

Identification of Agroforestry Systems and Practices to Model

Project name	AGFORWARD (613520)
Work-package	6: Field- and Farm-scale Evaluation of Innovations
Milestone	Milestone 27 (6.2): Identification of Agroforestry Systems and Practices to Model
Date of report	20 June 2015 (updated 25 September 2015)
Authors	João Palma, Anil Graves, Josep Crous-Duran, Joana A Paulo, Matthew Upson,
	Christian Dupraz, Marie Gosme, Isabelle Lecomte, Haythem Ben Touhami, Delphine
	Mézière, and Paul Burgess
Contact	joaopalma@isa.ulisboa.pt
Reviewed	Anil Graves and Paul Burgess

Contents

1	Context	2
2	Methodology	2
3	Description of the agroforestry systems	3
4	Innovations to model	10
5	Synthesis	18
6	Innovations not to be modelled	22
7	Acknowledgements	
8	References	31
Ann	ex A. Stakeholder meetings reports covering four land use sectors	32
Ann	ex B. Example of fact sheet	
Ann	ex C. Source of data and contact for each agroforestry system	

AGFORWARD (Grant Agreement N° 613520) is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD. The views and opinions expressed in this report are purely those of the writers and may not in any circumstances be regarded as stating an official position of the European Commission.

1 Context

The aim of the AGFORWARD project (January 2014-December 2017) is to promote agroforestry practices in Europe that will advance sustainable rural development. Within the project there are four objectives:

- 1. to understand the context and extent of agroforestry in Europe,
- 2. to identify, develop and field-test innovations (through participatory research) to improve the benefits and viability of agroforestry systems in Europe,
- 3. to evaluate innovative agroforestry designs and practices at a field-, farm- and landscape scale, and
- 4. to promote the wider adoption of appropriate agroforestry systems in Europe through policy development and dissemination.

This report is an output from work-package 6 which contributes to the third objective. Work-package 6 focuses on the field- and farm-scale evaluation of innovation research that have arisen from about 40 agroforestry stakeholder groups created across Europe. Some research, for example tree protection options, are best determined by technical evaluations in the field. However some research questions require a modelling approach to predict, for example, the financial and economic impact of a new practice over a number of years. This report seeks to identify those agroforestry systems and practices which could be usefully assessed using biophysical agroforestry models such as Yield-SAFE (van der Werf et al., 2007) and Hi-sAFe (Talbot, 2011), or bio-economic models such as Farm-SAFE (Graves et al., 2011).

2 Methodology

The AGFORWARD project has categorised agroforestry practices in relation to four key land use sectors: existing agroforestry systems of high nature and cultural value (HNCV) (covered by work-package 2), integrating livestock and crops into high value tree systems (covered by work-package 3), agroforestry for arable systems (covered by work-package 4) and agroforestry for livestock systems (covered by work-package 5).

During 2014, the partners within the AGFORWARD project facilitated about 40 stakeholder groups across Europe, each resulting in an initial stakeholder reports (Annex A). These stakeholder reports, and four synthesis reports on the innovations to be evaluated (Hermansen et al. 2015; Mirck et al. 2015; Moreno et al. 2015; Pantera et al. 2015), were used to determine the 1) agroforestry practices being considered, and 2) the research and innovations that has been proposed.

1. Agroforestry practices are being described in various ways in the project. This report collates an initial description of the practices being studied by each stakeholder group. During the project, more detailed descriptions of the practices will be developed (for example Milestone 28) are being developed using the template described in Annex B. The contacts for each group are described in Annex C.

2. Whereas some research questions can be addressed by modelling, some cannot. This report attempts to categorise those research questions that are amenable to being resolve with the support of modelling, and those that are not. For example some research questions are knowledge gaps which could be tackled through literature research.

3 Description of the agroforestry systems

The stakeholder meetings organised by the AGFORWARD project has led to the identification of 10 agroforestry systems which are recognised for their high cultural and natural value (Table 1), which are indicated in red in Figure 1. There were also 13 systems focused on the intercropping or grazing of high value trees such as orchards or olive grove (Table 2), indicated in orange in Figure 1. There were 12 systems focused on agroforestry for arable farmers (Table 3) and 11 systems focused on agroforestry for livestock farmers.

Figure 1. Location of the agroforestry systems¹

https://www.google.com/maps/d/edit?mid=z1xoYw3gseS0.kOaFKCqmAN7s&usp=sharing

¹ This map is available at:

Table 1. Agroforestry systems of high nature and cultural value: the name, location and short description of the selected agroforestry systems

AF-ID	Name	Location	Short description
201	Montado	South and	Low density trees combined with agriculture or pastoral activities. The main tree
		Central	species encountered in the Montado are cork oak (Quercus suber L) and/or holm oak
		Portugal	(Quercus rotundifolia L). Mixed stands with a combination of these species are also
			common. Cork oak based Montado areas are included in the Portuguese National
			Forest Inventory (NFI) as part of the cork oak and holm oak forest area, which occupies
			736,775 ha and 331,179 ha respectively.
202	Wood	UK	Wood pasture and parklands are traditional land uses with presence of open-grown
	pastures		ancient or veteran trees (often pollarded), grazing livestock, and an understory of
	and		grassland or heathland. The veteran trees typically have characteristics of large girth,
	Parkland		cavities and hollowed stems and branches, water pools, decay pockets, standing
			deadwood in various states of decay, epipnytes, and fruiting bodies from fungal decay
202	Dahasa	Constructioned	Organisms. Around 10,000 to 20,000 na in Working condition .
203	Denesa	Central and	Agro-silvo-pastoral system formed from the clearing of evergreen woodlands where
		South Spain	rees, had ve grasses, crops, and investork interact positively under management. At
			Portugal where they are called "Montados"
204	Valonia oak	Valonia	Agroforestry and specifically silvonastoralism is a traditional land use system in parts of
201	silvopastora	Greece	Western Greece where livestock breeders use the valonia oak (<i>Quercus ithaburensis</i>
	l systems	0.0000	subsp. macrolepis (Kotschy) Hedge and Yaltirik) forest for grazing and the collection of
			acorns. Valonia oak forests cover about 29,630 ha in continental and insular Greece.
205	Grazed oak	Sardinia,	Much of the Sardinian rural landscape is characterized by a mosaic of agroforestry
	woodlands	Italy	systems including grazed forests and wooded grasslands where scattered Quercus
	in Sardinia		species (holm oak, cork oak and deciduous oak trees) are mixed with permanent or
			temporary pastures or intercropped with cereals and/or fodder crops. Forests occupy
			about 5800 km ² in Sardinia, and about 30% (1800 km ²) are considered to be of high
			nature value.
206	Spreewald	Brandenburg	The Spreewald Biosphere Reserve covers about 475 km ² and is situated in
	flood plain	, Germany	Brandenburg, South-East of Berlin, Germany. The area is dominated by a network of
			waterways, and the combination of land ownership and the installation of small
			transportation canals, that have later been planted with trees has resulted, in places, in
			tree-lined hedgerows that demarcate relatively small-sized fields. The dominant tree
			species are black alder (Alnus glutinosa (L.) Gaertn.), black poplar (Populus nigra L.) and
			bird cherry or hackberry (Prunus padus L.). The grassland is either mowed or grazed by
			cattle that are used for meat or milk production.
207	Wood	Sweden	Near the Sami village Njaarke, much of the area is demarcated as Fennoscandian
	pastures		wooden pastures (EU Directive Habitats Code 9070). During the summer, reindeer
	and		(Rangifer tarandus L.) from Njaarke Sami village are kept in the non-forested mountain
	reindeer in		areas, but between October and April the reindeer are kept in the winter grazing area
200	Sweden		of wood pastures.
208	Wood	Hungary	Wood pastures were once common in Hungary, but they are currently declining and
	pastures in		they are thought to cover about 5500 ha in Hungary. Iraditional snepherding occurs in
	пиндагу		some of the remaining wood pastures, but this practice is threatened. Increasing formal
			types of managers and the emergence of new types of knowledge in the remaining
			wood pastures.

AF-ID	Name	Location	Short description
209	Wood	Southern	Traditionally closed oak woodlands with pigs eating the acorns transformed in the
	pastures in	Transylvania,	second part of the 19th century in pastures, communally managed with scattered large
	Southern	Romania	trees such as oaks, pears, hornbeams and beech grazed by cattle and buffalo.
	Transylvania		
	, Romania		
210	Bocage	Brittany,	Ancient agroforestry systems based on lines of high-stem and medium-stem trees with
	agroforestry	France	the main period of expansion from the 18th Century to the end of the 19th Century
	in Brittany,		accompanying successive cutting and redistribution of parcels linked to inheritance
	France		processes with the purpose of have sources of firewood and timber. From the 1950s,
			the agricultural modernization and intensification, accompanied with collective land
			reallocation programs, led to a general decrease in hedgerows density and from the
			1990s, successive hedge planting schemes have been implemented aiming to maintain
			the cultural landscape but also to regulate nitrate and phosphorus pollution.

Table 2. Intercropping and grazing of high value tree systems: the name, location and short description of the selected agroforestry systems

AF-ID	Name	Location	Short description
301	Apple trees with organic vegetables	Experimental sites in Suffolk,	Wakelyns Agroforestry, Suffolk: replicated blocks of 7 tree species (apple, lime, hornbeam, cherry, Italian alder, ash, oak and sycamore) with 12m crop alleys between tree rows. Organic arable rotation.
	in UK	Gloucestershi	Duchy Home Farm, Gloucestershire: very diverse apple system with a national
		re and	collection of apple varieties, and organic vegetables grown in the alleys.
		Devon, UK.	Shillingford Organics, Devon: organic vegetables and arable production in 15 m
			wide alleys and apple trees.
302	Cherry trees	Möhlin, NW	16 hectares with 80 cherry trees with rosehip (Rosa rugosa), sea buckthorn
	alley cropping in Switzerland	Switzerland	sanddorn (<i>Hippophae</i> sp.) and cornelian cherry (<i>Cornus mas</i>) are planted to produce wild berry juice.
303	Wild cherry	Aude	Different tree species planted in 1988 associated with pastures. Two trees densities:
	pastures in	Department,	100 trees /ha and 400 trees /ha are compared. A sole crop control and a forestry
	France	France	control were settled. The elevation is 570 m a.s.l., field on a hillside.
304	Timber wood	Hérault	Different tree species, planted in 1995, associated with cereal. Trees in row (13 x 8
	trees with	Department,	m). The main culture is winter durum wheat in rotation with winter protein pea.
	cereals in	France	Sole crop and forestry controls are available. No block design, but large plots are
	France		compared. Tree growth and crop yield are monitored each year.
305	Grazed cider	Hereford-	There are 25,350 ha of 'traditional orchards' in England and Wales, however Defra
	orchards in the	shire, UK.	(2013) suggest that the total commercial orchard area in England and Wales in 2012
	UK		was 17,600 hectares. Defra (2013) report that there are about 7000 hectares of
			commercial cider orchards; approximately a quarter are 'traditional orchards' and
			three-quarters are 'bush orchards'. Traditional orchards typically have open-grown
			trees (tree density of less than 150 trees per hectare), whilst bush orchards can
			have 600 trees/ha. Both types of orchard have grass understoreys which need to be
			kept short to enable apple harvest. Grazing is practiced in some traditional
			orchards, but the use of animals in mature bush orchards is less common.
306	Intercropping	Italy	Over one million ha of olive orchards (Olea europea) risk abandonment in Italy,
	and grazing		since the low price of olive oil and the de-coupling of subsidies from production
	olive orchards in		have reduced profitability and removing trees is illegal. The particular focus of this
	Italy		system is the intercropping of wild asparagus (Asparagus acutifolius), which
			naturally tends to grow in abandoned olive orchards. Grazing animals, particularly
			chickens, are proposed as an additional source of income while providing weed

AF-ID	Name	Location	Short description
			control and fertilization, thus lowering costs and impact of the orchard
			management.
307	Intercropping of	Mostly in	The combination of olive orchards with arable crops (cereals) in the same field is a
	olive orchards in	Macedonia,	traditional land use system in Greece. The combination of olives and cereals can
	Greece (2	N. Greece	stabilize the economic return in the context of variable weather conditions.
	groups)	and Central	13,000 ha in Chalkidiki (North Greece) and in coastal areas around the country and
		Greece	in the inland of west and south Greece (Epirus, Aitoloakarnania, Peloponnese, Crete
			and in most islands of Ionian and Aegean sea).
308	Grazing and	Spain	Olive, almond and carob orchards in Spain were traditionally either grazed or
	intercropping of		intercropped. However, these traditional agroforestry systems have become
	plantation trees		marginal and new agroforestry practices, based on plantations of quality timber
	in Spain		trees such as cherry and walnuts on agricultural land are developing. These are
			often managed with high levels of inputs. The adoption of grazing and intercropping
			in such systems has the potential to create economic and environmental benefits.
			However, there generally is a lack of knowledge and information on appropriate
			agroforestry management practices and the benefits, what is constraining the
			adoption of agroforestry schemes to manage these new afforested farmlands.
309	Chestnut	Galicia, Spain	Chestnut (Castanaea sativa Mille) agroforestry is a traditional land use system in O
	systems in		Courel, Galicia (NW Spain). The chestnuts are recognized under the label of
	Galicia, Spain		Protected Geographical Indication (PGI), and are exported to markets in Europe.
310	Intercropping of	Eurytania,	In Eurytania in central Greece, farmers have historically integrated agriculture with
	walnut trees in	Central	high value species such as walnut and chestnut trees on the same plot.
	Greece	Greece	
311	Intercropping of	Mostly in	Citrus groves of orange, tangerine and lemon trees are a characteristic land use
	orange groves	Western,	system in Chania, Crete, Greece. In the past, farmers used to cultivate crops in
	with arable	Central and	between citrus trees after pollarding them to change varieties. They also used
	crops in Greece	South Greece	cypress trees as hedgerows to protect citrus trees from winds (as windbreaks).
		and Crete.	However nowadays they prefer to cut the cypress trees from the hedgerows or to
			uproot citrus trees and switch to avocado monoculture for nigher profit. Unly a few
			farmers still practice agroforestry as citrus trees with intercrops ensuring a steady
			economic return every year irrespectively of weather conditions or other type of
			nazards until tree crown fully develops to exclude any form of intercropping. Most
			of the intercrops are vegetables. After crown development intercrops are replaced
			by chickens grazing.
			In crete, citrus cultivation covers about 4500 ha. For many years, larmers in the
			pollarding until the trees achieve a full capery. Formers also use corress trees as
			windbreaks to protect the citrus trees from wind
312	Grazed orchards	Normandy	Meadow orchards in France were estimated to cover about 600,000 ha in 1950, but
512	in France	Brittany and	the current total is about 150,000 ba. It is estimated that 43% of Erench pre-
	Intrance	the north of	orchards are "cider" apple orchards located in Normandy. Brittany and the north of
		the Loire	the Loire river (Table 1) One of the new features being attempted by some growers
		river France	is the grazing of "low-stem orchards" by Shronshire sheen, as the experience of
		inver, induce.	some growers is that the Shronshire breed do not eat the bark of annle trees
313	Grazed orchards	Northern	The apple industry in Northern Ireland has 223 independent growers farming 1506
515	in Northern	Ireland LIK	ha of orchards with a typical field size of 1.5 to 4 ha. The grass strins between trees
	Ireland, UK		are generally mowed. Between May and the end of July. the apple trees are also
			typically sprayed every 10-14 days with a fungicide to prevent apple scab (Venturia
			ingegualis). Grazing the orchard with sheep may provide a means of reducing
			mowing costs and may help with scab control.
L			5 ····· · · · · · · · · · · · · · · · ·

Table 3. Agroforestry for arable farms: the name, location and short description of the selected systems

AF-ID	Name	Location	Short description
401	Integrating	Sursee,	Innovative farm: 545 apple trees (varieties Boskoop and Spartan) were planted. The
	apple trees with	Central	intermediate cultures consist of winter wheat, strawberries and sown flower strips.
	arable crops in	Switzerland	
	Switzerland.		
402	Integrating	Buus, NW	Pioneer farmer: farm with a total area of 20 ha. In March 2011, 52 Aspen (Populus
	poplar with	Switzerland	tremula) were planted. The area between the tree rows was first managed as
	arable crops in		grassland, is now intercropped with rye, corn and sorghum. The wood of the aspens
	Switzerland.		should be harvested in 30 to 35 years as energy wood.
403	Apple trees or	Experimental	Silvoarable systems are currently rare in the UK. The few systems that exist are
	Short rotation	site:	usually based on an alley cropping design with arable crops in the alleys. The tree
	coppice with	Wakelyns	component consists either of top fruit trees (apples, pears and plums), timber trees,
	cereals or	Agroforestry,	or coppice trees for woodfuel. Organic and conventional silvoarable systems with
	legumes	Suffolk, UK.	top fruit (apples, pears) and/or short rotation coppice for bioenergy, and arable
			crops in the alleys. Alleys typically 12 to 24 m wide.
404	Mediterranean	Southern	Different tree species, planted in 1995, associated with cereal. Trees in row (13 m X
	silvoarable	France	8 m). The main culture is winter durum wheat in rotation with winter protein pea.
	systems in		Sole crop and forestry controls are available. No block design, but large plots are
	France		compared. Tree growth and crop yield are monitored each year since the beginning.
			Besides the three main tree species (see below), many other tree species are
			included in an agroforestry arboretum (e.g. Prunus avium, Fraxinus angustifolia,
			Pyrus communis, Acer platanoides)
405	German	Lusatia,	Although agroforestry on arable farms is not a common practice in Germany, alley
	poplar/willow	Germany.	cropping systems for woody biomass production are receiving increasing interest
	alley cropping in		due to the potential to produce biomass and agricultural crops at the same time. In
	Germany		Germany alley cropping systems combine rows of fast growing trees (for example
			poplar, willow or black locust) with agricultural crops.
406	Trees for timber	Veneto	Poplar hybrids and species has been intensively managed in Italy for timber
	intercropped	Region, NE	production mostly in monoculture plantations, but often in intercropping systems
	with cereals in	Italy	(intercropping of arable crops in between young tree rows) and in linear plantations
	Italy		along field edges, drainage canals and streams. Poplar cultivation, in all the above
			cultivation models, is currently declining for stagnating domestic timber market.
407	Intercropping	Mostly in	Agroforestry is a traditional land use system in Voio in Northern Greece where
	of poplar and	northern	farmers have traditionally integrated arable production with tree species. In Voio,
	walnut trees	Greece	arable fields containing field beans, cereals and grassland are bordered by walnut
	with cereals	(Macedonia	trees and fast growing poplars. Agroforestry is a traditional land use system in Voio
	and beans in	and Thrace).	in which farmers used to combine agricultural production with high value tree
	Greece		species in the same plot. The area is characterized by fast growing species (poplars)
			and walnuts at the edges combined with dry beans, cereals and pastures.
408	Alley cropping	Hungary	It is estimated that there are about 16,000 ha of windbreaks and shelterbelts in
	in Hungary		Hungary. Although alley cropping occurs in orchards, there is not wide use of the
			system in arable areas. One alley-cropping demonstration site is near in Fajsz, Bács-
			Kiskun County, in the Hungarian Great Plain. The agroforestry system consists
			of <i>Paulownia tomentosa</i> var. Continental E. in rows and alfalfa as intercrop.
409	Silvoarable	Spain	Silvoarable agroforestry consists of widely-spaced trees intercropped with annual or
	Systems in Spain		perennial crops. In general, silvoarable production systems are very efficient in
			terms of resource use, and could introduce an innovative agricultural production
			system that will be both environment-friendly and economically profitable.
410	Agroforestry for	Western	Between 2008 and 2013, 42 agroforestry establishment projects have been
	Arable Farmers	France	completed in the Poitou Charentes region of Western France. In total the projects

AF-ID	Name	Location	Short description
	in Western		cover an area of 355 ha. The projects have mainly focused on fields that are farmed
	France		organically. The systems typically comprise three to five tree species (Juglans nigra x
			regia, Juglans regia, Sorbus domesticus, Sorbus torminalis, Prunus avium, Fraxinus
			excelsior, Acer pseudoplatanus, and Quercus species). The density of trees ranges
			from 30 to 50 trees per hectare, typically with 27 m between rows which allows a 24
			m cultivated area.
411	Agroforestry for	Picardy region,	Since 2006, seven experimental silvoarable projects have started in Picardy in
	Arable Farmers	France	Northern France. In total 100 ha has been planted. The plot sizes varies between 5
	in Northern		ha and 30 ha. The sites are mainly located on loamy soils and the tree density ranges
	France		from 28 trees per hectare to 110 trees per hectare. Each plot has a wide range of
			tree species. The distance between the tree rows is typically 30 m, but ranges from
			26 m to 50 m.
412	Irrigated	Central	An ad-doc experimental plot is being established by a farmer under his intensive
	Silvoarable	Portugal	managed pivot irrigated maize plots. The interest of the innovation is to increase the
			marginal land around the corners, where the pivot irrigation does not reach. The
			assessment would estimate the yield of the trees which seem to progress at a
			potential yield. Different species were planted, including black walnuts and wild
			cherry.

Table 4.	Agroforestry	for livestock	farms:	the n	name,	location	and	short	description	of	the
selected	systems										

AF-ID	Name	Location	Short description
501	Pigs in energy	Jutland, DK	Integrated production of free-range pigs and energy crops. The energy crops are
	crops in		willow and/or poplar. The energy crops are established in paddocks with lactating
	Denmark		sows and piglets. The paddocks are organised so that they include two or more rows
			of poplar/willow in addition to an area with grass clover.
502	Wild cherry	Aude	Different tree species planted in 1988 associated with pasture. Two trees densities:
	pastures in	Department	100 trees /ha and 400 trees /ha were compared. A sole crop control and a forestry
	France	France	control were settled. Elevation = 570 m, field on a hillside
503	Woodland	UK	Some of the eggs produced by hens with access to areas of trees are marketed as
	Eggs in the UK		"woodland eggs". To qualify as 'woodland eggs', the UK Woodland Trust, which adds
			its logo to the woodland eggs sold by Sainsbury's plc (a major UK retailer), specifies
			20% cover in the free range area with some trees within a 20 m distance from the
			shed. In 2013, the Woodland Trust reported the sale of about 400 million "woodland
			eggs" through Sainsbury's, equivalent to about 3.4% of the UK market (Burgess et al.,
			2014). Other retailers also sell woodland eggs
504	Woodland	UK	Poultry meat: the output of meat from poultry in the UK (£2.3 billion in 2013) is
	poultry in the		second only to cattle. The proportion of chickens and other poultry with access to
	UK		trees is not known.
505	Fodder trees	Duinboeren	Several dairy cow and goat farmers in the Duinboeren region of the Netherlands were
	for cattle and	region , NL	participants of the Farms' Network for Fodder Trees and Multifunctional Land Use
	goats in the		(2012-2014). During that project four test sites with fodder trees were planted on four
	Netherlands		farms. Within the original project dairy goats and cows were allowed to browse on
			fodder trees such as willow (Salix spp).
506	Cherries and	NL	There are approximately 2,300 hectares used for free-range poultry in the
	chickens in		Netherlands. However it is only since 1999, that farmers have looked at combinations
	the		of poultry with trees. In farmers' network 'Trees for chickens' four poultry farmers
	Netherlands		have planted fruit trees. In another project, two poultry farmers have planted willow
			plantations. Independent from these projects, several other organic and free-range
			poultry farmers have planted walnut trees, fruit trees, Christmas trees, and willows in

AF-ID	Name	Location	Short description
			their free range areas.
507	Agroforestry for poultry in the Netherlands	Netherlands	No description
508	Agroforestry for organic poultry and pig production in Denmark	Denmark	Velfærdsdelikatesser [®] (welfare delicacies) is a new initiative within organic meat production in Denmark. The initiative is seeking to promote natural and diverse livestock production (including the use of local breeds) on small organic farms. The meat is then sold directly to consumers in distinctive. The initiative offers potential for agroforestry systems where pigs and poultry are combined with fruit and vegetable production.
509	Agroforestry with pigs in Galicia, Spain	Galicia, Spain	Celtic pigs are an autochthonous pig breed of Galicia. The breed is believed to derive from northern-central European pig breeds. They are usually farmed in semi-extensive or extensive conditions in forest areas where chestnut (<i>Castanea sativa</i> Miller) and oak (<i>Quercus robur</i> L.) trees are dominant.
510	Agroforestry resistant to seedling browsing in Portugal	Alentejo, Portugal	Honey Locust (<i>Gleditsia triacanthos</i>) is leguminous tree, having a deep taproot growing down 3-6 m deep and few lateral roots that make it suitable for agroforestry systems. Furthermore, in young plants, stems bear very large, flat thorns and the young trees form very dense thorny thickets, providing defence to animal browsing, where coppice regrowth and pods are a valuable fodder. It begins bearing pods 3 years after planting and it can produce 20-75 kg pods/tree within 8 years. However this system is underutilized.
511	Agroforestry with Eucalyptus Portugal	Ribatejo, Portugal	Eucalyptus is a typical forest species. However, there is interest to evaluate what would be the yield of Eucalyptus under lower plantation densities as that could provide a grass complement to enable grazing. This is a systems practiced in e.g. Brazil, but an evaluation is needed under temperate/Mediterranean climates.

4 Innovations to model

At the stakeholder meetings (Annex A), about 130 potential innovations were identified. Within the AGFORWARD consortium, there is experience with working three agroforestry models (Table 5).

Table 5. Brief description of three agroforestry models

Model name	Brief model description
Yield-SAFE	A "parameter-sparse" mechanistic bio-physical model than run of a daily time-step
	that describes tree and crop growth in response to changes in solar radiation,
	temperature, and rainfall (van der Werf et al. 2007)
Farm-SAFE	A bio-economic model, that works on an annual time-step, that links the outputs
	from Yield-SAFE with information on labour and input use, and financial values
	(such as arable crop and tree revenues and together with grants) to predict the net
	present value of systems at a plot- or at a farm-level (Graves et al., 2010)
Hi-sAFe	A 3-D agroforestry model that describes tree and crop interactions using "voxels"
	(Talbot, 2011).

Each innovation was reviewed to determine if there was an opportunity to use one of the above three models to help answer the questions raised. It was considered that 60 innovations (out of 130) could potentially be helped by at least one of the models (see Tables 6, 7, 8 and 9). Most of the model-related questions were related to "System design and Management" (Figure 2). Hence from this initial scoping study, models could potentially help in about 50% of these questions. The research questions which cannot be effectively answered by using bio-economic models are discussed in Section 6.

Figure 2. Number of questions from areas of innovation where three agroforestry models (Yield-SAFE, Farm-SAFE, Hi-sAFe) are able or unable to help answer research questions

Table 6. High natural and cultural value agroforestry: the capacity of 28 innovations identified in agroforestry systems of to be addressed (Y = yes; N = no) by three agroforestry models (Y: Yield-SAFE; F: Farm-SAFE; H: Hi-sAFe).

Area	Proposed research	Part-	Мо	del		Comment
		ner	Y	F	Н	
Farm profitability						
Branding HNCV agroforestry product. Trademark. Valuing product	Dehesa trademark	UEX	N	Y	N	Farm-SAFE could help to assign a value to a Dehesa system product
Product diversification. New products (tannins, dyes, aromatic, medicinal,	New acorn-derived products	ISA UEX	Y	Y	Ν	Can quantify the availability of new products, but not finding novel products.
mushrooms, firewood, biomass)	Promote knowledge on human consumption of acorns in different products	ISA	Y	Y	N	Yield-SAFE/Farm-SAFE could estimate economic viability to promote knowledge. Could quantify the availability of acorns.
Green Accounting System. economical evaluation of ecosystem services (ES)	Comparison of ES between agriculture, agroforestry and forestry	ISA	Y	Y	N	Ecosystem services will be quantified and linked to Yield-SAFE
Design and management	Consultative process	FFI-	γ?	γ?	Y	Yield-SAFE could provide biomass
of the systems to (new) multiple purposes. Synergies among three components (tree, pasture/crop and livestock)	between Sami and foresters for the long- term planning	SLU			·	estimations for animal husbandry capacity. Hi-sAFe could predict grass production for various tree density/design/management
Adaptive design of hedgerows	Shift from single model of novel hedgerow to modular models and progressive management techniques.	INRA	N	N	Y	Yield-SAFE does not account for spatial details. Hi-sAFe can model hedgerows by turning off the toric symmetry in one direction
	Development of appropriate management frameworks for silvopastoral systems aimed at promoting synergies between grazing animals, pasture and trees	CNR	Y?	Y?	Y	Yield-SAFE/Farm-SAFE could contribute for the system design for management options. Hi-sAFe can model hedgerows by turning off the toric symmetry in one direction
Tree layer management	Innovative [tree] species able to resist to livestock	ISA	Y?	Y?	Ŷ	Yield-SAFE does not model mortality. But could calibrate/validate tree species (spiky) if there are data available. Hi-sAFe can predict the size of the trees, and threshold on the size may be used to determine when the trees are livestock-safe
Three dimensional design and management (layers, width, spatial connections)	Windbreaks rejuvenation	BTU	N	N	Y	YS does not account for spatial designs. Hi-sAFe does, but dies not predict the climate mitigation by a windbreak. It can only predict tree

Area	Proposed research	Part-	Mc	odel		Comment
		ner	Y	F	Н	
						growth and the impact of the windbreak on the crops ignoring wind modification (only shade and root competition for water and nitrogen)
Livestock management	Appropriate stocking rate. Stocking rate matching to forage resources and to CAP	TEI UBB	Y	Y	Y	YS will estimate livestock capacity according to productivity
Tree protection and regene	eration					
Reconciling grazing with trees (cost-efficient protection of saplings)	Dead branch - Deadwood shelters	ISA UEX BTU	N	Y	N	Could be included in a single evaluation of tree protection measures: cost benefit analysis
	Artificial thorny protectors	UEX NYME	N	Y	Ν	
	Tree guards, e.g. Tubex	NYME	N	Y	Ν	-
	Thorny and/or Nursery Shrubs	UEX UBB NYME	N	Y	N	-
	Chemical organic repellents	UEX	N	Y	Ν	-
	Planting of new structures	BTU	N	Y	N	-
	Grazing management/exclusion	TEI UBB	N	Y	Ν	-
	Periodical grazing	UBB	Ν	Y	N	-
	Fencing (cost-efficient structures)	NYME BTU	N	Y	Ν	-
Pasture quality and fodder	autonomy					
Overcome strong seasonality of "natural" forage resources	Fodder crops: cereal varieties adapted to shade and tree competition	UEX	Y	Y	Y	YS could help improve rotation efficiency, including shade tolerant varieties (by changing radiation use efficiency parameter)
	Retaken of pruning trees for acorn production & fodder	TEI	Y	Y	Y	YS could be parametrized to estimate % of thinning/pruning biomass for animal usage. Yield-SAFE can do this. Already done by the dehesa
Increase pasture productivity and quality	Pastures rich in legumes adapted to oak shade and grazing pressure	UEX	Y	Y	Ν	YS can compare different radiation use efficiency between pasture species (data is needed to validate). We could assume grass production and link it to different ME.
	Adapted silviculture for grazing. Need of early thinnning	UBB EFI- SLU	Y	Y	Y	YS could run on different thinning regimes to estimate pasture production. About timing. could consider dif times for thinnings

Area	Proposed research	Part-	Мо	del		Comment
		ner	Y	F	Н	
Grazing schemes and cost-e	ffective herding					
Livestock species	Cattle and buffalo instead	UBB	Y	Y	Ν	YS could estimate pasture
	of sheep in wood-					productivity under forest and
	pastures.					estimate animal capacity.
Animal production						
Diversification (Geese,	Extensive turkey	ISA	Y	Y	Ν	Animals will be referred to Forage
turkeys, red deer)	production under					Units. Prices and costs can be
	montado.					adjusted to economic model
Nature conservation						
Soil protection; stocking	Rotational herding	UEX	Y	Y	Ν	YS can estimate productivity and
rate matching to forage		UBB				estimate animal capacity and Farm-
resources and to CAP						SAFE can relate that with different
						CAP policy support (incentives)
Organic matter and soil	Ramial wood chips and	UEX	Y	Y	Ν	YS can estimate thinning and pruning
carbon sequestration	other organic mulch	INRA				biomass and incorporated in soil and
						estimate carbon sequestration. Farm-
						SAFE can link to chipping costs (or
						other mulching costs)
Policy and governance						
Specific measures and	Payment for historical	BTU	Ν	Y	Ν	Only if it is agroforestry
grants, and long term	landscapes					
regulations						

Table 7. Intercropping and grazing of high tree value systems: the capacity to address nine research questions (Y: yes; N: no) using three agroforestry models (Y: Yield-SAFE; F: Farm-SAFE; H: Hi-sAFe).

Proposed research	Partner	Mode	el		Comment
		Y	F	Н	
Production					
To study the productive consequences of managing walnut and poplar plantations with grazing compared to intensive management (tillage and chemical inputs	UEX	Y	Y	Y	Typical case for Yield-SAFE, always depending on data availability to validate results
Improve income through diversification with sheep as an additional produce in apple orchards	AFBI	Y	Y	Ν	Typical case for Yield-SAFE, always depending on data availability to validate results
Parameterisation of the Yield-SAFE biophysical model for 'bush' orchard systems	CRAN	Y	Y	Ν	Yes, as long as there is data to validate estimates from the model
Management					
Plant species to be intercropped (TEI olives-N. Greece, C. Greece), (Walnuts, UEX), (TEI orange groves) or managed (APCA/ACTA apple orchards)	TEI UEX APCA/ACTA	Y	Y	Ν	Yield-SAFE can test various species. Parameterization needs to be done for all needed tree species.
Grazing management guidelines and tests on apple orchards	AFBI	Y	Y	Ν	But Yield-SAFE can help on a sensitivity analysis
Best practices for growing wild asparagus with olives	CREA	Y?	Y?	Ν	Perhaps the system can be modelled as long as there is data
Environmental issues					
Evaluation of ecosystem services with olive agroforestry in N. Greece	TEI	Y	Y	Ν	Ecosystem services will be quantified and linked to Yield-SAFE
Environmental benefits of grazing (AFBI) and soil chemical characteristics (APCA/ACTA) in apple orchards)	AFBI APCA/ACTA	Y	Y	N	N inputs/outputs can be estimated per Animal unit and estimate, .i.e. N fertilization
Socio-economic issues					
Inventory of the extant traditional olive tree systems intercropped with cereals and evaluation of their economic viability in N. Greece)	TEI	Ν	Y	N	Not a Yield-SAFE/Farm-SAFE exercise. This is done in a deliverable from WP1

Table 8. Agroforestry for arable farms: the capacity to address 16 research questions (Y: yes; N: no) using three agroforestry models (Y: Yield-SAFE; F: Farm-SAFE; H: Hi-sAFe)

Area	Proposed Research	Partner	Mc	Model		odel		Comment
			Y	F	Н			
Design								
How to breed agroforestry-adapted crops?	Breed for shade tolerant or agroforestry adapted crops	INRA, ORC	N	N	Y	This needs to be parameterized with for example, higher radiation use efficiency. If data from crops available this could be done		
What are the best tree-crop combinations and what are their interactions?	Assess physiological behaviour, root competition of cereals with trees	USC, TEI, INRA, BTU, Uex, EVD, APCA-CH, APCA-P	Ν	N	Y	Typical Hi-sAFe assessement		
What is best spatial design that minimizes competition for light and nutrients?	Optimize alley width, tree line orientation and use cultivar diversification, shade tolerant varieties close to trees.	TEI, INRA, BTU, Uex, EVD, APCA-CH, APCA-P	Ν	N	Y	Alley with can be estimated but Hi-sAFe is better for this matter		
How to design efficient agroforestry systems? How can harvest of crops and trees be synchronized?	Reconsider crop and tree species to synchronize harvest	EVD	Y	Y	Y	Yield-SAFE could help improve rotation efficiency		
How can new crops serve a purpose in agroforestry systems?	Study how new crop species (aromatic plants, cut flowers, berries) can improve product diversity	USC, TEI, ORC	Y?	Y?	Ν	Perhaps productivity of new crop species could be estimated, providing yield data for calibration/validation		
How can trees species choice be improved?	Study how multiple tree species can improve product diversity	TEI, ORC, CNR/ VEN	N	Ν	Y	Yield-SAFE does not model multiple tree species. With Hi- sAFe, it is possible to explore the behaviour of new tree species (real or theoretical).		
Can soil depth be a limiting factor?	Compare establishment on deep/shallow soils	TEI, INRA	Y	Y	Y	Yield-SAFE can perform a sensitivity analysis on soil depths		
Can trees be added in irrigated plots with pivot systems	Estimate gross margin including the trees grown in the corners of the pivot systems	ISA	Y	Y	N	Yield-SAFE can estimate non limited tree growth and Farm- SAFE can estimate the gross margin of the plot		
Management								
How can agroforestry systems best be managed and mechanized (e.g. pruning, harvesting times/cycles)?	Establish methods to improve management efficiencies of agroforestry systems	EVD, CNR/VEN, APCA-PI	Ν	Ν	Y	Not a Yield-SAFE/Farm-SAFE exercise. Typical Hi-sAFe exercise		
How can nitrogen fixing trees influence crops? Socio-economic	Assess the potentials of nitrogen fixing trees	ORC	N	N	Y	Yield-SAFE does not have an N model influencing the crop growth. This could be assessed by Hi-sAFe, but the reverse is easier to model : impact of fixing crops on non- fixing trees		

Area	Proposed Research	Partner	Mo	odel		Comment
			Y	F	Н	
How do trees influence crop yields?	Compare using Land Equivalency Ratio	ORC, BTU, UEX	Y	Y	Y	LER could be present in all assessments
Environmental impacts						
What are the biodiversity benefits?	Assess biodiversity of agroforestry systems and how this can be maximized	USC, TEI, ORC	Y	Y	Ν	Not a Yield-SAFE/Farm-SAFE exercise. But satellite ES assessments can do this
How much carbon is fixed and how to maximize this?	Assess carbon sequestration potential over agroforestry systems life span	USC, ORC, EVD	Y	Y	Y	RothC model was incorporated in Yield-SAFE and can estimate soil carbon sequestration, in addition to the above ground assimilated carbon
Can trees protect the crops from heat exhaustion?	Use models and experiments to predict heat protection potential	(TEI), INRA	Ν	N	Y	Yield-SAFE does not have heat models affecting crops
Can trees reduce soil erosion and improve soil health?	Assess effect of agroforestry on soil health and micro-climate	BTU, Uex, APCA_PI	N	N	Y	Depends on definition for soil health. Hi-sAFe can predict soil temperature and humidity in 3D
Can trees improve water regulation?	Use agroforestry to increase water use and irrigation efficiency	INRA, BTU	Y	Y	Y	Yield-SAFE can compare productivity with irrigation schedules

Table 9. Agroforestry for livestock farms: the capacity to address 16 research questions (Y: yes; N: no) using three agroforestry models (Y: Yield-SAFE; F: Farm-SAFE; H: Hi-sAFe)

Proposed research	Part-	Мо	del		Comment
	ner	Y	F	Н	
Design					
System design: How many trees do you need to optimize the mineral uptake by dairy cows, and to maximise yields of trees and pasture?	LBI	Y	Y	Y	YS can estimate biomass and convert it to metabolizable energy
Use of fast growing species such as willow or poplar	Ven	Y	Y	Y	Productivity of new species could be estimated, providing yield data for calibration/validation
Introduction of new crops on farms (Mulberry)	USC	Y	Y	Ν	Productivity of new crop species could be estimated, providing yield data for calibration/validation
Management					
Can trees contribute to mineral uptake?	LBI	N	Ν	Y	YS does not have a nutrient model influencing the tree growth. This could be assessed by Hi-sAFe, but only for Nitrogen
How much labour is needed per tree	LBI	Ν	Y	Ν	Farm-SAFE could help with labour
species/plantation type?					requirements. Data would be needed
What are the nutritional (and medicinal) value of trees and shrubs? What place can ligneous forages take in the diet of cows?	IDELE/ INRA	Y	Y	Ν	YS could relate energy from fruits/crops to act as sources for animal production (animal capacity). Data is needed.
A high interest in knowing the potential of native shrubby, herbaceous and tree species as nutritional resources for Celtic Pig	USC	Y	Y	N	YS could relate energy from fruits/crops to act as sources for animal production (animal capacity). Data is needed.
Gleditsia could be an interesting tree species as it is spiky in earlier stages, preventing browsing. It would be interesting to estimate its growth an energy content as feedstock, and the equivalent added monetary value	ISA	Y	Y	Ν	YS can be calibrated to this specie if data/literature is available and Farm-SAFE could estimate the equivalent value in terms of feedstock equivalences
Eucalyptus is the tree species with more are in Portugal and farmers are interested to explore the potential of this species with lower densities and provide pasture for grazing	ISA	Y	Ŷ	Ν	YS, can be calibrated for eucalyptus, and an assessment on light and water competition can be made to explore the threshold on tree density that allows silvopasture. Comparison of forest and silvopasture can be explored with Yield-SAFE and Farm-SAFE
Socio-economic					
Look for profitable combinations	LBI	Y	Y	Ν	Farm-SAFE can help with the economic viability of the systems

5 Synthesis

5.1 Identifying the appropriate model

It is apparent in Section 4 that the potential suitability of the agroforestry model depends on the research question. While Yield-SAFE and Farm-SAFE are designed for long-term assessments, the more detailed Hi-sAFe model can be used for detailed short-term assessments. All three of the models can be used for some common issues, for example: exploring various designs of agroforestry plantations (e.g. tree density, choice of crops), various tree and crop management options, the potential impact of climate change, and the calculation of land equivalent ratios.

The parameter-sparse Yield-SAFE is probably best suited to allow the determination of the animal carrying capacity of different agroforestry designs, by modelling the impact of the trees on, for example, grass growth. Hi-sAFe has been developed to determine nitrogen budgets. The bio-economic Farm-SAFE model is most appropriate for economic analyses.

5.2 Tree, crop and livestock species currently modelled

Some innovations will require more parameterisation of the model for new tree species, new crops, hedgerows, and in the case of Yield-SAFE and Farm-SAFE, livestock. A resume of tree, crop and livestock species identified in the innovations and the current state of models' calibration is shown in Table 10, 11, and 12.

5.3 Research questions for modelling

At present, the research questions still need to be refined before modelling can begin in earnest. Questionnaires along with data collection forms are under development and will be provided to the partners to help clarify what results can be expected from the models depending on the availability of measured data (e.g. from field protocols). Based on discussions, the use of the models can remain solely the preserve of the modelling team (Modelling team), or it can be a co-operative approach. If the models are only used by a small modelling team, the stakeholder groups will need to provide the data, the modellers will provide the simulations, and the two parties will help analyse the results. In the co-operative approach, the modellers will train others to use Yield-SAFE, Farm-SAFE or Hi-sAFe. The visiting person will run the simulations and modellers provide assistance in case of any problem, and help to analyse the outputs. Cooperation is the preferred method because it tends to be faster and, will increase the number of future experts on using the model. During the project, four modelling workshops are intended to gather interested researchers willing to participate in the modelling of the innovations/systems for WP2-WP5.

Common name	Latin name	Yield-SAFE calibration	Hi-sAFe calibration
Norway maple	Acer platanoïdes L.		
Sycamore	Acer pseudoplatanus		
Italian alder	Alnus cordata		
Red Alder	Alnus rubra		
Siver birch	Betula alba		
Hornbeam	Carpinus betulus		
Orange tree	Citrus sinensis		
Cornelian cherry	Cornus mas		
Hazel	Corylus avellana		
Ash	Fraxinus excelsior		
Honey locust	Gleditsia triacanthus		
Sea buckthorn	Hippophae rhamnoides		
Common walnut	Juglans regia	Yes	
Hybrid walnut	Juglans regia X Juglans nigra		Yes
Apple tree	Malus domestica	Yes	
Olive tree	Olea europea		
Empress tree	Paulownia tormentosa		
Stone pine	Pinus pinea	Yes	
Monterey pine	Pinus radiata	Yes	
Poplar hybrids	Populus x canadensis		
White poplar	Populus alba	Yes	
Black poplar	Populus nigra	Yes	
Poplar	Populus spp	Yes	Yes
Aspen	Populus tremula	Yes	Yes
Wild cherry	Prunus avium	Yes	
Valonian oak	Quercus ithaburensis subs. macrolepis		
Sessile oak	Quercus petraea		
Holm oak	Quercus rotundifolia	Yes	
Cork oak	Quercus suber	Yes	
Black locust	Robinia pseudoacacia		
Rosehip	Rosa rugosa		
Willow	Salix viminalis		
Pagoda tree	Sophora japonica		
Service tree	Sorbus domestica L.		
Small-leaved lime	Tilia cordata		

Table 10. Tree species identified in the innovations and the current extent of calibration

Common name	Latin name	Yield-SAFE	Hi-sAFe ²
Alfalfa	Medicago sativa		Yes
Aromatic plants			
Barley	Hordeum vulgare	Yes	
Common bean	Phaseolus vulgaris	Yes	
Common vetch	Vicia sativa		
Durum wheat (winter)	Triticum turgidum L. subsp. Durum	Yes	
Fallow		Yes	
Grass (improved)		Yes	
Grass (natural pastures)			Yes
Grass (sown mixtures)			
Lupins	Lupinus spp.		
Maize	Zea mays	Yes	Yes
Oats	Avena sativa	Yes	
Oilseed rape	Brassuca napus	Yes	Yes
Potatoes	Solanum tuberosum L	Yes	
Protein pea (winter)	Pisum sativum L cv Blizzard		
Rhubarb	Rheum rhabarbarum		
Rye (perennial)	Secale multicaule		
Rye (winter)	Secale cereale		
Salads (lettuce)	Lactuca sativa		
Sown flowers			
Soybean	Glycine max		Yes
Squashes (courgette or pumpkin)	Cucurbita pepo		
Strawberry	Fragaria × ananassa		
Sugar beet	Beta vulgaris	Yes	
Sunflower	Helianthus annuus.	Yes	Yes
Wheat (spring and winter)	Triticum spp.	Yes	Yes
White, red and crimson clovers	Trifolium spp		

Table 11. Crop species identified in research questions and the current extent of calibration

² The Hi-sAFe model uses the crop models available within STICS. <u>http://www6.paca.inra.fr/stics_eng</u>

Livestock	Breed	Agroforestry system	Yield-SAFE
			calibration
Cattle	Exotic Limousine, Charolês; Native	Montado	There is a Livestock
	Alentejana, Mertolenga		Metabolisable Energy
Chicken	Unspecified	Intercropping of orange groves with	Requirement (LMER)
		arable crops in Greece	for a Livestock Unit
Goat	Unspecified	Valonia oak silvopastoral systems	which will be used as
Goat	Serpentina, Charnequeira	Montado	default value. Other
Horses	Lusitano, Sorraia	Montado	the change of this value
Pigs	Black Iberian pig races Caldeira,	Montado	for specific livestock.
	Ervideira, Loira		
Pigs	Modern crossbreed Danish Landrace	Pigs in energy crops in Denmark	-
	x Yorkshire x Duroc		
Sheep	Galician breed	Agroforestry with sheep in Galicia,	-
		Spain	_
Sheep	Bizet breed	Wild cherry pastures in France	
Sheep	White Merino, Black Merino	Montado	
Sheep	Shropshire breed -UK	Grazed orchards in the UK	
Sheep	Unspecified	Valonia oak silvopastoral systems,	-
		Chalkidiki, Molos and Intercropping	
		poplar and walnut trees with cereals	
		and beans in Greece	

Table 12. Livestock identified in the research question and the current state of calibration

6 Innovations not to be modelled

The participants at the workshop $(20^{th} \text{ April } 2015 - 30^{th} \text{ April } 2015)$ in Monchique, Portugal also examined how, if at all, the non-modelling research questions should be tackled. From the initial analysis, and with a consultation with all the modelling partners, six research approaches were identified

Table 13. Six research approaches have been suggested to address the research questions raised by the stakeholder groups

Code	Principal research approach	Description
М	Modelling	Primarily questions associated with biophysical or
		economic issues
S	Social science methods	Issues related to adoption and farmer responses to
		agroforestry
Р	Policy analysis	
F	Field-based methods	Trials and demonstrations
E	Experiment	For example laboratory-based analyses
L	Literature	Literature review

Tables 14, 15, 16 and 17 provide an initial description of those research questions which are probably best addressed using a non-modelling method. It is assumed that literature review is an appropriate technique in each method.

Table 14. High natural and cultural value agroforestry: research questions which are probably best addressed through a non-modelling approach such as social science (S), policy analysis (P), field-based work (F), or experiment (E)

Area	Proposed research /	Part-	Comment	Approach
	Innovation	er		(see table 13)
Farm profitability				
Branding HNCV agroforestry product. Trademark. Valuing product	Certification of animal husbandry products	TEI	Result from Yield-SAFE/Farm- SAFE/Hi-sAFe could reinforce the concept, but not model it directly. Evidence provision from results to help with certification.	S
	Improved knowledge of customer and tax payer interest (Questionnaires: protocol ready)	UEX NYME	Not a model exercise	S
Product diversification. New products	Phlomis fruticosa as understorey crop	TEI	Could be modelled if data is available, unclear what the purpose of the ground-bed is.	S
Quality of tree products (e.g. cork quality vs management)	Assessment of cork quality respect to management practices: debarking intensity, height	ISA	There are no models readily available for strengthening Yield- SAFE in this aspect	S
System design and manageme	ent			
Three dimensional design and management (layers, width, spatial connections)	Renewing encroach- abandoned wood pastures	NYME	Landscape level. Not for Yield-SAFE.	F
	Open young stands that enable reindeer movements and herd control	EFI- SLU	This is a landscape architecture exercise. Yield-SAFE is not sufficiently spatial.	F
	Rebuilding connections between hedgerows and scattered farms across the landscape. Anchoring new plantations on remnants of old hedgerows. Linking the design of ground structure and vegetation layers; use of forest plough to facilitate bank making if necessary.	INRA	This is a landscape architecture exercise. Yield-SAFE is not sufficiently spatial	F
Infrastructures for livestock		?		Р
Tree protection and regenerat	tion			
Reconciling grazing with trees (cost-efficient protection of saplings)	Invisible Fencing for livestock exclusion	CRAN	Not a Yield-SAFE exercise, but Farm-SAFE could compare estimates for costs	F
Tree species diversity. Native	Protection of native tree	UBB	Not a Yield-SAFE exercise	F

Area	Proposed research /	Part-	Comment	Approach
	Innovation	er		(see table 13)
species	species.	NYME		
	Avoidance of exotic tree species as e.g. <i>Pinus contorta</i> .	EFI- SLU	Not a Yield-SAFE exercise	F
Tree decay (pests, diseases and wildfire), and fruit losses	An adequate silvo- environmental management practices for pests and diseases control	UEX	Yield-SAFE does not account for pests and diseases	F
Pasture quality and fodder au	tonomy			
Overcome strong seasonality of "natural" forage resources	Forest grazing and pannage	NYME	Yield-SAFE could estimate pasture productivity under forest and estimate animal capacity. However pannage by pigs involve other understorey nutrient sources (e.g. Truffles, worms) that Yield-SAFE does estimate	F
Restoration of degraded pastures / disturbed areas	Equipment for re- establishment of lichens at the disturbed area harmful	EFI- SLU	Lichens are not a crop, not even a plant. It would be necessary to estimate with a different model with different parameters	F
Grazing scheme and cost effe	ctive herding			
More efficient and even use of extensive forage resources	Fast-intensive rotational grazing	UEX UBB		F
	Best practice and solution of forest grazing and pannage	TEI	Yield-SAFE could estimate pasture productivity under forest and estimate animal capacity. However pannage by pigs involve other understorey nutrient sources (e.g. Truffles, worms) that Yield-SAFE does estimate	F
	Grazing regulation		??	Р
Cost-efficient herding. Technology	Facilities location	UEX UBB	Not a Yield-SAFE exercise, possibly a Farm-SAFE exercise	L
	GPS herding	UEX CRAN EFI- SLU	Not a Yield-SAFE/Farm-SAFE/HS	L
	Virtual/Invisible fencing	UEX CRAN EFI- SLU	Not a Yield-SAFE exercise, possibly a Farm-SAFE exercise	L
	Grazing and herding technology	NYME EFI- SLU	Not a Yield-SAFE exercise, possibly a Farm-SAFE exercise	L
Animal production				
Genetic selection. Docility & Browsing behaviour. Local races	Not elaborated	?	Not a Yield-SAFE/Farm-SAFE exercise	L

Area	Proposed research /	Part-	Comment	Approach
	Innovation	er		(see table 13)
Livestock health (water quality, reinfection from wild fauna, sheltering)	GPS collars. Control of access to water point and supplementary food. Control of animal health. Monitoring herd position	UEX EFI- SLU	Not a Yield-SAFE exercise, possibly a Farm-SAFE exercise	L
	Design of the structure and location of novel hedgerows for enhancing sheltering.	INRA	Yield-SAFE is not spatial	L
Control of predators	Not elaborated	?	??	L
Extension				
Open school; maintenance of local knowledge	Pilot Farms (economically healthy)	ISA	Not a Yield-SAFE/Farm-SAFE exercise	F
Open school; maintenance of local knowledge	Favouring the design (and diffusion) of a model of "cooperative of skills and machines pool" for re- developing bocage agroforestry.	INRA	Not a Yield-SAFE/Farm-SAFE exercise	L;S;P
Nature conservation				
Soil protection; stocking rate matching to forage resources and to CAP	Combining crop rotation management, pasture management and 3 dimensional design and management of hedgerows to avoid soil erosion.	INRA	Typical Hi-sAFe exercise but no erosion in Hi-sAFe	L
Fire control	Effect of grazing exclusion on the wildfire behaviour.	CNR- ISPAA M	Yield-SAFE can estimate biomass that can be converted to fuel and assess the impact of the grazing for reducing fire hazard	L
Fire control	Low input techniques of firebreaks management	?	Yield-SAFE is not spatial, and this research needs spatial relations	L

Table 15. Intercropping and grazing of high tree value systems: : research questions which are probably best addressed through a non-modelling approach such as social science (S), policy analysis (P), field-based work (F), or experiment (E)

Area and proposed research/innovation	Partner	Comment	Approach
Policy and governance			
Specific measures and grants, and long term regulations: Proposals for a specific status of the hedgerows of high and medium stem trees in the 2nd but also 1st pillar of the CAP to support their maintenance.	INRA	Not a Yield-SAFE exercise but could be eventually accounted by Farm- SAFE	Ρ
Production			
Quality assessment of products (TEI olives, C. Greece)	TEI	Yield-SAFE estimates productivity but not quality	L
Techniques to increase mushroom production (Chestnuts, USC)	USC	Yield-SAFE does not model mushroom	F
To study the interactions of Shropshire sheep and apple trees (CRAN, grazed orchards)	CRAN	Yield-SAFE can estimate pasture productivity and animal capacity and FM can estimate economic interactions with sheep varieties	F
Management			
Animal species (olives CRA-OLI) (CRAN, apple orchards) – breed used (AFBI, apple orchards) and effect on pests and diseases (APCA/ACTA apple orchards)	CRA CRAN AFBI APCA/ACT A	Yield-SAFE can estimate animal capacity in the orchards, but not effects on diseases	F;L
Techniques to increase mushroom production (Chestnuts, USC)	USC	Yield-SAFE does not model mushrooms	F;L
Graft production of selected varieties of chestnuts (Chestnuts, USC)	USC	Yield-SAFE can estimate the productivity but parameterisation of a grafted tree should be considered as a new "specie" with different parameters, that could be linked to Farm-SAFE costs of grafting and early revenues from the tree	F

Table 16. Agroforestry for arable farms: : research questions which are probably best addressed through a non-modelling approach such as social science (S), policy analysis (P), field-based work (F), or experiment (E)

Area and proposed research		Partner	Comment	Approach
Socio-economic issues				
	Propose high marketability products and test (this could fit in the management as well)	CRA	Result from Yield-SAFE/Farm-SAFE/Hi- sAFe could reinforce the concept, but not modelling it directly	S
Design				
Need to see	Develop show case	USC APCA-	Not a Yield-SAFE/Farm-SAFE/HS	F
agroforestry	farms	PI	exercise.	
Management				
How do agroforestry systems influence crop disease? How can their influence be prevented?	Assess how crop and tree interaction changes the presence of diseases.	INRA CNR/VEN NymE	Yield-SAFE does not model disease effects. However crude analysis could be done on effects of some diseases affecting leaf area (improving radiation interception by crops)	L
How can crop and tree products (fruits/nuts) harvest be synchronized?	Establish efficient harvest methods for agroforestry systems	EVD	Not a Yield-SAFE/Farm-SAFE exercise. This is not directly done by Yield-SAFE, but rather a calendar analysis for optimizing efficiency of production could be done	L;F
How can trees in agroforestry systems best be protected against domestic animals and wildlife?	Design cost effective wildlife protection system using either natural or artificial products	USC INRA ORC EVD NymE APCA-CH APCA-P	Not a Yield-SAFE/Farm-SAFE exercise.	L;F
How can old agroforestry systems best be renewed?	Establish methods for renewal at end of life	TEI ORC	Not a Yield-SAFE/Farm-SAFE exercise.	L;F
How do agroforestry systems affect the presence of weeds? What innovative weed management methods can be developed?	Use natural sources or plants (aromatic plants) to protect against weeds and function as pollinator resource	TEI INRA ORC BTU Uex EVD CNR/VEN NymE APCA-CH APCA-P	Not a Yield-SAFE/Farm-SAFE exercise.	F;L
How can the application of chemicals best be managed in agroforestry systems?	Study legal constraints regarding use of chemicals	USC EVD	Not a Yield-SAFE/Farm-SAFE exercise.	Ρ
Regulation and policies				
How can the administrative burden/bureaucracy be reduced?	Simplification of grant process for establishment of agroforestry	TEI ORC BTU Uex NymE APCA-CH APCA-P	Not a Yield-SAFE/Farm-SAFE exercise.	Ρ

Area and proposed re	esearch	Partner	Comment	Approach
How can CAP reforms result in clear and long- term funding for agroforestry? How can regulators and technicians be educated about agroforestry?	Improve agroforestry representation in Brussels and member states	USC TEI INRA ORC BTU Uex EVD CNR/VEN NymE APCA-CH APCA-P	Not a Yield-SAFE/Farm-SAFE/HS exercise. However results from Yield- SAFE/Farm-SAFE/Hi-sAFe can support representation by interested parties	Ρ
Socio-economic				
How can information about agroforestry systems be more accessible?	Establish an online portal for agroforestry and establish reference farms that can be visited	TEI ORC NymE APCA-CH	Not a Yield-SAFE/Farm-SAFE exercise. This is a deliverable from WP9. (map)	P;S
Are people willing to pay more for agroforestry products?	Improve marketing and branding of agroforestry products (e.g. woodland eggs)	INRA ORC BTU Uex	Not a Yield-SAFE/Farm-SAFE exercise.	S
Can business opportunities be created through participatory breeding?	Involve agrifood industry stakeholders from the onset of the project	INRA	Not a Yield-SAFE/Farm-SAFE exercise.	S
How can long-term investments/funding be guaranteed?	Conduct a cost benefit analysis	BTU Uex APCA_PI	Yield-SAFE/Farm-SAFE can help on this assessment, including ES approach	Ρ
How can land tenure become more flexible to allow agroforestry establishment?	Educate landowners of agroforestry benefits and increase flexibility of land tenure	TEI ORC BTU APCA_PI	Not a Yield-SAFE/Farm-SAFE exercise.	Ρ
How can we improve knowledge and value of agroforestry products?	Evaluate timber quality in agroforestry systems and the value of wood thinnings	TEI ORC UEX CNR/VEN	Yield-SAFE/Farm-SAFE can estimate the production and value of wood thinnings	E

Table 17. Agroforestry for livestock farms: research questions which are probably best addressed through a non-modelling approach such as social science (S), policy analysis (P), field-based work (F), or experiment (E)

Area and proposed research	Partner	Comment	Approach
Socio-economic			
How do neighbouring farmers influence the establishment of agroforestry? What role do technicians play? Assess impact of social aspects and technicians on agroforestry system establishment rates	ORC APCA_CH APCA_PI	Not an Yield-SAFE/Farm-SAFE exercise.	S
Design			
Which fruit species are suitable for the chicken range area in relation to manure and digging the roots by the chicken?	LBI	Root analysis more developed in Hi-sAFe	F;L
Which species/breeds of fruit trees are suitable in chicken run, concerning diseases and labour?	LBI	Farm-SAFE could help with labour requirements	F;L
The design and management surrounding the chicken houses to encourage birds to range further away from the houses.	ORC	Yield-SAFE is not spatial	F;L
Trial tests of 'funny/exciting' wood species with nutritional value for the pigs and which are possibly to grow in between energy crops	AU	Yield-SAFE could relate energy from crops to pig production (animal capacity). Data is needed.	F;L
How should the trees or shrubs be spatially organized to optimize both woody and herbaceous forage production and animal welfare (while avoiding the accumulation of dungs under the trees)?	IDELE/IN RA	Yield-SAFE is not spatial	F;L
Regulation and policies			
Subsidy for networks	LBI	Not a Yield-SAFE/Farm-SAFE exercise.	Ρ
Management			
Can fruit trees contribute to health and productivity of own bees?	LBI	Not a Yield-SAFE/Farm-SAFE exercise.	F;L
Multipurpose use of the range, combination of poultry with cattle. One farmer has set up the trees in triangles, which he can fence-in during the periods where he grazes cattle.	ORC	Yield-SAFE does not model multiple tree/crop/animal species neither the spatial design	F;L
Use of straw around trees to control weed and increase the amount of worms and insects which are available for foraging poultry.	AU	Not a Yield-SAFE/Farm-SAFE exercise.	F;L
The nutritional value of fruits and nuts from the trees and bushes for monogastrics.	AU	Yield-SAFE could relate energy from fruits/crops to act as sources for animal production (animal capacity). Data is needed.	E
Development of machinery suitable for harvesting energy crops 1.20 m above ground (this height is needed to avoid pigs eating the new sprouts after harvesting)	AU	Not a Yield-SAFE/Farm-SAFE exercise.	E:L
The nutritional value of fruits and nuts from trees and bushes for pigs and poultry	AU	Yield-SAFE could relate energy from fruits/crops to act as sources for animal production (animal	E

Area and proposed research	Partner	Comment	Approach
		capacity). Data is needed.	
Description and data from 'all' AF systems in DK – pigs and poultry	AU	Not a Yield-SAFE/Farm-SAFE exercise.	S
Which methods are to be used for easily and efficiently protecting recently implemented trees against livestock grazing on patches?	IDELE/IN RA	Not a Yield-SAFE/Farm-SAFE exercise.	L;F
Socio-economic			
Alternative business models - partnerships between 'tree' people and poultry farmers	LBI	Yield-SAFE does not model multiple tree/crop/animal species neither the spatial design	P;S;L

7 Acknowledgements

The AGFORWARD project (Grant Agreement N° 613520) is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD, Theme 2 - Biotechnologies, Agriculture & Food. The views and opinions expressed in this report are purely those of the writers and may not in any circumstances be regarded as stating an official position of the European Commission.

8 References

- Graves AR, Burgess PJ, Liagre F, Terreaux JP, Borrel T, Dupraz C, Palma J, Herzog F (2011) Farm-SAFE: the process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics. Agroforestry Systems 81 (2):93-108. doi:10.1007/s10457-010-9363-2
- Hermansen JE, Kongsted AG, Bestman M, Bondesan V, Gonzalez P, Luske B, McAdam J, Mosquera-Losada R, Novak S, Pottier E, Smith J, van Eekeren N, Vonk M (2015) Agroforestry Innovations to be evaluated for Livestock Farmers - AGFORWARD Milestone 5.2 (MS21) report.
- Mirck J, Cirou E, Camilli F, Crossland M, Dalla Valle C, Fernandez-Lorenzo JL, Ferreiro-Dominguez N, Gonzalez-Hernandez P, Gosme M, Hannachi Y, Herzog F, Howlett S, Jäger M, Mosquera-Losada MR, Moreno G, Pantera A, Paris P, Pisanelli A, Rigueiro-Rodriguez A, Smith J, Tsonkova P, Vityi A, Wartelle R, Wolfe M (2015) Agroforestry Innovations to be evaluated for Arable Farmers -AGFORWARD Milestone 4.2 (MS15) report.
- Moreno G, Berg S, Burgess P, Camilli F, Crous-Duran J, Franca A, Hao H, Hartel T, Lind T, Mirck J, Palma J, Paulo JA, Pisanelli A, Seddaiu G, Thenail C, Tsonkova P, Upson M, Valinger M, Varga A, Viaud V, Vityi A (2015) Innovations to be examined for High Nature and Cultural Value Agroforestry - AGFORWARD Milestone 2.2 (MS3) report.
- Pantera A, Burgess PJ, Corroyer N, Ferreiro-Domínguez N, Fernández-Lorenzo JL, González-Hernández P, Graves A, McAdam J, Moreno G, Mosquera-Losada R, Rigueiro-Rodríguez A, Rosati A, Upson M (2015) Report on Innovations to be examined for Agroforestry for High Value Tree Systems - AGFORWARD Milestone 4.2 (MS15) report.
- Talbot G (2011) L'intégration spatiale et temporelle des compétitions pour l'eau et la lumière dans un système agroforestiers noyers-céréales permet-elle d'en comprendre la productivité? . Université de Montpellier, Montpellier
- van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: A parameter-sparse, processbased dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29 (4):419-433. doi:DOI 10.1016/j.ecoleng.2006.09.017

Annex A. Stakeholder meetings reports covering four land use sectors

Reports on High Natural and Conservation Value Agroforestry Systems (WP2)

- Crous-Duran J, Amaral Paulo J, Palma J (2014). Initial Stakeholder Meeting Report: Montado in Portugal. 4 September 2014. 12 pp. Available online:
 - http://www.agforward.eu/index.php/en/montado-in-portugal.html
- Moreno G (2014). Initial Stakeholder Meeting Report: Dehesa farms in Spain. 17 September 2014. 19 pp. Available online: <u>http://www.agforward.eu/index.php/en/dehesa-farms-in-spain.html</u>
- Pisanelli A, Camilli F, Seddaiu G, Franca A (2014). Initial Stakeholder Meeting Report: Grazed oak woodlands in Sardinia. 15 October 2014. 9 pp. Accessed online: http://www.agforward.eu/index.php/en/grazed-oak-woodlands-in-sardinia.html
- Pantera A (2014). Initial Stakeholder Meeting Report: Valonia oak silvopastoral systems in Greece. 17 September 2014. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/valonia-oak-silvopastoral-systems-in-greece.html</u>
- Hartel T (2014). Initial Stakeholder Meeting Report: Wood Pastures in Romania. (Ed. PJ Burgess).
 16 November 2014. 8 pp. <u>http://www.agforward.eu/index.php/en/wood-pastures-in-southern-transylvania-romania.html</u>
- Vityi A, Varga A (2014). Initial Stakeholder Meeting Report: Wood pasture in Hungary. 13 pp. 18 October 2014. Available online: <u>http://www.agforward.eu/index.php/en/wood-pasture-in-hungary.html</u>
- Tsonkova P, Mirck J (2014). Initial Stakeholder Meeting Report: Agroforestry in the Spreewald Flood Plain, Germany. 20 October 2014. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-in-the-spreewald-flood-plain-germany.html</u>
- Thenail C, Viaud V, Hao H (2014). Initial Stakeholder Meeting Report: Bocage agroforestry in Brittany, France. 2 December 2014. 10 pp. Available online: http://www.agforward.eu/index.php/en/bocage-agroforestry-in-brittany-france.html
- Upson M, Burgess PJ (2014). Initial Stakeholder Meeting Report: Wood pasture and parkland in the UK. 2 October 2014. 10 pp. Available online: <u>http://www.agforward.eu/index.php/en/wood-pasture-and-parkland-in-the-uk.html</u>
- Berg S, Lind T (2014). Initial Stakeholder Meeting Report: Wood pasture and reindeer in Sweden.
 27 October 2014. 13 pp. Available online: <u>http://www.agforward.eu/index.php/en/wood-pastures-and-reindeer-in-sweden.html</u>

Reports on High Value Tree Agroforestry Systems (WP3)

- Moreno G (2014). Initial Stakeholder Meeting Report Grazing and intercropping of plantation trees in Spain. 17 September 2014. 12 pp. Available online: <u>http://www.agforward.eu/index.php/en/grazing-and-intercropping-of-plantation-trees-in-spain.html</u>
- Mosquera Losada R, Ferreiro-Domínguez N, Fernández Lorenzo JL, González-Hernández P, Rigueiro Rodríguez A (2014). Initial Stakeholder Meeting Report: Chestnut agroforestry in Galicia, Spain.
 23 September 2014. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/chestnut-agroforestry-in-galicia-spain.html</u>
- Rosati A (2014). Initial Stakeholder Meeting Report Intercropping and grazing of olive orchards in Italy. 6 August 2014. 7 pp. Available online:

http://www.agforward.eu/index.php/en/intercropping-and-grazing-of-olive-orchards-initaly.html

Pantera A (2014). Initial Stakeholder Meeting Report: Intercropping of olive groves in Greece (Kassandreia). 20 October 2014. 8 pp. Available online:

http://www.agforward.eu/index.php/en/intercropping-of-olive-groves-in-greece.html

Pantera A (2014). Initial Stakeholder Meeting Report: Intercropping of olive groves in Greece (Molos). 20 October 2014. 9 pp. Available online:

http://www.agforward.eu/index.php/en/intercropping-of-olive-groves-in-greece.html

- Pantera A (2014). Initial Stakeholder Meeting Report: Intercropping of Walnut Trees in Greece. 20 October 2014. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/intercropping-of-walnut-trees-in-greece.html</u>
- Pantera A (2014). Initial Stakeholder Meeting Report Intercropping of Orange Groves in Greece. 18 November 2014. 7 pp. Available online:

http://www.agforward.eu/index.php/en/intercropping-of-orange-groves-in-greece.html

- Corroyer N (2014). Initial Stakeholder Meeting Report: Grazed Orchards in France. 1 December 2014. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/grazed-orchards-in-france.html</u>
- Burgess PJ (2014). Initial Stakeholder Meeting Report: Grazed Orchards in the UK. 18 July 2014. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/Grazed_Orchards.html</u>
- McAdam J (2014). Initial Stakeholder Meeting Report: Grazed orchards in Northern Ireland, UK. 4 December 2014. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/grazed-orchards-in-northern-ireland-uk.html</u>

Reports on Silvoarable Agroforestry Systems (WP4)

- Cirou E, Hannachi Y (2014). Initial Stakeholder Meeting Report Agroforestry for Arable Farmers in Western France. (Ed. PJ Burgess). 14 November 2014. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-for-arable-farmers-in-western-france.html</u>
- Gosme M (2014). Initial Stakeholder Meeting Report: Mediterranean Silvoarable Systems in France. 8 October 2014. 12 pp. Available online:

http://www.agforward.eu/index.php/en/mediterranean-silvoarable-systems-in-france.html

Jäger M, Herzog F (2014). Initial Stakeholder Meeting Report Silvoarable systems with fruit and high value timber trees in Switzerland. 11 November 2014. 9 pp. Available online: http://www.agforward.eu/index.php/en/integrating-trees-with-arable-crops-switzerland.html

Mosquera Losada MR, Ferreiro-Domínguez N, Fernández Lorenzo JL, González-Hernández P, Rigueiro Rodríguez A (2014). Initial Stakeholder Meeting Report Silvoarable Systems in Spain. 29 October 2014. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/silvoarable-</u> systems-in-spain.html

- Moreno G (2014). Initial Stakeholder Meeting Report Grazing and intercropping of plantation trees in Spain. 17 September 2014. 12 pp. Available online: <u>http://www.agforward.eu/index.php/en/grazing-and-intercropping-of-plantation-trees-in-spain.html</u>
- Pantera A (2014). Initial Stakeholder Meeting Report: Trees with arable crops and grassland in Greece. 20 October 2014. 9 pp. Available online:

http://www.agforward.eu/index.php/en/trees-with-arable-crops-and-grassland-in-greece.html

- Pisanelli A, Camilli F, Dalla Valle C, Paris P (2014). Initial Stakeholder Meeting Report: Trees for timber intercropped with cereals in Italy. 7 October 2014. 6 pp. Available online: <u>http://www.agforward.eu/index.php/en/trees-for-timber-intercropped-with-cereals-445.html</u>
- Smith J, Wolfe M, Crossland M, Howlett S (2014). Initial Stakeholder Meeting Report: Silvoarable Agroforestry in the UK. 21 November 2014. 8 pp. Available online: http://www.agforward.eu/index.php/en/silvoarable-agroforestry-in-the-uk.html
- Tsonkova P, Mirck J (2014). Initial Stakeholder Report: Alley Cropping Systems in Germany. 19 September 2014. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/alley-</u> <u>cropping-systems-in-germany.html</u>
- Vityi, A (2014). Initial Stakeholder Meeting Report: Alley Cropping Systems in Hungary. 23 October 2014. 11 pp. Available online: <u>http://www.agforward.eu/index.php/en/alley-cropping-systems-in-hungary.html</u>
- Wartelle R (2014). Initial Stakeholder Meeting Report Agroforestry for Arable Farmers in Northern France. (Ed PJ Burgess). 16 December 2014. 10 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-for-arable-farmers-in-northern-france.html</u>

Reports on Agroforestry for Livestock Systems (WP5)

- Bestman M (2014a). Initial Stakeholder Meeting Report: Agroforestry for poultry systems in the Netherlands (9 July meeting). 25 September 2014. Louis Bolk Institute, Netherlands. 5 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-for-poultry-systems-inthe-netherlands.html</u>
- Bestman M (2014b). Initial Stakeholder Meeting Report: Agroforestry for poultry systems in the Netherlands (18 September meeting). 25 September 2014. Louis Bolk Institute, Netherlands. 7 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-for-poultry-systemsin-the-netherlands.html</u>
- Bondesan V (2014). Initial Stakeholder Meeting Report: Free-range Pigs with Energy Crops in Veneto, Italy. (Ed. P Burgess). 21 November 2014. Veneto Agricultura, Italy. 8 pp. Available online: <u>http://www.agforward.eu/index.php/en/free-range-pigs-with-energy-crops-italy.html</u>
- Kongsted AG (2014a). Initial Stakeholder Meeting Report: Agroforestry for organic poultry and pig production in Denmark. 29 October 2014. Aarhus University, Denmark. 7 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-for-organic-poultry-and-pig-productionin-denmark-583.html</u>
- Kongsted AG (2014b). Initial Stakeholder Meeting Report Free-range pigs integrated with energy crops in Denmark. 4 September 2014. Aarhus University, Denmark. 7 pp. Available online: http://www.agforward.eu/index.php/en/free-range-pigs-integrated-with-energy-crops.html
- Luske B (2014). Initial Stakeholder Meeting Report: Fodder trees for cattle and goats in the Netherlands. 6 October 2014. Louis Bolk Institute, Netherlands. 6 pp. Available online: <u>http://www.agforward.eu/index.php/en/fodder-trees-for-cattle-and-goats-in-the-</u> <u>netherlands.html</u>
- McAdam J (2014). Initial Stakeholder Meeting Report: Grazed orchards in Northern Ireland, UK. 4 December 2014. AFBI, Northern Ireland. 9 pp. Available online: http://www.agforward.eu/index.php/en/grazed-orchards-in-northern-ireland-uk.html
- Mosquera-Losada MR, Ferreiro-Domínguez N, Fernández Lorenzo JL, González-Hernández P, Rigueiro Rodríguez A (2014). Initial Stakeholder Meeting Report: Agroforestry with Pigs, Galicia,

Spain. 25 September 2014. University of Santiago de Compostela, Spain. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-with-pigs-in-galicia-spain.html</u>

- Pottier E (2014). Initial Stakeholder Meeting Report: Agroforestry with Ruminants in France. (Ed PJ Burgess). 10 November 2014. Institut de l'Elevage, INRA. 9 pp. Available online: <u>http://www.agforward.eu/index.php/en/agroforestry-with-ruminants-in-france.html</u>
- Smith J, Vieweger A, Zaralis K (2014a). Initial Stakeholder Meeting Report: Woodland Eggs in the UK.
 3 July 2014. Organic Research Centre, UK. 6 pp. Available online: http://www.agforward.eu/index.php/en/Poultry-systemUK.html
- Smith J, Vieweger A, Zaralis K (2014b). Initial Stakeholder Meeting Report: Woodland Poultry in the UK. 16 May 2014. Organic Research Centre, UK. 5 pp. Available online: http://www.agforward.eu/index.php/en/Poultry-systemUK.html

AF system ID	x – xx		Name	Poplar silvoarable and linear systems
AGFORWARD Classification	High Natural and Cultural Value (WP2) High Value Tree Systems (WP3) X Silvoarable (WP4) Silvopastoral (WP5)			
Present Location	Italy, Po Valley, plain and hilly are	as of peninsular italy		
Description	Poplar hybrids and species has been intensively managed in Italy for timber production mostly in monoculture plantations, but often in intercropping systems (intercropping of arable crops in between young tree rows) and in linear plantations along field edges, drainage canals and streams. Poplar cultivation, in all the above cultivation models, is currently declining for stagnating domestic timber market. Urgent environmental concerns connected to Global Changes (Carbon sequestration, bioenergy, soil erosion control) should open new prospective for poplar silvoarable systems and linear plantations, combining local bioenergy production with food security and environmental amelioration, such us phytoremediation.			
Area occupied (estimation)	No reliable official statistics are a are available, often not homogen from linear plantations, without Lombardia (year 2000) reports : timber.	vailable for intercropping systen eous as time series, such the one stratification amongst tree spec 21,459 km of linear plantations	ns. For linear planations, es for Lombardia Region, ies (e.g. Populus, Platanu s (15.18 m/ha), producin	just local regional statistics reporting wood production Is, Salix). The last census in ng annually 180.000 m ³ of
Soil type	Alluvial soils			
Tree species	Poplar hybrids (Populus x canade Populus alba, Populus nigra	ensis)		
Crop species	Corn (Zea mays), wheat (Triticus s annuus), alfalfa (Medicago sativa)	spp.), barley (Hordeum volgare),), clovers (Trifolium spp.)	soybean (Glycine max), s	unflower (Heliantus
Animal species	Occasional sheep grazing in penir	nsular Italy.		
Products	From trees: timber (plywood, pall From undercover: crops, fodder.	lets, wooden fruit boxes), bioene	ergy;	
Economic interests	Traditionally poplar plantations h because of the imports competiti trend. Furthermore, new grants (could be a new opportunity for in	ave produced 50% of the domes on. Forest certification and local from Rural Development Plans) f nplementing poplar based agrofo	tic timber production in I bioenergy production co or farmers establishing n prestry.	taly, with a declining trend uld reverse the negative ew silvoarable systems
Other services	Soil and Water protection, Carbo	n sequestration, Biodiversity, Phy	ytoremediation.	
Experimental sites for the project? Where?	Farm "La Casaria" – Masi (Padova	ı), Italy		
	https://www.flickr.com/photos/a	gforward/15688904930/		
Photographs	https://www.flickr.com/photos/a https://www.flickr.com/photos/a	ngforward/15690432297/ ngforward/15690432297/		
AF System contact	Name Cristina Dalla Valle Pierluigi Paris	Email <u>cristina.dallavalle</u> piero.paris@ibaf.	<u>@venetoagricoltura.org</u> <u>cnr.it</u>	
References (5 to 10)	 Paris P., Mareschi L., Ecosse A., Pisanelli A., Sabatti M., Scarascia Mugnozza G., 2011. Comparing Hybrid Populus Clones For SRF Across Northern Italy After Two Biennial Rotations: Survival, Growth And Yield. Biomass and Bioenergy, 35:1524-1532. Doi: 10.1016/j.biombioe.2010.12.050. M. Sabatti, F. Fabbrini, A. Harfouche, I. Beritognolo, L. Mareschi, M. Carlini, P. Paris, G. Scarascia-Mugnozza, 2014. Evaluation of biomass production potential and heating value of hybrid poplar genotypes in a short-rotation culture in Italy. Industrial Crops and Products, Products 61: 62–73. Doi: 10.1016/j.indcrop.2014.06.043. Paris P, Mareschi L, Sabatti M, Tosi L, Scarascia-Mugnozza G, 2014. Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy. iForest, Biogeosciences and Forestry (in press). 			
Modeling combinations	Hybrid poplar linear plantation + corn/wheat Hybrid poplars silvoarable system+corn/wheat			
Other comments	The same poplar based agrofores similar factsheets have been prep of the most common form of a modeling should be an important	try systems are possible in many pared by other project partners. groforestry systems across Euro aim for the Agforward Project.	v other European countrie We do believe that popla ope, and therefore their	es. So far we do not know if r linear plantations are one biophysical and economic

Annex B. Example of fact sheet

Basic Agroforestry system information.

AF-ID	Stakeholder	Fact	Contact	Email
	meeting	Sheet		
201	Х	Х	Joana Amaral Paulo,	joanaap@isa.ulisboa.pt
			João Palma, ISA, Portugal	joaopalma@isa.ulisboa.pt
202	Х	Х	Paul Burgess, CRAN, UK	p.burgess@cranfield.ac.uk
203	Х		Gerardo Moreno, UNEX, Spain	gmoreno@unex.es
204	Х	Х	Anastasia Pantera, TEI, Greece	pantera@teiste.gr
205	Х		Antonello Franca, CNR-ISPAAM,	a.franca@cspm.ss.cnr.it
			Italy	
206	Х	Х	Jaconette Mirck and Penka	jmirck@tu-cottbus.de
			Tsonkova, BTU, Germany	penka.tsonkova@tu-cottbus.de
207	Х		Erik Valinger SLU-EFI, Sweden	erik.valinger@slu.se
208	Х		Andrea Vityi and	vityi.andrea@emk.nyme.hu
			Anna Varga NYME, Hungary	varga.anna@gmail.com
209	Х		Tibor Hartel UBB, Romania	hartel.tibor@gmail.com
210	Х		Claudine Thenail and Valérie	Claudine.thenail@rennes.inra.fr
			Viaud, INRA- Rennes, France	Valerie.viaud@rennes.inra.fr
301		Х	Jo Smith, ORC, UK.	jo.s@organicresearchcentre.com
302		Х	Felix Herzog, Agroscope,CH,	felix.herzog@agroscope.admin.ch
303			INRA, FR	
304		Х	Lydie Dufour, INRA, FR	dufourl@supagro.inra.fr
305	Х	Х	Paul Burgess, CRAN, UK.	p.burgess@cranfield.ac.uk
306	Х		Adolfo Rosati CRA-OLI, IT.	adolfo.rosati@entecra.it
307	Х	Х	Anastasia Pantera, TEI, GR and	pantera@teiste.gr
			Konstantinos Mantzanas,	<u>konman@for.auth.gr</u>
			Aristotle Univ. of Thessaloniki,	
			GR	
308	Х		Gerardo Moreno, UNEX, SP	gmoreno@unex.es
309	Х		Rosa Mosquera Losada, USC,	mrosa.mosquera.losada@usc.es
			SP	
310	Х		Anastasia Pantera, TEI, GR	pantera@teiste.gr
311	Х	Х	Anastasia Pantera, TEI, GR	pantera@teiste.gr
312	Х		Nathalie Corroyer, INRA-	nathalie.corroyer@seine-
			Normandy, France	maritime.chambagri.fr
313	Х		Jim McAdam, AFBI, UK.	jim.mcadam@afbini.gov.uk
401	Х	Х	Felix Herzog, Agroscope, CH.	felix.herzog@agroscope.admin.ch
402		Х	Felix Herzog, Agroscope, CH.	felix.herzog@agroscope.admin.ch
403	Х	Х	Jo Smith, ORC, UK.	jo.smith@orc.admor.uk
404	Х	Х	Marie Gosme, INRA, FR.	marie.gosme@supagro.inra.fr
405	Х	Х	Jaconette Mirck and Penka	jmirck@tu-cottbus.de

Annex C. Source of data and contact for each agroforestry system

AF-ID	Stakeholder	Fact	Contact	Email
	meeting	Sheet		
			Tsonkova, BTU, DE.	penka.tsonkova@tu-cottbus.de
406	Х	Х	Pierluigi Paris CNR-IBAF, IT	piero.paris@ibaf.cnr.it
407	Х	Х	Anastasia Pantera, TEI, GR.	pantera@teiste.gr
408	Х		Andrea Vityi and Anna Varga	vityi.andrea@emk.nyme.hu
			NYME, HU.	varga.anna@gmail.com
409	Х	Х	Rosa Mosquera Losada, USC,	mrosa.mosquera.losada@usc.es
			SP	
410	Х		Eric Cirou, Chambres	eric.cirou@charente-
			d'Agriculture of Charente-	maritime.chambagri.fr
			Maritime, France	
411	Х		Régis Wartelle , Chambres	r.wartelle@picardie.chambagri.fr
			d'Agriculture of Picardy, France	
412		Х	João Palma, ISA, PT	joaopalma@isa.ulisboa.pt
501	Х	Х	Anne Grete Kongsted, AU, DK.	anneg.kongsted@agro.au.dk
502		Х	Lydie Dufour, INRA, FR	dufourl@supagro.inra.fr
503	Х		Jo Smith, ORC, UK.	jo.s@organicresearchcentre.com
504	Х		Jo Smith, ORC, UK.	jo.s@organicresearchcentre.com
505	Х		Boki Luske, LBI, NL.	<u>b.luske@louisbolk.nl</u>
506	Х		Monique Bestman, LBI, NL.	m.bestman@louisbolk.nl
507	х		Monique Bestman, LBI, NL.	m.bestman@louisbolk.nl
508	Х		Anne Grete Kongsted, AU, DK.	anneg.kongsted@agro.au.dk
509	Х		Rosa Mosquera Losada, USC,	mrosa.mosquera.losada@usc.es
			SP	
510	Х	Х	João Palma, ISA, PT.	joaopalma@isa.ulisboa.pt
511	Х	Х	Joana A Paulo, ISA, PT	joanaap@isa.ulisboa.pt