )]
< 2(gja) N(Atj-2) = AlDult) - +2 ()" 1(A®) — At (3.43)

< 2(Ntjo1 — 8| - Jult)llv)® + 2(Njt; — s - lult)]lv)”
< NE*||Ju(t)||? < Nk? < NE*,
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owing to (1) in Assumption 3.6.
Finally, from (3.42), (3.43),

"1
D%

j=1

¢ 2

Aoult)b— | Als)ult)ds

ti—1

oot X
< NZ/ K¥ds < Nk,

ti~1

v J=1

Following the same steps, owing to (2) in Assumption 3.6, we also obtain
>4
=k

and the result follows. 1

tj 2

Frik — f(s)ds

ti—1

< NkZ,

V*

Remark 3.10. For 7 = 1,...,n, the two-point closed Newton-Cotes quadrature
formulas for the integrals

; A(s)u(t;)ds and ? f(s)ds

ti—1 tj—1

are written, respectively,
ty - tj -
A(s)u(t;)ds ~ Ay ju(t;)k  and f(s)ds =~ fi ik,

tj-1 tj—1

with the weights
(07 (t5-1), P (t7)) = (1 (tj-0), 77 (4)) = (5’ 5) '

It can be easily shown that in the particular case where A(s)u(t;) and f(s),
with t;_1 < s <t; and j = 1,...,n, are real-valued polynomials of degree 1 the

approximation error is null.

3.6 Types of operator specification - explicit scheme

In this section, we investigate the same types of specification for the discretised op-
erator Apr and function frx but now under the framework of the explicit scheme.
We begin by considering the particular case, where Apx and fhx in problem

(3.19) are specified, respectively, by the integral averages

_ 1 [ttt 1 [+t

Ahk(tj)ZZZE | Ap(s)zds  and  fui(t;) =1/ fr(s)ds, (3.44)
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forall ze€ Vy, 5 =0,1,...,n—1. For all z € V},, denote
Ankiz = Aw(t)2,  freg = Farlts), 3=0,1,...,n—1.

For this particular scheme, under Assumption 3.1, Assumption 3.4 is satisfied.
Proposition 3.18. Under Assumption 3.1, operator Ap, and function fus satisfy

1 (Apgv,v)n + AlE < Kfvl%, YweVh §=0,1,...,n—1,

2. ”Ahk,j'U“V,:‘ < MH’U”Vh, Yv e Vi, 7=0,1,...,n—1,

-1 4

5. Y0 gl k < IV,

where A\, K, M, and N are the constants in Assumption 3.1.

Proof. Operator Ay ; and function fyt; coincide, respectively, with Ay ;1 and
fk,jﬂ in (3.39), for j =0,1,...,n — 1, replacing A and f by their versions Ap,
and fx in the integrals’ arguments. The result follows from Proposition 3.14. [

Owing to Proposition 3.18, the stability result, Theorem 3.11, holds for this
particular scheme under Assumption 3.1 instead of Assumption 3.4.

As for the implicit scheme, an optimal rate of convergence is obtained when
Ay, and f;, are discretised, respectively, by the integral averages Apy, and frz. The

proof is the same as for Theorem 3.15.

Theorem 3.19. Let Assumptions 3.1 and 3.5 be satisfied, and A\, K, M, and
C, the constants there defined. Denote by uy(t) the unique solution of problem
(8.18) in Theorem 38.2. Assume that Apr and fry, in problem (3.19) are specified,
respectively, by Apx and fux in (3.44) and denote by vpkj, with j = 0,1,...,n,
the unique solution of problem (8.19). Assume that constant K is such that
2Kk < 1 and that Assumption 3.3 is satisfied. If there exists a number p such
that M2C2k < p < ) then there exists a constant N, independent of k and h,
such that

n—1
1)
max Jlonkg = un(ty)lll, < NE*  and Z_g lvaes — un(t)l3, & < NE®.

Similarly to what we have done in Section 3.5, we study an alternative dis-
cretisation for Ay, and f, in problem (3.18). Consider the pairs of discrete weight

functions
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(Pt3), 7 (t541)) s (P (5), 7" (t540)) s 5=0,1,...,n—1
such that
P (t5), 0 (t541), 77 (85), 77 (g41) 2 0
and
P E) + P () = 17 (t5) + 7 (t41) = 1,

forall j =0,1,...,n — 1.
We define the discrete operator

Ank(t3)2 1= 0 (1) An(t)2 + 9 (6522 An(tpen) 2 (3.45)
and the discrete function

Fur(ts) = 17 (t) fulty) + 77 (t501) Fultyn), (3.46)
forallz€V,j=0,1,...,n — 1. We denote
Ankgz = Am(t;)z,  Fws = Far(ts)
and
PGB A=) =), =P,

forallzeV,57=0,1,...,n—1.
We prove that, under Assumption 3.1, Assumption 3.4 is satisfied.

Proposition 3.20. Under Assumption 3.1, A and fhk satisfy
1. (App 0,03 + AJ0l3 < Klll},, Yo eVa, §=0,1,...,n-1,
2. | Ankgvllve < Mlvllv,, Yw€Vh, §=0,1,...,n~1,
8. 3520 Wfunglllek < N,

where A\, K, M, and N are constants, with A\, K, and M the constants in As-

sumption 3.1.

Proof. Operator /ihk,j and function fhk,j coincide, respectively, with flk,jﬂ and
fkd“ in (3.40), (3.41), for j = 0,1,...,n — 1, after replacing A and f by A, and
fr in their analytic expressions. The result follows from Proposition 3.16. O
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Owing to Proposition 3.20, Theorem 3.11 on the scheme’s stability holds under
Assumption 3.1 instead of Assumption 3.4.

Finally, we state a result on the scheme’s convergence. The proof is the same
as for Theorem 3.17.

Theorem 3.21. Let Assumptions 8.1 and 8.5 be satisfied, and A, K, M, and
Cy, the constants there defined. Denote by un(t) the unique solution of problem
(8.18) in Theorem 3.8. Assume that Anx and fr in problem (3.19) are specified,
respectively, by Ane and far in (8.45), (3.46) and denote by vpkj, J =0,1,...,7,
the unique solution of problem (8.19). Assume that constant K is such that
oKk < 1 and that Assumptions 8.8 and 3.6 are satisfied. If there exists a number
p such that M2C2k < p < X then there ezists a constant N, independent of k and
h, such that

n—1
1) )
o [[vnkg = un(t;) |z, < NE*  and E._Oi ok — un(t) |7,k < NE®.

Remark 3.11. Remark 3.10 still applies here with the obvious modifications.
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Chapter 4

Discretisation of PDEs with unbounded
coeflicients for one spatial dimension

4.1 Introduction

In this chapter we investigate the discretisation of second order PDE of parabolic
type with unbounded coefficients by using finite-difference methods.

We deal with the challenge posed by the unboundedness of the PDE coeffi-
cients, under the strong assumption that the PDE does not degenerate.

We make use of finite-difference methods to approximate in space the weak

solution of the Cauchy problem

Lu — % +f=0 in Q, u(0,z)=g(z) in IR, (4.1)

where @ = [0,T] x IR, with T a positive constant, L is the second-order partial

differential operator with real coefficients

2

L(t,z) = a(t, :c)gax—2 + b(t, :c)% + ¢(t, ) (4.2)

for each ¢t € [0, T] uniformly elliptic in the space variable, and f and g are given
real-valued functions. We allow the growth in space of the first and second-order
coefficients in L (linear and quadratic growth, respectively), and of the data f
and g (polynomial growth).

We follow the previous works ([20, 21]), where the same approach of the more
general case of multidimensional PDEs. By considering the special case of one
dimension in space, a stronger convergence result is obtained in this chapter. In
particular, the same order of accuracy is obtained under regularity assumptions

weaker than those required in [20, 21] for the corresponding convergence result.
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The chapter is organized as follows. In Section 4.2 we review the L? theory of
solvability of linear PDEs in weighted Sobolev spaces and, in particular, consider
the deterministic one spatial dimension special case of a class of weighted Sobolev
spaces introduced by Purtukhia ([46]), and further generalised by Gyodngy and
Krylov (]27]), for the treatment of linear SPDEs. We consider problem (4.1)
in the framework of the variational approach, and impose weak regularity over
the operator’s coefficients and the data f and g. In Section 4.3 we consider
discrete versions of these spaces and we set an appropriate discretised framework
and investigate the spatial approximation of the PDE problem’s weak solution.
In order to facilitate the study, we make use of basic one-step finite-difference

schemes.

4.2 Preliminaries

We consider the particular PDE problem

% =Lu+f in Q, u(0,z)=g(z) in R, (4.3)

where L is the second-order operator with real coefficients

2

L{t,z) = a(t,x)gﬁ + b(t, :1:)6%3 + c(t, z), (4.4)

where @ = [0,7] x R, with 7' € (0,00), and f and g are given functions. We
allow the growth, in the spatial variable, of the coefficients a and b, and of the
free data f and g.

Under a suitable framework, problem (4.3) can be cast into problem (3.3)
studied in Chapter 3 such that existence and uniqueness of its solution hold.

In order to set the framework for problem (4.3), we introduce the so-called
well-weighted Sobolev spaces (we refer to [27] for a comprehensive description of
these spaces).

We briefly review some facts on the solvability of problem (4.3). We first
introduce the above mentioned class of weighted Sobolev spaces. A complete
description of this class of spaces can be found in [27]. '

Let U be a domain in IR, i.e., an open set of IR. Let » > 0, p > 0 be smooth
functions in U and m > 0 an integer. The weighted Sobolev space W™2(r, p)(U)
is the Banach space of all locally integrable functions v : U — IR such that for
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each integer a > 0, with o < m, D%v exists in the weak sense, and

1/2
[vlwmag @) = <Z / r’ Ip"D"v{2<1:c)
asm U

is finite. Endowed with the inner product

U, W pymi2(r o) (U L= r2p?* D% D%wdzx
(rp)(U) U

asm

for all v, w € W™2(r, p)(U), which generates the norm, W™?(r, p)(U) is a Hilbert

space.

Notation. In the sequel, when U = IR, the argument in the function space notation
is dropped. For instance, we denote W™2(r, p)(IR) =: W™2(r, p).

We make some assumptions on the behaviour of the weight functions r and p
(see [27]).

Assumption 4.1. Let m > 0 be an integer, and » > 0 and p > 0 smooth functions

on IR. There exists a constant X such that
1. |D%p| < Kp'=* for all @ such that o <m — 1 if m > 2;

2. |D%| < K;% for all o such that a < m;

3. sup <M+M) =K forsomee >0, z,y € R.
—yl<e \7(¥)  p(y)

Remark 4.1. In (1) in the above Assumption 4.1, if m < 2 nothing is required.

Ezample 4.1. The following functions (taken from [27], citing O. G. Purtukhia
[48]) satisfy (1) — (3) Assumption 4.1.

Lor(z)=(1+ 2P, BeR;  ple) = (1+]a2)7, v < 3

2. r(z) = exp(£(1 + [z7)7), 0< < 55 plx) = (1+[z[*), v < § - 5;

3. 7(z)=(L+|zP)%, BER; plz) =2 +|af2), v € IR;

4. r(z) =1+ [zP)PI* 2+ [2*), 20, u>0;  p(z) = (1+[z*), v < 3;

5. r(x) = (14 [z[*)f Wn*(2+|2[*), 820, u > 0; p(z) =" (2 + [z]), v 2 0;
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6. p(z) = exp(—(1 + |z|?)?), v > 0; each weight function r(z) in examples
(1) = (5).

Now, we switch our point of view and consider the functions w : @ — IR as
mappings of ¢ into certain spaces of functions of & we precise below such that, for
all t € [0,T], z € R, (w(t)) (z) := w(t, z).

We impose a coercivity condition over the operator (4.4) and make assump-
tions on the growth and regularity of the operator’s coefficients and also on the

regularity of the free data f and g (see [27]).
Assumption 4.2. Let r > 0 and p > 0 be smooth functions on IR, and m > 0 an

integer.

(1) There exists a constant A > 0 such that a(t,z) > A\p?(z), for all t > 0,z € R;

(2) The coefficients in L and their derivatives in & up to the order m are mea-
surable functions in [0, 7] x IR such that

o |D%| < Kp>™®, Va<mVl
o [D%| < Kp'™®, Va<m
e |[Dic|< K, Ya<m

for any t € [0,T),z € IR, with K a constant and D¢ denoting the ' partial

derivative operator with respect to x;
(3) f € L3 ([0, T Wm2(r, p)) and g € W™2(r, p).

Notation. We use the notation W=2(r, p) := (WH2(r, p))* , where (WH2(r, p))*
is the dual of W12(r, p).

We define the generalised solution of problem (4.3).

Definition 4.1. We say that u € C ([0, T]; W%2%(r, p)) is a generalised solution of
(4.3) on [0,T] if

(1) uwe L2([0,T); W"*(r, p));
(2) For every t € [0,T]
(w(0,9) = (09) + [ {~ (als)Daals), D)
+ (b(s)Dzu(s) — Doa(s)Dyu(s), @) + (c(s)uls), ©) + (f(s), o)} ds
holds for all ¢ € C§°.
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Notation. The notation (, ) in the above definition stands for the inner product
in Wo%(r, p).

With the following result we state the existence and uniqueness of the solution
of problem (4.3) (see [27, 39]).

Theorem 4.2. Under (1)-(2) in Assumption 4.1, with m + 1 in place of m, and
(1)-(3) in Assumption 4.2, problem (4.3) admits a unique generalised solution u

on [0,T]. Moreover
u e C([0,T); W™2(r, p)) N L? ([0, T}; W™2(r, p))

and

T
sup [u(t)fymaqr, + /0 () gm0, A

0<t<T
T 2
S N (l.gI%/VmJ(T,p) + A If(t)lwm_l,z(,’.’p) dt) y

with N a constant.

4.3 The discrete framework

We now proceed to the discretisation of problem (4.3) in the space-variable. We
set a suitable discrete framework with the use of a finite-difference scheme and, by
showing that discretised problem can be cast into the general problem (3.3), we
prove an existence and uniqueness result for the discretised problem’s generalised
solution.

This study mirrors the study of problem (4.3), in the sense that the framework
we now set is a discrete version of the framework set for problem (4.3), and the
techniques used for proving the existence and uniqueness results are the same for
both problerms.

We define the h-grid on IR, with A € (0, 1],

Zn={zeR:z=nh, n=0,+1,£2,... }. (4.5)
Denote

0ty = 0%u(t,z) = A1 (u(t,z + h) — u(t, 7)) (4.6)
and

0~ u=0"u(t,z) = h~' (u(t,z) — ult,z — h)) (4.7)
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for every z € Zp, the forward and backward difference quotients in space, respec-

tively. Define the discrete operator
Ly(t,z) = a(t, )0~ 0% + b(t,2)0" + c(t, x). (4.8)
We consider the discrete problem
Lyu —us + fr=01in Q(h), u(0,z) = gp(z) in Zp, (4.9)

where Q(h) = [0,T] x Zy, with T € (0,00), and f; and g, are functions such that
fh:Q(h)—HRandgh:Zh—)]R.
For functions v : Z;, — IR, we introduce the discrete version of the weighted

Sobolev space W2(r, p):
10’2(7”) = {U : |U|lo,2(r) < OO}
where the norm |v|p2(,y is defined by

1/2
vl = (Z T2($)|U($)|2h> :

L IVAR

Define the inner product

(v, W)y = Z r?(z)v(z)w(z)h

TEZ),

for any v, w € [%2(r), which induces the above norm.
Endowed with the inner product, the space {%%(r) is clearly a Hilbert space.
We also introduce for functions w : Z, — IR the discrete version of the

weighted Sobolev space Wh2(r, p)
1M(r, p) = {w : Jwlpag,y) < 00},
with the norm |w/;12(, ) defined by
[l = Wlihaey + 100+ Wl

The above norm is the induced norm when we endow [%2(r, p) with the inner

product
(wv z)llﬁz(r,p) = (’LU, z)l°>2('r) + (,0(‘3+w, p8+z)lo,2(r) )
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for any functions w, z in {%3(r, p).

We want to show that the discrete framework we have set is a particular case
of the general framework considered in Section 3.2.

It can be easily checked that IM%(r,p) is a reflexive and separable Banach
space, continuously and densely embedded into the Hilbert space [%2(r) (we refer
to [21], where this is proved for the more general case where [®%(r) and [1%(r, p)
are spaces of real-valued functions on a d—dimensional grid).

As 1M2(r, p), endowed with the inner product ( , )iz, is clearly a Hilbert
space therefore it is reflexive, and the proof for the separability is trivial. The
continuity of the embedding follows immediately from |v|p2(y < |Ufi2(r,), for
all v € [Y2(r,p). Finally, the denseness can be checked by noticing that, for an
arbitrary function w € [%%(r), and B a ball in Zj, the function 2z defined by

ola) = {w(x), x € B

0, otherwise

belongs obviously to [2(r, p), and that, for any given € > 0, |w — 2|jp.2(r) < € if
the diameter of B is chosen sufficiently large.

As in the previous Section, we switch our viewpoint and consider the functions
z: Q(h) — IR as mappings of ¢ into certain spaces of functions of z, defined by
(z(t))(z) := 2(t,x), for all t € [0,T] and for all x € Zj,.

For these functions, we consider the space C([0,T};I%%(r)) of continuous

192(r)-valued functions on [0, T}, and the spaces

ﬁUQTH“%nM)={24Qﬂ-+W%ﬁM¢A|4ﬂmﬂmﬂb<m}’

with m =0, 1.
Notation. We identify {°2(r, p) with 1%%(r).

We make some assumptions over the regularity of the data f, and g, in prob-
lem (4.9).

Assumption 4.3. Let r > 0 be a smooth function on IR.
(1) fr € L2([0, T} 1%%(r));

(2) gn € 1%%(r).

We also define the generalised solution of problem (4.9).
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Definition 4.3. We say that u € C ([0, T); 1%%(r)) N L2 ([0, T); 1Y%(r, p)) is a gen-
eralised solution of (4.9) if, for all ¢ € [0, T},

(u(t), 0) = (gn, @ /{ 5),8*)
+ (b(s)8" u(s) — W<w+u o)+ (cls)u(s), @) + (fuls) @)} ds

holds for all ¢ € IV2(r, p).

Notation. In the above definition ( , ) denotes the inner product in [%%(r).

Finally, we prove an existence and uniqueness result for the solution of the
discrete problem (4.9). With this result we show that the numerical scheme is
stable, that is that, informally, the discrete problem’s solution remains bounded
independently of the space-step h. The result is obtained as a consequence of
Theorem 4.2, remaining only to prove that, under the discrete framework we
constructed, (1) — (2) in Assumption 4.1 hold. The result is proved in [22] for the
more general multidimensional case. Here, we give that proof’s particularization
for the case of one dimension in space just to keep the chapter reasonably self-

contained.

Theorem 4.4. Under (1)-(2) in Assumption 4.2 and Assumption 4.8, problem
(4.9) has a unique generalised solution u in [0,T). Moreover

T T
prm%m+/hﬁ%wm&SNO%@%m+Alh@mm&>
0

0<t<T

with N a constant independent of h.
Proof. Let Ly(s) : 1"%(r, p) — (IY%(r, p))*, for every s € [0,T]. We define
(Ln(s), ) == —(a(s)07 4, 0% ) + (b(s)0" ¢ — *a(s)0¥h, o) + (cs)h, ),

for all s € [0,T), ¢, € [M2(r, p).
It suffices to prove that the following properties hold

1. 3K, X > 0 constants : (Ly(s)1, %) + MY|nzg, ) < Kbl

2. 3K constant : [{(La(s)®, p)| < K|l « [@lit2(,),
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for all s € [0,T], p,% € (M%(r, p).
For the first property, owing to (1) and (2) in Assumption 4.2, we have

(Ln(s), ) = = D rPa(s)0* o yh+ Y r(b(s) — 8% a(s))0 Yph

T€Z}, x€2Zy,
+ Y rc(s)yyh
TE€EZ}
< =AY PpotyPh+ 2K Y rplot gk (4.10)
TEZ) z€Z),
+ Kyl
z€ZL
= — Mo liay + 2K D rpl0 Yplh + Klplbac,
TEZ},

where the variable z is omitted. We use the Cauchy’s inequality on the second

term in estimate (4.10), and obtain

<Lh(8)¢: '17[))
K
< =Np8 Ylbagy +eK Y rPlpd wlPh+ — 3 r($lPh+ Kllhag)

z€Z), z€Zp
— A Wl = Mblongy + K100 B oy + = Nlbagy + (K + Nlilbag,
< =Ml + K9l
with A > 0, K constants, by taking ¢ sufficiently small. The first property is

proved.
The second property follows from (2) in Assumption 4.2 and Cauchy-Schwarz

inequality
](Lh(s)w’ SO>]

= t — 3" rta(s)d*pdToh + > r?b(s)0 Pph ~ > r2ota(s)dt doh

TEZLL TEZy 2EZp
+ 3 rielsheh]

TEZp

<K Z 7°2l,02(9+'¢)(9+<p|h + K Z T2|p(9+'¢)<,0|h +K Z TQ"QZ"Plh

TEZp TEZR zEZ

S Klp8+'¢}lo,2(r)|p8+gollo,2(,~) + Klp8+'(,b]lo,2(r)]g0]lo,2(r) + Kl'g[)}lo,z(,,.)l(pllo,z(,.)
< K!"vb‘l"'z(w) ’ !‘pll‘ﬂ(r,p)?

where the same writing convention is kept.

Owing to Theorem 4.2 the result follows. 1
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4.4 Approximation results

In this Section, we study the approximation properties of the numerical scheme
(4.9). We bégin by investigating the consistency of the numerical schemne, and
prove that the difference quotients approximate the partial derivatives (with accu-
racy of order 1). In addition, we estimate the rate of convergence of the difference
quotients to the partial derivatives.

The result is obtained under the assumptions that the weights p are bounded
from below by a positive constant. Notice that this amounts to assuming that
the weights p are increasing functions of |z, which is precisely the case we are
interested in.

Observe also that the way we set our discrete framework, in strong connec-
tion with the framework for problem (4.3), plays a crucial role in obtaining the
convergence rate.

We emphasize that, by considering the special case of one dimension in space,
we can prove a result stronger than the corresponding result in [22] for the more

general multidimensional case (see Remark 4.3 below).

Theorem 4.5. Let r > 0 and p > 0 be functions on IR, and assume that p(x) > C
on R, with C > 0 a constant. Assume also that (1)—(3) in Assumption 4.1 are
satisfied. Let u(t) € W2(r, p), v(t) € W32(r,p), for all t € [0,T]. Then there

exists a constant N independent of h such that

(1) . TQ(x)’%u(t, z) — O*uft, w)rp?(w)h < KN () aac,p)

TEZR

o? 2
(8) Y (@) sg0(t,2) - 970 0(t,2)| (@) < REN[0(t) Byaagr

TEZR

forallt € [0,T).

Remark 4.2. Under the conditions of this theorem, function u(t) (function v(t))
has a modification in z which is continuously differentiable in z up to the order
1 (up to the order 2), for every t € [0, T]. Also, the partial derivatives in & up to
the order 2 (up to the order 3) equal the weak derivatives a.e., for every ¢t € [0, T].

These assertions can be proved by Sobolev’s embedding of W™?2(B) into
C™(B), with B a ball in IR, if m > % + n, and by Morrey’s inequality (see,
e.g., [17, 38]). We consider these modifications in the theorem’s proof.
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Remark 4.3. When particularizing the hypotheses of the corresponding multi-
dimensional result in [22] to the case of one spatial dimension, we obtain that
u(t) € W32(r, p) and v(t) € W4%(r, p), for all ¢ € [0,T], which is stronger than
assumed in Theorem 4.5.

In fact, in [22], the result is obtained making use of a Sobolev’s embedding,
while this can be avoided in the proof of Theorem 4.5 due to the particular

geometry of IR.

Proof. (Theorem 4.5) Let us prove (1). Observe that the forward difference

quotient can be written
o
Otu(t,z) = A Hu(t,z + h) —u(t,z)) = / %u(t,x + hq)dg.
0

Thus

(5%—“) u(t, x):/1<(9 u(t,z) — aa (t“hQ))d (4.11)

—h//an (t,z + hgs)dsdg.

From (4.11), using Jensen’s inequality, we obtain

(2w <h2//h
~h//q

qdq
z+h
-2 /

Observe also that from (4.12), using (3) in Assumption 4.1 we have, for any

g € (0,1),
(5 -0 )t

z+h
< hN7*(z + 6h)p*(z + 6h) /

2

u(t,z + hgs)| dsdg

2
duvdgq

52
u(t, z + v)

u(t, z +v) dv (4.12)

a 2

u(t, x + v) dv

) 2
6)—u(t, z)

352 dz.

2

r?(z) ()

) (4.13)

—u(t, z)| dz.

022
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As, by the mean value theorem for integration, for some 8 € (0, 1),

52 2

z+h
r2(:v+9h)p2(w+9h)/ 57" u(t, z)| dz
’ z+h 52 2 (4.14)
= [ | geth )| A,

from(4.13) and (4.14), using Holder inequality, we obtain

2

0
o) (-0 ) o) £
a:+h H2 2
<hN/ u(t,z)| pH(z)dz- sup |p7(z)| (4.15)
z€|[x,x+h]
2
<hN/ u(t,z)| p*(z)dz,

owing to the hypotheses on the weights p.
Finally, summing up (4.15) over Z,, we get

> r¥(=) (% - a+) u(t, )

TE€Zp
with IV a constant independent of h, and (1) is proved.
We now prove (2). By writing the forward and backward difference quotients

2
p2(£l7)h < thlu(t)‘%V2’2(r,p)7

otu(t,z) = (v(t,z + h) —v(t,x)) = /0 —%v(t, z + hq)dq

and
o~ v(t,z) = h  (v(t,z) —v(t,z — h)) = /0 %v( — hs)ds,

respectively, we have for the second-order difference quotient

+ Lo tro (o
- — - RN — — —_— - d
00" v(t,z) =0 /o &U'U(t, x + hq)dg /0 (6:6 /o 8mv(t, z+ hq hs)dq) s

1 1 82
= —v(t,z + h(g — s))dsdg.
| [ gmvtta+ria=9)
Thus

<88—;2 -8” 6+> (t, ) / / (6w2 a@; v(t, z+ h(q — s))) dsdq
= h/ / / — §)7—=v(t,x + hv(q — s))dvdsdg.

(4.16)

82




From (4.16), by Jensen’s inequality,

8? 2
|<51— —-0- 8+> (t,x) < hZ/ / / lg ——U(tz + hv(g — s))| dudsdg
h(g—s) 63
= h/o /0 /0 (g — 8) %v(t,x-}- w) dwdsdq
1 1 h 83
< h/ / lg — s|dsdg : @v(t,x-i-w) dw
z+h 53 2
<h/ v(t,z + w) dw:h/x 63(tz) dz,
and, following the same steps as in the proof of (1), we finally obtain
2 | (2 ’ 2 N o)
Z r*(x) <6_x_2 ~ 6"(‘3+> u(t, z)| p*(x)h < BEN(t) e,
x€Zp
with N a constant independent of h, and (2) is proved. O

Finally, owing to the stability and consistency properties of the numerical
scheme (Theorems 4.4 and 4.5, respectively), we prove the convergence of the
discrete problem’s solution to the PDE problem’s solution, and compute a rate
of convergence. The accuracy obtained is of order 1.

The result is obtained by imposing additional regularity on the exact solution
of problem (4.3) so that Theorem 4.5 holds, but lesser than it is assumed in the

corresponding result in [22], for the multidimensional case (see Remark 4.3).

Theorem 4.6. Letr > 0 and p > 0 be functions on R, and assume that p(z) > C
on R, with C > 0 a constant. Assume that the hypotheses of Theorems 4.2
and 4.4 are satisfied. Denote u the solution of problem (4.8) in Theorem 4.2
and uy, the solution of problem (4.9) in Theorem 4.4. Assume additionally that
u € L2([0,T); W32(r, p)), and that (3) in Assumption 4.1 holds. Then

T
sup ]u(t) - ’U,h(t)l?o,z(,r) +/0 lu(t) - Uh(t)’l%,z(,r,p)dt

0<t<T
T T
< h2N/ lu(t) sz, dt + N <[g — Ghlibar) +/ (f(t) — fh(t)‘?oz(r)dt) ,
0 0
with N a constant independent of h.

Remark 4.4. Under the conditions of the above Theorem 4.6, there are modifica-
tions in z such that the data f(¢) and g are continuous in z, for every ¢ € [0,T]

(see Remark 4.2). We will consider these modifications in the theorem’s proof.
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Proof. (Theorem 4.6) From (4.3) and (4.9), we have that u — v, satisfies the

problem

(%u—w%=LMu—w%+@—ﬁww+U—fm om0
(v —ur)(0,2) = (g —gn)(z) in Z.

Taking in mind Remark 4.4, we see clearly that f — f, € L2([0,T];1%%(r)) and
g — gn € 19%(r).

With respect to the term (L — Ly)u, note that if u(t) € W%(r, p), for all
te[0,T],

Y @)L = Le)()ult)Ph

“’: ;Z‘ r2(z) |a(t, z) <63—:2 - 6‘6+) u(t, ) + b(t, z) (% - 3+> u(t, z) E

< }'L2Nl’u,(t)|€vs,2(r,p) < 00,

owing to (2) in Assumption 4.2 and to Theorem 4.5. Thus (L—L)(t)u(t) € 1%%(r),
for every t € [0,T). Moreover, as by assumption u € L%([0,T); W*%(r, p)), we
obtain immediately (L — Ly)u € L%([0, T}; 1%2(r)).

We have shown that problem (4.17) satisfies the hypotheses of Theorem 4.4,

therefore holding the estimate

T
sup I’U,(t) — ’U,h(t),?o,z(r) +/ |’U/(t) - uh(t)|l21,2(r,p)dt
0<t<T 0

sw(m—mmm+Alﬂa<mmmma+41w—mmmm%mﬂ0'

Owing again to (2) in Assumption 4.2 and to Theorem 4.5, the result follows.
O

The following result is an immediate consequence of Theorem 4.6.
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Corollary 4.7. Let the hypotheses of Theorem 4.6 be satisfied, and denote u the
solution of (4.8) in Theorem 4.2 and uy, the solution of (4.9) in Theorem 4.4. If

there is a constant N independent of h such that

T

T
|9 = gnlioag + / |£(®) = ful®)oagdt < A*N <|g [oage + /O 1£(2) |%V-"2<r,p)dt>
0

then

T
sup u(t) — un(t) gy + / [ut) = un(®) Pragr e
0<t<T 0

T
< h’N (/0 [w(t)[fs2r,p) At + 191502, +/0

T

|f(t)|%,v—1,2(T’p)(it> .

85







Chapter 5

Discretisation in space and time

5.1 Introduction

In this chapter we combine the results obtained with the time discretisation in
abstract spaces in Chapter 3 and with the space discretisation of the PDE in
Chapter 4, in order to obtain a rate of convergence for a discretisation in space

and time,
In fact, we showed that the discretised problem in Chapter 4 can be cast into

the problem in abstract spaces in Chapter 3.

5.2 Numerical approximation in space and time

We reset ourselves in the same general framework established in Section 3.2. We

consider, once again, the Cauchy problem for an evolution equation
— =A(t)u+ f(t) in [0,T], u(0) =g, (5.1)

with T' € (0, 00), for every t € [0,T]. A(t) and d/dt are linear operators from V'
to V*, f(t) e V*, and g € H.

We make the same assumptions as in Chapter 3, assuming that the operator
L(t) is continuous and imposing a coercivity condition, and also some regularity
on the free data f and g (see Assumption 3.1).

An existence and uniqueness result for the generalised solution (see Definition
3.1) of problem (5.1) is stated in Theorem 3.2.

The problem we aim to establish for a rate convergence in space and time is

the problem considered in Chapter 4

Lu — %:— +f=01in Q, u(0,z)=g(z) in IR, (6.2)
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where L is the second-order operator with real coefficients
L(t,z) = a(t,a:)a—2 + b(t,az:)i + c(t, x), (5.3)
ox? ox

Q =10,T) x R, with T € (0, 00), and f and g are given functions. We allow the
growth, in the space variables, of the coefficients a(t,x) and b(¢,x), and of the
free data f(t,z) and g(z).

In Chapter 4, Section 4.3, we proceeded to the space-discretisation of second-
order parabolic PDE problem (5.2). We took its version, discrete in space

Liu—w+ fr,=0 in Q(h), wu(0,z)=gn(z) in Z, (5.4)

where Q(h) = [0,T] x Zy, with T € (0,00), Z;, is a h-grid on IR and Ly the

discrete operator
Ly(t,z) = a(t,z)0~ 8% + b(t,z2)0" + ¢ (¢, z), (5.5)

and set a suitable space-discrete framework, considering the discrete weighted
spaces [%2(r) and [%?(r, p), in order to handle the unbounded data. We then
showed that this discrete framework is a particular case of the general framework
presented in Section 3.2.
Let us now consider the time-discretisation of the second-order problem (5.4).
Given a non-negative integer n such that 7'/n € (0, 1], we define the n-grid on
[0, 7]
T.={te[0,T):t=34k, j=0,1,...,n}, (5.6)

where k := T'/n. We denote t; = jk for j =0,1,...,n.
For all z € V, we have the backward difference quotient in time

A" 2(t41) = k7 (2(t4) — 2(t5)), §=0,1,...,n—1,
and the forward difference quotient in time
A*z(t) =k M (2(t4) — 2(¢), i=0,1,...,n—1.

Let Lpk and frr be some time-discrete versions of Ly, and fj, respectively. For
all z € V, denote Lk j112 = Lpk(tj41)%, Frkjrr = fre(tjzn), 5=0,1,...,n— 1.
For each n > 1 fixed, we obtain a time-discrete version of problem (5.4) for

the implicit scheme

A7vip1 = LpgizaVigr + frkgpr for i =0,1,...,n—1, v =gy (5.7)
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and for the explicit scheme
A+U’i = Lhk,ivi+fhk,i for i = 0,1,...,71"‘ 17 Vo = Gh, (58)

where we define v; = v(t;), 7 =0,1,...,n, a vector in V.,

The existence and uniqueness of a solution for both problems was proved in
Sections 3.3 and 3.4 under an abstract framework, but that still hold for this
particular problem.

Under certain assumptions, we also obtained results concerning the stability of
the schemes (see Theorems 3.7 and 3.11), and their convergence (see Theorems 3.8
and 3.12). The rates of convergence in both schemes were obtained in Corollaries
3.9 and 3.13.

We recall Remark 3.7 to note that Assumption 3.5 in Theorems 3.11 and 3.12
for the time-discretisation using a finite-difference explicit scheme is not void.

It rernains only to determine the rate of convergence when the discretisation
is considered both in space and time. We will prove that the approximation is
(k% + h)-accurate.

We first establish the result for the case where the implicit scheme is used for

the time-discretisation.

Theorem 5.1. Assume that the hypotheses of Corollary 4.7 and Theorem 3.8 are
satisfied. Denote by u the solution of (5.2) in Theorem 4.2, up the solution of
(5.4) in Theorem 4.4, and vp;, 5 =0,1,...,n, the solution of (5.7) in Theorem
3.3. Then

108X fongg = u(ty)bagy + Y loweg — u(ty) frag,) k
== 0<j<n

tj
Liwsun(t;)k — / Ln(s)un(t;)ds

tj-1

T
1
S N(kz‘ﬁ_ h2 A |U(t)l%/‘/m+3,2(r,p)dt)+N ZE

<j<n 10.2(7)

T
+|9—9h|?0,2(r)+/|f(t)—fh(t)lz20,2(r) dt |,
10:2(7) 0

fre ik — }h(s)ds

tj—1

1
+ZE

1<j<n

with N a constant independent of h and k.

Proof. Let us consider separately the two terms in the sum we want to estimate.
For the first term,

2
Jnax ks — ()02

2 2
< 20211%1 |Uhk,g — un(t;) 0.2y + 2021% [u(t) — un(t) .20y,
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and the desired estimate is obtained immediately by using Theorems 4.7 and 3.8.

For the second term, we have

Z |Uhk,] |l1 2(r,0) k

<2 Z |VRk,; — 11 2(r,p) k+2 Z lun(t;) — u(t ')|}Z1,2(T,p) k.

7=0

Let us determine an estimate for the second term in (5.10).

Denote | |j12(5) :=| |1. We have that
n T
> funlts) — ult)Tk = [ funtt) - )t
=0

|uh(t0 to Illu -+

Z/]HI“’I 1) —u(tizn) |} — Jun(s)—u(s)[3) ds|.
(5.11)

For the integral in (5.11), using Cauchy’s inequality and Assumption 3.3, we
have

/tﬁl(luh(ﬁl)—u(tjﬂn lun(s) —u(s)[}) ds

J

<2fup(tjr1) — ultje)h /t j+1(|uh(tj+1) ~u(tjp)l — |un(s) —u(s)]1)ds

J

tit1

< Akfun(42) ~ult 0 by ( ot ~utsl—feats) ) ds>

k
<Akfup(tjen) —ultjpg) |§+XN/€25>
(5.12)

with A > 0.
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From (5.11) and (5.12),
n T
> (e~ ult) b= [ un(t) - ult)fa
=0 0
n—1
< Jup(to) — ulto) [k + A Z up(ties) = u(tje) ik + NE?

=0

— (1= Nfunlte) — ulto)Pk + A lun(tian) — ultyan) B + NK?

=0

<A lunltin) — ultyen) |k + NE?
7=0

and, for 0 < A < 1 we finally obtain
n T
Z lun(t;) — ()P k < N/ lup(t) — u(t)|? dt + Nk*. (5.13)
=0 0
From (5.10) and (5.13), the desired estimate is obtained immediately owing to
Corollary 4.7. The result is proved. O

Next result follows immediately from Theorem 5.1.

Corollary 5.2. Assume that the hypotheses of Theorem 5.1 are satisfied, and
denote by u the solution of (5.2) in Theorem 4.2, up the solution of (5.4) in
Theorem 4.4, and vz, 5 = 0,1,...,n, the solution of (5.7) in Theorem 3.3. If

there exists a constant N independent of h and k such that

|k - / fuls

2
1 t;
Lhk,jUh(tj) — E Lh( Yun(t )dS < Nk'%,

10:2(r)

19.2(r)

for j=1,2,....,n, and
lg — 9h|z02(r)+/|f — fu(t)lioagy dt < NA? <Ig|W""2('rp)+/ |f (&) [fym- 12(1'p)dt)
then

max lvhk,j (t )|z02(r) + Z I’Uhk,y u(t; )Il”(rp) k

0<i<n
0<j<n

T T
< NE28 + Nh? (/0 ,U(t)l%,vm-psa(r,p)dt + Igl%vm,z(,,.’p) + /0 lf(t)l%/vm—l,Q(T’p)dt> .
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Now, we determine the rate of convergence, in the case where the explicit
scheme is used for the discretisation in time. The proof is the same as for Theorem

5.1.

Theorem 5.3. Let the hypotheses of Corollary 4.7 and Theorem 3.12 be satisfied.
Denote by u the solution of (5.2) in Theorem 4.2, wy the solution of (5.4) in
Theorem 4.4, and vpkj, § =0,1,...,n, the solution of (5.8). Then

8 [vnkg — ult)ffosq) + O;n [vhkg — w(ty) o

2

T 1 tit1
<N <k‘25+h,2 0|u(t)l%/Vm.-f—.'iﬂ(T’p)dt)—'_N Z Lhkyuh i)k— /Lh( Jun(t )ds
0

10:2(r)

tit1
fhk,ik — fn(s)ds
¢

J

T
19— gulhage + / () = Fa®)loagy
192(7) 0

n—11
+ZE

J=0

with N a constant independent of h and k.
Finally, we state a corollary as immediate consequence of Theorem 5.3.

Corollary 5.4. Assume that the hypotheses of Theorem 5.8 are satisfied, and
denote by u the solution of (5.2) in Theorem 4.2, uy the solution of (5.4) in
Theorem 4.4, and vpj, 7 = 0,1,...,n, the solution of (5.8). If there exists a
constant N independent of h and k such that

1 [l

+{ frkg — z fn(s)ds

tj

1

ti+1
Lk jun(t;) — —/ Ly(s)un(t;)ds
t

< Nk
k), =T

19:2(7)

10:2(7)

forj=0,1,...,n—1 and
lg — ghlzoz(rﬁ‘/lf — fu(t)lfoz(y dt < NA? <|g,Wm2('r‘p) "‘/ |F (@) [fym- 12(1‘p)dt>
then

max |v 02(r) T v 20r.0) K
08X [vnks = ults)lioa 0<§]<:n| hkg = W) o)

T T
< Nk? + Nh? (/O lu(t)|%vm+3,2(r,p)dt+IgI%Vm,z(r,p)Jr/O lf(t)]%Vm_l,z(T,p)dt).
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Chapter 6

Conclusions and further research

Many financial problems induce a deep study in mathematics and are described
by partial and stochastic differential equations.

The celebrated Black-Scholes equation is a model for option pricing that has
been widely used. However, even though for the basic Black- Scholes equation
there is an explicit solution, that is not the case, for instance, when coefficients
(drift and volatility) are not constant or when multi-dimensionality is considered.
In these models, the numerical approximation of the stochastic equation or of the
corresponding PDE is compulsory.

In this work, we used finite-differences methods to discretise a PDE problem
obtained from the stochastic modelling of a vanilla option of European type un-
der the framework of a general version of Black-Scholes model, where the asset
appreciation rate and the volatility are taken time and space-dependent.

Making use of both the implicit and the explicit finite-difference schemes in
time, we considered the PDE solvability in the framework of the variational
approach and proceeded to the discretisation of a linear parabolic equation in
abstract spaces, obtaining the convergence of the schemes under a smoothness
condition weaker than the usual Hélder-continuity.

We also used finite-differences methods to approximate in space the weak
solution of a Cauchy problem for the one dimension case. The same approach for
the multidimensional PDEs has been done previously (see {20, 21]). The same
order of accuracy was obtained under regularity assumptions weaker than those
required in [20, 21] for the corresponding convergence result.

The discretisation in space and time of a general linear evolution equation
in abstract spaces, led us to estimate the rate of convergence of the numerical

approximation.
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We considered also a particular model with the introduction of costs in the
financial transactions, that led us to a non-linear problem with a Black-Scholes
type equation and stated results for the existence, uniqueness and localisation of
the solution using topological methods.

In fact, functional analysis and topological methods play an important role
in the study of non-linear differential problems. Most of the studied cases in
the literature concern linear problems but the interest for non-linear versions of
the Black-Scholes equation has been increasing rapidly, with results concerning
analytical and numerical treatment. See for instance papers from Pablo Amster
et al. ([2]), Matthias Ehrhardt et al. ([3]), Valeri Zakamouline ([59]) and Daniel
Seviovié ([51]) for non-linear Black-Scholes type equation, modelling European
and American options.

Another possibility is to use the finite element method, more suitable when
solving the equations in general domains and closer to the weak form of the equa-
tions, making the mathematical and numerical analysis of the discrete problem
profit from functional analysis results valid for the continuous problem.

We are also interested in the investigation of the PDE solvability in the frame-
work of the variational approach and, without the assumption of a nondegen-
eracy condition, discretise a linear parabolic equation in abstract spaces (see
Gyongy [27]).
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